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ABSTRACT

This paper proposes a guaranteed robust bounded-error distributed
estimation algorithm. It may be employed to perform parameter es-
timation from data collected in a network of wireless sensors. The
algorithm is robust to an arbitrary number of outliers. Using interval
analysis, one is able, provided that the network is connected, to eval-
uate at each sensor, an outer approximation of the set of all parameter
values which are consistent with a given number of measurements,
and with noise bounds. An application to a robust distributed source
localization problem is considered.

Index Terms— Bounded-error estimation, distributed estima-
tion, interval analysis, network of sensors, outliers, robust estima-
tion.

1. INTRODUCTION

A network of wireless sensors (NWS) is a set of autonomous de-
vices, with limited computing capability and autonomy, exchanging
information via a wireless channel. Various types of sensors may be
considered, e.g., for measuring pressure, temperature, sound, vibra-
tion, motion... Many applications (environment monitoring, home
automation, traffic control) may take advantage of NWS, see, e.g.,
[1, 2].

Challenging problems arise when considering parameter or
state estimation using measurements provided by a NWS. Two main
types of estimation techniques may be considered. In centralized
approaches, all measurements obtained by the sensors are transmit-
ted to a central processing unit (CPU), see, e.g., [3]. Many data
have then to be send to a given point of the network. Moreover, this
solution is not robust to a failure of the CPU, since the estimate is
only available at that point of the network. Alternative distributed
estimation techniques for constant [4] and time varying parameters
[5, 6] have been provided. In this case, each sensor is responsible for
the processing of its measurement and of data provided by neighbor-
ing sensors. An increased robustness to failure of the CPU is thus
obtained.

Nevertheless, distributed solutions may not be very robust
against erroneous measurements provided by some defective sen-
sors. Albeit robust estimators have been proposed in a centralized
context, using bounded-error estimation [7] or linear programming
[8], the extension of these techniques to a distributed context is far
from being trivial.

This paper considers distributed bounded-error estimation in a
NWS [9]. Measurement noise is assumed to be bounded with known
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bounds, and one aims at evaluating the set of all values of the pa-
rameter vector which is consistent with the measurements and the
bounds on the measurement noise. It provides a guaranteed and ro-
bust estimator in a distributed context using interval analysis [10].
By guaranteed, it is meant that no parameter value consistent with a
fixed number of measurements is missed.

Section 2 recalls the robust bounded-error parameter estimation
problem in a NWS. The centralized approach is described in Sec-
tion 3 to provide a reference to the distributed approach presented in
Section 4. Implementation issues are considered in Section 5 before
providing simulation results in Section 6.

2. PROBLEM FORMULATION

Consider a network ofN sensors spread in an environment. The aim
is to provide the estimation of an unknown parameter vector p∗ ∈ P
using measurements yi, i ∈ J1, NK provided by each sensor of the
network. The measurement yi is assumed to be linked to p∗ via the
measurement model

yi = fi(p
∗) + ei i ∈ J1, NK (1)

where ei is assumed to remain in some known interval vector (box)
[e, e]. Introducing [yi] = yi − [e, e], one has

fi(p
∗) ∈ [yi] i ∈ J1, NK. (2)

Bounded-error parameter estimation [11, 12] aims at character-
izing the set S0 of all parameter values which are consistent with
the measurements, the measurement model, and the bounds on the
measurement noise, i.e.,

S0 = {p ∈ P|∀i ∈ J1, NK, fi(p) ∈ [yi]} . (3)

When they are some outliers, e.g., in the case of a defective
sensors, for some measurements, the noise may not remain in its
bounds, S0 may be then empty. In such situations, one may define a
set estimator for p robust to q outliers as follows

Sq = {p ∈ P|λ(p) ≥ N − q} (4)

where

λ(p) =

N∑
i=1

I[yi](fi(p)) (5)

and

IA(x) =

{
1 if x ∈ A
0 else (6)

Guaranteed inner and outer approximations Sq and Sq of Sq may
be obtained for any value of q using interval analysis [10], provided



that all measurements are collected at a CPU, to which all measure-
ments yi and models fi have been transmitted. By guaranteed, it
is meant that one is able to numerically prove that in P \ Sq , all
values of the parameter vector are inconsistent with at least q + 1
measurements, and that in Sq , all values of the parameter vector are
consistent with at least N − q measurements.

The aims of this paper is to propose a distributed robust
bounded-error estimator, i.e., to provide an estimation algorithm
which is able to evaluate at each sensor i of the network an outer
approximation Sq,i of Sq using only a subset of the measurements
available in the network. The aim is to be robust to a failure of the
CPU, to compute at each sensor of the network partial estimates
with a only subset of the measurements, and if possible, to reduce
the amount of data exchanged within the network. In what follows,
the network is assumed to be entirely connected, i.e., any sensor of
the NWS is able to exchange information with any other sensor, in
one or several hops.

3. ROBUST CENTRALIZED APPROACH

In this approach, all sensors send their measurements and measure-
ment functions to a central processing unit. The robust bounded-
error approach presented in [7] is briefly recalled here to serve as
reference of the distributed approach detailed in Section 4.

The robust estimator is based on the notion of inclusion function,
introduced by interval analysis [13, 10]. Consider a function f : D ⊂
Rα −→ Rβ , an inclusion function [f ] for f has to be such that

∀[x] ⊂ D [f ] ([x]) ⊃ f ([x]) . (7)

The natural inclusion function is a inclusion function obtained by
replacing all occurrences of the variable x in the formal expression
of f(x) by the interval counterpart [x]. It allows to compute an outer-
approximation of the range of f over any interval [x] ⊂ D. For more
details, see [13, 10].

Assuming that an inclusion function [λ] for λ in (5) is available,
one may use the SIVIA algorithm [14] to evaluate an inner approxi-
mation Sq and an outer approximation Sq of Sq consisting of unions
of non-overlapping boxes of P. Sq and Sq are initialized as ∅.

Starting with a working LIFO listW of boxes to be processed,
initially containing the box [p]0 = P, SIVIA extracts a box [p] from
W and applies the following tests.
– If [λ]([p]) ⊂ [N − q,N ], then all parameters in [p] are consistent
with at least N − q measurements or more and [p] is stored in Sq
and Sq .
– If [λ]([p]) ⊂ [0, N − q[, then all parameters in [p] are not consis-
tent with q + 1 measurement or more, and [p] is dropped.
– If the size of [p] is larger than some parameter ε, [p] is bisected
into two subboxes [p]′ and [p]′′, which are stored inW .
– If the size of [p] is smaller than ε, it is stored into Sq .

One of the interesting feature of this approach is that it is not
necessary to specify a priori the sensors which are defective. Only
the number q of erroneous data the estimator has to be robust to has
to be specified. The approach considered by GOMNE [7] consists in
starting with q = 0 and increasing q until a non-empty solution set
Sq is obtained. Note that with this approach, the solution set Sq is
only guaranteed to contain the true parameter value p∗ if the number
of outliers is actually less than q. In what follows, the NWS is as-
sumed to be entirely connected, i.e., each sensor is able to exchange
information with any other sensor of the network, in one or several
hops.

4. IDEALIZED ROBUST DISTRIBUTED APPROACH

In this context, each sensor has to process its own measurement and
information transmitted by neighboring sensors. One aims at char-
acterizing Sq in a guaranteed way, as in the centralized approach.

Consider the subset of measurement indexes J ⊂ J1, NK, and
define the set

SJq =
⋃

I⊂J,card(I)=card(J)−q

(⋂
i∈I

Pi

)
, (8)

of all parameters consistent with card(J) − q or more measure-
ments provided by sensors with index in J , with where Pi =
{p ∈ P|fi(p) ∈ [yi]}, the set of parameters consistent with the
measurement provided the sensor i and card(A), the cardinal num-
ber of the set A. One may easily verify that Sq = SJ1,NK

q and

∀J1 ⊂ J2 ⊂ J1, NK SJ1q ⊃ SJ2q ⊃ Sq (9)

Assume that a sensor has evaluated SJ1q and that SJ2q has been
provided by one of its neighbors. According to 9, to obtain a better
outer-approximation of Sq , the sensor has to compute SJ1∪J2q . If
J1 ∩ J2 6= ∅, there is no simple relation between SJ1q ∩ SJ2q and
SJ1∪J2q . Now, if J1 ∩ J2 = ∅, one may easily prove that SJ1q ∩
SJ2q ⊃ SJ1∪J2q , but both sets are not equal in general. In fact, to
compute SJ1∪J2q , all SJ10 , . . . , SJ1q and SJ20 , . . . , SJ2q are needed, see
Appendix A.1. Thus, each sensor has to transmit SJ0 , . . . , SJq in place
of only SJq .

For any subset of indexes J ⊂ J1, NK, consider the set ΓJq ={
SJ0 , SJ1 , · · · , SJq

}
, see Figure 1. In what follows, sensors send and

receive such sets, and try to compute Γ
J1,NK
q to obtain SJ1,NK

q = Sq .
The number of tolerated outliers q is assumed to be fixed a priori.
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Fig. 1. Representation some set ΓJ2 =
{
SJ0 , SJ1 , SJ2

}
Initially, each sensor i processes its own measurement, to get Pi

and Γ
{i}
q = (Pi,P, · · · ,P). Then, it broadcasts this first estimate

to its neighboring sensors and receives similar structures. After a
first round of communication, the i-th sensor is able to improve its
estimates as follows. If J1 ∩ J2 = ∅ (combination constraint), then
ΓJ1q and ΓJ2q can be used to get ΓJ1∪J2q by computing each SJ1∪J2q′

as
∀q′ ∈ J0, qK SJ1∪J2q′ =

⋃
q1+q2=q′

SJ1q1 ∩ SJ2q2 , (10)

see Appendix A.1.
For the next round of communication, each sensor broadcasts

the best ΓJq (with the largest card(J). Once all sensors have ex-
changed improved estimates, new improvements are possible. The
two phases (estimation and communication) may be performed un-
til convergence, i.e., until all sensors have obtained SJ1,NK

q = Sq ,
which occurs in finite time the proof is not provided here due to
lack of space). Computations may also be stopped at any time, each
sensor of the network having an outer-approximation of Sq , which
improves when more data are exchanged.



(a) (b)

(c) (d)

Fig. 2. Considered network of 9 sensors (blue) and one source (red)
(a); Solution obtained using a centralized estimation technique for
q = 0 (b), q = 1 (c), and q = 2 (d); all plots are in [−2, 2]2

5. IMPLEMENTATION ISSUES

In Section 4, sets such as SJq are assumed to be transmitted. This
is not possible in general, since the shape of such sets may be quite
complex. Here, external approximations SJq are considered, in or-
der to be able to determine a guaranteed outer approximation of the
solution Sq . Such outer-approximation may consists of any simple
geometric shape, such as ellipsoids, polytopes, or unions of non-
overlapping boxes or subpavings [10], which are considered here.

A single subpaving of P can be used to represent Γ
J
q . A sub-

paving may be easily described by a binary tree. Each leaf of the
tree has to be labeled with ` to indicate that the corresponding box
is a subset of SJ` . This subpaving implementation of Γ as labeled
binary trees, allows computation for each sensor to becomes only
unions and intersections of subpavings.

Each node stores intermediate results with Γ
J
q =

(
SJ0 , S

J
1 , · · · , S

J
q

)
in place of ΓJq and transmitted to neighboring nodes. Efficient rout-
ing protocols, such as Optimized Link State Routing Protocol [15],
may be used to satisfy the recombination constraint more easily.
The node of the network use multipoint distribution relays (MPR)
for transmission. For a given node, only a subset of its neighbors
relay its message. The selection of MPRs is adaptive and done in
real time. For more details, see [15]. We impose here a dynamic
hierarchical structure where a sensor selects his MPRs and sends his
sets Γ only to its MPRs.

6. EXPERIMENTAL PART

A simple single source localization in a 2D-environment with a
NWS is considered, see Figure 2. A network of 9 regularly-spaced
nodes is considered. Each sensor measures the power it receives
from the source. All measurement errors are bounded: for a re-
ceived power yi by the i-th sensor, the noise-free measurement is
assumed to belong to the interval [y] = [ y

w
, yw] with w = 1.7. Two

outliers are introduced by hand, concerning Sensors 4 and 6. The

(a) (b)

(c) (d)

Fig. 3. Estimates Γ
J
2 available at the 4-th sensor using the proposed

distributed estimator, with SJ0 in dark-red, SJ1 in red, and SJ2 in light-
red, all represented in the box [−2, 2]2; initial estimate Γ

{4}
2 (a),

Γ
{4,5}
2 (b), Γ

{2,4,5,6,8}
2 (c) , and final estimate Γ

J1,NK
2 = Γ2 (d)

location of the source p∗ = (θ1, θ2) has then to be estimated.
The following measurement model is considered for the i-th sen-

sor
ym,i =

P0

d ((θ1, θ2) , (θ1i, θ2i))
η (11)

where (θ1i, θ2i) is the location of the sensor i, and where d(P1, P2)
is the distance between P1 and P2. Moreover, P0 = 1 and η = 2
are assumed to be known.

For a number of outliers q ∈ {0, 1, 2}, the centralized robust
bounded-error estimator for (θ1, θ2) provides the results represented
in Figure 2. In distributed approach, Figure 3 describes the estimates
obtained by the 4-th sensor. The sets of Γq are outer approximation
of sets of Γq .

Increasing the number of nodes of the network, one may eval-
uate the evaluation of the number of iterations required until con-
vergence, see Figure 4. The complexity seems to be linear with the
number of sensors.

7. CONCLUSION

This paper introduces a guaranteed robust bounded-error distributed
estimation algorithm. This algorithm is robust to any number q of
outliers. It is able to provide at each sensor of the NWS an outer-
approximation of the set of all values of the parameter vector which
are consistent with all except q measurements, or more, the model
structure and the noise bounds. It is not ,necessary to specify a priori
the measurements which are deemed as outliers.

The number of outliers the estimator has to be robust to has
to be specified a priori. If labeled trees are used to represent sub-
pavings, themselves used to describe Γ, exchanged between sensors,
the complexity of these structures is not affected by the value of q.
The complexity of the algorithm has to be evaluated more carefully.
The sets Γ are quite complex, and their transmission may require
some resources. One could imagine an alternative way to provide a
robust estimator by exchanging measurements within clusters, and
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Fig. 4. Evolution of convergence time with number of sensor

exchange estimates between cluster heads to optimize the amount of
data to be exchanged within the network.

A. PROOFS

For a node i of a WSN of N nodes, consider L1(i) ⊂ J1, NK, the
set of all indexes of sensors which are directly connected to i. One
chooses L0(i) = {i}. Then, for any k ∈ J1, NK the set Lk(i) =
Lk−1(i)∪(

⋃
s∈Lk−1(i) L1(s)) contains all indexes of sensors which

can communicate iwith k communication or less. Assuming that the
network is fully connected translates into

∀i ∈ J1, NK ∃d ∈ N Ld(i) = J1, NK. (12)

A.1. Computation rule

Considering J1 ⊂ J1, NK and J2 ⊂ J1, NK, with J1 ∩ J2 = ∅, one
aims at proving (10). For that purpose, take some q′ ∈ J0, NK.

First consider p ∈
⋃
q1+q2=q′ S

J1
q1 ∩SJ2q2 . There exists (q1, q2) ∈

J1, NK2 with q1 + q2 = q′, and with p ∈ SJ1q1 ∩ SJ2q2 . Then p ∈ SJ1q1
and p ∈ SJ2q2 . One may also find I1 ⊂ J1 and I2 ⊂ J2, with
card(I1) = card(J1) − q1, card(I2) = card(J2) − q2, and with
p ∈ ∩i∈I1Pi and p ∈ ∩i∈I2Pi. Since J1∩J2 = ∅, then I1∩I2 = ∅,
and card(I1 ∪ I2) = card(J1)− q1 + card(J2)− q2 = card(J1 ∪
J2)− q′. Now, take I = I1 ∪ I2 ⊂ J1 ∪ J2, then p ∈

⋂
i∈I Pi with

card(I) = card(J1 ∪ J2)− q′, and one has

p ∈
⋃

I ⊂ J1 ∪ J2

card(I) = card(J1 ∪ J2)− q′

(⋂
i∈I

Pi

)
(13)

Finally, p ∈ SJ1∪J2q′ and
⋃
q1+q2=q′ S

J1
q1 ∩ SJ2q2 ⊂ SJ1∪J2q′ .

Second, take p ∈ SJ1∪J2q′ . There exists I ∈ J1 ∪ J2 such that
p ∈

⋂
i∈I Pi, and card(I) = card(J1 ∪ J2) − q′. Consequently,

there exists I1 ⊂ J1 and I2 ⊂ J2 with I1 ∪ I2 = I . Since J1 ∩
J2 = ∅, then I1 ∩ I2 = ∅. Let q1 = card(J1) − card(I1) and
q2 = card(J2) − card I2. One has then q1 + q2 = card(J1) +
card(J2)− (card(I1) + card(I2)) = card(J1 ∪ J2)− card(I1 ∪
I2) = card(J1 ∪ J2)− card(I) = q′. So

p ∈
⋂
i∈I1

Pi card(I1) = card(J1)− q1

p ∈
⋂
i∈I2

Pi card(I2) = card(J2)− q2
(14)

One has then p ∈ SJ1q1 and p ∈ SJ2q2 and q1 + q2 = q′. Finally,
p ∈

⋃
q1+q2=q′ S

J1
q1 ∩ SJ2q2 .
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