.// CENTRE NATIONAL
DE LA RECHERCHE
/ SCIENTIFIQUE

GT-MEA (3/12/2009)

Interval Matrix Exponentiation

Alexandre Goldsztejn®  Arnold Neumaier?

LCNRS, Laboratoire d’'Informatique de Nantes Atlantique
University of Nantes, France
al exandre. gol dszt ej n@mni v-nantes. fr
www. gol dszt ej n. com

2University of Vienna, Faculty of Mathematics
Wien, Austria
Arnol d. Neurai er @ini vi e. ac. at
www. mat . uni vi e. ac. at/ ~neunf

universitat
wien

Interval Matrix Exponentiation

1/25



Simulation of Linear ODE

From Linear ODE to Matrix Exponentiation
@ x'(t) = Ax(t)
= x"(t) = (Ax(t)) = A?x(t), and by induction x(M(t) = A"x(t)
@ Taylor expansion:

(tA)2XQ " (tA)3X0
2 3!

Matrix Exponentiation

@ Truncated Taylor or Padé expansion computed in double precision
@ ||A|| too large = high expansion order
o Idea: exp(A) = exp(A/2°)%
@ Scaling and Squaring: exp(A) = (- - ((rm(A/ZS))Z)2 e )2

@ Issue: Find s and m

@ Lower computational cost
@ Improve precision

X(t) = Xo + (tA)Xo + + .- = (exptA)xo
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Simulation of Uncertain Linear ODE

Uncertain Linear ODE

@ x/'(t) = AX(t) with A € A
= X(t) € {(expA)xo : A€ A}

Interval Matrix Exponentiation
@ expA =[{expA:Ac A} e IR"™"
= X(t) € (expA)Xxo
@ Issue: sharp enclosure of exp A

v

Pessimism in Taylor Series Interval Evaluation

01 (1 [0.31,0.44] /1 [-1.21,1.96]
A_(o [—37—2]> eX'DA”<0 [0.04,0.14]> Tlo”(o [-6.26, 6.45]

V.
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Interval Matrix Exponentiation

Issue
@ Sharp enclosure of exp A
@ Taylor expansion of exp A — heavy multi-occurrences of variables a;;
=+ Issue wrt matrix exponentiation in numerical analysis

Outline

Q NP-hardness
9 Polynomial Algorithms

e Experiments

@ Experiments
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e NP-hardness
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e-Accurate Enclosures

Definition
@ Let A C R™™M and A = OA € IR™™
@ B € IR™™ is an e-enclosure of A iff B D A and

max{ T |2 — byl , o @ — byl } < e

@ |ldem for sets of reals, sets of vectors

Central Result

@ Computing e-accurate enclosure of the range over a box of a bilinear
function is NP-hard
(nonconvex quadratic programming is NP-hard)
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e-Accurate Interval Matrix Exponential Enclosure

Theorem

Computing an e-accurate enclosure of the interval matrix exponential is
NP-hard

| \

Proof
@ Consider x’By and x,y € IR" and

0 0 x'B 0
- 0 2 _ 0 By 3 _
A= T A = o 5 A” =
0 0 0

@ Ais nilpotent = (expA)1 2ni2 = sX'By
@ c-accurate enclosure of exp A gives rise to e-accurate enclosure of
{X'By : X € X,y €y}
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e Polynomial Algorithms
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9 Polynomial Algorithms
@ Taylor Series Interval Evaluation
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Taylor Series Interval Evaluation

Definition

Te(A):= T+A+ AT+ + HAK
Tk(A) == Tc(A) +Rx(A)

where the interval remainder [R]([A],K) is

aK+l

(K+1)! (1-¢%)

Ric(A) = p([IA]],K) [-E,E] with p(a,K) =

p(a, K): well known upper bound truncation error valid for ||A|| < K + 2

149x1077 [-121,1.96]\ | (1 [0.31,0.44]
=\0 [0.04,0.14]

Tis(A) ~ ( +9x10~7 [-6.26,6.45]

Higher order for the expansion do not improve the entries (1,2) and (2, 2)
anymore
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9 Polynomial Algorithms

@ Taylor Series Horner Interval Evaluation
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Taylor Series Horner Interval Evaluation

A= 1+A(0+50+5( - (1+8))))

Hi (A) = Hi(A) + Re(A)

Remark: Multi-occurrences decreased by Horner scheme

>

W

Example

His(A) ~ 1+11x10°° [-0.08,0.74]\ | (1 [0.31,0.44]
V= +11 %1078 [-1.21,1.22]) = \0 [0.04,0.14]

Horner scheme reduces the pessimism (well known for real polynomials, e.g.
Ceberio & Granvilliers 2002)
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9 Polynomial Algorithms

@ Interval Scaling and Squaring
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Interval Scaling and Squaring

Sik(A) = (HK (A/zL))ZL

SLk (A) contains exp A for every A € A

Proof: ® 7 (A/2") contains exp A/2"

= Sk (A) contains (exp A/25% = exp A

Example

U

1+1.x10"11 [0.31,0.44]
S10,6(A) ~ (i2.4 x 1019 [0.04,0.14])

Much sharper than Taylor and Horner Taylor

1 [0.31,0.44]
<o [0.04, 0.14])
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9 Polynomial Algorithms

@ State of the Art
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State of the Art

Michel and Oppenheimer (IEEE Trans. Circuits and Systems 1988)

@ Specific centered form: expA C Hy (A) + [A, A]
— Tedious proofs with gaps, very complex computation of [A, A]
— Horner not sharp even for a thin matrix (cf. Experiments)

Gambill and Skeel (siINuM 1988)

@ Specific method for non autonomous non homogeneous linear ODE:

((GsG7)(GeGs))((G4Gs)(G2G1)) instead of Gg(G(- - (G1)...))

(]

Similar to scaling and squaring when applied to autonomous
homogeneous linear ODE

Applies to more general systems

Use (Tk (A/2%))2" which is less sharp than (Hx (A/25))? (necessary in
the general case)

Repeated computations (necessary in the general case)

=+
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e Experiments
@ Exponentiation of a Thin Matrix
@ Exponentiation of an Interval Matrix
@ Tridiagonal Matrices
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e Experiments
@ Exponentiation of a Thin Matrix
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Exponentiation of a Thin Matrix

Matrix from Bochev and Markov (Computing 1999)

Difficult to exponentiate:
—-131 19 18 o Sianificant ei | i
A~ |_300 56 54 ignificant eigenvalue separation
_387 57 52 @ Poorly conditioned eigenvector set

Horner Evaluation

iwid [HIA.K)|

- Scaling and Squaring

||wid S1212(A)|| ~ 107°

o @ Standard double precision
9 ||A|| =500 implies K > 502 interval arithmetic

@ 110 and 120 digits interval
arithmetic (Mathematica)
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e Experiments

@ Exponentiation of an Interval Matrix
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Exponentiation of an Interval Matrix

Matrix from Bochev and Markov (Computing 1999)

A :=0.1A+ [—¢, ]

[IWid()ll
107 ¢

10°F

105 ¥

0 0% 10 100 o1 1
@ Gray: Horner evaluation
@ Black: Scaling and squaring
@ Dashed: Inner approximation
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e Experiments

@ Tridiagonal Matrices
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Tridiagonal Matrices (1/2)

Exponentiation of an Interval Matrix

@ T, defined by ti = [711, 79] and ti+1,i = ti,i+1 = [0, 2]

[_117 _9] [07 2] 0
[Ta] = ( [0.2]  [-11,-9] [0,2] )
0 [0,2] [-11,-9]

1050

1000 F

@ n varies from 3 to 100

@ Gray: Horner evaluation
@ Black: Scaling and squaring
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Tridiagonal Matrices (2/2)

Simulation of Linear ODE

@ Simulation of x’(t) = Ax(t) with A € T3

(] [[E]]

01
10%

104
100
1010

107

2
10 10

@ Left: Scaling and squaring
@ Right: Basic method (full lines), and VNODE-LP (dashed line)
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Conclusion

Originality vs State of the Art

@ Most is known to the experts
@ Gambill and Skeel:

o Experiments with thin matrices

@ In this case, parallelotope methods better

@ Our experiments: Better than parallelotope methods for uncertain linear
ODE

@ Michel and Oppenheimer: Scaling and squaring simpler and sharper

@ Use parallelotope and interval matrix exponential
@ Generalize Gambill and Skeel to nonlinear ODE
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