
Introduction
Exploiting monotonicity

Exploting Common Subexpressions

Exploiting Monotonicity and Common
Subexpressions for improving interval

constraint propagation algorithms

Ignacio Araya

COPRIN, INRIA, Université de Nice-Sophia, France

MEA, December 2009, Paris, France

1 / 81

Introduction
Exploiting monotonicity

Exploting Common Subexpressions

Interval Arithmetics
Interval Methods for Solving NCSP

Outline

1 Introduction
Interval Arithmetics
Interval Methods for Solving NCSP

2 Exploiting monotonicity
Evaluation by monotonicity
Ocurrence Grouping
The Mohc algorithm

3 Exploting Common Subexpressions
Common Subexpression Elimination
Improving HC4 by CSE
The I-CSE Algorithm

2 / 81

Introduction
Exploiting monotonicity

Exploting Common Subexpressions

Interval Arithmetics
Interval Methods for Solving NCSP

Outline

1 Introduction
Interval Arithmetics
Interval Methods for Solving NCSP

2 Exploiting monotonicity
Evaluation by monotonicity
Ocurrence Grouping
The Mohc algorithm

3 Exploting Common Subexpressions
Common Subexpression Elimination
Improving HC4 by CSE
The I-CSE Algorithm

3 / 81

Introduction
Exploiting monotonicity

Exploting Common Subexpressions

Interval Arithmetics
Interval Methods for Solving NCSP

Basic notions of interval arithmetics

An interval [x] = [a,b] is the set of real numbers
between a and b.
x , x are the left and right bounds of [x].
diam([x]) = x − x is the diameter of [x].
A box [B] = {[x1], ..., [xn]} is a vector of intervals.

4 / 81

Introduction
Exploiting monotonicity

Exploting Common Subexpressions

Interval Arithmetics
Interval Methods for Solving NCSP

Interval extensions

[f] is an interval extension of f (x1, x2, ..., xn) if the
image [f]([B]) contains the image of [B] under f , i.e.

[f]([B]) ⊃ If ([B])

The optimal image [f]opt([B]) is the sharpest interval
containing If ([B]).

5 / 81

Introduction
Exploiting monotonicity

Exploting Common Subexpressions

Interval Arithmetics
Interval Methods for Solving NCSP

The natural interval extension

The natural (interval) extension [f]n of f evaluates with interval
arithmetics all the operators and elementary functions in f .

Example: Consider the function f (x) = x + x2. The natural
extension of f with [x] = [−1,1] is:
[f]n([−1,1]) = [−1,1] + [−1,1]2 = [−1,2].

If each variable occurs once in f , then [f]n = [f]opt .

If a variable occurs several times in f , then [f]n ⊃ [f]opt , due to
the dependency problem.

For example: f (x) = x − x with [x] ∈ [0,1]⇒
[f]n([x]) = [−1,1] ([f]opt([B]) = [0,0]).

6 / 81

Introduction
Exploiting monotonicity

Exploting Common Subexpressions

Interval Arithmetics
Interval Methods for Solving NCSP

Outline

1 Introduction
Interval Arithmetics
Interval Methods for Solving NCSP

2 Exploiting monotonicity
Evaluation by monotonicity
Ocurrence Grouping
The Mohc algorithm

3 Exploting Common Subexpressions
Common Subexpression Elimination
Improving HC4 by CSE
The I-CSE Algorithm

7 / 81

Introduction
Exploiting monotonicity

Exploting Common Subexpressions

Interval Arithmetics
Interval Methods for Solving NCSP

Basic concepts

Definitions:
NCSP: P = (X ,C, [B])
X : set of variables.
C: set of constraints.
[B]: box containing the domains of the variables in X .
Prune/contract: To reduce a box on the bounds.

Interval Newton methods handle the whole system like a
global contraint.
Propagation algorithms handle each constraint
independently.

Branching: Bisecting or splitting a box in 2
sub-boxes.

8 / 81

Introduction
Exploiting monotonicity

Exploting Common Subexpressions

Interval Arithmetics
Interval Methods for Solving NCSP

Branch and prune/contract

9 / 81

Introduction
Exploiting monotonicity

Exploting Common Subexpressions

Interval Arithmetics
Interval Methods for Solving NCSP

Branch and prune/contract

10 / 81

Introduction
Exploiting monotonicity

Exploting Common Subexpressions

Interval Arithmetics
Interval Methods for Solving NCSP

Branch and prune/contract

11 / 81

Introduction
Exploiting monotonicity

Exploting Common Subexpressions

Interval Arithmetics
Interval Methods for Solving NCSP

Branch and prune/contract

12 / 81

Introduction
Exploiting monotonicity

Exploting Common Subexpressions

Interval Arithmetics
Interval Methods for Solving NCSP

Branch and prune/contract

13 / 81

Introduction
Exploiting monotonicity

Exploting Common Subexpressions

Interval Arithmetics
Interval Methods for Solving NCSP

Branch and prune/contract

14 / 81

Introduction
Exploiting monotonicity

Exploting Common Subexpressions

Interval Arithmetics
Interval Methods for Solving NCSP

Branch and prune/contract

15 / 81

Introduction
Exploiting monotonicity

Exploting Common Subexpressions

Interval Arithmetics
Interval Methods for Solving NCSP

Branch and prune/contract

16 / 81

Introduction
Exploiting monotonicity

Exploting Common Subexpressions

Interval Arithmetics
Interval Methods for Solving NCSP

Branch and prune/contract

17 / 81

Introduction
Exploiting monotonicity

Exploting Common Subexpressions

Interval Arithmetics
Interval Methods for Solving NCSP

Branch and prune/contract

18 / 81

Introduction
Exploiting monotonicity

Exploting Common Subexpressions

Interval Arithmetics
Interval Methods for Solving NCSP

Constraint Propagation Algorithms

Objective: Narrowing of the current box (on the
bounds) with no loss of solution.
Two procedures:

Revise procedure: Contract the box using one constraint.
Propagation procedure: The changes on the domains are
propagated to the other constraints.

19 / 81

Introduction
Exploiting monotonicity

Exploting Common Subexpressions

Interval Arithmetics
Interval Methods for Solving NCSP

Hull-consistency

Similar to arc consistency and bound consistency in
finite domains.
Enforcing hull-consistency in a constraint is
equivalent to compute the smallest/optimal box
containing all the solution of the constraint.
The difficult comes from multiple occurrences of
variables: the dependency problem.

20 / 81

Introduction
Exploiting monotonicity

Exploting Common Subexpressions

Interval Arithmetics
Interval Methods for Solving NCSP

Enforcing hull-consistency

Consider the constraint c : (x − y)2 = z with initial domains
[x] = [8,10], [y] = [0,4] and [z] = [25,36].

Projection over y (y = x −
√

z):

[y]← [y] ∩
(
[x]−

√
[z]
)

= [0,4] ∩
(
[8,10]−

√
[25,36]

)
= [2,4]

The optimal box is: {[8,10],[2,4],[25,36]}

If we replace x by 2x − x then we lead with the dependency
problem.
Projection over y (y = 2x− x−

√
z):

[y]← [0,4] ∩
(
[6,12]−

√
[25,36]

)
= [0,4]

21 / 81

Introduction
Exploiting monotonicity

Exploting Common Subexpressions

Interval Arithmetics
Interval Methods for Solving NCSP

Revise procedures

HC4-Revise computes the optimal box when a
constraint contains no multiple occurrences of
variables.
The more costly Box-Revise procedure computes
the optimal projection over a variable x , if x is the
only variable appearing several times in the
constraint.
A new procedure called MoHC-Revise handles
better the dependency problem when several
variables occurs several times. (MoHC-Revise
exploits the monotonicity of functions.)

22 / 81

Introduction
Exploiting monotonicity

Exploting Common Subexpressions

Interval Arithmetics
Interval Methods for Solving NCSP

HC4-Revise

(x − y)2 = z

[8,10] [0,4]

[25,36]

w1

w2

w3

23 / 81

Introduction
Exploiting monotonicity

Exploting Common Subexpressions

Interval Arithmetics
Interval Methods for Solving NCSP

HC4-Revise

(x − y)2 = z

[8,10] [0,4]

[25,36]

[4,10]

[16,100]

[25,36]

w1

w2

w3

24 / 81

Introduction
Exploiting monotonicity

Exploting Common Subexpressions

Interval Arithmetics
Interval Methods for Solving NCSP

HC4-Revise

(x − y)2 = z

[8,10] [0,4]

[25,36]

[4,10]

[16,100]

[25,36]

w1

w2

w3

[25,36]

[5,6]

[2,4]

25 / 81

Introduction
Exploiting monotonicity

Exploting Common Subexpressions

Interval Arithmetics
Interval Methods for Solving NCSP

BoxNarrow

The procedure narrows the domain of one variable
(xi) using a constraint c : [f] = 0.
For performing the narrowing the algorithm works
with the interval function:

[fi](x) = [f]([x1], ..., [xi−1], x , [xi+1], ..., [yk])

Two procedures (LeftNarrow and RightNarrow)
are performed for obtaining the leftmost (l) and the
rightmost (r) zeros of [fi].
Finally: [xi]← [l , r]

26 / 81

Introduction
Exploiting monotonicity

Exploting Common Subexpressions

Interval Arithmetics
Interval Methods for Solving NCSP

BoxNarrow

[l]

[r] x

1

2

3

4

5

6

7

8

9

17
[fi][xi] [l,r]

27 / 81

Introduction
Exploiting monotonicity

Exploting Common Subexpressions

Evaluation by monotonicity
Ocurrence Grouping
The Mohc algorithm

Outline

1 Introduction
Interval Arithmetics
Interval Methods for Solving NCSP

2 Exploiting monotonicity
Evaluation by monotonicity
Ocurrence Grouping
The Mohc algorithm

3 Exploting Common Subexpressions
Common Subexpression Elimination
Improving HC4 by CSE
The I-CSE Algorithm

28 / 81

Introduction
Exploiting monotonicity

Exploting Common Subexpressions

Evaluation by monotonicity
Ocurrence Grouping
The Mohc algorithm

Outline

1 Introduction
Interval Arithmetics
Interval Methods for Solving NCSP

2 Exploiting monotonicity
Evaluation by monotonicity
Ocurrence Grouping
The Mohc algorithm

3 Exploting Common Subexpressions
Common Subexpression Elimination
Improving HC4 by CSE
The I-CSE Algorithm

29 / 81

Introduction
Exploiting monotonicity

Exploting Common Subexpressions

Evaluation by monotonicity
Ocurrence Grouping
The Mohc algorithm

Evaluation by monotonicity

x

f [x]

[f]opt([x])

x x

30 / 81

Introduction
Exploiting monotonicity

Exploting Common Subexpressions

Evaluation by monotonicity
Ocurrence Grouping
The Mohc algorithm

The evaluation by monotonicity

The evaluation by monotonicity [f]m([B]) of a function f
eliminates the dependency problem in each monotonic
variable x (i.e. ∂f (X)

∂x ≥ 0 or ∂f (X)
∂x ≤ 0, ∀X ∈ [B]).

Consider the function f (x1, x2, x3). If f is increasing w.r.t. x1 and
decreasing w.r.t. x2. The evaluation by monotonicity of f is
given by:

[f]m([B]) = [fmin, fmax]

where [fmin] = [f]n(x1, x2, [x3]) and [fmax] = [f]n(x1, x2, [x3])

[f]m([B]) ⊆ [f]n([B])

31 / 81

Introduction
Exploiting monotonicity

Exploting Common Subexpressions

Evaluation by monotonicity
Ocurrence Grouping
The Mohc algorithm

Outline

1 Introduction
Interval Arithmetics
Interval Methods for Solving NCSP

2 Exploiting monotonicity
Evaluation by monotonicity
Ocurrence Grouping
The Mohc algorithm

3 Exploting Common Subexpressions
Common Subexpression Elimination
Improving HC4 by CSE
The I-CSE Algorithm

32 / 81

Introduction
Exploiting monotonicity

Exploting Common Subexpressions

Evaluation by monotonicity
Ocurrence Grouping
The Mohc algorithm

Occurrence Grouping Method

The method improves the evaluation by monotonicity when f is
not monotonic w.r.t. a variable x .

Consider the function f (x) = −x3 + 2x2 + 6x with [x] = [−1.2,1].
f is not monotonic w.r.t. x .

[f]([−1.2,1]) = [f]m([−1.2,1]) = [−8.2,10.61]

The method consists in grouping the occurrences of x in three
sets (xa, xb, xc) such that f og1 is increasing w.r.t. xa and
decreasing w.r.t. xb:

f og1(xa, xb) = −x3
b + 2x2

a + 6xa

f og2(xa, xc) = −x3
a + 2x2

c + 6xa

[f og1]m([x]) = [−5.32,9.73] and [f og2]m([x]) = [−5.47,7.88]

33 / 81

Introduction
Exploiting monotonicity

Exploting Common Subexpressions

Evaluation by monotonicity
Ocurrence Grouping
The Mohc algorithm

Finding a good Occurrence Grouping

We proposed an algorithm that finds a good grouping
in time O(k log k) (k is the number of occurrences).
The algorithm allows each occurrence of x in f to be
replaced by a convex combination of auxiliary
variables, xa, xb and xc. For example consider
f1 = −x3 + 2x2 + 6x , then :

f og
1 = −x3

a + 2(0.35xa + 0.65xc)
2 + 6xa

34 / 81

Introduction
Exploiting monotonicity

Exploting Common Subexpressions

Evaluation by monotonicity
Ocurrence Grouping
The Mohc algorithm

Results

Experiments show gains in execution time between 1
to 30 using the Mohc algorithm.
On these same experiments, OG takes between 0.04
and 1.6 times the time of a natural evaluation.

35 / 81

Introduction
Exploiting monotonicity

Exploting Common Subexpressions

Evaluation by monotonicity
Ocurrence Grouping
The Mohc algorithm

Outline

1 Introduction
Interval Arithmetics
Interval Methods for Solving NCSP

2 Exploiting monotonicity
Evaluation by monotonicity
Ocurrence Grouping
The Mohc algorithm

3 Exploting Common Subexpressions
Common Subexpression Elimination
Improving HC4 by CSE
The I-CSE Algorithm

36 / 81

Introduction
Exploiting monotonicity

Exploting Common Subexpressions

Evaluation by monotonicity
Ocurrence Grouping
The Mohc algorithm

What is Mohc?

New constraint propagation algorithm (as HC4 and
Box)
Exploit monotonicity of functions to better
filter/contract
Better filter w.r.t. one constraint having several
variables with multiple occurrences

37 / 81

Introduction
Exploiting monotonicity

Exploting Common Subexpressions

Evaluation by monotonicity
Ocurrence Grouping
The Mohc algorithm

Revise procedure of Mohc

Mohc-Revise (in-out [B]; in f , Y , W , ρmohc , τmohc , ε)

HC4-Revise(f (Y ,W) = 0,Y ,W , [B])
if W 6= ∅ and ρmohc [f] < τmohc then

[G]← GradientCalculation(f ,W , [B]) /* G[i]= ∂f
∂xi

([B]) */
(f og ,W)← OccurrenceGrouping(f ,W , [B], [G])
(fmax , fmin,X ,W)← ExtractMonotonicVars(f og ,W , [B], [G])
MinMaxRevise([B], fmax , fmin,Y ,W)
MonotonicBoxNarrow([B], fmax , fmin,X , [G], ε)

end if

X : monotonic variables; Y : variables with single occurrence in f ;
W : vars with multiple occurrences, but not detected monotonic.

MinMaxRevise narrows the intervals of variables in Y and W .

MonotonicBoxNarrow narrows the intervals of variables in X .

38 / 81

Introduction
Exploiting monotonicity

Exploting Common Subexpressions

Evaluation by monotonicity
Ocurrence Grouping
The Mohc algorithm

The MinMaxRevise procedure

[f]M([B]) =
[
[fmin]([Y], [W]), [fmax]([Y], [W]))

]

0 ∈ [f]M([B]) ≡ [fmin]([Y], [W]) ≤ [0,0] ≤ [fmax]([Y], [W])

MinMaxRevise (in-out [B]; in fmax , fmin, Y , W)

HC4-Revise(fmin(Y ,W) ≤ 0, Y ,W , [B]) /* MinRevise */

HC4-Revise(fmax(Y ,W) ≥ 0, Y ,W , [B]) /* MaxRevise */

39 / 81

Introduction
Exploiting monotonicity

Exploting Common Subexpressions

Evaluation by monotonicity
Ocurrence Grouping
The Mohc algorithm

Example: HC4-Revise on x2 − 3× x + y = 0

^2 x

-

3 x

y
+ 0

=

x[4,10] [4,10]

[-80,14]

[0,0]

[16,100]

[-14,88]

[-94,118]

[-80,30][12,30]

[0,0]

[-14,80]

HC4-Revise(f(x,y)=0)

40 / 81

Introduction
Exploiting monotonicity

Exploting Common Subexpressions

Evaluation by monotonicity
Ocurrence Grouping
The Mohc algorithm

Example: MinRevise on x2 − 3× x + y = 0

^2 x

-

3 4

y
+ 0

≤

4

[-80,-4]

[-76,0]

[16,16]

[-76,18]

[-80,14][12,12]

[-76,0]

[4,4]

HC4-Revise(fmin(y)≤0)

41 / 81

Introduction
Exploiting monotonicity

Exploting Common Subexpressions

Evaluation by monotonicity
Ocurrence Grouping
The Mohc algorithm

Example: MaxRevise on x2 − 3× x + y = 0

^2 x

-

3 10

y
+ 0

≥

10

[-70,-4]

[0,66]

[100,100]

[-10,66]

[-80,-4][30,30]

[0,66]

[70,70]

HC4-Revise(fmax(y)≥0)

42 / 81

Introduction
Exploiting monotonicity

Exploting Common Subexpressions

Evaluation by monotonicity
Ocurrence Grouping
The Mohc algorithm

The MonotonicBoxNarrow procedure

For every variable x ∈ X s.t. f is monotonic (e.g.,
increasing) w.r.t. x , MonotonicBoxNarrow:

uses a univariate interval function f x
max (like standard

BoxNarrow) which is monotonic w.r.t. x ,
calls a procedure LeftNarrowFmax to contract [x]
by the left side,
calls a procedure RightNarrowFmin to contract [x]
by the right side.

43 / 81

Introduction
Exploiting monotonicity

Exploting Common Subexpressions

Evaluation by monotonicity
Ocurrence Grouping
The Mohc algorithm

Illustration of LeftNarrowFmax

[fmax]
x

[l0]=[x]

x

A

B

C

1

2

3

L

[x]←[l,x]

4

[l1]

[l2]

Principle

An existence test checks that [f x
max](x) < 0, i.e., the point A is

below zero (otherwise: no leftside contraction).

A dichotomic process is then run to sharply enclose L ([l]← [x]).

44 / 81

Introduction
Exploiting monotonicity

Exploting Common Subexpressions

Evaluation by monotonicity
Ocurrence Grouping
The Mohc algorithm

Properties that helps to improve Mohc

If MaxRevise contracts the box (with fmax), then
MonotonicBoxNarrow (using fmin) is useless.
After applying once MaxRevise and
MonotonicBoxNarrow, the Mohc-Revise
procedure reaches the fixed point.
If one bound of [xi] is improved (using
MonotonicBoxNarrow), then only one bound of any
[xj] (xj 6= xi) can be improved. (Inspired from Octum.)

45 / 81

Introduction
Exploiting monotonicity

Exploting Common Subexpressions

Evaluation by monotonicity
Ocurrence Grouping
The Mohc algorithm

Hull consistency

If:

W is empty, i.e., all variables are monotonic (X) or
appears once (Y)

Then:

Mohc-Revise computes an optimal box (with a
precision ratio ε).

46 / 81

Introduction
Exploiting monotonicity

Exploting Common Subexpressions

Evaluation by monotonicity
Ocurrence Grouping
The Mohc algorithm

User-defined parameters: ε and τmohc

Mohc-Revise (in-out [B]; in f , Y , W , ρmohc , τmohc , ε)

HC4-Revise(f (Y ,W) = 0,Y ,W , [B])
if W 6= ∅ and ρmohc [f] < τmohc then

[G]← GradientCalculation(f ,W , [B]) /* G[i]= ∂f
∂xi

([B]) */
(f og ,W)← OccurrenceGrouping(f ,W , [B], [G])
(fmax , fmin,X ,W)← ExtractMonotonicVars(f og ,W , [B], [G])
MinMaxRevise([B], fmax , fmin,Y ,W)
MonotonicBoxNarrow([B], fmax , fmin,X , [G], ε)

end if

47 / 81

Introduction
Exploiting monotonicity

Exploting Common Subexpressions

Evaluation by monotonicity
Ocurrence Grouping
The Mohc algorithm

User-defined parameters: ε and τmohc

Experiments show that finely tuning ε is useless
⇒ ε = 10% (see paper).

τmohc ∈ [0,1] allows the monotonicity-based
procedures to be called more or less often:
Condition: ρmohc[f] < τmohc

For every constraint f : ρmohc[f] = Diam([f]M([B]))
Diam([f]([B]))

ρmohc[f] is computed only once after every bisection.

Experiments show that τmohc should be tuned
between 60% and 99% (see paper).

48 / 81

Introduction
Exploiting monotonicity

Exploting Common Subexpressions

Evaluation by monotonicity
Ocurrence Grouping
The Mohc algorithm

Experiments

17 instances from the COPRIN benchmarks.
Implementation of Mohc in the Ibex C++ library (by
Chabert).
Strategy: Between two choice points:

1 Monotonicity test,
2 3BCID(Mohc),
3 Interval Newton.

Comparison with 3BCID(HC4).

49 / 81

Introduction
Exploiting monotonicity

Exploting Common Subexpressions

Evaluation by monotonicity
Ocurrence Grouping
The Mohc algorithm

Good results

NCSP HC4 Box Mohc(0.7) Mohc(0.99) Gain
Butcher 282528 25867 5026 1842 153
8 3 1.8e+8 1.7e+6 2.2e+6 324669 554
Direct kin. 17515 >28800 458 363 48
11 2 1.4e+6 9541 5609 250
Fourbar 13121 11011 366 353 37
4 3 8.5e+6 732429 58571 45695 186
Virasoro 7158 >28800 1241 902 7.9
8 224 2.6e+6 79211 38739 67
Geneig 598 >7200 116 87.6 6.8
6 10 205859 15341 6975 30
Yamam.1 11.8 15.3 2.02 2.69 5.8
8 7 3017 183 303 297 10
Pramanik 95.9 278 19.6 19.6 4.9
3 2 124661 23017 12691 8435 15
Hayes 41.7 282 17.3 13.9 3.0
8 1 17763 7247 4437 1717 10
Trigo1 150.7 773 55.8 71.9 2.7
10 9 2565 1005 461 455 5.6

50 / 81

Introduction
Exploiting monotonicity

Exploting Common Subexpressions

Evaluation by monotonicity
Ocurrence Grouping
The Mohc algorithm

Not so bad results

NCSP HC4 Box Mohc(0.7) Mohc(0.99) Gain
Caprasse 2.77 32.2 2.74 2.34 1.18
4 18 1309 719 903 391 3.3

Kin1 1.95 68.7 1.97 3.36 0.99
6 16 87 65 87 81 1.1

Trigexp2 90.1 >3600 91.4 169 0.99
11 0 15187 15099 7717 2.0

I5 55.7 >3600 58.5 82.9 0.95
10 30 10621 9811 8715 1.2

Eco9 13.9 102.0 14.6 26.0 0.95
9 16 6193 4991 6037 4343 1.4

Brent 19.0 311.0 20.2 41.4 0.94
10 1008 3923 2137 3815 3189 1.2

Redeco8 6.23 69.8 6.82 10.88 0.91
8 8 2441 1913 2347 1537 1.6

Katsura 77.4 2265 103 245 0.75
12 7 4251 3557 3573 3151 1.3

51 / 81

Introduction
Exploiting monotonicity

Exploting Common Subexpressions

Evaluation by monotonicity
Ocurrence Grouping
The Mohc algorithm

Perspectives

Mohc can be seen as an generalization of the classic
propagation algortihms (HC4 and Box) using
monotonicity properties of functions.
Implement a more efficient and effective version of
the algorithm MinMaxrevise.
Render Mohc adpatative.

52 / 81

Introduction
Exploiting monotonicity

Exploting Common Subexpressions

Common Subexpression Elimination
Improving HC4 by CSE
The I-CSE Algorithm

Outline

1 Introduction
Interval Arithmetics
Interval Methods for Solving NCSP

2 Exploiting monotonicity
Evaluation by monotonicity
Ocurrence Grouping
The Mohc algorithm

3 Exploting Common Subexpressions
Common Subexpression Elimination
Improving HC4 by CSE
The I-CSE Algorithm

53 / 81

Introduction
Exploiting monotonicity

Exploting Common Subexpressions

Common Subexpression Elimination
Improving HC4 by CSE
The I-CSE Algorithm

Outline

1 Introduction
Interval Arithmetics
Interval Methods for Solving NCSP

2 Exploiting monotonicity
Evaluation by monotonicity
Ocurrence Grouping
The Mohc algorithm

3 Exploting Common Subexpressions
Common Subexpression Elimination
Improving HC4 by CSE
The I-CSE Algorithm

54 / 81

Introduction
Exploiting monotonicity

Exploting Common Subexpressions

Common Subexpression Elimination
Improving HC4 by CSE
The I-CSE Algorithm

Common Subexpressions Elimination (CSE)

CSE is an important feature in optimization of code.
CSE consists in replacing common subexpressions
(CS) by auxiliary variables.
For example:
a = b * c + g
d = b * c * d

It may be worth (in performance) transforming the code to:
tmp = b * c
a = tmp + g
d = tmp * d

55 / 81

Introduction
Exploiting monotonicity

Exploting Common Subexpressions

Common Subexpression Elimination
Improving HC4 by CSE
The I-CSE Algorithm

Common Subexpressions Elimination (CSE)

In interval analysis, several experts have been
interested in eliminating the common subexpressions
of system of constraints.
Schichl and Neumaier proposed a unique DAG to
represent a system of equations. Common
subexpressions (CS) are represented by nodes with
several parents.
The community of interval analysis thought that the
obtained gains were due to a reduction of the
number of operations.
However, CSE also may be useful to improve the
performance of interval solvers (bringing a better
contraction/filtering).

56 / 81

Introduction
Exploiting monotonicity

Exploting Common Subexpressions

Common Subexpression Elimination
Improving HC4 by CSE
The I-CSE Algorithm

Outline

1 Introduction
Interval Arithmetics
Interval Methods for Solving NCSP

2 Exploiting monotonicity
Evaluation by monotonicity
Ocurrence Grouping
The Mohc algorithm

3 Exploting Common Subexpressions
Common Subexpression Elimination
Improving HC4 by CSE
The I-CSE Algorithm

57 / 81

Introduction
Exploiting monotonicity

Exploting Common Subexpressions

Common Subexpression Elimination
Improving HC4 by CSE
The I-CSE Algorithm

HC4-Revise Algorithm

Example of HC4-revise: (x + y + z)2 + 3(x + z) = 30

58 / 81

Introduction
Exploiting monotonicity

Exploting Common Subexpressions

Common Subexpression Elimination
Improving HC4 by CSE
The I-CSE Algorithm

HC4-Revise Algorithm

Example of HC4-revise: (x + y + z)2 + 3(x + z) = 30

59 / 81

Introduction
Exploiting monotonicity

Exploting Common Subexpressions

Common Subexpression Elimination
Improving HC4 by CSE
The I-CSE Algorithm

HC4-Revise Algorithm

Example of HC4-revise: (x + y + z)2 + 3(x + z) = 30

60 / 81

Introduction
Exploiting monotonicity

Exploting Common Subexpressions

Common Subexpression Elimination
Improving HC4 by CSE
The I-CSE Algorithm

HC4-Revise Algorithm

Example of HC4-revise: (x + y + z)2 + 3(x + z) = 30

61 / 81

Introduction
Exploiting monotonicity

Exploting Common Subexpressions

Common Subexpression Elimination
Improving HC4 by CSE
The I-CSE Algorithm

HC4-Revise Algorithm

Example of HC4-revise: (x + y + z)2 + 3(x + z) = 30

62 / 81

Introduction
Exploiting monotonicity

Exploting Common Subexpressions

Common Subexpression Elimination
Improving HC4 by CSE
The I-CSE Algorithm

CSE may improve the filtering

Example: The sum x + z is common to two expression
trees.

[-2,5]

[-2,6]

[0,1]

[-2,5]

[-2,5]

[-2,5]

[0,1]

[-2,5]
1

2 [-2,5][0,1]

[-2,5] [-2,5]
1 2

Replace n1 and n2 by a common variable v, and add a
new constraint v = x + z.

63 / 81

Introduction
Exploiting monotonicity

Exploting Common Subexpressions

Common Subexpression Elimination
Improving HC4 by CSE
The I-CSE Algorithm

Outline

1 Introduction
Interval Arithmetics
Interval Methods for Solving NCSP

2 Exploiting monotonicity
Evaluation by monotonicity
Ocurrence Grouping
The Mohc algorithm

3 Exploting Common Subexpressions
Common Subexpression Elimination
Improving HC4 by CSE
The I-CSE Algorithm

64 / 81

Introduction
Exploiting monotonicity

Exploting Common Subexpressions

Common Subexpression Elimination
Improving HC4 by CSE
The I-CSE Algorithm

The I-CSE Algorithm

The novelty of I-CSE lies in the way additive and
multiplicative CSs are taken into account.
I-CSE manages conflictive subexpressions.
Example: x1 + x2 + x3, x1 + x2 and x2 + x3

Algorithm divided into 4 steps.

65 / 81

Introduction
Exploiting monotonicity

Exploting Common Subexpressions

Common Subexpression Elimination
Improving HC4 by CSE
The I-CSE Algorithm

The I-CSE Algorithm

Every equation in the system is represented by an
n-ary tree. The algorithm is divided in 4 steps:

1 The trees are compacted into a DAG, merging together
equivalent subtrees.

2 N-ary sums and products expressions are pairwise
intersected obtaining all the maximal subexpressions
shared by two expressions.

3 The CSs obtained in step 2 are integrated into the DAG.
Conflictive CSs generate redundant equations.

4 The new system is generated.

66 / 81

Introduction
Exploiting monotonicity

Exploting Common Subexpressions

Common Subexpression Elimination
Improving HC4 by CSE
The I-CSE Algorithm

Step 1: DAG Generation

Initial system:

x2 + y + (y + x2 + y3 − 1)3 + x3 = 2
(y3 + x2)× (x2 + cos(y)) + 14

x2 + cos(y)
= 8

67 / 81

Introduction
Exploiting monotonicity

Exploting Common Subexpressions

Common Subexpression Elimination
Improving HC4 by CSE
The I-CSE Algorithm

Step 1: DAG Generation

x2 + y + (y + x2 + y3 − 1)3 + x3 = 2
(y3 + x2)× (x2 + cos(y)) + 14

x2 + cos(y)
= 8

68 / 81

Introduction
Exploiting monotonicity

Exploting Common Subexpressions

Common Subexpression Elimination
Improving HC4 by CSE
The I-CSE Algorithm

Step 2: Pairwise Intersection

+(x2,y,node2, x3,−2)1 ∩+(y,x2, y3,−1)4 = +(y,x2)

69 / 81

Introduction
Exploiting monotonicity

Exploting Common Subexpressions

Common Subexpression Elimination
Improving HC4 by CSE
The I-CSE Algorithm

Step 2: Pairwise Intersection

+(x2,y,node2, x3,−2)1 ∩+(y,x2, y3,−1)4 = +(y,x2)1.4

70 / 81

Introduction
Exploiting monotonicity

Exploting Common Subexpressions

Common Subexpression Elimination
Improving HC4 by CSE
The I-CSE Algorithm

Step 2: Pairwise Intersection

+(y ,x2,y3,−1)4 ∩+(x2,y3)10 = +(x2,y3)

71 / 81

Introduction
Exploiting monotonicity

Exploting Common Subexpressions

Common Subexpression Elimination
Improving HC4 by CSE
The I-CSE Algorithm

Step 2: Pairwise Intersection

+(y ,x2,y3,−1)4 ∩+(x2,y3)10 = +(x2,y3)10

72 / 81

Introduction
Exploiting monotonicity

Exploting Common Subexpressions

Common Subexpression Elimination
Improving HC4 by CSE
The I-CSE Algorithm

Step 3: Integrating CSs into the DAG

Observation

CSs related to node 4 are in conflict (n4 = y + x2 + y3):
n1.4 := y + x2

n10 := x2 + y3

73 / 81

Introduction
Exploiting monotonicity

Exploting Common Subexpressions

Common Subexpression Elimination
Improving HC4 by CSE
The I-CSE Algorithm

Step 3: Integrating CSs into the DAG

Observation

A redundant node is created (n4 = y + x2 + y3):
n′

4 := n1.4 + y3 − 1
n4B := y + n10 − 1

74 / 81

Introduction
Exploiting monotonicity

Exploting Common Subexpressions

Common Subexpression Elimination
Improving HC4 by CSE
The I-CSE Algorithm

Step 3: Integrating CSs into the DAG

75 / 81

Introduction
Exploiting monotonicity

Exploting Common Subexpressions

Common Subexpression Elimination
Improving HC4 by CSE
The I-CSE Algorithm

Step 4: Generation of the new system

76 / 81

Introduction
Exploiting monotonicity

Exploting Common Subexpressions

Common Subexpression Elimination
Improving HC4 by CSE
The I-CSE Algorithm

Step 4: Generation of the new system

The new generated system is:

v2 + v3
5 + x3 − 2 = 0

v3 × v4 + 14
v4

− 8 = 0

v1 = x2

v2 = y + v1

v3 = v1 + y3

v4 = v1 + cos(y)

v5 = v2 + y3 − 1
v5 = −1 + y + v3

77 / 81

Introduction
Exploiting monotonicity

Exploting Common Subexpressions

Common Subexpression Elimination
Improving HC4 by CSE
The I-CSE Algorithm

Experiments

Benchmark I-CSE-B ICSE-NC I-CSE Benchmark I-CSE-B ICSE-NC I-CSE
#s N #cs #cs #cs #rc #s N #cs #cs #cs #rc

6body 5 6 2 3 3 0 Kin1 16 6 13 13 19 3
Bellido 8 9 0 1 1 0 Pramanik 2 8 0 15 15 0
Brown-7 3 7 3 7 21 24 Prolog 0 21 0 7 7 0
Brown-7* 3 7 3 1 1 0 Rose 16 3 5 5 5 0
Brown-30 2 30 26 53 435 783 Trigexp1-30 1 30 29 29 29 0
BroyBand-20 1 20 22 37 97 73 Trigexp1-50 1 50 49 49 49 0
BroyBand-100 1 100 102 119 479 473 Trigexp2-11 0 11 15 15 15 0
Caprasse 18 4 6 7 11 2 Trigexp2-19 0 19 27 27 27 0
Design 1 9 3 3 3 0 Trigonom-5 2 5 7 9 20 14
Dis-Integral-6 1 6 4 6 18 9 Trigonom-5* 2 5 7 6 6 0
Dis-Integral-20 3 20 18 34 207 171 Trigonom-10 24 10 15 15 26 15
Eco9 16 8 0 3 7 1 Trigonom-10* 24 10 15 12 12 0
EqCombustion 4 5 7 8 11 1 Yamamura-8 7 8 5 10 36 48
ExtendWood-4 3 4 2 2 2 0 Yamamura-8* 7 8 5 1 1 0
Geneig 10 6 11 14 14 0 Yamamura-10 9 12 7 14 55 79
Hayes 1 8 9 8 8 0 Yamamura-10* 9 12 7 1 1 0
I5 30 10 3 4 10 5 Yamamura-12 9 12 9 18 78 119
Katsura-19 5 20 81 81 81 0 Yamamura-12* 9 12 9 1 1 0
Katsura-20 7 21 90 90 90 0 Yamamura-16 9 16 13 26 136 224

78 / 81

Introduction
Exploiting monotonicity

Exploting Common Subexpressions

Common Subexpression Elimination
Improving HC4 by CSE
The I-CSE Algorithm

Results with HC4 and Interval Newton

Benchmark TIME in second TIME(Osys) / TIME #Boxes
Osys ICSE-B ICSE-NC I-CSE ICSE-B ICSE-NC I-CSE Osys ICSE-NC I-CSE

EqCombustion >3600 26.1 0.35 0.14 >137 >10000 >25000 >1e+08 3967 1095
Rose >3600 500 101 101 >7.2 >35 >35 >3e+07 865099 865099
Hayes 141 51.9 15.7 15.7 2.7 9 9 550489 44563 44563
6-body 0.22 0.07 0.07 0.07 3.1 3.1 3.1 4985 495 495
Design 176 65.2 63.2 63.2 2.7 2.8 2.8 425153 122851 122851
I5 >3600 >3600 1534 1565 ? >2.3 >2.3 >3e+07 7e+06 7e+06
Geneig 3323 2910 2722 2722 1.14 1.22 1.22 7e+08 4e+08 4e+08
Kin1 8.52 8.32 8.32 8.01 1.02 1.02 1.06 905 909 905
Pramanik 89.3 92.1 84.9 84.9 0.97 1.05 1.05 487255 378879 378879
Bellido 15.7 15.9 15.6 15.6 0.99 1.01 1.01 29759 29319 29319
Eco9 23.9 23.9 24 24.1 1.00 1.00 0.99 126047 117075 110885
Caprasse 1.56 1.81 1.68 2.16 0.86 0.93 0.72 8521 7793 7491
Brown-7* 500 350 0.01 0.01 1.42 49500 49500 6e+06 95 95
Dis-Integral-6 201 0.46 1.3 0.03 437 155 6700 653035 4157 47
ExtendWood-4 29.9 0.03 0.03 0.03 997 997 997 422705 353 353
Brown-7 500 350 30.7 1.49 1.42 16.1 332 6e+06 258601 3681
Trigexp2-11 1118 208 56.2 56.2 5.38 19.9 19.9 1e+06 316049 316049
Yamamura-8* 13 13.3 0.75 0.75 0.98 17.3 17.3 29615 2161 2161
Broy-Banded-20 778 759 261 58.1 1.03 2.98 13.4 172959 46761 12623
Trigonometric-5* 15.8 12.3 1.49 1.49 1.28 10.6 10.6 10531 1503 1503
Trigonometric-5 15.8 12.3 8.94 6.97 1.28 1.77 2.27 10531 7369 5307
Yamamura-8 13 13.3 44.6 10.8 0.98 0.3 1.20 29615 115211 13211
Katsura-19 1430 1583 1583 1583 0.90 0.90 0.90 145839 153193 153193
Trigexp1-30 2465 3244 3244 3244 0.76 0.76 0.76 1e+07 1e+07 1e+07

79 / 81

Introduction
Exploiting monotonicity

Exploting Common Subexpressions

Common Subexpression Elimination
Improving HC4 by CSE
The I-CSE Algorithm

Conclusion

CSs can bring significant gains in filtering and not
only a decrease in the number of operations.
Gains of several orders of magnitude.

80 / 81

Introduction
Exploiting monotonicity

Exploting Common Subexpressions

Common Subexpression Elimination
Improving HC4 by CSE
The I-CSE Algorithm

Exploiting Monotonicity and Common
Subexpressions for improving interval

constraint propagation algorithms

Ignacio Araya

COPRIN, INRIA, Université de Nice-Sophia, France

MEA, December 2009, Paris, France

81 / 81

	Introduction
	Interval Arithmetics
	Interval Methods for Solving NCSP

	Exploiting monotonicity
	Evaluation by monotonicity
	Ocurrence Grouping
	The Mohc algorithm

	Exploting Common Subexpressions
	Common Subexpression Elimination
	Improving HC4 by CSE
	The I-CSE Algorithm

