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First Part

—
Bounded-error estimation
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Parameter estimation

System

Model
( )M p

y t( )

y tm( , )p

y : vector of experimental data

p : vector of unknown, constant parameters

ym (p) : vector of model output

Parameter estimation :

Determination of p̂ from y.
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Problem formulation

1. Minimisation of a cost function, e.g.,

p̂ = arg min
p
jLS (p) = (y − ym (p))

T
(y − ym (p))

or

p̂ = arg max
p

fP |Y (p | y)

– Local techniques : Gauss-Newton, Levenberg-Marquardt. . .

– Random search : simulated annealing, genetic algorithms. . .

– Global guaranteed techniques : Hansen’s algorithm

2. Parameter bounding
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Parameter bounding

Experimental data : y (ti),

ti, i = 1 . . . , N, known measurement times

[εi] = [εi, εi], i = 1, . . . , N, known acceptable errors

p ∈ P0 deemed acceptable if for all i = 1, . . . , N,

εi 6 y (ti)− ym (p, ti) 6 εi.

=⇒ Bounded-error parameter estimation :

Characterize S = {p ∈ P0 | y (ti)− ym (p, ti) ∈ [εi, εi] , i = 1, . . . , N}
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Sivia

Set to be characterized

S = {p ∈ P0 | y (ti)− ym (p, ti) ∈ [εi, εi] , i = 1, . . . , N}
= {p ∈ P0 | ym (p) ⊂ Y} ,

with

Y = [y(t1)− ε1, y (t1)− ε1]× · · · × [y(tN )− εN , y (tN )− εN ]

?

p2

p1

y pm( ) YP0

Parameter space Data space
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Yellow box is undetermined
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Red box proven to be outside S
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Green box proven to be included in S

9



Sivia with contractors

Reduce the size of undetermined boxes without any bissection

? ?

Contractor

p2

p1

X0

Parameter space

p2

p1

Parameter space

Contractors (Jaulin et al, 2001) based on

– interval constraint propagation

– linear programming

– parallel linearization

– ...
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Robust parameter estimation

S
1

S
2

S
3

Interpretation of empty solution set

S =
⋂

`=1...N

S` = ∅.

Hypotheses on model or noise not satisfied

(easy detection)

Situation very frequently encountered when considering actual measurements

⇓
Robust parameter estimation techniques are necessary
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Estimator robust to q outliers

S
r

1

S
2

S
3

S
1

New solution set, q outliers are tolerated

Sr
q =

⋃
16`1<···<`q6N

⋂
` 6=`1,..., 6̀=`q

S`.

⇔
Union of intersections of N − q sets among N

Interval analysis [JKDW01] allows to get

Sr
q ⊂ Sr

q ⊂ Sr

q,

without combinatorial techniques.
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Consider

t` (p) =

 1 if ym
` (p) ∈ [y`]

0 else,

and

t (p) =
N∑
`=1

t` (p) .

Then

Sr
q =

⋃
16`1<···<`q6N

⋂
6̀=`1,...,` 6=`q

S`

= {p ∈ P | t (p) > N − q}

and

– there is no combinatorial any more,

– it is not necessary to choose a priori the outliers.
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Inclusion functions

To apply SIVIA, for example, an inclusion function for t` (p) is needed...

[t`] ([p]) =


1 if [ym

` ] ([p]) ⊂ [y`]

0 if [ym
` ] ([p]) ∩ [y`] = ∅

[0, 1] else

... which itself requires an inclusion function for ym
` (p) .

Guaranteed robust parameter estimation :

no p consistent with more than N − q data and bounds is missed

If p∗ exists, and if there are not more than q outliers

⇓
Sr
q guaranteed to contain p∗.
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Example : Localization using UWB signals

Using the Static WP RB database

UWB device : PulsOn220
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Environment

D. Dardari, F. Sottile WPRB database V1.1
May 19, 2009 11

5 Measurement campaign
TBD

5.1 Static scenario
5.1.1 Design of the measurement activity
• De�nition of environments and grid of locations

• Perform ranging measurements among each possible locations pair

• Useful to test cooperative localization algorithms

Perturbations from the environment

• De�ne of possible perturbations a�ecting TOA/RSSI measurements to be characterized

• Useful to characterize model for ranging errors based on the characteristics of the environ-
ment (walls, persons, furnitures, depending on the signals' characteristics UWB/Zigbee)

Figure 2. Location of static nodes.

16042009-WPRB database V1.1

UWB Measurement campaign performed at ISMB, Italy
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Connectivity
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Static scenario, 1000 measurements.
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Results
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Results
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MSE evaluated between middle of bounding box and true location

Robust bounded-error technique not always the best, never the worst...
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Difficulties in Robust Distributed parameter estimation

Each sensor should evaluate Sr
n

Main difficulties :

– Direct extension of centralized algorithm not possible

↪→ involves all measurements.

– Local estimates are exchanged, information progressively available

Assumptions :

– Network is entirely connected

– Sensors exchange estimates

– Number of tolerated outliers fixed a priori.
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Idealized robust distributed approach

Consider J ⊂ J1, NK, and define

SJq =
⋃

I⊂J,card(I)=card(J)−q

(⋂
i∈I

Si

)
, (1)

with

Si = {p ∈ P|ym
i (p) ∈ [yi]} .

Properties

1. Sr
q = SJ1,NK

q

2. ∀J1 ⊂ J2 ⊂ J1, NK, one has SJ1q ⊃ SJ2q ⊃ Sr
q.
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Combining robust estimates

Assume that Sensor 1

– has evaluated SJ1q
– has received SJ2q from Sensor 2.

To get a better approximation of Sr
q , evaluate SJ1∪J2q .

– If J1 ∩ J2 6= ∅, no simple relation between SJ1q ∩ SJ2q , SJ1q ∪ SJ2q and SJ1∪J2q .

– If J1 ∩ J2 = ∅, one has SJ1∪J2q ⊂ SJ1q ∩ SJ2q , but in general SJ1∪J2q 6= SJ1q ∩ SJ2q .
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To compute SJ1∪J2q , all SJ10 , . . . ,SJ1q and SJ20 , . . . ,SJ2q are needed

SJ1∪J2q′ =
⋃

q1+q2=q′

SJ1q1 ∩ SJ2q2 , q′ = 0, . . . , q.
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Each sensor has to transmit ΓJq =
(
SJ0 ,SJ1 , · · · ,SJq

)
– Initially sensor i processes its own measurement,

↪→ Si,
↪→ Γ

{i}
q = (Si,P, · · · ,P).

– Then, it broadcasts Γ
{i}
q and receives similar structures.

– The sensor i is able to improve its estimates if J1 ∩ J2 = ∅,

∀q′ ∈ J0, qK SJ1∪J2q′ =
⋃

q1+q2=q′

SJ1q1 ∩ SJ2q2 .

– Then sensor broadcasts the best ΓJq (with the largest card(J)).

– and so on until convergence.
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Estimation and communication performed until all sensors have obtained SJ1,NK
q = Sr

q

↪→ occurs in finite time when the network is connected.

If computations stopped before convergence, each sensor of the network has an

outer-approximation of Sr
q , which improves when more data are exchanged.
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Implementation issues

Representation of sets

Sets such as SJq have to be transmitted : not possible in general.

⇓
Wrappers SJq for SJq are considered

⇓
Allows to get Sr

q .

Wrappers : ellipsoids, polytopes, or subpavings [JKDW01].

Γ
J

q represented by a regular paving of P

– Paving described by a binary tree.

– Each leaf labeled with ` (corresponding box is a subset of SJ` ).

Computation for each sensor by only unions and intersections of subpavings (of trees).
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Transmission protocol

Each node :

– stores intermediate results with Γ
J

q =
(
SJ0 ,S

J

1 , · · · ,S
J

q

)
in place of ΓJq

– transmits Γ
J

q to neighboring nodes.

Optimized Link State Routing Protocol [CJL+01], used to satisfy the combination constraint more

easily.

↪→ Nodes of the network use multipoint distribution relays (MPR) for transmission.

↪→ For a given node, only a subset of its neighbors relay its message.

↪→ Selection of MPRs adaptive and done in real time.

Dynamic hierarchical structure :

a sensor selects his MPRs and sends its sets Γ only to its MPRs.
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Simulations

Single source localization in 2D-environment with NWS.

Considered network of 9 sensors (blue) and one source (red)
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Each sensor measures the power it receives from the source.

All measurement errors are bounded :

– received power yi by the i-th sensor,

– noise-free measurement belongs to [yi] = [yi/w, yiw] with w = 1.7.

Two outliers are introduced by hand (Sensors 4 and 6).
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Location of the source p∗ = (θ1, θ2) has to be estimated.

Measurement model for the i-th sensor

ym
i (θ1, θ2) =

P0(√
(θ1 − θ1i)2 + (θ2 − θ2i)2

)η (2)

where (θ1i, θ2i) is location of Sensor i.

P0 = 1 and η = 2 are assumed to be known.
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Centralized estimation

Number of tolerated outliers q ∈ {0, 1, 2}

q = 0 q = 1 q = 2

all plots are in [−2, 2]2
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Distributed estimation

Estimates Γ
J

2 available at the 4-th sensor using the proposed distributed estimator. Number of

tolerated outliers q = 2

Γ
{4}
2 Γ

{4,5}
2

With SJ0 in dark-red, SJ1 in red, and SJ2 in light-red.
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Γ
{2,4,5,6,8}
2 Γ

J1,NK
2 = Γ2

SJ0 in dark-red, SJ1 in red, and SJ2 in light-red
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Conclusion

– Guaranteed robust bounded-error distributed estimation algorithm

↪→ Robust to any number q of outliers

↪→ Outer-approximation of Sr
q at each iteration

– Not ,necessary to specify a priori the measurements which are deemed as outliers.

– Number of outliers has to be specified a priori.

– Complexity of the algorithm has to be evaluated more carefully.

↪→ Sets Γ are quite complex, transmission requires some resources.

– Robust estimator by exchanging measurements within clusters, and exchange estimates

between cluster heads.
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