Exploiting Monotonicity and Common
Subexpressions for improving interval
constraint propagation algorithms

Ignacio Araya
COPRIN, INRIA, Université de Nice-Sophia, France

MEA, December 2009, Paris, France

Intr ion))
froductio Interval Arithmetics

Interval Methods for Solving NCSP

Outline

@ Introduction

Introduction Interval Arithmetics

Interval Methods for Solving NCSP

Outline

@ Introduction
@ Interval Arithmetics

Introduction Interval Arithmetics

Interval Methods for Solving NCSP

Basic notions of interval arithmetics

e Aninterval [x] = [a, b] is the set of real numbers
between a and b.

@ x, x are the left and right bounds of [x].
e diam([x]) = X — x is the diameter of [x].
e Abox [B] = {[x], ..., [Xa]} is @ vector of intervals.

Introduction Interval Arithmetics

Interval Methods for Solving NCSP

Interval extensions

e [f] is an interval extension of f(xi, Xz, ..., Xp) if the
image [f]([B]) contains the image of [B] under f, i.e.

[71([81) > Z£([B])

e The optimal image [f],.:([B]) is the sharpest interval
containing Zf([B]).

Introduction Interval Arithmetics

Interval Methods for Solving NCSP

The natural interval extension

@ The natural (interval) extension [f], of f evaluates with interval
arithmetics all the operators and elementary functions in f.

@ Example: Consider the function f(x) = x + x2. The natural
extension of f with [x] = [-1,1] is:
[fla((=1.1]) = [-1. 4]+ [-1, 12 = [-1.2].

@ |f each variable occurs once in f, then [f], = [f]opt-

@ |f a variable occurs several times in f, then [f], D [f]opt, due to
the dependency problem.

o For example: f(x) = x — x with [x] € [0,1] =

[fIn(Ix]) = [=1,1] ((flopt([B]) = [0, 0)).

Introduction Interval Arithmetics

Interval Methods for Solving NCSP

Outline

@ Introduction

@ Interval Methods for Solving NCSP

ion . .
Introductio Interval Arithmetics

Interval Methods for Solving NCSP

Basic concepts

Definitions:
e NCSP: P = (X, C,[B])
X: set of variables.
C: set of constraints.
[B]: box containing the domains of the variables in X.
@ Prune/contract: To reduce a box on the bounds.

e Interval Newton methods handle the whole system like a
global contraint.

e Propagation algorithms handle each constraint
independently.

e Branching: Bisecting or splitting a box in 2
sub-boxes.

Introduction Interval Arithmetics

Interval Methods for Solving NCSP

Branch and prune/contract

Introduction

Interval Arithmetics
Interval Methods for Solving NCSP

Branch and prune/contract

10/81

Introduction

Interval Arithmetics
Interval Methods for Solving NCSP

Branch and prune/contract

11/81

Introduction Interval Arithmetics

Interval Methods for Solving NCSP

Branch and prune/contract

Introduction Interval Arithmetics

Interval Methods for Solving NCSP

Branch and prune/contract

Introduction Interval Arithmetics

Interval Methods for Solving NCSP

Branch and prune/contract

Introduction Interval Arithmetics

Interval Methods for Solving NCSP

Branch and prune/contract

Introduction Interval Arithmetics

Interval Methods for Solving NCSP

Branch and prune/contract

Introduction Interval Arithmetics

Interval Methods for Solving NCSP

Branch and prune/contract

Introduction Interval Arithmetics

Interval Methods for Solving NCSP

Branch and prune/contract

ion . .
Introductio Interval Arithmetics

Interval Methods for Solving NCSP

Constraint Propagation Algorithms

e Obijective: Narrowing of the current box (on the
bounds) with no loss of solution.
@ Two procedures:

e Revise procedure: Contract the box using one constraint.
e Propagation procedure: The changes on the domains are
propagated to the other constraints.

19/81

Introduction Interval Arithmetics

Interval Methods for Solving NCSP

Hull-consistency

e Similar to arc consistency and bound consistency in
finite domains.

e Enforcing hull-consistency in a constraint is
equivalent to compute the smallest/optimal box
containing all the solution of the constraint.

e The difficult comes from multiple occurrences of
variables: the dependency problem.

20/81

ion))
Introductio Interval Arithmetics

Interval Methods for Solving NCSP

Enforcing hull-consistency

Consider the constraint ¢ : (x — y)? = z with initial domains
[x] =[8,10], [¥y] = [0,4] and [z] = [25, 36].

@ Projection over y (y = x — /2):

1 — 10 (1 - Vizl) = [0.41n (18, 10] - v/[25,36]) = [2,4]

@ The optimal box is: {[8,10],[2,4],[25,36]}

@ If we replace x by 2x — x then we lead with the dependency
problem.

Projection over y (y = 2x — x — /2):

[y] — [0,4] N ([6, 12] - \/[25,36]) = [0,4]

21/81

ion))
Introductio Interval Arithmetics

Interval Methods for Solving NCSP

Revise procedures

@ HC4-Revise computes the optimal box when a
constraint contains no multiple occurrences of
variables.

@ The more costly Box-Revise procedure computes
the optimal projection over a variable x, if x is the
only variable appearing several times in the
constraint.

@ A new procedure called MoHC-Revise handles
better the dependency problem when several
variables occurs several times. (MoHC-Revise
exploits the monotonicity of functions.)

22/81

Introduction Interval Arithmetics

Interval Methods for Solving NCSP

HC4—-Revise

@Ws
o,
[25,36]
W1
x- y
[8,10] [0,4]

23/81

Introduction Interval Arithmetics

Interval Methods for Solving NCSP

HC4—-Revise

T [25,36]
[4,10] ! [wH

X y
[8,10] [0,4]

24/81

Introduction Interval Arithmetics

Interval Methods for Solving NCSP

HC4—-Revise

[25,36]

@ 3
[25,36]
N=7aN

[25,36]

ISQl

7\

Y[z 4]

8, 10]

25/81

ion))
Introductio Interval Arithmetics

Interval Methods for Solving NCSP

BoxNarrow

e The procedure narrows the domain of one variable
(xj) using a constraint ¢ : [f] = 0.

e For performing the narrowing the algorithm works
with the interval function:

[£10) = [f1(Dxa], -, Dl X, Xl o [Yad)

@ Two procedures (LeftNarrow and RightNarrow)
are performed for obtaining the leftmost (/) and the
rightmost (r) zeros of [fj].

e Finally: [x;] < [/,]

26/81

Introduction Interval Arithmetics

Interval Methods for Solving NCSP

BoxNarrow

w [xil—[Lr]

27/81

Evaluation by monotonicity
Exploiting monotonicity Ocurrence Grouping
The Mohc algorithm

Outline

© Exploiting monotonicity

28/81

Evaluation by monotonicity
Exploiting monotonicity Ocurrence Grouping
The Mohc algorithm

Outline

© Exploiting monotonicity
@ Evaluation by monotonicity

29/81

Evaluation by monotonicity
Exploiting monotonicity Ocurrence Grouping
The Mohc algorithm

Evaluation by monotonicity

[flopt([X])

\

30/81

Evaluation by monotonicity
Exploiting monotonicity Ocurrence Grouping
The Mohc algorithm

The evaluation by monotonicity

@ The evaluation by monotonicity [f],([B]) of a function f
eliminates the dependency problem in each monotonic
variable x (i.e. % >0or % <0,VX € [B]).

@ Consider the function f(xq, X2, X3). If f is increasing w.r.t. x; and
decreasing w.r.t. xo. The evaluation by monotonicity of f is
given by: o

[f]m([B]) = [@a fmax]
where [fnin] = [f]n(X1, X2, [Xs]) and [fmax] = [f]n(X1, X2, [Xs])

@ [flm([B]) < [f]a([B])

31/81

Evaluation by monotonicity
Exploiting monotonicity Ocurrence Grouping
The Mohc algorithm

Outline

© Exploiting monotonicity

@ Ocurrence Grouping

32/81

Evaluation by monotonicity
Exploiting monotonicity Ocurrence Grouping
The Mohc algorithm

Occurrence Grouping Method

@ The method improves the evaluation by monotonicity when f is
not monotonic w.r.t. a variable x.

@ Consider the function f(x) = —x3 +2x2 + 6x with [x] = [-1.2,1].
f is not monotonic w.r.t. x.

@ [fl([-1.2,1]) = [flm([-1.2,1]) = [-8.2,10.61]

@ The method consists in grouping the occurrences of x in three
sets (Xa, Xp, Xc) such that f°9' is increasing w.r.t. x; and
decreasing w.r.t. xp:

99 (Xa, Xp) = —Xp + 2X2 + 6X,
9% (Xg, Xo) = — X3 4 2X2 + 6X,

® [1°9]m([x]) = [-5.32,9.73] and [f°%] n([x]) = [-5.47.7.88]

33/81

Evaluation by monotonicity
Exploiting monotonicity Ocurrence Grouping
The Mohc algorithm

Finding a good Occurrence Grouping

e We proposed an algorithm that finds a good grouping
in time O(k log k) (k is the number of occurrences).

e The algorithm allows each occurrence of x in f to be
replaced by a convex combination of auxiliary
variables, xa, xb and xc. For example consider
fi = —x® + 2x? + 6x, then :

f29 = —x3 + 2(0.35X, + 0.65x,)% + 6X,

34/81

Evaluation by monotonicity
Exploiting monotonicity Ocurrence Grouping
The Mohc algorithm

Results

e Experiments show gains in execution time between 1
to 30 using the Mohc algorithm.

@ On these same experiments, OG takes between 0.04
and 1.6 times the time of a natural evaluation.

35/81

Evaluation by monotonicity
Exploiting monotonicity Ocurrence Grouping
The Mohc algorithm

Outline

© Exploiting monotonicity

@ The Mohc algorithm

36/81

Evaluation by monotonicity
Exploiting monotonicity Ocurrence Grouping
The Mohc algorithm

What is Mohc?

@ New constraint propagation algorithm (as HC4 and
Box)

e Exploit monotonicity of functions to better
filter/contract

o Better filter w.r.t. one constraint having several
variables with multiple occurrences

37/81

Evaluation by monotonicity
Exploiting monotonicity Ocurrence Grouping
The Mohc algorithm

Revise procedure of Mohc

Mohc-Revise (in-out [B]; in f, Y, W, pmones Tmohc: €)

HC4-Revise(f(Y,W)=0,Y,W,[B])

if W # 0 and pmonc(f] < Tmonc then
[G] < GradientCalculation(f, W,[B])/* G[i] =(%2([B]) */
(f%9, W) « occurrenceGrouping(f, W,[B],[G])
(fmax fmin, X, W) < ExtractMonotonicVars(f%, W, [B], [G])
MinMaxRevise([B], fmax;, fmin, Y, W)
MonotonicBoxNarrow([B], fmax, fmin, X, [G], €)

end if

@ X: monotonic variables; Y: variables with single occurrence in f;
W: vars with multiple occurrences, but not detected monotonic.

@ MinMaxRevise narrows the intervals of variables in Y and W.

@ MonotonicBoxNarrow narrows the intervals of variables in X.

38/81

Evaluation by monotonicity
Exploiting monotonicity Ocurrence Grouping
The Mohc algorithm

The MinMaxRevise procedure

[((B]) = | (YL, (W), T (TYT, TWD))

0e[fm(Bl) = [Fmal(1Y],[W]) <[0,0] < [fmax]([Y], [W])

MinMaxRevise (in-out [B]; in fnax, fmin, Y, W)

HC4-Revise(fmn(Y, W) <0, Y, W,[B]) /*MinRevise */
HC4-Revise(fpax(Y, W) >0, Y, W,[B]) /* MaxRevise */

39/81

[-14,80] _ ’@ 0
L1488 7N

@) y [-:80,14]

[16,100]/ \[\12’3()] [-80.307
@ X

| e N

4100 X 3 X[4,10]

40/81

Exploiting monotonicity

Example: MinRevise on x> -3 x x+y =0

HC4-Revise(fmin(y)=0)
[-76,0]
[-76,0] @
-
[4,4] / \
@ y[-80,-4]
[16,16]/ \Uc)z(ju] [-8044T
@
| AN
i 37 4

41/81

Exploiting monotonicity

Example: MaxRevise on x> —3 x x+y =0

HC4-Revise(fmax(y)=0)
[0,66]
[0,66] @
-
[70,70] / \
@ y[-70,-4]
[100,1001 ~ NSO,_%O] [-80:4]
@) X
| o~
37 o

42/81

Evaluation by monotonicity
Exploiting monotonicity Ocurrence Grouping
The Mohc algorithm

The MonotonicBoxNarrow procedure

For every variable x € X s.t. f is monotonic (e.g.,
increasing) w.r.t. X, MonotonicBoxNarrow:

@ uses a univariate interval function fX, (like standard
BoxNarrow) which is monotonic w.r.t. x,

e calls a procedure LeftNarrowFmax to contract [x]
by the left side,

o calls a procedure RightNarrowFmin to contract [x]
by the right side.

43/81

Evaluation by monotonicity
Exploiting monotonicity Ocurrence Grouping
The Mohc algorithm

lllustration of .LeftNarrowFmax

@ An existence test checks that [f¥.](x) < 0, i.e., the point A is
below zero (otherwise: no leftside contraction).

@ A dichotomic process is then run to sharply enclose L ([/] < [x]).

44/81

Evaluation by monotonicity
Exploiting monotonicity Ocurrence Grouping
The Mohc algorithm

Properties that helps to improve Mohc

e If MaxRevise contracts the box (with f,,), then
MonotonicBoxNarrow (USing fnin) is useless.

e After applying once MaxRevise and
MonotonicBoxNarrow, the Mohc-Revise
procedure reaches the fixed point.

e If one bound of [x;] is improved (using
MonotonicBoxNarrow), then only one bound of any
[x]] (x; # X;) can be improved. (Inspired from Octum.)

45/81

Evaluation by monotonicity
Exploiting monotonicity Ocurrence Grouping
The Mohc algorithm

Hull consistency

If:

o W is empty, i.e., all variables are monotonic (X) or
appears once (Y)

Then:

@ Mohc-Revise computes an optimal box (with a
precision ratio ¢).

46/81

Evaluation by monotonicity
Exploiting monotonicity Ocurrence Grouping
The Mohc algorithm

User-defined parameters: ¢ and 7monc

Mohc-Revise (in-out [B]; in f, Y, W, pmone: Tmohcs €)

HC4-Revise(f(Y,W)=0,Y,W,[B])

if W £ 0 and pmonc[f] < Tmonc then
[G] < GradientCalculation(f, W,[B])/* G[i] =g—£([B]) */
(f%9, W) « occurrenceGrouping(f, W, [B], [G])
(fmax fmin, X, W) <« ExtractMonotonicVars(f%, W, [B], [G])
MinMaxRevise([Bl, fnax, fmin, Y, W)
MonotonicBoxNarrow([B], fmax, fmin, X, [G]; €)

end if

47/81

Evaluation by monotonicity
Exploiting monotonicity Ocurrence Grouping
The Mohc algorithm

User-defined parameters: ¢ and 7monc

e Experiments show that finely tuning € is useless
= ¢ = 10% (see paper).

@ Tmone € [0, 1] allows the monotonicity-based
procedures to be called more or less often:

Diam({[flm([B]))

o For every constraint f: pmonc[f] = Smitan)

® pmonc|f] is computed only once after every bisection.

e Experiments show that m,,,n. should be tuned
between 60% and 99% (see paper).

48/81

Evaluation by monotonicity
Exploiting monotonicity Ocurrence Grouping
The Mohc algorithm

Experiments

@ 17 instances from the COPRIN benchmarks.

@ Implementation of Mohc in the Ibex C++ library (by
Chabert).

e Strategy: Between two choice points:

@ Monotonicity test,
@ 3BCID (Mohc),
© Interval Newton.

e Comparison with 3BCID (HC4).

49/81

Exploiting monotonicity

Good results

Evaluation by monotonicity
Ocurrence Grouping
The Mohc algorithm

NCSP HC4 Box Mohc(0.7) [Mohc(0.99) |Gain
Butcher |[[282528| 25867 5026 1842| 153
8 3 1.8e+8| 1.7e+6 2.2e+6 324669 | 554
Direct kin.|| 17515|>28800 458 363| 48
11 2 1.4e+6 9541 5609| 250
Fourbar 13121 11011 366 353| 37
4 3 8.5e+6| 732429 58571 45695| 186
Virasoro 7158|>28800 1241 902| 7.9
8 224 2.6e+6 79211 38739| 67
Geneig 598| >7200 116 87.6| 6.8
6 10 205859 15341 6975| 30
Yamam.1 11.8 15.3 2.02 2.69| 5.8
8 7 3017 183 303 297 10
Pramanik 95.9 278 19.6 19.6| 4.9
3 2 124661 23017 12691 8435| 15
Hayes 41.7 282 17.3 13.9| 3.0
8 1 17763| 7247 4437 1717) 10
Trigo1 150.7 773 55.8 71.9] 2.7
10 9 2565 1005 461 455| 5.6

50/81

Evaluation by monotonicity
Exploiting monotonicity Ocurrence Grouping
The Mohc algorithm

Not so bad results

NCSP HC4 | Box [|Mohc(0.7)[Mohc(0.99)|Gain
Caprasse || 2.77| 322 2.74 2.34|1.18
4 18 1309| 719 903 391| 3.3
Kin1 1.95| 68.7 1.97 3.36|0.99
6 16 87 65 87 81| 1.1
Trigexp2 90.1|>3600 91.4 169 0.99
11 0 15187 15099 7717 2.0
15 55.7|>3600 58.5 82.9/0.95
10 30 |{10621 9811 8715| 1.2
Eco9 13.9] 102.0 14.6 26.0|0.95
9 16 6193| 4991 6037 4343 14
Brent 19.0| 311.0 20.2 41.4/0.94
10 1008|| 3923| 2137 3815 3189| 1.2
Redeco8 6.23| 69.8 6.82 10.88| 0.91
8 8 2441| 1913 2347 1537| 1.6
Katsura 77.4) 2265 103 2451 0.75
12 7 4251| 3557 3573 3151 1.3

51/81

Evaluation by monotonicity
Exploiting monotonicity Ocurrence Grouping
The Mohc algorithm

Perspectives

@ Mohc can be seen as an generalization of the classic
propagation algortihms (HC4 and Box) using
monotonicity properties of functions.

e Implement a more efficient and effective version of
the algorithm MinMaxrevise.

@ Render Mohc adpatative.

52/81

Common Subexpression Elimination
Improving HC4 by CSE
Exploting Common Subexpressions The |-CSE Algorithm

Outline

© Exploting Common Subexpressions

53/81

Common Subexpression Elimination
Improving HC4 by CSE
Exploting Common Subexpressions The |-CSE Algorithm

Outline

© Exploting Common Subexpressions
@ Common Subexpression Elimination

54/81

Common Subexpression Elimination
Improving HC4 by CSE
Exploting Common Subexpressions The |-CSE Algorithm

Common Subexpressions Elimination (CSE)

e CSE is an important feature in optimization of code.

e CSE consists in replacing common subexpressions
(CS) by auxiliary variables.
For example:
a=b*c +g
d=Db*c » d
It may be worth (in performance) transforming the code to:
tmp = b « ¢
a=tmp + g
d =tmp » d

55/81

Common Subexpression Elimination
Improving HC4 by CSE
Exploting Common Subexpressions The |-CSE Algorithm

Common Subexpressions Elimination (CSE)

e Ininterval analysis, several experts have been
interested in eliminating the common subexpressions
of system of constraints.

@ Schichl and Neumaier proposed a unique DAG to
represent a system of equations. Common
subexpressions (CS) are represented by nodes with
several parents.

e The community of interval analysis thought that the
obtained gains were due to a reduction of the
number of operations.

e However, CSE also may be useful to improve the
performance of interval solvers (bringing a better
contraction/filtering).

56/81

Common Subexpression Elimination
Improving BC4 by CSE
Exploting Common Subexpressions The |-CSE Algorithm

Outline

© Exploting Common Subexpressions

@ Improving HC4 by CSE

57/81

Common Subexpression Elimination
Improving BC4 by CSE
Exploting Common Subexpressions The |-CSE Algorithm

HC4-Revise Algorithm

Example of HC4-revise: (X + Y+ 2)2 +3(x + 2) =

[0, 1] X Z [-2,6]

58/81

Common Subexpression Elimination
Improving BC4 by CSE
Exploting Common Subexpressions The |-CSE Algorithm

HC4-Revise Algorithm

Example of HC4-revise: (X + Y+ 2)2 +3(x + 2) =

[0, 1] X Z [-2,6]

59/81

Common Subexpression Elimination
Improving BC4 by CSE
Exploting Common Subexpressions The |-CSE Algorithm

HC4-Revise Algorithm

Example of HC4-revise: (X + Y+ 2)2 +3(x + 2) =

[30, 30]

[0, 1] x Z [-2,6]

60/81

Common Subexpression Elimination
Improving BC4 by CSE
Exploting Common Subexpressions The |-CSE Algorithm

HC4-Revise Algorithm

Example of HC4-revise: (X + Y+ 2)2 +3(x + 2) =

[0, 1] X z [-2,6]

61/81

Common Subexpression Elimination
Improving BC4 by CSE
Exploting Common Subexpressions The |-CSE Algorithm

HC4-Revise Algorithm

Example of HC4-revise: (X + Y+ 2)2 +3(x + 2) =

30, 30] /

[30,30]

\

Y z
/ [-2,5]

[0, 11 x Z [-2,5]

62/81

Exploting Common Subexpressions

Common Subexpression Elimination
Improving BC4 by CSE
The |-CSE Algorithm

CSE may improve the filtering

Example: The sum x + z is common to two expression

trees.

ot

[0.1] x’// \\; (2.5]
N4

.

[_2’5£n_1_ -

[-2,5]
\4

Replace n1 and n2 by a common variable v, and add a
new constraint v = x + z.

63/81

Common Subexpression Elimination
Improving HC4 by CSE
Exploting Common Subexpressions The |-CSE Algorithm

Outline

© Exploting Common Subexpressions

@ The I-CSE Algorithm

64/81

Common Subexpression Elimination
Improving HC4 by CSE
Exploting Common Subexpressions The |-CSE Algorithm

The I-CSE Algorithm

@ The novelty of I-CSE lies in the way additive and
multiplicative CSs are taken into account.

e |-CSE manages conflictive subexpressions.
Example: x; + Xo + X3, X1 + Xo and Xo + X3

@ Algorithm divided into 4 steps.

65/81

Common Subexpression Elimination
Improving HC4 by CSE
Exploting Common Subexpressions The |-CSE Algorithm

The I-CSE Algorithm

e Every equation in the system is represented by an
n-ary tree. The algorithm is divided in 4 steps:

@ The trees are compacted into a DAG, merging together
equivalent subtrees.

@ N-ary sums and products expressions are pairwise
intersected obtaining all the maximal subexpressions
shared by two expressions.

© The CSs obtained in step 2 are integrated into the DAG.
Conflictive CSs generate redundant equations.

© The new system is generated.

66/81

Common Subexpression Elimination
Improving HC4 by CSE
Exploting Common Subexpressions The |-CSE Algorithm

Step 1: DAG Generation

Initial system:

XCry+(y+x2+y 1P+ x® = 2
(y®+ x2) x (X2 + cos(y)) + 14
x2 + cos(y)

67/81

Common Subexpression Elimination
Improving HC4 by CSE
Exploting Common Subexpressions The |-CSE Algorithm

Step 1: DAG Generation

Xty+(y+x2+y7 1P +x® = 2
(v +x2) x (x2 + cos(y)) + 14 8
x2 + cos(y)

68/81

Common Subexpression Elimination
Improving HC4 by CSE
Exploting Common Subexpressions The |-CSE Algorithm

Step 2: Pairwise Intersection

69/81

Common Subexpression Elimination
Improving HC4 by CSE
Exploting Common Subexpressions The |-CSE Algorithm

Step 2: Pairwise Intersection

70/81

Common Subexpression Elimination
Improving HC4 by CSE
Exploting Common Subexpressions The |-CSE Algorithm

Step 2: Pairwise Intersection

+(yv XZ, y37 -1)4 N _'_(XZ’ y3)10 = —|—(X2, y3)

71/81

Common Subexpression Elimination
Improving HC4 by CSE
Exploting Common Subexpressions The |-CSE Algorithm

Step 2: Pairwise Intersection

+(y7 x2’ y37 —1)4 N —|—(X2, y3)10 - —|—(X2, y3)10

72/81

Common Subexpression Elimination
Improving HC4 by CSE
Exploting Common Subexpressions The |-CSE Algorithm

Step 3: Integrating CSs into the DAG

Observation

CSs related to node 4 are in conflict (n4 =y + x? + y3):
ms4 = y+X

No = X2 + y3

73/81

Common Subexpression Elimination
Improving HC4 by CSE
Exploting Common Subexpressions The |-CSE Algorithm

Step 3: Integrating CSs into the DAG

Observation

A redundant node is created (ns = y + x% + y°):
% = MA+W—1

Mg = y+nypo—1

74/81

Common Subexpression Elimination
Improving HC4 by CSE
Exploting Common Subexpressions The |-CSE Algorithm

Step 3: Integrating CSs into the DAG

75/81

Common Subexpression Elimination
Improving HC4 by CSE
Exploting Common Subexpressions The |-CSE Algorithm

Step 4: Generation of the new system

vi=v2+yi-1
v5=-1+y+v3 (v3*v4+14)/v4-8

V2+v53+x3-2 ;4

76/81

Common Subexpression Elimination
Improving HC4 by CSE
Exploting Common Subexpressions The |-CSE Algorithm

Step 4: Generation of the new system

The new generated system is:

V2+Vg—i—X3—2 =0

Va3 X va+ 14
Vaxvatlt o _
V4
7 X2 Vs = Vi +cos(y)
Voo = y+w Vs = Vat+yi—1
V3 = V1—|-y3 Vs = —1+y+V3

77181

Common Subexpression Elimination
Improving HC4 by CSE
Exploting Common Subexpressions The |-CSE Algorithm

Experiments

Benchmark I-CSE-B|ICSE-NC| I-CSE Benchmark I-CSE-B|ICSE-NC| I-CSE

#s N #cs #cs| #es #rc #s N #cs #cs| #es #rc
6body 5 6 2 3 3 0 Kin1 16 6 13 13 19 3
Bellido 8 9 0 1 1 0 Pramanik 2 8 0 15115 0
Brown-7 3 7 3 71 21 24 Prolog 021 0 7 7 0
Brown-7* 3 7 3 11 1 0 Rose 16 3 5 5/ 5 0
Brown-30 2 30 26 53(435 783 Trigexp1-30 130 29 29| 29 0
BroyBand-20 1 20 22 37| 97 78 Trigexp1-50 1 50 49 49| 49 0
BroyBand-100 | 1 100 102 119|479 473 Trigexp2-11 0 11 15 15 15 0
Caprasse 18 4 6 70112 Trigexp2-19 0 19 27 271 27 0
Design 1 9 3 3l 3 0 Trigonom-5 2 5 7 9 20 14
Dis-Integral-6 1 6 4 6| 18 9 Trigonom-5* 2 5 7 6] 6 0
Dis-Integral-20| 3 20 18 34207 171 Trigonom-10 {24 10 15 15| 26 15
Eco9 16 8 0 3 7 1 Trigonom-10* |24 10 15 12/ 12 0
EqCombustion| 4 5 7 8l 11 1 Yamamura-8 7 8 5 10| 36 48
ExtendWood-4| 3 4 2 2l 2 0 Yamamura-8* | 7 8 5 1 1 0
Geneig 10 6 1 14| 14 0 Yamamura-10 | 9 12 7 14| 55 79
Hayes 1 8 9 8 8 0 Yamamura-10*| 9 12 7 1 1 0
15 30 10 3 4/ 10 5 Yamamura-12 | 9 12 9 18| 78 119
Katsura-19 5 20 81 81| 81 0 Yamamura-12*| 9 12 9 1 1 0
Katsura-20 7 21 90 90| 90 O Yamamura-16 | 9 16 13 26(136 224

78/81

Common Subexpression Elimination
Improving HC4 by CSE
Exploting Common Subexpressions The |-CSE Algorithm

Results with HC4 and Interval Newton

Benchmark TIME in second TIME(Osys) / TIME #Boxes
Osys[ICSE-B ICSE-NC I-CSE|ICSE-B ICSE-NC I-CSE Osys ICSE-NC I-CSE
EqCombustion | >3600 26.1 0.35 0.14] >137 >10000 >25000|>1e+08 3967 1095
Rose >3600 500 101 101 >7.2 >35 >35|>3e+07 865099 865099
Hayes 141 51.9 157 157 2.7 9 9| 550489 44563 44563
6-body 0.22 0.07 0.07 0.07 3.1 3.1 3.1 4985 495 495
Design 176 65.2 63.2 63.2 2.7 2.8 2.8| 425153 122851 122851
15 >3600| >3600 1534 1565 ? >23 >23|>3e+07 7e+06 7e+06
Geneig 3323 2910 2722 2722 1.14 1.22 1.22| 7e+08 4e+08 4e+08
Kin1 8.52 8.32 8.32 8.01 1.02 1.02 1.06 905 909 905
Pramanik 89.3 92.1 849 84.9 0.97 1.05 1.05| 487255 378879 378879
Bellido 15.7 15.9 156 15.6 0.99 1.01 1.01| 29759 29319 29319
Eco9 23.9 23.9 24 2441 1.00 1.00 0.99| 126047 117075 110885
Caprasse 1.56 1.81 1.68 2.16 0.86 0.93 0.72 8521 7793 7491
Brown-7* 500 350 0.01 0.01 142 49500 49500 6e+06 95 95
Dis-Integral-6 201 0.46 1.3 0.03 437 155 6700| 653035 4157 47
ExtendWood-4 29.9 0.03 0.03 0.03 997 997 997| 422705 353 353
Brown-7 500 350 307 1.49 1.42 16.1 332| 6e+06 258601 3681
Trigexp2-11 1118 208 56.2 56.2 5.38 19.9 19.9| 1e+06 316049 316049
Yamamura-8* 13 13.3 0.75 0.75 0.98 17.3 17.3| 29615 2161 2161
Broy-Banded-20 778 759 261 58.1 1.03 2.98 13.4| 172959 46761 12623
Trigonometric-5*| 15.8 12.3 149 149 1.28 10.6 10.6| 10531 1503 1503
Trigonometric-5 15.8 123 8.94 6.97 1.28 1.77 2.27| 10531 7369 5307
Yamamura-8 13 13.3 446 108 0.98 0.3 120 29615 115211 13211
Katsura-19 1430 1583 1583 1583 0.90 0.90 0.90| 145839 153193 153193
Trigexp1-30 2465| 3244 3244 3244 0.76 0.76 0.76| 1e+07 1e+07 1e+07

79/81

Common Subexpression Elimination
Improving HC4 by CSE
Exploting Common Subexpressions The |-CSE Algorithm

Conclusion

e CSs can bring significant gains in filtering and not
only a decrease in the number of operations.

e Gains of several orders of magnitude.

80/81

Elimination

Exploting Common Subexpressions The |-CSE Algorithm

Exploiting Monotonicity and Common
Subexpressions for improving interval
constraint propagation algorithms

Ignacio Araya
COPRIN, INRIA, Université de Nice-Sophia, France

MEA, December 2009, Paris, France

81/81

	Introduction
	Interval Arithmetics
	Interval Methods for Solving NCSP

	Exploiting monotonicity
	Evaluation by monotonicity
	Ocurrence Grouping
	The Mohc algorithm

	Exploting Common Subexpressions
	Common Subexpression Elimination
	Improving HC4 by CSE
	The I-CSE Algorithm

