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Fault tolerant control (FTC)

Goals
I fault detection and isolation (actuators, plant, sensors)
I control design and optimization

I stability
I constraints satisfaction
I performance

Different approaches in FDI
I stochastic (Kalman filters, sensor fusion)
I set theoretic methods
I artificial intelligence
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FTC – set theoretical methods

Different approaches
I sets computed at each iteration (Planchon and Lunze [2008])

I precise, by the consideration of current state information
I exponential increase in complexity

I invariant sets (Seron et al. [2008], Olaru et al. [2010])
I computed offline, online computations very simple ((real-time

computational load))
I allow discussions regarding the global stability of the system

Methodology
I off-line associate to a residual signal sets describing its

healthy/faulty behavior
I test the inclusion of the residual to these sets at the runtime



Illustration of the methodology
For each fault fi consider a residual signal ri (Blanke et al. [2006])
which is sensible to the fault and is constructed using measurable
information (state estimations, references, etc).

Assumptions:
I fault structure is known

(generally abrupt faults are
easier to handle)

I all exogenous signals are
bounded

ri =

{
rH
i , fi inactive

rF
i , fi active

Fault detection apriori guaranteed iff:
RH

i ∩ RF
I = ∅
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Invariance notions
Let there be a dynamic system defined by

x+ = Ax + δ, δ ∈ ∆

Definition (RPI)
A set Ω is robust positively invariant (RPI) if and only if

x ∈ Ω→ x+ ∈ Ω

.



Invariance notions
Let there be a dynamic system defined by

x+ = Ax + δ, δ ∈ ∆

Definition (mRPI)
A set Ω is minimal robust positively invariant (mRPI) if it is
contained in all RPI sets.
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Set primitives

Families of sets:
I convex sets

I ellipsoids
I polyhedra
I zonotopes

I non-convex sets
I star-shaped sets

Polyhedral approximations of the mRPI set:
I ultimate bounds (Kofman et al. [2007])
I RPI ε-approximations of the mRPI set

I inner approximations (Raković et al. [2005])
I outer approximations (Olaru et al. [2010])



Ultimate bounds
Theorem (Ultimate bounds – discrete case)
Consider the stable system x+ = Ax + Bu. Let there be the
Jordan decomposition A = V ΛV−1 and assume that∣∣∣u(k)

∣∣∣ ≤ ū,∀k ≥ 0. Then there exists l (ε) such that for all k ≥ l :

|V−1x(k)| ≤ (I − |Λ|)−1|V−1B|ū + ε

|x(k)| ≤ |V |(I − |Λ|)−1|V−1B|ū + |V |ε

x(k + 1) = Ax(k) + Bu(k) where

∣∣∣u(k)
∣∣∣ ≤ 1



mRPI inner approximations
Note: An alternative formulation of a mRPI set can be given

Ω =
i=∞⊕
i=0

Ai ∆

This permits the computation of
a sequence of RPI inner
approximations of the mRPI set

Φk+1 = AΦk ⊕∆, Φ0 = {0}

Theorem (Raković et al. [2005])
For any ε ≥ 0 exists s ∈ N+ such that the following relation is true

Φs ⊂ Ω ⊂ (1− α(s))−1 Φs (ε)



mRPI outer approximations
Note: An alternative formulation of a mRPI set can be given

Ω =
i=∞⊕
i=0

Ai ∆

This permits the computation of
a sequence of RPI outer
approximations of the mRPI set

Φk+1 = AΦk ⊕∆, Φ0 = Ψ

Theorem (Olaru et al. [2010])
For any ε ≥ 0 exists s ∈ N+ such that the following relation is true

Ω ⊂ Φs ⊂ Ω⊕ Bn
p (ε)



Set separation

I implicit: there exists a function J(∗) such that

max
i

J(rH
i ) < min

i
J(rF

i ), rH
i ∈ RH

i , rF
i ∈ RF

i

quadratic function barrier function



Set separation

I explicit: there exists a function Ji (∗) for each residual ri such
that

Ji (rH
i ) < Ji (rF

i ), rH
i ∈ RH

i , rF
i ∈ RF

i

separating hyperplane barrier function



Set separation

Explicit separation is sometimes the only solution:
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Multisensor scheme
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Assumptions

I A is stabilizable and pair (A,B) is controllable
I pairs (A,Ci ) are detectable for i = 1, . . . ,N
I additive disturbances and the measurements perturbations are

considered to be delimited by bounded polyhedral sets



Modeling equations

I plant dynamics
x+ = Ax + Bu + Ew

I reference signal
x+

ref = Axref + Buref

I plant tracking error

z+ = x − xref = Az + B (u − uref )︸ ︷︷ ︸
v

+Ew

I estimations of the state

x̂+
i = (A− LiCi ) x̂i + Bu + Li (yi − Ci x̂i )

I estimations of the tracking error

ẑi = x̂i − xref



Switching criteria

At every step a pair sensor-estimator is selected to compute the
command action s.t. the following cost function is minimized

J (ẑ , v) = (ẑ)′Qẑ + (Aẑ + Bv)′ P (Aẑ + Bv)

for the tracking error estimation ẑ ∈ {ẑi}i∈I with I = {1 . . .N}.
The control action is then defined as

u∗ = uref − Kẑ∗

with
ẑ∗ = argmin

ẑ

{
J (ẑ , v) ; ẑ ∈ {ẑi}i∈I , v ∈ Rm}
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Fault scenarios

I total output outages

yi = Cix + ηi
FAULT−−−−−−−→ yi = 0 · x + ηF

i

yi = Cix + ηi
RECOVERY←−−−−−−− yi = 0 · x + ηF

i

I more complex fault scenarios (a signature matrix for each type
of fault)

yi = Ni
[
Cix + ηi

]
+
[
I − Ni

]
ηF

i



Auxiliary sets

I Ni , NF
i , W – bounding boxes for sensor and plant noises

I Xref – set for the reference signal
I S̃i – invariant set for the state estimation error
I Sz – invariant set for the plant tracking error

State estimation error:

x̃+
i = x+ − x̂+

i = (A− LiCi ) x̃i +
[
E −Li

] [w
ηi

]

Plant tracking error:

z+ = (A− BK ) z +
[
E BK

] [w
x̃l

]
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Residual signals
The residual signal associated to the i th sensor can be defined as:

ri = yi − Cixref

Reminder:
I z = x − xref

I yi =

{
Cix + ηi ,

ηF
i

Residual values for sensor i :
I healthy case:

rH
i = Ciz + ηi

I faulty case:
rF
i = −Cixref + ηF

i



Residual signals
The residual signal associated to the i th sensor can be defined as:

ri = yi − Cixref

Reminder:
I z = x − xref

I yi =

{
Cix + ηi ,

ηF
i

Residual values for sensor i :
I healthy case:

RH
i = CiSz ⊕ Ni

I faulty case:
RF

i = −CiXref ⊕ NF
i



Sensor partitioning

Using the previous results we can partition the sensors after their
I healthy functioning (yi = Cix + ηi)
I estimation error (x̃i ∈ S̃i)

into
I IH : healthy sensors

IH =
{

i ∈ I−H : ri ∈ RH
i

}
∪
{

i ∈ I−R : x̃i ∈ S̃i , ri ∈ RH
i

}
I IR : under recovery sensors

IF =
{

i ∈ I : ri /∈ RH
i

}
I IF : faulty sensors

IR = I \ (IH ∪ IF )



Sensor partitioning

I = IH ∪ IF ∪ IR

IH IF

IR

IH IF IR

x̃i ∈ S̃i X – X
ri ∈ RH

i X X X

ri ∈ RH
i −→ ri /∈ RH

i
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Sensor partitioning

I = IH ∪ IF ∪ IR

IH IF

IR

IH IF IR

x̃i ∈ S̃i X – X
ri ∈ RH

i X X X

x̃i /∈ S̃i −→ x̃i ∈ S̃i



FDI mechanism

We can now recast the FDI elements as follows:
I fault detection and isolation: IH → IF we need to test only

that
ri ∈ RH

i /RF
i

I sensor recovery: IR → IH(
x̃i ∈ S̃i , ri ∈ RH

i

)
−→ (IR → IH)

x̃i = x − x̂i is not measurable

Solution: construct a bound Z i
IH

that contains x̃i and use
I necessary conditions
I sufficient conditions

to verify inclusion x̃i ∈ S̃i .



Necessary and sufficient conditions

Let A and B be two sets, then
I α ∈ A, a necessary condition for α ∈ B is A ∩ B 6= ∅
I α ∈ A, a sufficient condition for α ∈ B is A ⊆ B
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Sensor recovery – I

z = ẑl︸ ︷︷ ︸
measured value

+ x̃l︸ ︷︷ ︸
uncertainities

z ∈
⋂

l∈IH

[{
ẑl
}
⊕ S̃l

]
ẑj + x̃j ∈

⋂
l∈IH

[{
ẑl
}
⊕ S̃l

] x̃j ∈
{
−ẑj

}
⊕
⋂

l∈IH

[{
ẑl
}
⊕ S̃l

]
︸ ︷︷ ︸

Z i
IH

details are to be found in Olaru et al. [2009]
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Sensor recovery – II

Necessary condition: S̃j ∩ Z i
IH
6= ∅

Sufficient condition: S̃j ⊇ Z i
IH



Sensor recovery – II

Necessary condition: S̃j ∩ Z i
IH
6= ∅

Sufficient condition: S̃j ⊇ Z i
IH



Sensor recovery - III
Obstacles against recovery acknowledgment:

I significant inclusion time (the time it takes for x̃i to converge
to S̃i)

I wait for the convergence to take place
I change the estimator dynamics (Stoican et al. [2010b])
I provide an artificial estimation that “keeps” x̃i close to S̃i

(Stoican et al. [2010c])
I validation of inclusion x̃i ∈ S̃i

I wait for test S̃j ⊇ Z i
IH

to be validated
I for a given bound of the estimation error, Z i

IH
, find

τj = min θ

subj. to :

{
S0 = Z i

IH
,Sθ ⊆ S̃i ,

Sk = (A− LjCj)Sk−1 ⊕ EW ⊕ (−Lj)Nj , ∀k > 0
then if healthy functioning (ri ∈ RH

i ) is true for τj time
instants, the sensor is recovered (Stoican et al. [February
2011]).



Outline

Introduction

Multisensor scheme

Fault detection and isolation

Reconfiguration of the control action

Analysis of the FTC scheme

Illustrative example

Conclusions



Reconfiguration of the control action

In our case, as long as IH 6= ∅ we can reformulate the control
action as:

u∗ = uref − Kẑ∗

with
ẑ∗ = argmin

ẑ

{
J (ẑ , v) ; ẑ ∈ {ẑi}i∈IH

, v ∈ Rm
}
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Analysis of the FTC scheme
Usually the FDI mechanism is designed without looking at the “big
picture”:

FDI condition:
(
Ci Sz ⊕ Ni

)
︸ ︷︷ ︸

RH
i

∩
(
−Ci Xref ⊕ NF

i

)
︸ ︷︷ ︸

RF
i

= ∅

There are two main components of the scheme that influence the
viability of the FTC scheme:

I the design of the control action

I the reference signals

Strategies:
I for a fixed gain control type of law, optimize after matrix K

(Stoican et al. [2010a])
I find the feasible domain of references and use it in a reference

governor (Stoican et al. [2010d])
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Controlled invariance
If FDI condition

RH
i ∩ RF

i = ∅

holds, then there exists a separating hyperplane (cT
i , pi ) such that:

cT
i (Ciz + ηi ) < pi < cT

i (−Cixref + ηF
i )

Sz =

{
z : cT

i Ciz < pi − max
ηi∈Ni

cT
i ηi , i ∈ I

}
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Testing the invariance of a set

We recall here a result first presented in Bitsoris [1988]:

The set
R(F , θ) = {x ∈ Rn : Fx ≤ θ}

with F ∈ Rs×n and θ ∈ Rs is a positively invariant set for system

x+ = Ax

if and only if there exists a elementwise positive matrix H ∈ Rs×s and an
0 ≤ ε ≤ 1 such that

HF = FA
Hθ ≤ εθ

If ε ≤ 1 in the previous results we say that the set is invariant.



Search over K – robust invariance

Instead of computing the set invariant for a given dynamics we try
to determine the dynamics that make a given set invariant:

Sz =

{
z : cT

i Ciz < pi − max
ηi∈Ni

cT
i ηi , i ∈ I

}

z+ = (A− B K )z+
[
E B K

] [w
x̃l

]

ε∗ = max
l

min
K ,H,ε
ε≥0

HFz =Fz (A−BK)
Hθz +Fz Bz,lδz,l≤εθz

δz,l∈∆z,l

ε
if ε∗ ≤ 1 the solution is feasible
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Reference governor

Xref =
{

xref : RH
i ∩ RF

i = ∅, i ∈ I
}

Reference governor

(x∗ref , u∗ref ) = argmin
∑(∥∥∥r − xref

∥∥∥
Q

+
∥∥∥uref

∥∥∥
R

)

Reminder:{
RH

i = CiSz ⊕ Ni

RF
i = −CiXref ⊕ NF

i

As in Olaru et al. [2009]an evaluation z ∈ ZH of the current tracking
error is computed. This permits to write

Ci (⊕Sz ∩ ZH,pred )⊕ Ni ∩ −Ci{ xref } ⊕ NF
i = ∅, ∀i ∈ I
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Example – FTC simulation



Example – Sensor recovery
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Practical applications

vehicle lane dynamics (Minoiu Enache et al. [2010])

I corrective mechanism
I faults in sensors

I vision algorithms
I GPS RTK yCG

L > 0

d d

d d

`s

yL > 0

ψL

yl

yr

windturbine benchmark (Odgaard et al. [2009])

I strongly nonlinear
I faults in all components

Blade &
Pitch System Drive Train Generator &

Converter

Controller

vw
τr

ωr

τg

ωg

ωr ,m, ωg,m τg,m,Pg
βm, τr ,m

βr
τg,r

Pr
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Conclusions
I invariant sets offer a robust approach
I sensor fault scenario can be arbitrary chosen
I a global view in considering the effects of the FDI mechanism
I extensions to MPC
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