
Chapitre 3

Discrete event systems

3.1 Petri nets

3.1.1 Definition

A Petri net is a graphical modeling language that can be used for the description of distributed systems

or robots. A Petri net is a directed bipartite graph with two types of nodes : the transitions and places.

The transitions are signified by bars and places are represented by circles. Arcs run either from a place to a

transition or from a transition to a place. Places may contain tokens. A distribution of tokens over the places

is called a marking. A transition may be fired is there is a token at the start of all its upstream place. When

a transition fires one token is taken at each upstream place and one token is added to each downstream

place.

Example. Consider a mission involving two sailboat robots. At initial time, both boats are in the harbor.

In the way to reach the ocean, there is a channel with a strong current that changes with tides every 6 hours.

It takes one hour for each boat the reach the channel from the harbor and two hours to reach the ocean

from the entry of the channel, when the current is favorable. When the current is not favorable, the boats

have to wait at the entrance of the channel. The situation can be represented by the Petri net of Figure 3.1.

The meaning of places and transitions are given below

Transitions Events

t1 one boat leaves the port

t2 one boat enters the channel

t3 one boat reaches the ocean

t4 low tide

t5 high tide

Places Tokens

p1 boats in the harbor

p2 boats moving toward the channel

p3 boats inside the channel

p4 favorable current

p5 unfavorable current

p6 allowed to enter the channel

Formal definition. A Pétri net is a 3-tuple (P,T , w) where P is a finite set of places, T is a finite set of

transitions, w : (P × T ) ∪ (T × P)→ {0, 1} is a set of arcs.
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Figure 3.1 — Petri net representing a mission involving two robots

We define the preset of a transition t as the set of all its upstream places

preset (t) = {p ∈ P, w (p, t) = 1} .

We define the postset of a transition t as the set of all the downsteam places

postset (t) = {p ∈ P, w (t, p) = 1} .

For instance, preset(t4) = {p4, p6} and postset(t4) = {p5} .

Incidence matrix

We define the forward incidence matrix W− and the backward incidence matrix W+, as the matrices with

entries

w−ij = w (pi, tj) and w+ij = w (tj , pi) .

For our example, we have

W− =






1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

0 0 0 1 0

0 0 0 0 1

0 1 0 1 0






and W+ =






0 0 0 0 0

1 0 0 0 0

0 1 0 0 0

0 0 0 0 1

0 0 0 1 0

0 1 0 0 1






.

The incidence matrix is defined by

W =W+ −W−.

For our example, we have

W =






0 0 0 0 0

1 0 0 0 0

0 1 0 0 0

0 0 0 0 1

0 0 0 1 0

0 1 0 0 1






−






1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

0 0 0 1 0

0 0 0 0 1

0 1 0 1 0






=






−1 0 0 0 0

1 −1 0 0 0

0 1 −1 0 0

0 0 0 −1 1

0 0 0 1 −1

0 0 0 −1 1






.
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A marking is vector of integers which represents the number of tokens that are assigned to each place. It

corresponds to the state vector of the system. For our example, the initial marking is

m0 = (2 0 0 0 1 0)T .

Denote by s the vector the ith entry of which represents the numbers of firing of transition ti from the

beginning. Then, the marking is

m =m0 +W.s.

For instance, if the following sequence of transition t1, t5, t2 has been fired, then we have

m =






2

0

0

0

1

0






+






−1 0 0 0 0

1 −1 0 0 0

0 1 −1 0 0

0 0 0 −1 1

0 0 0 1 −1

0 0 0 −1 1











1

1

0

0

1





=






1

0

1

1

0

1






Which means that one boat is still in the harbor and one is in the channel.

3.1.2 Invariance

The transition vector (or sequence) s is said to be t-invariant if W.s = 0. If a nonzero t-invariant s exists

then some periodic behaviors can appear in the Petri net. For our saiboat problem, we get

W.s = 0⇒ s = 0

and thus the system does not have a periodic solution (i.e., it will be either stable or unstable).

The mark n is said to be p-invariant if nTW = 0T. In such a case, for all s, we have nTW.s =

nT (m−m0) = 0. If there exists a p-invariant n such that ∀i, ni > 0 then the number of tokens has an

upper bound. The Pétri net is said to be bounded.

Example. The Pétri net of Figure 3.2 represents a conveyor which is a mechanism to transport materials

from one location to another. The conveyor has a single trolley. The place p2 means that the trolley is empty.

Place p1 and p2 correspond to an object of type 1 and 2 is the trolley. Here, we have

W =






1 0 −1 0

−1 −1 1 1

0 1 0 −1




 .

To get the t-invariant sequences, we compute the kernel of W :






1 0 −1 0

−1 −1 1 1

0 1 0 −1











t1

t2

t3

t4





=





0

0

0




 .
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Figure 3.2 — Pétri net of a conveyor

We get t1 = t3, and t2 = t4. For instance, the sequence s = (2, 5, 2, 5)T is t-invariant. To compute the p

invariants, we solve

�
n1 n2 n3

�




1 0 −1 0

−1 −1 1 1

0 1 0 −1




 =

�
0 0 0

�

and we get n1 = n2 = n3. It means that
�
1 1 1

�
(m−m0) = 0

i.e., the number of tokens is constant. Note also that, since nT = (1 1 1) > 0, we can conclude that the Pétri

net is bounded.

3.2 Max-plus algebra

3.2.1 Example 1

Consider a simple public transportation system. There are two stations where passengers can change lines,

and four buses connecting the two stations. The corresponding Pétri net is represented by Figure ??. Each

token corresponds to a bus and structure of the Pétri net shows that a synchonization exists between the

buses at each station. The firing times of transitions t1 and t2 represent the departure times of the buses

in station 1 and 2, respectively. These times can therefore be interpreted as the “time table” for the simple

public transportation system.

Denote by xi (k) the time at which the transition i is fired for the kth time.

— If the initial condition is x1 (1) = x2 (1) = 0, the time table is as follows
	
0

0




,

	
5

3




,

	
8

8




,

	
13

11




,

	
16

16




, . . .

— If the initial condition is x1 (1) = 1, x2 (1) = 0, the time table is
	
1

0




,

	
5

4




,

	
9

8




,

	
13

12




,

	
17

16




, . . .
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Figure 3.3 — Timed event graph of the bus network

Figure 3.4 —

In both cases the average departure interval is 4 units of time, however, in the second case the departure

interval is constant, i.e., the system has a so-called 1-periodic behavior, while in the first case the system

shows a 2-periodic behavior. The recursive equations for the firing times of transitions t1 and t2 are
�
x1 (k + 1) = max (x1 (k) + 2, x2 (k) + 5)

x2 (k + 1) = max (x1 (k) + 3, x2 (k) + 3)

3.2.2 Example 2

Consider now the example of Figure 3.4. We have the following equations





x1 (k + 1) = x3 (k)

x2 (k + 1) = x1 (k − 2)

x3 (k + 1) = x2 (k + 1)

which is not a state equation. From this example, we conclude that we have naturally a state equation of

the form x (k + 1) = f (x (k)) only if for the initial time, each place contains a single token (which is not

the case here). Not also that due to the specific structure of the system (i.e. each transition has exactly one

upstream and one downstream places) the max operator does not appear in the equations.

3.2.3 Example 3

Let us come back to Example 1. The bus company may consider to realize shorter (average) departure

intervals. This could be achieved by using an additional bus. For example the company provides a second

bus in the inner loop, e.g., initially on the way t1 to t2. With respect to the timed event graph shown in

Figure 3.3, this means to add a second token in place p2 as shown in Figure 3.5. We get
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Figure 3.5 —

Figure 3.6 —

�
x1 (k + 1) = max (x1 (k) + 2, x2 (k) + 5)

x2 (k + 1) = max (x1 (k − 1) + 3, x2 (k) + 3) ,

which does not correspond to a state equation. The problem is due to the fact that x2 (k + 1) depends on

x1 (k − 1) which make the recurrence relation of order 2. This problem appear as soon as we have more

that one token at one place when k = 0. To get a state equation, we introduce a new variable x3 which

correspond to a new transition t3 just between t1 and p2, as shown in Figure 3.6 We get





x1 (k + 1) = max (x1 (k) + 2, x2 (k) + 5)

x2 (k + 1) = max (x3 (k) + 3, x2 (k) + 3)

x3 (k + 1) = x1 (k) .

If the initial condition is x1 (1) = x2 (1) = x3 (1) = 0, the time table is




0

0

0




 ,





5

3

0




 ,





8

6

5




 ,





11

9

8




 ,





14

12

11




 .

After a short transient phase, bus start from both stations in intervals of three units of time. Obviously,

shorter intervals cannot be reached by additional buses in the inner loop of the system, as the outer loop at

station 2 now represents the “bottleneck” of the system. In this simple example, several phenomena have

been encountered. These phenomena (and more) can be conveniently analyzed and explained within the

formal framework of idempotent semirings, or dioids.

3.2.4 Dioid

Definition 5 (Monoid) (M,⊕, ε) is a monoid if ⊕ is a closed law, associative, and having a neutral

element denoted ε (∀a ∈ M, a ⊕ ε = ε ⊕ a = a). If law ⊕ is commutative, the monoid is said to be
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commutative. The monoid is idempotent if ∀a ∈M, a⊕ a = a.

For instance, (R,max) is an idempotent commutative monoid.

Definition 6 (Semiring, dioid) (D,⊕,⊗) is an idempotent semiring, also called dioid, if

• (D,⊕, ε) is an idempotent commutative monoid , ∀a ∈ D, a⊕ a = a,

• (D,⊗, e) is a monoid,

• law ⊗ distributes over law ⊕, (a⊗ (b⊕ c) = (a⊗ b⊕ a⊗ c))

• ε is absorbing for law ⊗, ∀a ∈ D, a⊗ ε = ε⊗ a = ε.

If (D,⊗, e) is a commutative monoid, the idempotent semiring (D,⊕,⊗) is said to be commutative.

For instance, (R,max,+), where R = R ∪ {−∞,+∞} is a dioid with ε = −∞, e = 0.

Theorem. In a dioid (D,⊕,⊗), a solution of the implicit equation

x = a⊗ x⊕ b

is x = a∗ ⊗ b where

a∗ =
�

k≥0

ak = e⊕ a⊕ a2 ⊕ a3 ⊕ . . .

Proof. If x = a∗ ⊗ b, we have

a⊗ x⊕ b = a ⊗ a∗� �� �
= a⊗

�
e⊕ a⊕ a2 ⊕ . . .

�

=
�
a⊕ a2 ⊕ a3 ⊕ . . .

�

⊗ b ⊕ b����
=e⊗b

=
�
e⊕ a⊕ a2 ⊕ a3 ⊕ . . .

�
⊗ b

= a∗ ⊗ b = x.

Example. Consider the equation

x = −2⊗ x⊕ 3

= max (x− 2, 3)

in the dioid (R,max,+) =
�
R,⊕,⊗

�
. One solution is a∗ ⊗ b with a = −2 and b = 3. Thus

a∗ ⊗ b =
�
e⊕ a⊕ a2 ⊕ a3 ⊕ . . .

�
� �� �

=max(0,−2,−4,... )

⊗ b = 0⊗ 3 = 3.

Note that a simple fixed point method could also be used to solve the equation. It suffices to iterate the

sequence

xk+1 = max (xk − 2, 3) .

The convergence speed depends on the initial condition.
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3.2.5 Matrices in dioids

We shall now consider matrices in
�
R,max,+

�
. The matrix sum is defined componentwize. For instance

	
2 5

3 7




⊕

	
e 8

1 3




=

	
2 8

3 7




.

If A ∈ Rm×p, B ∈ Rp×n, the product C = A⊗B ∈ Rm×n is the matrix with entries

cij =

p�

k=1

aik ⊗ akj.

The null matrix, denoted by ε, is the matrix whose entries are equal to ε. In the same manner the identity

matrix, denoted by I, is the matrix whose entries are all equal to ε excepted the diagonal entries which are

equal to e. For example, if 



2 5

ε 3

1 8




⊗

	
e

1




=





6

4

9




 .

By extension for n ∈ N,

An = A⊗A⊗ ...⊗A� �� �
n times

with A0 = I the identity matrix. It can easily shown that the set of matrices equipped with operations ⊕,⊗,

is a dioid. Moreover, the vector x = A∗b is a solution of the implicit equation

x =A⊗ x ⊕ b. (3.1)

3.3 Timed event graphs

Timed event graphs (TEG) constitute a subclass of timed Petri nets. Each place admits one and only

one upstream transition and one and only one downstream transition. These dynamical systems can be

represented by the following linear state equations

x(k) = Ax(k − 1)⊕Bu(k)

y(k) = Cx(k),

where the algebraic structure is changed into a (max,+) or a (min,+) algebra. The vector of input transitions

is u, the vector of internal transitions is x and y is the vector of output transitions. To each place is associated

a delay which characterizes the minimal time that a token has to stay in a place before to contribute to the

firing of the downstream transition. A transition is fired when each upstream place has a valid token, i.e. a

token having spent the minimal time specified by the temporization. Two dual approaches exist to model a

TEG by state equations : the dater approach and the counter approach.
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Figure 3.7 — A simple TEG

3.3.1 Dater state equations

To the ith transition we associate the date xi(k) ∈ R of the occurrence of kth firing of the transition. If we

denote by ⊕ the max operator and by ⊗ the operator +. It is trivial to describe the dynamic of a given

TEG by recurrence equations of the form

x(k) = A0x(k)⊕A1x(k − 1)⊕Bu(k),

y(k) = Cx(k).
(3.2)

To get this form, it is sometimes necessary to enlarge the graph in order to guarantee that each place is

initially with at the most one token. The evolution equation has an implicit form :

x(k) = A0x(k) ⊕ A1x(k − 1)⊕Bu(k)� �� �
b

.

Since the system is deterministic, it has a unique solution. From Equation (3.1), the solution of

x = A0x⊕ b

is

x = A∗0b.

Thus
x(k) = A∗0 (A1x(k − 1)⊕Bu(k))

= A∗0A1x(k − 1)⊕A
∗
0Bu(k),

or equivalently
x(k) = Ax(k − 1)⊕Bu(k)

y(k) = Cx(k)

with A = A∗0A1 and B = A∗0B0. The (max,+) toolbox of S�����, is very efficient to handle this kind of

model.

Example 1. Consider the TEG of Figure 3.7. To the ith transition we associate the date xi(k) ∈ R of the

occurrence of kth firing of the transition. We have

x1(k) = max(1 + u(k), 3 + x2(k − 1))

x2(k) = 2 + x1(k)

y(k) = x2(k) + 5
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or equivalently
x1(k) = 1⊗ u(k)⊕ 3⊗ x2(k − 1)

x2(k) = 2⊗ x1(k)

y(k) = 5⊗ x2(k)

which is linear in the idempotent semiring (R,max,+). In a matrix form, we get






x(k) =

	
ε ε

2 ε




� �� �
A0

x(k) ⊕

	
ε 3

ε ε




� �� �
A1

x(k − 1)⊕

	
1

ε




����
B

u(k)

y(k) =
�
ε 5

�
x(k).

The evolution equations are

x(k) = A∗0A1x(k − 1) ⊕ A∗0Bu(k).

Now,

A∗0 =

	
ε ε

2 ε


∗
=

	
e ε

ε e




⊕

	
ε ε

2 ε




⊕

	
ε ε

2 ε


2

� �� �


ε ε

ε ε





⊕

	
ε ε

2 ε


3

� �� �


ε ε

ε ε





+ · · · =

	
e ε

2 e




.

and

A∗0A1 =

	
e ε

2 e


	
ε 3

ε ε




=

	
ε 3

ε 5




.

Moreover

A∗0B =

	
0 ε

2 0


	
1

0




=

	
1

3




.

The state equations of our TEG are

x(k) =

	
ε 3

ε 5




x(k − 1)⊕

	
1

3




u(k)

y(k) =
�
ε 5

�
x(k).

Note that for this simple example, the same result could have been obtained directly from the initial

equations. Since
x1(k) = max(1 + u(k), 3 + x2(k − 1))

x2(k) = 2 + x1(k)

y(k) = x2(k) + 5

we have
x1(k) = max(1 + u(k), 3 + x2(k − 1))

x2(k) = 2 +max(1 + u(k), 3 + x2(k − 1)) = max(3 + u(k), 5 + x2(k − 1))

y(k) = x2(k) + 5.

It corresponds to what has been obtained with max-plus tools.

Example 2. Consider the TEG of Figure 3.8.
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Figure 3.8 — Another timed event graph

The input transitions are u1,u2, the internal transitions are xi, i ∈ {1, . . . , 6} and y is the output transition.

This TEG can represent the behavior of an assembly line, constituted of 3 machines M1, M2 and M3.

Transition u1 characterizes the input of raw materials in the system, transition x1 represents the input of

material in machine M1, it is possible if a token is available in the place located between transitions x2 and

x1 (i.e. the machine has to be available), and transition u1 has to be fired for one time unit. After 2 time

units transition x2 will be fired (output of machine M1). Transition x5 represents the input of machine M3

which ensures the assembly of products coming from machines M1 and M2. For our TEG, we can write

x1(k) = max(1 + u1(k), x2(k − 1))

x2(k) = 2 + x1(k)

x3(k) = max(2 + u2(k), x4(k − 1))

x4(k) = 5 + x3(k)

x5(k) = max(3 + x4(k), 1 + x2(k), x6(k − 3))

x6(k) = 2 + x5(k)

y(k) = x6(k)

or equivalently

x1(k) = 1⊗ u1(k)⊕ x2(k − 1)

x2(k) = 2⊗ x1(k)

x3(k) = 2⊗ u2(k)⊕ x4(k − 1)

x4(k) = 5⊗ x3(k)

x5(k) = 3⊗ x4(k)⊕ 1⊗ x2(k)⊕ x6(k − 3)

x6(k) = 2⊗ x5(k)

y(k) = x6(k)
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Figure 3.9 — Enlarged TEG

which is a linear system in the idempotent semiring (R,max,+). In a vector form, we get






x(k) =






ε ε ε ε ε ε

2 ε ε ε ε ε

ε ε ε ε ε ε

ε ε 5 ε ε ε

ε 1 ε 3 ε ε

ε ε ε ε 2 ε






x(k)⊕






ε 0 ε ε ε ε

ε ε ε ε ε ε

ε ε ε 0 ε ε

ε ε ε ε ε ε

ε ε ε ε ε ε

ε ε ε ε ε ε






x(k − 1)⊕






ε ε ε ε ε ε

ε ε ε ε ε ε

ε ε ε ε ε ε

ε ε ε ε ε ε

ε ε ε ε ε ε

ε ε ε ε ε ε






x(k − 2)⊕






ε ε ε ε ε ε

ε ε ε ε ε ε

ε ε ε ε ε ε

ε ε ε ε ε ε

ε ε ε ε ε 0

ε ε ε ε ε ε






x(k − 3)⊕






1 ε

ε ε

ε 2

ε ε

ε ε

ε ε






u(k)

y(k) =
�
ε ε ε ε ε 0

�
x(k).

An implicit form with a recurrence of order one, can be obtained by enlarging the graph in order to guarantee

that each place is initially with at the most one token as illustrated by Figure 3.9.

The corresponding equations are

x(k) =






ε ε ε ε ε ε ε ε

2 ε ε ε ε ε ε ε

ε ε ε ε ε ε ε ε

ε ε 5 ε ε ε ε ε

ε 1 ε 3 ε ε ε ε

ε ε ε ε 2 ε ε ε

ε ε ε ε ε ε ε ε

ε ε ε ε ε ε ε ε






x(k)⊕






ε e ε ε ε ε ε ε

ε ε ε ε ε ε ε ε

ε ε ε e ε ε ε ε

ε ε ε ε ε ε ε ε

ε ε ε ε ε ε ε e

ε ε ε ε ε ε ε ε

ε ε ε ε ε e ε ε

ε ε ε ε ε ε e ε






x(k − 1)⊕






1 ε

ε ε

ε 2

ε ε

ε ε

ε ε

ε ε

ε ε






u(k)

y(k) =
�
ε ε ε ε ε 0 ε ε

�
x(k)
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Figure 3.10 — Enlarged TEG associated with Example 1

For our example this calculus leads to

A = A∗0A1 =






ε e ε ε ε ε ε ε

ε 2 ε ε ε ε ε ε

ε ε ε e ε ε ε ε

ε ε ε 5 ε ε ε ε

ε 3 ε 8 ε ε ε e

ε 5 ε 10 ε ε ε 2

ε ε ε ε ε e ε ε

ε ε ε ε ε ε e ε






and B = A∗0B =






1 ε

3 ε

ε 2

ε 7

4 10

6 12

ε ε

ε ε






.

3.3.2 Counter state equations

From a dual point of view, the behavior of a TEG can be described by considering a dynamic system in the

time domain. A counter function xi is associated to each transition which counts the number of firing of the

transition at a time k ∈ Z.

Example 1. Consider again the TEG of Example 1 page 35. The system can be represented by the following

equations :

x1(k) = min(u(k − 1), 1 + x2(k − 3))

x2(k) = x1(k − 2)

y(k) = x2(k − 5)

En equivalent ellarged TEG is given by Figure 3.10 where all delays are equal to 1. The corresponding state

equations are

x1(k) = min(u(k − 1), 1 + x5(k − 1))

x2(k) = x3(k − 1)

x3(k) = x1 (k − 1)

x4(k) = x2 (k − 1)

x5(k) = x4 (k − 1)

x6(k) = x5 (k − 1)

x7(k) = x6 (k − 1)

x8(k) = x7(k − 1)

y(k) = x8(k)
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or equivalently

x(k) =






ε ε ε ε 1 ε ε ε

ε ε e ε ε ε ε ε

e ε ε ε ε ε ε ε

ε e ε ε ε ε ε ε

ε ε ε e ε ε ε ε

ε ε ε ε e ε ε ε

ε ε ε ε ε e ε ε

ε ε ε ε ε ε e ε






x(k − 1)⊕






e

ε

ε

ε

ε

ε






u(k − 1)

y(k) =
�
ε ε ε ε ε ε ε e

�
x(k)

where the operations have to be understood with respect to the (min,+)-algebra.

Example 2. Consider now the TEG of Example 2 page 36 and depicted on Figure 3.8. The system can be

represented by the following equations :

x1(k) = min(u1(k − 1), 1 + x2(k))

x2(k) = x1(k − 2)

x3(k) = min(u2(k − 2), 1 + x4(k))

x4(k) = x3(k − 5)

x5(k) = min(x4(k − 3), x2(k − 1), 3 + x6(k))

x6(k) = x5(k − 2)

y(k) = x6(k)

In the dioid (Z,min,+), these equations are expressed by :

x1(k) = u1(k − 1)⊕ 1⊗ x2(k)

x2(k) = x1(k − 2)

x3(k) = u2(k − 2)⊕ 1⊗ x4(k)

x4(k) = x3(k − 5)

x5(k) = x4(k − 3)⊕ x2(k − 1)⊕ 3⊗ x6(k)

x6(k) = x5(k − 2)

y(k) = x6(k).
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These dynamic equations are linear in (Z,min,+). In a vector form, we have





x(k) =






ε 1 ε ε ε ε

ε ε ε ε ε ε

ε ε ε 1 ε ε

ε ε ε ε ε ε

ε ε ε ε ε 3

ε ε ε ε ε ε






x(k)⊕






ε ε ε ε ε ε

ε ε ε ε ε ε

ε ε ε ε ε ε

ε ε ε ε ε ε

ε e ε ε ε ε

ε ε ε ε ε ε






x(k − 1)⊕






ε ε ε ε ε ε

e ε ε ε ε ε

ε ε ε ε ε ε

ε ε ε ε ε ε

ε ε ε ε ε ε

ε ε ε ε e ε






x(k − 2)

⊕






ε ε ε ε ε ε

ε ε ε ε ε ε

ε ε ε ε ε ε

ε ε ε ε ε ε

ε ε ε e ε ε

ε ε ε ε ε ε






x(k − 3)⊕






ε ε ε ε ε ε

ε ε ε ε ε ε

ε ε ε ε ε ε

ε ε e ε ε ε

ε ε ε ε ε ε

ε ε ε ε ε ε






x(k − 5)

⊕






e ε

ε ε

ε ε

ε ε

ε ε

ε ε






u(k − 1)⊕






ε ε

ε e

ε ε

ε ε

ε ε

ε ε






u(k − 2)

y(k) =
�
ε ε ε ε ε e

�
x(k)

In a general manner a TEG can be represented in (Z,min,+) by the following equations :





x(k) =
imax�

i=0
Aix(k − i)⊕

jmax�

j=0
Bju(k − j)

y(k) =
ℓmax�

ℓ=0

Clx(k − ℓ).

After some extension of the state, it is possible to get a recursive formulation with a delay of one time unit,

it consists of increasing the state in order to have only temporization of one time unit on each place. Figure

3.11 yields the corresponding extension of the TEG of Figure 3.8. As a consequence, our TEG can be written

under the form �
x(k) = A0x(k)⊕A1x(k − 1)⊕B0u(k)

y(k) = C0x(k).

From Equation (3.1), it is then possible to obtain the following explicit formulation :
�
x(k) = Ax(k − 1)⊕Bu(k)

y(k) = Cx(k),

with A = A∗0A1 and B = A∗0B0.

3.3.3 Gamma-delta representation

Figure 3.12 represents discret event signal in the γ-δ plane.
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Figure 3.11 — Extended TEG to get one unit temporization at each place

Figure 3.12 —
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Figure 3.13 — Example of TEG

This signal can be represented by the series

γ1δ1 ⊕ γ3δ2 ⊕ γ4δ5.

The following interpretation of the monomial γkδt is : the k + 1 occurrence of the event happens at time t.

It corresponds to the south-east cone of the γ-δ plane with vertex (k, t). The operation ⊕ corresponds to

the union between south-east cones. The multiplication is defined by

γk1δt1 ⊗ γk2δt2 = γk1+k2δt1+t2.

We can show that the set of series is a dioid. The zero, unit and top elements are

ε = γ+∞ · δ+∞

e = γ0 · δ0

⊤ = γ−∞ · δ+∞.

Simplification rules
γkδt ⊕ γkδτ = γk · δmax(t,τ)

γkδt ⊕ γℓδt = γmin(k,ℓ) · δt

Application to TEG

Consider the TEG represented in Figure 3.13.

We have
x1 = γ1δ4x2 ⊕ γ0δ

1u1

x2 = γ0δ3x1 ⊕ γ
1δ5u2

x3 = γ0δ3x1 ⊕ γ
0δ4x2 ⊕ γ

2δ2x3

y = γ1δ0x2 ⊕ γ
0δ2x3
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or in a matrix form

x =






ε γ1δ4 ε

γ0δ3 ε ε

γ0δ3 γ0δ4 γ2δ2




 x⊕





γ0δ1 ε

ε γ1δ5

ε ε




 u

y =
�
ε γ1δ0 γ0δ2

�
.


