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First Part

Bounded-error estimation



Parameter estimation

Y

System —

Model _)ym(p,t)
M(p)

Y

y : vector of experimental data
p : vector of unknown, constant parameters

ym (P) : vector of model output

Parameter estimation :

Determination of p from y.



Problem formulation
1. Minimisation of a cost function, e.g.,
p = argmin jis (p) = (¥ = ¥ (P))' (v = ¥ (P))
or

AN

b = arg max friy (Ply)

— Local techniques : Gauss-Newton, Levenberg-Marquardt. . .
— Random search : simulated annealing, genetic algorithms. . .

— Global guaranteed techniques : Hansen’s algorithm

2. Parameter bounding



Parameter bounding

Experimental data : y (¢;),
t;,t=1..., N, known measurement times

lei] = |g;,8:],1=1,..., N, known acceptable errors

p € Py deemed acceptableifforalls = 1,..., N,
g <Y (ti) —ym (P ti) <&

—> Bounded-error parameter estimation :

Characterize S = {p € Po |y (t;) — ym (P, t;) € |g;,E], 1 =1,...



Sivia

Set to be characterized

with

S = {P S 73O | y(tz) — YUm (pati) S [gz’agi] 7?:

={pcPo|yn(p) CV},

Y=[y(t1) =1,y (t1) —g] X ---
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Data space

Parameter space

Yellow box is undetermined
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Red box proven to be outside S
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Parameter space Data space

Green box proven to be included in S
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Sivia with contractors

Reduce the size of undetermined boxes without any bissection

AP2
-.Xo
A Contractor
D
|., pl

Parameter space

Contractors (Jaulin et al, 2001) based on

— interval constraint propagation
— linear programming

— parallel linearization
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Robust parameter estimation

Hypotheses on model or noise not satisfied

(easy detection)

Situation very frequently encountered when considering actual measurements

4

Robust parameter estimation techniques are necessary
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Estimator robust to g outliers

New solution set, q outliers are tolerated
5= U 1 S
1< < <ly <N b#£Lq,... 0#L,

=
Union of intersections of N — ¢ sets among [NV

Interval analysis [JKDWO01] allows to get
r r o'
S, €S, CS,

without combinatorial techniques.
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Consider

te (P) =
0 else,
and
N
t(p)=) t(p)
=1
Then
Sy = U s
1<l < <lg <N L#£Ly ... 0#£1L,
= {peP|t(p) 2N —q}
and

— there is no combinatorial any more,
— it is not necessary to choose a priori the outliers.
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Inclusion functions

To apply SIVIA, for example, an inclusion function for t, (p) is needed...

(

1 it [y7] ([p]) C [ye]
tel(P)=q 0 i [y ([p)) N [ye] = 0
| [0,1] else

.. which itself requires an inclusion function for y7' (p) .

Guaranteed robust parameter estimation :

no p consistent with more than N — ¢ data and bounds is missed

If p* exists, and if there are not more than g outliers

4

SZJ guaranteed to contain p*.
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Example : Localization using UWB signals

Using the Static WP RB database

UWB device : PulsOn220



Environment
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UWB Measurement campaign performed at ISMB, Italy
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Connectivity

node
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Static scenario, 1000 measurements.
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Results
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Results

MSE

2 4 6 8 10 12 14
Target Node ID

MSE evaluated between middle of bounding box and true location

Robust bounded-error technique not always the best, never the worst...
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Difficulties in Robust Distributed parameter estimation

Each sensor should evaluate S/,

Main difficulties :

— Direct extension of centralized algorithm not possible
—> involves all measurements.

— Local estimates are exchanged, information progressively available

Assumptions :

— Network is entirely connected
— Sensors exchange estimates

— Number of tolerated outliers fixed a priori.
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Idealized robust distributed approach

Consider J C [1, N, and define

- U (e

ICJ,card(l)=card(J)—q \i€l

with
Si = {p € Ply;'(p) € [vi]}.

Properties

: 1,N
1. s =sibN
2. VJ1 C Jy C [1, N], one has Sgl D 86{2 D Sy
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Combining robust estimates

Assume that Sensor 1

— has evaluated S;{l
— has received S&]Q from Sensor 2.

To get a better approximation of S’ , evaluate Sglu‘b.

— It J1 N Jy # (), no simple relation between Sgl NSz, Sgl U Sq‘]? and Sglub.
—1f J; N Jy = (), one has SquUJQ C Sgl N SqJ2, but in general Sglub + Sq‘]l N SgQ.
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Sl
{1,3}
SO
{2,4}
SO
{1,2,3,4}
{1234} S
SO
To compute SquUJ2, all Sojl, e ,Sq‘]l and SOJQ, . ,Sq‘]? are needed

sSiV =) siinslzd =0,...,q

1
q1+q92=q’
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Each sensor has to transmit FJ (SO ; S e 7qu)

— Initially sensor 7 processes its own measurement,
— S,
— I = (S,P,--- ,P).
— Then, it broadcasts F(g } and receives similar structures.

— The sensor 7 is able to improve its estimates if J; N Jy = (),

J1UJy _ Ji At
vq' € [0,q] S} = U Syl NS;2.

q1+q2=q’

— Then sensor broadcasts the best Fg (with the largest card(.J)).

— and so on until convergence.
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Estimation and communication performed until all sensors have obtained Sgl’Nﬂ = SZJ

<~ occurs in finite time when the network is connected.

If computations stopped before convergence, each sensor of the network has an
outer-approximation of S’ , which improves when more data are exchanged.
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Implementation issues

Representation of sets

Sets such as S;I] have to be transmitted : not possible in general.

4

—J
Wrappers S, for Sg are considered

4

—r
Allows to get S,

Wrappers : ellipsoids, polytopes, or subpavings [JKDWO01].

Fq represented by a regular paving of IP

— Paving described by a binary tree.

—J
— Each leaf labeled with £ (corresponding box is a subset of S, ).
Computation for each sensor by only unions and intersections of subpavings (of trees).
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Transmission protocol

Each node :

=J =J =J

—J
— stores intermediate results with I', = (SO JS, ,Sq) in place of I‘g

— transmits Fq to neighboring nodes.

Optimized Link State Routing Protocol [CJLT01], used to satisfy the combination constraint more
easily.

—> Nodes of the network use multipoint distribution relays (MPR) for transmission.

— For a given node, only a subset of its neighbors relay its message.

— Selection of MPRs adaptive and done in real time.

Dynamic hierarchical structure :

a sensor selects his MPRs and sends its sets ' only to its MPRs.
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Simulations

Single source localization in 2D-environment with NWS.

2
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Considered network of 9 sensors (blue) and one source (red)
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Each sensor measures the power it receives from the source.

All measurement errors are bounded :

— received power y; by the 7-th sensor,
— noise-free measurement belongs to [y;| = [y; /w, y;w] with w = 1.7.

Two outliers are introduced by hand (Sensors 4 and 6).
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Location of the source p* = (61, f2) has to be estimated.

Measurement model for the 2-th sensor

P,
yi (01,02) = -

<\/(91 —01,)2 + (05 922-)2>77

where (601;, 02;) is location of Sensor 7.

Py = 1and n = 2 are assumed to be known.
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Centralized estimation

Number of tolerated outliers g € {0, 1, 2}

q=1 q=2

q=20

all plots are in [—2, 2]?
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Distributed estimation

—J
Estimates I'5 available at the 4-th sensor using the proposed distributed estimator. Number of
tolerated outliers ¢ = 2

-0.5

C—{4} (4,5}
F2 I‘\2

< =J . =J . .
With S, in dark-red, S; in red, and S, in light-red.
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Conclusion

— Guaranteed robust bounded-error distributed estimation algorithm

— Robust to any number g of outliers

> Outer-approximation of SSJ at each iteration
— Not ,necessary to specify a priori the measurements which are deemed as ouitliers.
— Number of outliers has to be specified a priori.

— Complexity of the algorithm has to be evaluated more carefully.
< Sets I are quite complex, transmission requires some resources.

— Robust estimator by exchanging measurements within clusters, and exchange estimates
between cluster heads.
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