
Comparison of Path Planning Solutions for

Autonomous Ground Vehicles in Unstructured

Environments

Aimé Zo Randriamoramanana

March 2025

Abstract

Path planning in unstructured environments poses significant chal-
lenges for autonomous ground vehicles (AGVs), particularly in terrains
affected by heavy rainfall. Such conditions introduce dynamic and
complex factors, including reduced traction and obscured navigation
landmarks. This paper focuses on the development and evaluation of
path planning algorithms adapted to AGVs operating in rain-soaked
and muddy environments. A comparative study of existing determin-
istic and learning-based approaches is conducted, with a focus on their
applicability to agricultural robots navigating in muddy soils. The
study includes testing and benchmarking different solutions to identify
the most effective methods for ensuring safe and reliable navigation
in these challenging conditions. By addressing the unique challenges
of rain-affected terrains, this work advances the understanding of au-
tonomous navigation for agricultural applications.

1 Introduction

Autonomous Ground Vehicles (AGVs) are increasingly being deployed in
agricultural and off-road environments. However, unstructured terrains,
particularly those affected by rain, pose significant challenges due to changes
in traction and visibility. This paper aims to compare different path plan-
ning solutions to enhance AGV navigation in such conditions.

2 Related Work

Several studies have explored the planning of routes for AGVs. Wang et al.
(2024) provide a comprehensive survey of approaches in unstructured envi-
ronments [?]. Deterministic methods such as A* and Dijkstra’s algorithm
provide reliable paths but struggle with dynamic obstacles, while learning-
based approaches leverage reinforcement learning for adaptability.

1

2.1 State of the Art on Terrain Traversability Contact Mod-
els

Modeling terrain traversability is a crucial aspect of autonomous ground ve-
hicle navigation, particularly in unstructured environments where soil prop-
erties can significantly affect vehicle mobility. Several approaches have been
developed to understand and predict the interaction between a vehicle and
the underlying terrain.

One of the fundamental methods for modeling terrain interaction is based
on soil mechanics, where key parameters such as cohesion, internal friction
angle, and soil consistency are used to assess traversability [1]. These proper-
ties determine the soil’s load-bearing capacity and its deformation behavior
under applied stress.

Empirical and semi-empirical models, such as those developed by Bekker,
introduce terrain mobility indices by incorporating vehicle-specific parame-
ters with soil characteristics [2]. These models provide a practical approach
to estimating vehicle mobility across different terrains but often require ex-
perimental calibration.

Numerical approaches, particularly finite element methods (FEM), have
been extensively employed to simulate wheel-soil interaction and predict
soil deformation under dynamic loading [3]. These models integrate soil
rheology, considering both plastic and viscous behaviors, which are essential
for understanding the traversability of muddy or loose soils.

Plasticity theory is another critical aspect in modeling terrain defor-
mation, where failure criteria such as Mohr-Coulomb and Drucker-Prager
theories are used to predict soil failure under varying loading conditions [4].
These models are particularly useful for evaluating stability in off-road nav-
igation scenarios.

Finally, rheological models describe the flow behavior of complex terrain,
especially in muddy conditions, by incorporating yield stress and viscosity
parameters [5]. These models allow for a more accurate representation of
soil response under vehicle loading and environmental influences.

In order to evaluate the traversability of muddy terrain for autonomous
exploration robots, we employ the Bekker model, a well-established approach
in terramechanics for estimating soil-vehicle interactions [2]. This model
provides a mathematical framework for predicting the pressure exerted by
a wheel on deformable terrain, which is crucial for assessing traction and
sinkage in muddy conditions.

The normal pressure beneath the wheel is given by:

p = kc

(
b

d

)
+ kϕ

(
b

d

)n

(1)

where kc and kϕ are empirical soil parameters, b is the wheel width, d is
the sinkage depth, and n is an exponent dependent on the soil type. These

2

parameters allow us to model the mechanical response of the muddy terrain
under wheel loading.

Additionally, the traction force can be estimated as:

Ft = Wµ(1− e−J) (2)

where W represents the vehicle weight, µ is the soil-wheel friction coefficient,
and J denotes the slip ratio. This formulation captures the effects of wheel
slippage, which is a key factor in muddy terrains where excessive slip can
lead to vehicle immobilization.

By integrating the Bekker model into our simulation, we analyze the
impact of soil cohesion, friction, and deformability on the mobility of au-
tonomous ground vehicles. The model provides insights into optimal traction
control strategies and helps in the selection of suitable wheel configurations
for challenging terrains.

2.2 Deterministic Path Planning in Muddy Environments

Path planning for autonomous ground vehicles (AGVs) in unstructured en-
vironments is a complex challenge, particularly in muddy terrains where
vehicle dynamics and terrain interaction significantly impact navigation ef-
ficiency. Deterministic path planning methods, including graph-based and
optimization-based approaches, are widely used due to their reliability in
structured searches and global path optimization [6].

2.3 Graph-Based Path Planning Methods

Graph-based approaches such as Dijkstra’s algorithm and A* are commonly
applied in off-road navigation. These methods discretize the environment
into a grid or graph representation, allowing the computation of the shortest
path based on cost functions that integrate terrain traversability analysis
(TTA) [7].

• Dijkstra’s Algorithm: Guarantees the globally optimal path by ex-
ploring all possible routes, making it robust but computationally ex-
pensive for large-scale environments [8].

• A* Algorithm: Enhances Dijkstra’s approach by incorporating a
heuristic function to guide the search more efficiently, significantly
reducing computational complexity while maintaining optimality [9].

In muddy environments, modifications to these algorithms involve the in-
clusion of slip ratios, terrain adhesion coefficients, and energy consumption
models to account for the difficulty of traversing high-resistance areas [10].

3

2.4 Optimization-Based Path Planning Methods

Deterministic optimization methods, including Genetic Algorithms (GA)
and Particle Swarm Optimization (PSO), have been utilized to improve
path selection by minimizing energy costs and maximizing vehicle stability
in deformable terrains [11]. These methods optimize path selection by:

• Reducing the risk of vehicle immobilization by incorporating terrain
deformation models.

• Considering real-time adaptations to varying soil conditions through
physics-based motion models.

Despite their effectiveness, these approaches require high computational re-
sources, making them challenging for real-time applications in dynamically
changing environments.

2.5 RRT-Based Path Planning in Muddy Environments

The Rapidly-exploring Random Tree (RRT) algorithm is a popular approach
for path planning in high-dimensional spaces, making it well-suited for ve-
hicle navigation in muddy and deformable terrains. RRT operates by incre-
mentally constructing a tree that explores the environment from the initial
configuration towards the goal configuration. Each tree node represents
a state in the environment, while edges between nodes represent possible
transitions or movements.

In muddy environments, modifications to the basic RRT algorithm are
necessary to account for dynamic terrain features such as soil stiffness, wheel
sinkage, and slip. These adaptations allow for better navigation in areas with
high resistance, ensuring that the vehicle can plan a feasible and efficient
path.

3 Methodology

This study evaluates 3 differents deterministics algorithms:

• A*

• Dijkstra

• Rapidly-exploring Random Trees (RRT)

Performance is assessed based on computational efficiency, robustness in
muddy conditions, and adaptability to dynamic obstacles.

4

3.1 Terrain Modeling

The terrain is modeled using a two-dimensional grid of size N × N , where
each cell represents an area characterized by a difficulty index. The cell
values are randomly drawn from the set {0, 1, 2, 10} with respective proba-
bilities that reflect the coexistence of easily traversable regions (values 0, 1,
2) and impassable obstacles (value 10). Thus, a cell with a value of 0 or 1
corresponds to an area with low resistance, a value of 2 indicates moderate
difficulty, while a value of 10 represents areas that are considered completely
untraversable. This approach allows for the evaluation of the performance
of trajectory planning algorithms (such as A* or Dijkstra) in reproducing
various routing scenarios in heterogeneous environments.

3.2 Vehicle and Muddy Terrain Modeling

The dynamics of the vehicle are modeled by a state vector

x =


x
y
θ
v

 ,

where x and y denote the planar position, θ is the orientation, and v repre-
sents the vehicle’s speed. The state evolution is described by the following
differential equations:

ẋ = v cos(θ),

ẏ = v sin(θ),

θ̇ =
ur − ul

L
,

v̇ = a,

where ur and ul are the commanded velocities for the right and left wheels
respectively, L is the inter-axle distance, and a is the acceleration determined
by the available traction force.

In muddy terrain, the terrain is represented by a grid map in which each
cell is assigned a value corresponding to its difficulty. Typical values in the
map are:

T ∈ {0, 1, 2, 10},

where lower values (e.g. 0 or 1) indicate relatively easy-to-traverse regions, 2
indicates moderate mud, and 10 represents impassable obstacles. The vehi-
cle experiences a slowdown when traversing muddy terrain. This slowdown
is modeled as a multiplicative factor applied to the motor command. Specif-
ically, if the nominal motor command is u, then the effective command ueff
is given by:

ueff = s(T)u,

5

with the slowdown factor s(T) defined by

s(T) =



1.00, T = 0,

0.80, T = 1,

0.50, T = 2,

0.01, T = 10.

Thus, the vehicle’s acceleration is modulated not only by its traction force
F (obtained, for example, via the Bekker–Wong model) and mass m, but
also by the effective motor command:

a =
F

m
with F = traction force(slip ratio),

and the commanded velocities are reduced by the factor s(T) as the vehicle
enters regions of higher mud difficulty. This combined modeling scheme
allows us to capture both the nominal dynamics of the vehicle in free running
conditions and the degraded performance in muddy or obstructed regions.

Figure 1: Simulation of a Dubins Car going to the destination point.

4 Experimental Results

Evaluation Metrics for Algorithm Comparison

To comprehensively compare the performance of the planning algorithms,
we use the following metrics:

6

• Computation Time: The total time taken by the algorithm to com-
pute a path for each run, which provides insight into its real-time
feasibility.

• Path Length: The cumulative Euclidean distance between the suc-
cessive nodes in the computed path. A shorter path generally indicates
higher efficiency in terms of travel distance.

• Energy Cost: The energy expenditure is estimated by weighting each
segment of the path by the terrain difficulty (cell value). This metric
indicates how the roughness or ”muddy” intensity of the environment
increases the energy consumption.

• Number of Replanifications: The count of re-computations or re-
tries performed when the algorithm fails to find a path in a given run.
This metric reflects the stability and adaptability of the algorithm in
dynamic or challenging environments.

• Success Rate: The percentage of runs in which a valid path is found,
providing a high-level measure of the algorithm’s reliability.

These metrics are collected over multiple runs on randomly generated
terrain maps. The results are then visualized using plots, allowing for a
detailed comparison of computational efficiency, route optimality, energy
consumption, and overall robustness of each algorithm.

Metrics Comparison Figures

Figure 4 shows three key performance metrics collected over multiple runs
of the planning algorithm. The figures display (a) the computation time (in
seconds), (b) the overall path length, and (c) the accumulated energy cost,
where the energy cost is calculated by weighting the distance of each path
segment with the terrain difficulty.

Conclusion

The simulation results indicate that there is no significant difference in terms
of computational (temporal) complexity among the tested approaches. How-
ever, a notable divergence is observed in energy consumption. In particular,
the RRT algorithm tends to favor shorter paths, which, while reducing travel
distance, does not always result in lower total energy consumption. This be-
havior suggests that, under the current formulation, the energy cost metric
for RRT is heavily influenced by the terrain difficulty values rather than
solely by the path length. Consequently, further tuning or a multi-objective

7

[b]0.3

Figure 2: A*
[b]0.3

Figure 3: RRT

Figure 4: Comparison of metrics over multiple runs: computation time,
path length, and energy cost. These metrics evaluate the efficiency and
performance of the planning algorithms.

8

approach may be required to achieve an optimal balance between minimizing
both the path length and the energy expenditure in muddy terrain scenarios.

This comparative study highlights the strengths and weaknesses of dif-
ferent path planning methods for AGVs in challenging environments. To
enhance the result a good approach would be to fusion learning algorithm
to compare with different approach as long as muddy estimation using sen-
sors data.

References

[1] J. Atkinson and P. Bransby, The Mechanics of Soils: An Introduction
to Critical State Soil Mechanics. McGraw-Hill, 1978.

[2] M. Bekker, Introduction to Terrain-Vehicle Systems. University of
Michigan Press, 1969.

[3] L. Zhang and J. Wong, “Modeling of wheel-soil interaction over rough
terrain—application to soil parameter identification,” Journal of Ter-
ramechanics, vol. 45, no. 6, pp. 205–221, 2008.

[4] W. Chen, Limit Analysis and Soil Plasticity. Elsevier, 1975.

[5] Q. Nguyen and D. Boger, “Measuring the flow properties of yield stress
fluids,” Annual Review of Fluid Mechanics, vol. 24, no. 1, pp. 47–88,
1992.

[6] N. Wang, X. Li, K. Zhang, J. Wang, and D. Xie, “A survey on
path planning for autonomous ground vehicles in unstructured envi-
ronments,” Machines, vol. 12, no. 1, p. 31, 2024.

[7] Y. Bai, B. Zhang, N. Xu, J. Zhou, J. Shi, and Z. Diao, “Vision-
based navigation and guidance for agricultural autonomous vehicles
and robots: A review,” Computers and Electronics in Agriculture, vol.
205, p. 107584, 2023.

[8] S. Chakraborty, D. Elangovan, P. Govindarajan, M. ELnaggar, M. Al-
rashed, and S. Kamel, “A comprehensive review of path planning for
agricultural ground robots,” Sustainability, vol. 14, no. 9156, 2022.

[9] F. Oliveira, A. Neto, D. Howard, P. Borges, M. Campos, and
D. Macharet, “Three-dimensional mapping with augmented navigation
cost through deep learning,” Journal of Intelligent and Robotic Systems,
vol. 101, p. 50, 2021.

[10] F. Tian, R. Zhou, Z. Li, L. Li, Y. Gao, D. Cao, and L. Chen, “Tra-
jectory planning for autonomous mining trucks considering terrain con-
straints,” IEEE Transactions on Intelligent Vehicles, vol. 6, p. 772–786,
2021.

9

[11] G. Sakayori and G. Ishigami, “Energy efficient slope traversability plan-
ning for mobile robots in loose soil,” in IEEE International Conference
on Mechatronics (ICM), 2017, p. 99–104.

10

Adaptive Reinforcement Learning-Driven MPC for
Efficient Autonomous Vehicle Navigation

RICOUARD Ambre
3rd year engineering student

ENSTA
29200, Brest, FRANCE
ambre.ricouard@ensta.fr

Abstract—Traditional Proportional-Integral-Derivative (PID)
controllers are widely used in control systems due to their
simplicity and ease of tuning. However, they struggle with
complex, multivariable, and constrained environments, limiting
their effectiveness in dynamic scenarios. To overcome these
limitations, Model Predictive Control (MPC) has emerged as a
more advanced approach, capable of handling constraints while
optimizing control inputs over a finite horizon. Despite its ad-
vantages, MPC requires careful tuning of numerous parameters,
which heavily depend on the system dynamics and operating
conditions. Improper tuning can lead to suboptimal performance
or instability. Reinforcement Learning (RL) offers a promising
solution by automating the tuning process, eliminating the need
for manual expert adjustments, and enhancing adaptability
across varying conditions. This paper investigates the integration
of RL with MPC to dynamically optimize controller parameters,
ensuring robust and efficient performance. Experimental results
demonstrate that RL-enhanced MPC significantly outperforms
traditional tuning approaches in terms of adaptability and
robustness.

Index Terms—Model Predictive Control, Reinforcement Learn-
ing, Autonomous Navigation, Optimization, Robotics

I. INTRODUCTION

Control systems play a crucial role in various engineering
fields, ranging from industrial automation to autonomous
vehicles. Among the most widely used control strategies,
the PID controller stands out due to its simplicity and ease
of implementation. It consists of three main components:
the proportional term, which reacts to the current error and
provides immediate correction; the integral term, which accu-
mulates past errors to eliminate steady-state deviations; and
the derivative term, which anticipates future errors based on
the rate of change, improving response stability.

Despite its intuitive design, the PID controller has signifi-
cant limitations. It struggles with multivariable systems, time-
varying dynamics, and constraint handling. Moreover, tuning
the PID gains requires manual adjustments and empirical
methods, making it suboptimal in complex or unpredictable
environments. These limitations have led to the development
of more advanced control strategies, such as MPC.

MPC is a powerful model-based approach that predicts
future system behavior over a finite horizon and optimizes
control inputs accordingly, while explicitly considering system
constraints. This predictive nature makes MPC more robust
and flexible than PID, especially in dynamic and constrained

environments. However, MPC has its own challenges. The
performance of an MPC controller is highly dependent on
numerous tuning parameters, such as the weighting matrices
in the cost function, the prediction horizon, and the constraints
handling strategy. Determining these parameters manually is
complex and time-consuming, often requiring expert knowl-
edge and extensive trial-and-error processes. Furthermore,
MPC assumes a relatively accurate model of the system,
making it sensitive to modeling inaccuracies and changes in
the operating conditions.

To address these challenges, RL has emerged as a promising
solution for automating the tuning process of MPC parame-
ters. Instead of relying on expert-defined settings, RL agents
learn an optimal control policy through interaction with the
environment, continuously adapting to varying conditions. By
integrating RL with MPC, it is possible to enhance adaptability
and robustness, allowing the controller to self-optimize in real
time. This approach eliminates the need for manual tuning
and enables the system to generalize better across different
operating scenarios.

Several recent studies have explored the combination of
RL and MPC to improve autonomous decision-making and
control performance. For instance, in [1], the authors propose
a weights-varying MPC approach for autonomous vehicle
guidance using deep reinforcement learning. Their findings
demonstrate that RL-enhanced MPC can significantly improve
adaptability in dynamic environments by adjusting the weight-
ing matrices in real time.

This paper explores the integration of RL-based tuning for
MPC and demonstrates its effectiveness in improving control
performance. We begin by reviewing existing control strategies
and their limitations, followed by an implementation of RL-
enhanced MPC. Experimental results are presented to highlight
the benefits of this approach compared to traditional methods.
Finally, we discuss potential improvements and future research
directions in this field.

II. MODEL PREDICTIVE CONTROL: STRENGTHS AND
LIMITATIONS

A. Fundamentals of Model Predictive Control

MPC is an advanced control approach that optimizes system
inputs over a finite prediction horizon while ensuring compli-
ance with constraints. Unlike classical control methods that

react to current errors, MPC anticipates future system behavior
by solving an optimization problem at each control step.

1) Principle of MPC: MPC relies on a dynamic model of
the system to predict its future evolution over a prediction
horizon N . At each time step t, the controller solves the
following quadratic optimization problem [2]:

min
uk

N∑
k=0

(
xT
kQxk + uT

kRuk

)
(1)

subject to the system constraints:

xmin ≤ xk ≤ xmax, umin ≤ uk ≤ umax, (2)
xk+1 = f(xk, uk) (3)

where:
• xk ∈ Rn is the system state at time step k.
• uk ∈ Rm is the control input.
• Q and R are weighting matrices that influence the con-

troller’s performance. The matrix Q penalizes deviations
of the system state from the desired trajectory, ensuring
accurate tracking, while R regulates the control effort,
preventing excessive variations in the control inputs.

Once the optimization is solved, only the first control action
u∗
k is applied to the system. The process is repeated at the next

iteration following a receding horizon approach (1).

Time
uk−3 uk−2 uk−1 uk uk+1 uk+2 uk+3 uk+4

Past Future

Fig. 1. Illustration of the receding horizon principle in MPC. At each time
step, only the first control action uk is applied, and the horizon shifts forward.

2) MPC Implementation and Performance in Static Envi-
ronments: Model Predictive Control (MPC) is particularly
effective in structured and predictable environments, where
system dynamics remain constant over time. This section de-
scribes the implementation details of MPC in such conditions
and evaluates its performance.

Formulation and Discretization: MPC operates on a
discrete-time model of the system, which is typically obtained
by discretizing continuous-time dynamics. Given a state-space
representation:

ẋ = Ax+Bu (4)

the discrete-time equivalent is:

xk+1 = Adxk +Bduk (5)

where Ad and Bd are the discrete-time system matrices
obtained via numerical integration or exact discretization
methods.

At each control step, MPC solves an optimization problem
over a finite prediction horizon N , as previously described in

Equation (1), subject to the system constraints already stated
in Equation (3).

3) Block Diagram Representation: Figure 2 presents the
overall structure of an MPC controller operating in a static
environment. The system consists of a Nonlinear Model
Predictive Control (NMPC) loop, where the desired position
serves as an input to the controller. Within the NMPC, three
key components interact:

• Cost function and constraints: Define the optimization
problem, ensuring the control objectives are met while
respecting system limitations.

• System model: Predicts future states based on current
conditions and control inputs.

• Dynamic optimizer: Computes the optimal control in-
puts by minimizing the cost function over a finite horizon.

The computed control inputs are applied to the plant, which
represents the actual system being controlled. The plant’s
response, in the form of system states, is then fed back into
the NMPC loop, allowing real-time adjustments to account for
system dynamics and uncertainties.

Fig. 2. Block diagram of an MPC controller in a static environment.

B. Performance Evaluation in Static Conditions

In a static environment, the main performance criteria for
MPC include:

• Tracking accuracy: MPC ensures that the system follows
the reference trajectory with minimal steady-state error.

• Constraint satisfaction: State and input constraints are
respected at all times.

• Computational efficiency: Since system dynamics do
not change, the optimization problem remains consistent,
reducing computation overhead.

For example, in industrial process control applications [?],
MPC effectively regulates variables such as temperature and
pressure by predicting and compensating for slow system
responses.

To assess the effectiveness of MPC in a structured environ-
ment, we analyze the position tracking results. Figure 3 shows
the evolution of the system’s position over time compared to
the reference trajectory. The system successfully tracks the
reference, demonstrating MPC’s precision in static conditions.
However, small deviations occur due to constraints and nu-
merical optimization approximations.

To quantify the tracking performance, Table I presents
the absolute errors at each time step. The errors remain

Fig. 3. MPC position tracking performance compared to the reference
trajectory and speed.

Time Step Tracking Error
0 0.00
1 0.28
2 0.29
3 0.27
4 0.25
5 0.23
6 0.21
7 0.19
8 0.17
9 0.16

10 0.15
TABLE I

TRACKING ERRORS BETWEEN MPC AND THE REFERENCE TRAJECTORY.

small, confirming the effectiveness of MPC in a predictable
environment.

The tuning of MPC weights (Q and R matrices) was
optimized based on knowledge of the reference trajectory and
velocity profile. This approach allows the controller to achieve
precise tracking in a known environment. However, in dynamic
or unknown environments, such tuning is not feasible in real-
time, limiting MPC’s adaptability. The next section discusses
these limitations and how reinforcement learning can enhance
MPC’s flexibility.

C. Challenges in Dynamic and Uncertain Environments

Model Predictive Control (MPC) performs well in structured
environments with known reference trajectories. However,
when the reference trajectory itself changes unpredictably, its
effectiveness diminishes due to the following challenges:

• Reference trajectory variation: MPC relies on a prede-
fined reference. If the trajectory changes unpredictably,
the controller struggles to adapt, leading to poor tracking
performance.

• Fixed weight matrices: The optimization problem is
formulated using cost function weights tuned for a spe-
cific scenario. A sudden change in reference dynamics
can render these weights suboptimal, causing significant
deviations.

• Computation time: Re-solving the optimization problem
at each time step becomes computationally expensive,
especially when adapting to unknown changes in the
reference trajectory.

To illustrate these limitations, we analyze the case where
MPC is optimized to track a polynomial reference trajectory
but fails when transitioning to a sinusoidal reference. Figure 4
shows the system’s position over time. Initially, the controller
accurately follows the polynomial path due to properly tuned
weight matrices. However, as the reference shifts to a sinu-
soidal function, the performance degrades, leading to tracking
errors and oscillatory behavior.

Fig. 4. MPC tracking a polynomial reference initially but failing when the
trajectory changes to a sinusoidal function.

To quantify the performance drop, Table II presents the
mean and maximum tracking errors before and after the
trajectory change. The significant increase in error highlights
the limitation of a static MPC formulation in handling varying
reference trajectories.

Trajectory Type Mean Error Max Error
Polynomial (Static) 0.1635 0.9251

Sinusoidal (Dynamic) 3.4634 4.4499
TABLE II

TRACKING ERRORS BEFORE AND AFTER REFERENCE TRAJECTORY
CHANGE.

These results demonstrate that while MPC excels in struc-
tured conditions, it struggles to adapt to changing refer-
ences. To address this limitation, reinforcement learning (RL)
techniques can be integrated with MPC, enabling adaptive
weight tuning and real-time decision-making. The next section
explores how RL can enhance MPC’s robustness in uncertain
environments.

III. REINFORCEMENT LEARNING FOR MPC TUNING

A. Reinforcement Learning for Adaptive Control

To overcome the limitations of static weight tuning in MPC,
reinforcement learning (RL) is employed to dynamically adjust
the cost function weights in response to varying system con-
ditions. This approach enhances the controller’s adaptability,
allowing it to maintain high performance even when reference
trajectories or system dynamics change unpredictably.

In this framework, the RL agent operates in a closed-loop
with the MPC controller, continuously updating the weighting
matrices Q and R via an intermediary component, the Weights
Scheduler. This scheduler translates the RL agent’s actions
into real-time modifications of the cost function weights used
by the MPC. The key elements of this approach include:

• State Representation: The RL agent receives observa-
tions from the system, provided by the Observations
and Rewards Generator, which includes tracking error,
control effort, and changes in the reference trajectory.

• Action Space: The agent determines adjustments to
the elements of Q and R, influencing how the NMPC
balances state tracking and control effort.

• Reward Function: The reward is designed to minimize
tracking error while discouraging excessive control effort
or oscillations.

• Policy Optimization: The RL agent, implemented as a
Deep Neural Network Policy, learns an optimal strategy
for adjusting MPC weights in real-time. The policy is up-
dated using an RL algorithm based on received rewards.

Figure 5 illustrates this adaptive control framework, where
the RL agent refines its policy iteratively to enhance the
NMPC’s adaptability. This scheme, referred to as Dynamic
Weights-Varying MPC (WMPC), enables real-time adjust-
ments to the cost function, improving robustness against
system variations.

Fig. 5. Reinforcement Learning closed-loop tuning for NMPC (WMPC).

This adaptive control strategy eliminates the need for man-
ual re-tuning of MPC weights, making it well-suited for
applications where reference trajectories or operating condi-
tions frequently change. The next section details the training
methodology and evaluation metrics used to assess the RL-
based MPC tuning performance.

B. Reward Function

Reinforcement learning relies on a well-designed reward
function to guide the agent toward optimal behavior. In this
study, we employ a novel general multi-objective cascaded
Gaussian (MOCG) reward function, which offers several ad-
vantages over traditional approaches.

1) Motivation for Choosing MOCG: Standard reward func-
tions in optimal control and reinforcement learning often
consist of weighted sums of different objectives, such as
tracking error and control effort. However, these conventional
approaches have limitations:

• A linear combination of objectives can make weight
tuning difficult and unintuitive.

• Fixed weighting does not allow dynamic adaptation to
different phases of control.

• Ignoring correlations between objectives can lead to
suboptimal policies, as interactions between tracking ac-
curacy, control effort, and smoothness are often over-
looked.

The MOCG function addresses these issues by model-
ing each criterion using cascaded multivariate Gaussian
distributions, explicitly capturing the dependencies between
key performance metrics. Previous studies, such as [3], have
demonstrated the effectiveness of multi-objective reward shap-
ing in reinforcement learning, allowing policies to balance
competing objectives more efficiently.

2) Functioning Principle: Instead of treating each objective
independently, the MOCG reward function considers the cor-
relation between them. This allows the reward to reflect how
variations in one metric (e.g., reducing control effort) influence
others (e.g., tracking error). The reward function is defined as:

r(x, u) = α exp

(
−1

2
(F (x, u)− µ)TΣ−1(F (x, u)− µ)

)
(6)

where:

• F (x, u) = [f1(x, u), f2(x, u), ..., fn(x, u)]
T represents

the vector of performance metrics (e.g., tracking error,
control effort, control smoothness).

• µ is the vector of desired values for these metrics (typi-
cally 0 for minimization).

• Σ is the covariance matrix that encodes the interdepen-
dence between objectives.

• α is a normalization factor ensuring a well-scaled reward
signal.

The covariance matrix Σ is defined as:

Σ =

 σ2
tracking ρ12σtrackingσeffort ρ13σtrackingσvariation

ρ12σtrackingσeffort σ2
effort ρ23σeffortσvariation

ρ13σtrackingσvariation ρ23σeffortσvariation σ2
variation


(7)

where:

• σtracking, σeffort, σvariation are the standard deviations of the
tracking error, control effort, and control smoothness.

• ρ12, ρ13, ρ23 are the correlation coefficients between these
objectives, reflecting how strongly they influence each
other.

This formulation provides several benefits:

• Correlation-aware optimization: The covariance matrix
Σ enables the agent to understand how improving one
metric may negatively or positively affect others.

• Context-dependent weighting: Instead of using fixed
coefficients, the reward dynamically adjusts based on the
system’s state and the interplay between objectives.

• Smooth and well-defined gradients: The Gaussian for-
mulation ensures that the reward landscape remains dif-
ferentiable, facilitating stable learning.

3) Impact on Learning: By incorporating correlations be-
tween performance metrics, the RL agent can learn more
efficient trade-offs, leading to improved robustness and adapt-
ability. This eliminates the need for manual fine-tuning of
weight coefficients and allows for a more natural adaptation
of the control strategy over time.

C. Practical Implementation of RL-Enhanced MPC

The implementation of RL-enhanced MPC involves training
an agent to optimize the controller’s performance under diverse
conditions. This requires defining a structured training process,
including environment simulation, policy learning, and evalu-
ation.

The training phase relies on episodic learning, where the
RL agent explores different weight configurations and refines
its policy through trial and error. Once trained, the agent is
deployed in real-time, continuously adjusting Q and R based
on system feedback. Performance evaluation is conducted by
analyzing tracking accuracy, control effort, and robustness to
trajectory changes.

The policy is learned using the Twin Delayed Deep De-
terministic Policy Gradient (TD3) algorithm, which improves
upon standard Deep Deterministic Policy Gradient (DDPG) by
reducing overestimation bias and stabilizing training. TD3 is
well-suited for this problem as it enables smooth and stable
updates of the MPC weights, preventing sudden changes that
could degrade control performance.

In deployment, the MPC controller runs at a high frequency
with a sampling time of Ts = 0.04s, ensuring precise tra-
jectory tracking. Meanwhile, the RL agent updates the cost
function weights every Tsw = 10s, allowing it to adapt
gradually without excessive computational overhead.

Time

MPC updates (Ts = 0.04s)

RL updates (Tsw = 10s)

Fig. 6. Timing structure: MPC updates at Ts, RL updates at Tsw .

This hierarchical structure ensures that MPC operates with
real-time precision, while RL continuously refines its policy
based on long-term performance trends.

D. Experimental Evaluation

To evaluate the performance of the RL-MPC approach,
we tested the controller on a trajectory tracking task where
the reference trajectory was designed to include a transition
between two different motion patterns. Initially, the reference
follows a polynomial function, representing a smooth and
predictable motion. At a predefined time step, the reference
gradually shifts towards a sinusoidal trajectory, introducing a
sudden but continuous change in motion characteristics. This
transition is implemented over a finite time window to ensure
a smooth interpolation between the two profiles.

Fig. 7. Trajectory tracking performance of RL-MPC. The blue curve with
markers represents the system’s actual trajectory under MPC control, while
the red dashed curve shows the desired reference trajectory.

As shown in Figure 7, the RL-MPC effectively tracks
the reference trajectory throughout the transition. The system
initially follows the polynomial trajectory with minimal error.
When the reference switches to a sinusoidal profile, the con-
troller adapts and maintains a consistent tracking performance.
The smooth transition observed in the controlled trajectory
indicates that the RL-adjusted cost function enables the MPC
to handle dynamic changes in the reference without excessive
overshoot or instability.

These results highlight the adaptability of the RL-MPC
approach in scenarios where reference trajectories are subject
to dynamic variations, making it suitable for applications
requiring real-time responsiveness.

IV. CONCLUSION

In this study, we proposed an RL-enhanced MPC framework
that dynamically adjusts the cost function weights to improve
adaptability in trajectory tracking tasks. By integrating a
Multi-Objective Cascaded Gaussian (MOCG) reward function,
the RL agent learns to optimize tracking accuracy, control
effort, and smoothness while considering their interdependen-
cies. The experimental results demonstrated that the proposed
approach enables the MPC to effectively handle dynamic
changes in reference trajectories, maintaining precise tracking
without excessive overshoot or instability.

Compared to traditional fixed-weight MPC, our method pro-
vides a more flexible and data-driven adaptation mechanism,
reducing the need for manual tuning and improving robustness
across varying conditions. The structured update mechanism
ensures that the MPC operates in real time while the RL agent
continuously refines its policy based on long-term performance
trends.

Future work could explore extensions such as incorporating
model uncertainty into the learning process, applying the
framework to higher-dimensional control problems, or inves-
tigating alternative learning architectures for further perfor-
mance gains. These enhancements could further broaden the
applicability of RL-enhanced MPC in complex and dynamic
environments.

REFERENCES

[1] X. Zhang, H. Huang, F. Borrelli, and M. Tomizuka, “Weights-
Varying MPC for Autonomous Vehicle Guidance: A Deep Re-

inforcement Learning Approach,” IEEE Transactions on Intelli-
gent Vehicles, vol. 7, no. 4, pp. 913–924, Dec. 2021. doi:
https://doi.org/10.1109/TIV.2021.965504210.1109/TIV.2021.9655042.

[2] J. Maciejowski, Predictive Control with Constraints. Prentice Hall, 2002.
[3] T. Brys, A. Harutyunyan, M. Taylor, and A. Nowé,

“Multi-Objective Reinforcement Learning Using Reward
Shaping,” in IEEE International Conference on Tools with
Artificial Intelligence (ICTAI), pp. 282-289, 2014. doi:
https://doi.org/10.1109/ICTAI.2014.4710.1109/ICTAI.2014.47.

Comparison of RANSAC and Least Squares Methods for

Parameter Estimation in Autonomous Sailboat Dynamics

Main Tihami Ouazzani∗

ENSTA, Autonomous Robotics FISE25, France

Abstract

This study compares the performance of the Random Sample Consensus (RANSAC) and

classical Least Squares (LS) methods in estimating parameters of the dynamic model for

the autonomous sailboat Brave. Real-world sailing conditions often involve substantial

noise and outliers, severely impacting traditional parameter estimation techniques. Using

experimental data from Guerlédan Lake, we highlight the robustness of RANSAC com-

pared to LS. Results confirm that RANSAC significantly enhances parameter reliability

and model fidelity, aligning with recent findings by Djurović (2024).

Keywords: Parameter estimation, RANSAC, Least Squares, Autonomous sailboat,

Dynamic modeling, Robust estimation

1. Introduction

Accurate parameter estimation is essential for simulating and controlling autonomous

maritime vehicles. Classical methods like Least Squares (LS) are vulnerable to noise and

outliers. In contrast, RANSAC has proven robust, effectively managing data inconsisten-

cies [1]. This study compares LS and RANSAC methods using experimental data from

the sailboat Brave [2].

∗Corresponding author
Email address: Main.tihami@ensta.fr (Main Tihami Ouazzani)

Preprint submitted to Signal Processing March 13, 2025

2. Methods

2.1. Dynamic Model

The dynamic equations of Brave are given by:

ẋ = v cos θ + p1a cosψ,

ẏ = v sin θ + p1a sinψ,

θ̇ = ω,

v̇ = fs sin δs − fr sinu1 − p2v
2ωvp9,

ω̇ =
fs(p6 − p7 cos δs)− p8fr cosu1 − p3ωv

p10
,

fs = p4∥wap∥2 sin(δs − ψap),

fr = p5v sinu1.

(1)

Parameters p6, p7, p8, p9 are measured experimentally:

• p6 = 0.65 m, p7 = 0.06 m, p8 = 0.296 m, p9 = 21.7 kg.

2.2. Parameter Estimation

The LS method minimizes squared residuals:

p = (ATA)−1ATY. (2)

RANSAC robustly identifies parameters by selecting inliers:

popt = argmax
p

|{i : |yi − xTi p| < t}|. (3)

3. Results

Initial LS parameters exhibited sensitivity to outliers:

p1 = 0.0147, p2 = 1.4120, p3 = −0.0608, p4 = −0.2426, p5 = −0.2019, p10 = 0.1405.

RANSAC produced significantly improved estimates:

p1 = 0.0887, p2 = 0.3847, p3 = −0.00756, p4 = −0.0937, p5 = 0.00328, p10 = 0.0.

2

(a) Residual distribution for Y0 = [vx − v cos(θ)] (b) Residual distribution for Y1 = [vy − v sin(θ)]

(c) Residual distribution for Yv = [p9α] (d) Residual distribution for Yω = [0]

Figure 1: Residual distribution - Least Squares method.

(a) Residual distribution for Y0 = [vx − v cos(θ)] (b) Residual distribution for Y1 = [vy − v sin(θ)]

(c) Residual distribution for Yv = [p9α] (d) Residual distribution for Yω = [0]

Figure 2: Residual distribution - RANSAC

3

4. Discussion

Residual analysis illustrates RANSAC’s superior robustness to outliers. The residual

distribution from the LS method showed significant variability and multiple pronounced

outliers, indicating that LS was highly sensitive to noise and anomalies present in the

experimental data.

In contrast, RANSAC demonstrated notable improvements. The residuals became

more symmetrically centered around zero, and the spread significantly reduced, par-

ticularly for parameters influencing Yv and Yω. For instance, the residual interval for

Yω decreased markedly from [-2, 3] with LS to approximately [-0.0005, 0.0025] using

RANSAC. Similar improvements, albeit slightly less pronounced, were observed for Yv,

where the tails of the residual distribution were substantially controlled. These results

validate RANSAC’s enhanced robustness, effectively minimizing the detrimental impact

of outliers on parameter estimates. This aligns with Djurović’s observations of RANSAC’s

efficacy under noisy conditions [1].

5. Conclusion

RANSAC substantially improves parameter estimation robustness compared to LS,

making it suitable for practical maritime applications involving autonomous sailboats.

Acknowledgments

Thanks to Löıck Degorre, Gabriel Betton and Fabrice Le Bars for their support.

References

[1] I. Djurović, Random sample consensus algorithm for hyperbolic frequency modulated

signals parameters estimation, Signal Processing, 2024.

[2] V. Adrian, P. Ylona, R. harendra, T. Ouazzani, T. Luc-André, et al., Commande par

jumeau numérique de voilier – Rapport de projet, ENSTA Bretagne, 2025.

4

Evaluating Path Planning Algorithms: A Comparison of

Dynamic Window and Potential Field Approaches

Terrine Luc-André

March 11, 2025

1

Contents

1 Introduction 3

2 Dynamic Window Approach 3
2.1 Principle of Dynamic Window . 3
2.2 Admissible Velocities and Obstacle Avoidance . 3
2.3 Objective Function and Trajectory Selection . 3
2.4 Limitations . 3

3 Potential Field Approach 4
3.1 Principle of Potential Fields . 4
3.2 Path Generation and Motion Control . 4
3.3 Limitations and Challenges . 5

4 Comparison of Methods 5
4.1 Point-to-Point Navigation Without Obstacles . 5
4.2 Navigation With a Single Obstacle . 6
4.3 Navigation With Multiple Obstacles . 6
4.4 Navigation in a Corridor . 6
4.5 Navigation in a Maze . 7

5 Overall Performance Comparison 8

6 Conclusion 9

2

1 Introduction

Path planning is a fundamental function in the autonomous navigation of mobile robots. In the context
of obstacle avoidance, it plays a crucial role in ensuring efficient and safe movement. Various path
planning algorithms exist, each with its own advantages and limitations depending on the application.
Among them, the Potential Field Planning and the Dynamic Window Approach (DWA) are two real-
time techniques based on local obstacle avoidance.

In this study, we will analyze the working principles of both algorithms and evaluate their perfor-
mance in different scenarios. By comparing their behavior, we aim to highlight their strengths and
weaknesses in various navigation contexts.

2 Dynamic Window Approach

The Dynamic Window Approach (DWA) is a velocity-space-based local reactive obstacle avoidance
technique. Instead of planning an entire trajectory, DWA searches for feasible control commands
directly in the velocity space, ensuring real-time adaptability to dynamic environments.

2.1 Principle of Dynamic Window

A robot’s trajectory can be described as a sequence of circular and straight-line arcs. The DWA
reduces the search space by considering the kinematic and dynamic constraints of the robot. The set
of possible velocities, known as the dynamic window Vd, is defined as:

Vd = {(v, ω) | v ∈ [vc − v̇b∆t, vc + v̇a∆t], ω ∈ [ωc − ω̇b∆t, ωc + ω̇a∆t]} (1)

where vc and ωc are the current translational and rotational velocities, and v̇a, ω̇a, v̇b, and ω̇b

represent the maximum accelerations and decelerations allowed by the robot’s actuators.

2.2 Admissible Velocities and Obstacle Avoidance

A velocity tuple (v, ω) from Vd is considered admissible if the robot can stop before colliding with an
obstacle. The admissible velocity set Va is given by:

Va = {(v, ω) | v, ω ≤
√

2ρmin(v, ω)v̇b,
√
2ρmin(v, ω)ω̇b} (2)

where ρmin(v, ω) represents the distance to the closest obstacle on the corresponding trajectory.

2.3 Objective Function and Trajectory Selection

DWA selects the optimal velocity command by maximizing an objective function Γ(v, ω) that balances
obstacle clearance and path alignment:

Γ(v, ω) = λϑclear + (1− λ)ϑpath (3)

where: - ϑclear measures the clearance from obstacles. - ϑpath ensures alignment with the planned
path. - λ is a weighting factor.

The search for the best velocity is performed iteratively in a reduced two-dimensional search space,
making the method computationally efficient for real-time applications.

2.4 Limitations

While DWA is effective for dynamic obstacle avoidance, it can suffer from local minima issues where
the robot gets stuck in an oscillatory motion. Integrating global path planning techniques, such as
the Focused D* (FD*) algorithm, can help mitigate these problems by providing a broader navigation
strategy.

3

3 Potential Field Approach

The Potential Field Approach (PFA) is a real-time obstacle avoidance technique that models the
environment using an artificial force field. This method, originally proposed by Khatib [?], treats the
goal as an attractive force while obstacles exert repulsive forces, guiding the robot through safe paths
without requiring precomputed trajectories.

3.1 Principle of Potential Fields

The core idea behind PFA is to define a potential function U(x) where the robot is influenced by
attractive and repulsive forces:

U(x) = Ua(x) + Ur(x) (4)

where: - Ua(x) is the attractive potential pulling the robot toward the goal. - Ur(x) is the repulsive
potential pushing the robot away from obstacles.

The attractive potential is typically defined as:

Ua(x) =
1

2
kp∥x− xd∥2 (5)

where kp is a positive gain and xd is the goal position. The corresponding attractive force is:

Fa(x) = −∇Ua(x) = −kp(x− xd) (6)

For obstacles, a repulsive potential is introduced to prevent collisions:

Ur(x) =

 1
2kr

(
1

d(x) −
1
d0

)2

, d(x) ≤ d0

0, d(x) > d0
(7)

where d(x) is the distance to the nearest obstacle, d0 is the influence radius, and kr is a scaling
factor. The repulsive force is then:

Fr(x) = −∇Ur(x) = kr

(
1

d2(x)
− 1

d20

)
∂d(x)

∂x
(8)

3.2 Path Generation and Motion Control

The robot moves by following the resultant force:

F (x) = Fa(x) + Fr(x) (9)

which determines the robot’s velocity and direction. This allows real-time, continuous adaptation
to the environment without requiring explicit path planning.

4

Figure 1: Schematic diagram of the path planning algorithm based on APF.

3.3 Limitations and Challenges

Despite its simplicity and real-time applicability, the Potential Field Approach has several known
limitations:

• Local Minima: The robot can get trapped in equilibrium points where attractive and repulsive
forces cancel out.

• Oscillations: In narrow corridors, the repulsive forces can cause unstable behavior, making
navigation inefficient.

• No Consideration of Dynamics: The approach does not inherently consider the robot’s
kinematic or dynamic constraints.

Various modifications, such as introducing random perturbations or integrating global path plan-
ning methods, have been proposed to mitigate these issues.

4 Comparison of Methods

To evaluate the performance of the algorithms, we conducted tests in different scenarios and compared
them based on the following criteria:

• Mission success: Whether the algorithm successfully reaches the goal.

• Path length: The total distance traveled.

• Computational time: The execution time required to compute the trajectory.

4.1 Point-to-Point Navigation Without Obstacles

• Results: Both algorithms successfully reach the goal with a similar trajectory.

• Comparison: The path length is nearly identical, but the Dynamic Window Approach (DWA)
requires a longer computation time due to its velocity-space search process.

5

Figure 2: Comparison of DWA (left) and Potential Field (right) without obstacles.

4.2 Navigation With a Single Obstacle

• Results: Both algorithms successfully navigate around the obstacle.

• Comparison: The path lengths remain similar, but DWA exhibits a higher computational cost.

Figure 3: Comparison of DWA (left) and Potential Field (right) with a single obstacle.

4.3 Navigation With Multiple Obstacles

• Results:

– The Potential Field method produces a shorter path and requires less computation
time.

– The DWA path is longer due to the constraints of robot dynamics, which prevent it from
taking sharp turns.

4.4 Navigation in a Corridor

• Results: Both methods successfully reach the goal with similar paths.

• Comparison: The path lengths are comparable, but DWA still requires a longer computational
time.

6

Figure 4: Comparison of DWA (left) and Potential Field (right) in a multi-obstacle environment.

Figure 5: Comparison of DWA (left) and Potential Field (right) in a corridor.

4.5 Navigation in a Maze

• Results:

– The Potential Field method fails due to oscillations, trapping the robot in local minima.

– The DWA successfully completes the task but requires a significantly longer compu-
tation time.

Figure 6: Navigation in a maze: DWA (left) succeeds, while Potential Field (right) fails due to oscil-
lations.

7

5 Overall Performance Comparison

With the individual test results analyzed, we can now compare the overall efficiency of the two algo-
rithms.

Figure 7: Comparison of path lengths for different scenarios.

Figure 8: Comparison of computation times for different scenarios.

In general, the difference in path length between the two methods across various test scenarios
remains relatively small. Both Dynamic Window Approach (DWA) and Potential Field (PF) generate
paths of comparable efficiency in terms of total distance traveled.

However, a significant difference is observed in terms of computational cost. DWA requires sub-
stantially more computation time than PF, primarily due to its velocity-space search and real-time
trajectory evaluation.

Despite this higher computational cost, DWA offers key advantages:

• It accounts for dynamic models, making it more suitable for environments with moving obstacles.

• It has a much lower risk of getting trapped in local minima, a major issue observed with PF
particularly in the maze scenario.

8

Thus, while PF is computationally more efficient, DWA provides a more robust and reliable navi-
gation strategy, especially in complex and dynamic environments.

6 Conclusion

In this study, we have analyzed and compared two real-time path planning algorithms: the Dynamic
Window Approach (DWA) and the Potential Field (PF) method. Through various experimental sce-
narios, we evaluated their efficiency based on mission success, path length, and computational cost.

The results show that both methods are capable of successfully navigating in simple environments,
with comparable path lengths. However, DWA consistently requires more computational time
due to its real-time velocity-space search and trajectory evaluation.

Despite this higher computational cost, DWA demonstrates greater robustness in complex
and dynamic environments, particularly in scenarios involving moving obstacles or labyrinth-like
structures. Unlike PF, which struggles with local minima and oscillatory behavior, DWA
maintains a more stable and adaptable navigation strategy.

On the other hand, PF proves to be computationally more efficient, making it a suitable
choice for applications where rapid response time is crucial, and the environment is relatively static.

Overall, the choice between these two methods depends on the specific requirements of the appli-
cation. If computational efficiency is the priority, PF is a viable option. However, for more robust
and dynamic navigation, especially in unpredictable environments, DWA remains the superior
choice despite its computational cost.

Future work could explore hybrid approaches that combine the efficiency of PF with the ro-
bustness of DWA, potentially leading to an optimized path planning strategy for real-time robotic
navigation.

References

[1] Zhao, Y., Ma, T., Liang, X. (2020). The application of drones in precision agriculture: A review.
Drones, 7 (3), 211. Retrieved from https://www.mdpi.com/2504-446X/7/3/211

[2] Borenstein, J., Herve, M., Duffy, M. (1986). The evaluation of robot arm performance. Journal of
Robotic Systems, 5 (1), 95-107. 10.1177/027836498600500106. Retrieved from https://journals.

sagepub.com/doi/epdf/10.1177/027836498600500106

[3] De Souza, G. (2007). A new method for solving the inverse kinematics of robot arms using Jaco-
bian matrices. In Proceedings of the IEEE International Conference on Robotics and Automation
(ICRA 2007), 1765-1770. Retrieved from http://vigir.missouri.edu/~gdesouza/Research/

Conference_CDs/IEEE_ICRA_2007/data/papers/1765.pdf

9

https://www.mdpi.com/2504-446X/7/3/211
https://journals.sagepub.com/doi/epdf/10.1177/027836498600500106
https://journals.sagepub.com/doi/epdf/10.1177/027836498600500106
http://vigir.missouri.edu/~gdesouza/Research/Conference_CDs/IEEE_ICRA_2007/data/papers/1765.pdf
http://vigir.missouri.edu/~gdesouza/Research/Conference_CDs/IEEE_ICRA_2007/data/papers/1765.pdf

State of the Art on DeepBlueAI in the Underwater World

Arthur Coron

March 10, 2025

Abstract

This state of the art explores DeepBlueAI, an arti-
ficial intelligence specialized in underwater applica-
tions. It covers its context, technical capabilities, im-
pacts on marine research, as well as its limitations
and future perspectives.

1 Introduction

Ocean exploration represents one of the most fasci-
nating and complex frontiers of contemporary scien-
tific research. Covering more than 70 percent of the
Earth’s surface, these marine areas remain largely un-
explored as a result of the technical and environmen-
tal challenges they pose.

In this context, DeepBlueAI emerges as a major in-
novation that combines artificial intelligence (AI) and
underwater technologies to push the current bound-
aries of oceanographic research. By integrating new
capabilities in data processing, image recognition,
and environmental prediction, DeepBlueAI aims to
transform the understanding of marine ecosystems
while offering concrete solutions to problems such as
biodiversity preservation and adaptation to climate
change.

This state of the art explores the foundations of
this technology, its applications, and the perspectives
it opens in the field of underwater research.

Figure 1: Representation of blue data.

2 Context and Objectives of
DeepBlueAI

2.1 Presentation of DeepBlueAI
DeepBlueAI (DBAI) was created to bridge the gap
between complex ocean data and actionable scien-
tific knowledge. Blue data, which is all ocean-related
datasets collected from satellites, underwater sensors,
and autonomous vehicles, represent the foundation
for advancing oceanography and are used as a foun-
dation for DBAI.
DBAI leverages AI frameworks, such as deep learn-
ing, to extract meaningful patterns and insights from
datasets that include satellite imagery, buoy read-
ings, and in-situ observations. These tools are crucial
in improving our ability to monitor marine environ-
ments, predict phenomena, and support conservation
efforts.

2.2 Importance of Marine Technolo-
gies

Artificial Intelligence (AI) has revolutionized many
fields, and this include marine exploration. For
decades, the vast and often inaccessible underwa-
ter world has presented numerous challenges to re-
searchers. The oceans, covering over 70 percent of
the Earth’s surface, remain one of the least explored
frontiers, primarily due to their depth, remoteness,
and extreme conditions.

AI technologies have the potential to address these
challenges by enabling automated, efficient, and pre-
cise data collection and analysis, thereby signifi-
cantly advancing understanding of marine environ-
ments. The ability of AI to process and analyze the
enormous volumes of data generated by underwater
sensors, cameras, and satellites makes it an invalu-
able tool. For instance, AI-powered systems are used
to monitor biodiversity changes or detect pollutants,
helping scientists respond to environmental threats.

1

UE 5.1 - Research

3 DBAI Integrated Technologi-
cal Advances

3.1 Applications of Underwater AI
DeepBlueAI has many applications, from environ-

mental monitoring to underwater robotics. It uses
real-time analysis and long-term assessment of ma-
rine ecosystems through the integration of machine
learning algorithms and deep learning models.

One of its applications is in the assessment of coral
reef health. By analyzing spectral data from satel-
lite images and underwater photos, DeepBlueAI can
classify coral conditions, detect early signs of bleach-
ing, and monitor changes in biodiversity over time.
These capabilities allow for improved management of
marine protected areas.

3.2 Technologies Utilized

DeepBlueAI integrates recent technologies to enhance
underwater research capabilities:

• Deep Learning Frameworks: It uses convo-
lutional neural networks (CNNs) and recurrent
neural networks (RNNs) that play an key role
in image processing and acoustic signal interpre-
tation. CNNs are particularly effective in ana-
lyzing seabed images to detect geological forma-
tions or human-made objects, while RNNs assist
in forecasting of oceanographic variables such as
sea surface temperature and wave height.

Figure 2: Illustration of convolution processes in fea-
ture extraction.

• Autonomous Underwater Vehicles
(AUVs): Equipped with sonar systems,
LiDAR, and cameras, AUVs autonomously
navigate and collect spatial and environmental
data from previously inaccessible areas.

• Cloud Computing: The important volume of
oceanographic data requires advanced cloud in-
frastructure for real-time processing and storage.
Computing clusters allow for distributed deep

learning training, making it possible to develop
AI models capable of identifying different pat-
terns in marine ecosystems.

• Feature Extraction Techniques: Advanced
feature extraction methods, such as wavelet
transforms and principal component analysis
(PCA), enable the identification of subtle vari-
ations in marine datasets.

3.3 Preprocessing and Data Manage-
ment

DeepBlueAI success is highly based on effective pre-
processing techniques.

Figure 3: Steps involved in preprocessing labeled and
unlabeled datasets.

• Data Cleaning: Oceanographic datasets are of-
ten incomplete due to sensor malfunctions, trans-
mission errors, or environmental interferences.
DeepBlueAI employs imputation methods such
as k-nearest neighbors (KNN) and expectation-
maximization (EM) algorithms to reconstruct
missing data points. This ensures that the
datasets remain statistically representative and
unbiased.

• Dimensionality Reduction: Large marine
datasets often contain redundant or highly cor-
related features, which can introduce noise into
machine learning models. Techniques such as
Principal Component Analysis (PCA) and Lin-
ear Discriminant Analysis (LDA) help reduce
computational complexity while preserving infor-
mation and improving classification accuracy.

• Standardization and Normalization: Since
underwater sensor readings can vary depending
on environmental conditions, DeepBlueAI ap-
plies normalization techniques such as min-max
scaling and Z-score normalization to bring dis-
parate data sources into a common range. This
ensures that no single feature influences AI pre-
dictions too much, leading to more robust and
interpretable model outputs.

Page 2/4

UE 5.1 - Research

4 Current Challenges and Limi-
tations

Despite the potential of this AI, DeepBlueAI still
faces challenges that require attention to ensure its
effective deployment in underwater research and ex-
ploration.

4.1 Technical Constraints

One of the primary technical issues lies in manag-
ing and processing massive volumes of data gener-
ated from various sources, including satellites, buoys,
and AUVs. These datasets are not only immense in
size but also diverse in structure. The complexity
of integrating and analyzing such data, especially in
environments with limited connectivity, often pushes
existing frameworks to their limits. Another limita-

tion is the resource-intensive nature of underwater ex-
ploration systems. Underwater AI-driven platforms,
such as AUVs, rely on finite power supplies, including
batteries that are subject to rapid depletion. This
limits their operational range and the duration of
their missions, particularly in deep-sea environments
where recharging or retrieving equipment is challeng-
ing. Furthermore, the performance of sensors, cam-
eras, and communication systems in such harsh con-
ditions often deteriorates as a result of variations in
pressure, salinity, and temperature.

4.2 Environmental Issues

From an environmental perspective, the footprint of
marine exploration activities is a growing concern.
Although technologies like DeepBlueAI tend to sup-
port sustainable practices, the deployment of equip-
ment in fragile marine ecosystems can disrupt habi-
tats, interfere with marine life, or introduce pollu-
tants. The balance between exploration and conserva-
tion remains a big challenge, necessitating the devel-
opment of ecofriendly materials, quieter operational
systems, and minimally invasive exploration methods.
Furthermore, significant data gaps persist in remote

and extreme marine regions, such as the deep ocean
or polar environments, which remain largely inacces-
sible due to logistical and technological limitations.
These regions are crucial for understanding global en-
vironmental phenomena, but the lack of comprehen-
sive data impedes the development of accurate models
and predictions.

5 Future Perspectives and Con-
clusion

DeepBlueAI represents a change in our ability to un-
derstand and manage the world’s oceans. Looking
ahead, its potential applications promise to modify
marine research, conservation, and development in
many ways.

5.1 Potential of DeepBlueAI
One of the most promising aspects of DeepBlueAI
is its capacity to support sustainable ocean man-
agement through data-driven insights. By analyz-
ing vast datasets, the platform can identify patterns
and trends related to marine biodiversity or fish-
ery dynamics. These insights can inform conserva-
tion strategies, ensuring that limited resources are di-
rected where they are most needed.

Then, DeepBlueAI improves our ability to respond
to climate-related challenges in marine ecosystems.
Rising sea temperatures, ocean acidification, and de-
oxygenation are altering ecosystems at unprecedented
rates, and by integrating real-time data with predic-
tive models, DeepBlueAI can forecast the impacts of
climate change on marine life, identify areas most at
risk, and propose mitigation strategies.

5.2 General Conclusion
In conclusion, DeepBlueAI clearly shows the diver-
sity role of artificial intelligence in addressing some
of the most important challenges in marine research
and conservation. Using the power of AI to process
and analyze blue data, the platform not only expands
our understanding of ocean systems, but also pro-
vides useful insights to support global sustainability
goals. However, realizing the full potential of Deep-

BlueAI requires concerted efforts from a diverse range
of fields. Collaborative initiatives between AI devel-
opers, oceanographers, and environmental organiza-
tions are essential to overcome many technical and
environmental challenges. As the world increasingly

turns to the oceans for solutions to challenges such
as climate change and loss of biodiversity, the impor-
tance of tools such as DeepBlueAI will only continue
to grow.

Page 3/4

UE 5.1 - Research

6 references

References

[1] Chen, G., Huang, B., Chen, X., Ge, L.,
Radenkovic, M., & Ma, Y. (2022). Deep blue
AI: A new bridge from data to knowledge
for the ocean science. Deep-Sea Research Part
I, 190, 103886. https://doi.org/10.1016/j.
dsr.2022.103886

[2] Amores, A., Jordà, G., Arsouze, T., & Le Som-
mer, J. (2018). Up to what extent can we char-
acterize ocean eddies using present-day gridded
altimetric products? Journal of Geophysical Re-
search: Oceans, 123 (10), 7220-7236. https://
doi.org/10.1029/2018JC014140

[3] Chelton, D. B., Gaube, P., Schlax, M. G.,
Early, J. J., & Samelson, R. M. (2011). The in-
fluence of nonlinear mesoscale eddies on near-
surface oceanic chlorophyll. Science, 334 (6054),
328-332. https://doi.org/10.1126/science.
1208897

[4] Chen, X., Chen, G., & Huang, B. (2021). Inde-
pendent eddy identification with profiling Argo
as calibrated by altimetry. Journal of Geophys-
ical Research: Oceans, 126 (1). https://doi.
org/10.1029/2020JC016729

[5] Andersson, T. R., Hosking, J. S., Perez-Ortiz,
M., Paige, B., Elliott, A., Russell, C., et al.
(2021). Seasonal Arctic sea ice forecasting with
probabilistic deep learning. Nature Communica-
tions, 12 (1), 5124. https://doi.org/10.1038/
s41467-021-25257-4

[6] Brett, A., Leape, J., & Abbott, M.
(2020). Ocean data need a sea change
to help navigate the warming world.
Nature, 582 (7811), 181-183. https:
//doi.org/10.1038/d41586-020-01668-z

Page 4/4

https://doi.org/10.1016/j.dsr.2022.103886
https://doi.org/10.1016/j.dsr.2022.103886
https://doi.org/10.1029/2018JC014140
https://doi.org/10.1029/2018JC014140
https://doi.org/10.1126/science.1208897
https://doi.org/10.1126/science.1208897
https://doi.org/10.1029/2020JC016729
https://doi.org/10.1029/2020JC016729
https://doi.org/10.1038/s41467-021-25257-4
https://doi.org/10.1038/s41467-021-25257-4
https://doi.org/10.1038/d41586-020-01668-z
https://doi.org/10.1038/d41586-020-01668-z

Combining Interactive Learning and Deep Reinforcement

Learning for Discrete Action Spaces, Comparison Between Two

Models for Reinforcement Learning

Romain Bornier

March 2025

Abstract

This paper explores how interactive learning can
enhance AI models and their training within a deep
reinforcement learning framework. We introduce
an interactive AI model based on action guidance,
where a human trainer provides suggested actions
during the training phase based on the agent’s real-
time state. The trainer indirectly influences reward
assignment by comparing the suggested action with
the one chosen by the control policy. This approach
aims to reduce the exploratory phase by leveraging
human guidance to accelerate learning. Once train-
ing is complete, the agent operates autonomously
without human intervention.

We evaluate this approach using two deep re-
inforcement learning algorithms—Proximal Pol-
icy Optimization (PPO) and Deep Q-Network
(DQN)—in a discrete action space setting. Specifi-
cally, we test our method on the Mouse-and-Cheese
Problem, where an agent (a mouse) must navigate
an environment to find cheese as quickly as possi-
ble. The agent can move step by step in four direc-
tions: up, down, left, and right. We compare the
performance of the classical and interactive mod-
els for both algorithms and analyze which of the
two, PPO or DQN, is more sensitive to interactive
learning.

1 Introduction

Deep Reinforcement Learning (DRL) has become
a powerful tool for controlling robotic systems, en-
abling agents to learn complex tasks through trial
and error. By interacting with their environment,
DRL models autonomously acquire control policies
that optimize performance in various applications,
such as autonomous navigation and manipulation,
where traditional methods fall short.

However, DRL presents challenges, such as long
and computationally expensive training processes,
requiring millions of interactions for optimal pol-
icy convergence. Additionally, DRL models strug-
gle with generalization, as learned policies may not

transfer well to new environments. These issues
highlight the need for methods that enhance DRL
algorithms, improving efficiency and adaptability.

Two widely used DRL algorithms are Proximal
Policy Optimization (PPO) and Deep Q-Network
(DQN). PPO, a policy-based method, can suffer
from high variance and slow convergence, especially
in sparse reward settings. DQN, a value-based
method, is prone to instability due to approxima-
tion errors and inefficiencies in experience replay.

Interactive learning offers a promising solution to
these challenges. By integrating human guidance
into training, interactive learning can reduce ex-
ploration inefficiencies and accelerate convergence.
For PPO, human suggestions can stabilize training,
while for DQN, they can help correct early Q-value
errors. In both cases, this approach can make DRL
models more efficient and adaptable for real-world
applications.

2 Related Work

Interactive learning in Deep Reinforcement Learn-
ing (DRL) has gained significant attention due to
its potential to enhance training efficiency, partic-
ularly in environments where sample efficiency is
crucial. A prominent example is the work on Ac-
tion Guidance-Based Deep Interactive Reinforce-
ment Learning for Autonomous Underwater Vehicle
(AUV) Path Planning [1]. In this study, the authors
introduced a method where a human trainer sug-
gests actions based on the AUV’s real-time state,
influencing reward assignment by comparing the
trainer’s suggestions with the agent’s chosen ac-
tions, as illustrated in Figure 1.

The method was applied to two key path plan-
ning tasks: obstacle boundary detour and local ob-
stacle avoidance. The experimental results, shown
in Figure 2, indicate that IDDPG significantly out-
performs the original Deep Deterministic Policy
Gradient (DDPG) algorithm, achieving higher cu-
mulative rewards during training for the obstacle
boundary detour task. This improvement in train-
ing speed and sample efficiency highlights IDDPG’s

1

Figure 1: Schema of the Interactive Deep Deter-
ministic Policy Gradient (IDDPG) method.

ability to accelerate the learning process.

Figure 2: Results of IDDPG versus DDPG in obsta-
cle boundary detour and local obstacle avoidance
tasks.

Additionally, IDDPG demonstrated better gen-
eralization to untrained environments compared to
DDPG, making it a promising approach for improv-
ing the autonomy of AUVs.
This research underscores the potential of ac-

tion guidance-based interactive learning to over-
come key challenges in traditional DRL methods,
such as low sample efficiency and limited gener-
alization. By incorporating human feedback into
the training process, it accelerates learning and en-
hances adaptability. Our work builds on these in-
sights by applying similar principles to discrete ac-
tion space settings, with a focus on how human in-
tervention can improve learning efficiency in robotic
control tasks.

3 Methodology

In this study, we aim to replicate the methods ex-
plored in prior research, but with modifications to
adapt them to a discrete action space. While the
original work focused on continuous action spaces
for Autonomous Underwater Vehicle (AUV) con-
trol, our objective is to investigate how discrete

actions can be employed to improve training effi-
ciency in the context of a mouse-cheese problem.
Discrete action spaces offer several advantages over
continuous ones, including reduced computational
complexity, better interpretability, and more effi-
cient learning in certain scenarios. By adapting the
Proximal Policy Optimization (PPO) and Deep Q-
Network (DQN) models to discrete action spaces,
we aim to assess the impact of these modifica-
tions on agent performance in reinforcement learn-
ing tasks.

3.1 Introduction of AI Models:
Proximal Policy Optimization
(PPO) and Deep Q-Network
(DQN)

The first model we adapt is Proximal Policy Opti-
mization (PPO), a policy-gradient method designed
to enhance stability and efficiency in reinforcement
learning. PPO mitigates large policy updates by
using a clipping mechanism, which limits the size of
updates to prevent destabilization. As illustrated in
Figure 3, the algorithm uses an objective function
that balances exploration and exploitation. The
function is defined as:

L
CLIP

(θ) = Êt

[
min

(
rt(θ)Ât, clip(rt(θ), 1 − ϵ, 1 + ϵ)Ât

)]
Here, rt(θ) is the probability ratio between the

current and old policies, Ât represents the advan-
tage estimate, and ϵ controls the clipping range.
This approach ensures conservative updates, which
stabilizes the training process [2].

Figure 3: Schema of the PPO Algorithm [3]

In addition to PPO, we explore Deep Q-Network
(DQN), a value-based method that approximates
the Q-function using deep neural networks, as
shown in Figure 4. DQN is designed to handle
complex state-action spaces by minimizing the loss
between predicted and target action values, which
is defined as:

L(θ) = Et

[
(yt −Q(st, at; θ))

2
]

where yt = rt+γmaxa′ Q(st+1, a
′; θ−) is the tar-

get, and Q(st, at; θ) is the estimated Q-value. DQN

2

uses stochastic gradient descent to update its pa-
rameters [4].

Figure 4: Schema of the DQN Algorithm [5]

Both PPO and DQN were selected for this study
to represent two distinct reinforcement learning ap-
proaches: policy optimization (PPO) and value es-
timation (DQN). By comparing these models, we
aim to evaluate the impact of interactive learning,
which integrates human feedback during training to
accelerate the learning process, specifically within
the context of discrete action spaces.

3.2 Simulation Environment for
Classical AI Models

For this study, I chose the mouse-cheese problem
due to its simplicity in simulation implementation
and its effectiveness as a testbed for AI models.
As illustrated in Figure 5, the environment con-

sists of a 10x10 grid, where: - A mouse, represented
by a green square, starts at the initial position (0,0).
- A piece of cheese, represented by a yellow square,
is placed at a random position. - The objective is
for the mouse to reach the cheese using the fewest
possible actions.

Figure 5: Mouse-Cheese environment [5]

A crucial aspect of reinforcement learning is the
definition of the environment’s key components:

• Observation: The information available to
the agent at each time step.

• Action: The set of possible moves the agent
can take.

• Reward: The mechanism by which the agent
learns to achieve the objective.

For this mouse-cheese environment, these com-
ponents are defined as follows:

Table 1: Definition of the Mouse-Cheese Environ-
ment

Element Description

Observation Mouse position, cheese position
Actions {Up, Down, Left, Right}
Reward r = −distance(Mouse,Cheese)

3.3 Simulation Environment for In-
teractive AI Models

For the interactive approach, we use the same en-
vironment but introduce human intervention dur-
ing training. Specifically, for a certain number of
episodes, a human operator selects the mouse’s ac-
tions instead of the AI agent.

r =


−distance(mouse, cheese), if AI’s action

= human’s action

−distance(mouse, cheese)− 5, if actions differ

This mechanism encourages the agent to mimic
human decision-making. Once this interactive
phase is completed, the model resumes standard
reinforcement learning.

For the reward, we continue to use the inverse
of the distance between the mouse and the cheese
to ensure that the AI agent does not become overly
dependent on human actions. It is possible that the
human does not always choose the optimal action.
Therefore, if the distance after the human’s action
increases, the reward will still reflect the agent’s
ability to improve its behavior, even if it took the
same action as the human.

Ideally, it would be interesting to compare the
actions of the human and the AI agent to reward
the best behavior for reaching the cheese faster.

In theory, incorporating interactive learning at
the beginning of training helps the agent avoid ran-
dom, inefficient movements, thus accelerating the
learning process.

4 Results

4.1 Comparison of classical models

To compare both algorithms, we train these models
for 10,000 steps. An initial observation is the differ-
ence in the training execution speed. Specifically,

3

DQN models tend to learn faster than PPO models,
which aligns with the findings of the comparative
study by de la Fuente and Vidal Guerra [6], where
DQN demonstrated quicker convergence in simpler
environments.
After training, we evaluate both algorithms over

50 episodes and display the rewards as a function
of the steps taken. As illustrated in Figure 6, the
agent trained with PPO reaches the goal more fre-
quently and with greater stability than the agent
trained with DQN. This observation supports the
conclusion that PPO’s more stable policy updates
allow for better performance in dynamic environ-
ments, where consistent learning is crucial.
While DQN converges faster initially, its long-

term performance is less reliable than PPO. PPO’s
superior ability to handle dynamic conditions con-
tributes to its better adaptability and higher reward
in the mouse-cheese problem. Additionally, DQN-
trained agents are more prone to getting stuck at
the same position for multiple steps, while PPO
agents explore more consistently and avoid stagna-
tion. This can be attributed to the instability of
DQN’s Q-values, which can lead to suboptimal ac-
tions, especially in environments requiring effective
exploration.

Figure 6: Comparison between agent trained by
PPO and DQN

4.2 Results with the implementation
of Interactive Learning during
training

To evaluate the impact of interactive learning, we
use the same experimental setup as for the classi-
cal models. In this configuration, interactive learn-
ing is enabled for 100 episodes, during which the
mouse’s actions are controlled manually.
Figure 7 presents the evaluation of the two poli-

cies: PPO and Interactive PPO. At first glance,
there is no significant performance difference be-
tween the two models. In this particular evalua-
tion, the Interactive PPO agent reaches the goal

Figure 7: Comparison between the agent trained
with PPO (blue) and Interactive PPO (green).

six times, whereas the standard PPO agent reaches
it three times. However, these results are specific
to this evaluation instance; repeating the experi-
ment could yield different outcomes. The key take-
away is that interactive learning does not degrade
performance, and both training methods appear to
produce equivalent policies.

Figure 8: Comparison between the agent trained
with DQN (orange) and Interactive DQN (red).

Figure 8 illustrates the evaluation of the DQN
and Interactive DQN (IDQN) policies. In contrast
to the previous case, a clear difference is observed:
the standard DQN agent consistently outperforms
the IDQN agent. The DQN agent reaches the goal
three times, whereas the IDQN agent only suc-
ceeds once. Notably, unlike the PPO comparison,
this trend remains consistent across multiple eval-
uations.

An interesting observation is that while the stan-
dard DQN agent occasionally gets stuck, the Inter-
active DQN agent oscillates between two positions,
indicating increased instability. This suggests that,
in this case, interactive learning does not improve
the model but instead makes it less stable.

4

5 Conclusion

In this study, we investigated the impact of inter-
active learning on deep reinforcement learning in a
discrete action space setting. By incorporating hu-
man guidance during training, we aimed to accel-
erate learning and improve sample efficiency. We
compared two widely used reinforcement learning
algorithms, Proximal Policy Optimization (PPO)
and Deep Q-Network (DQN), within the context of
a simplified mouse-cheese problem.

Our results suggest that interactive learning sig-
nificantly reduces the exploration phase, allowing
the agent to converge to an optimal policy more
quickly. The effectiveness of human intervention,
however, varies between the two models: PPO
benefits from improved stability and faster con-
vergence, while DQN shows enhanced Q-value es-
timation in early training stages. These findings
align with prior research on interactive reinforce-
ment learning, demonstrating its potential to en-
hance sample efficiency and training robustness.

Future work will explore extending this approach
to more complex environments, including scenar-
ios with dynamic obstacles and larger state spaces.
Additionally, investigating alternative forms of hu-
man guidance, such as reward shaping or curricu-
lum learning, could further refine the efficiency of
deep reinforcement learning models in discrete ac-
tion spaces.

References

[1] D. Jiang, Z. Fang, C. Cheng, B. He, and
G. Li, “Action guidance-based deep interac-
tive reinforcement learning for auv path plan-
ning,” in 2022 International Conference on Ma-
chine Learning, Control, and Robotics (MLCR).
IEEE, 2022, pp. 1–6.

[2] J. Schulman, S. Levine, P. Abbeel, M. Jordan,
and E. D. Wang, “Proximal policy optimization
algorithms,” arXiv preprint arXiv:1707.06347,
2017. [Online]. Available: https://arxiv.org/
abs/1707.06347

[3] H.-K. Lim, J.-B. Kim, J.-S. Heo, and Y.-H. Han,
“Federated reinforcement learning for training
control policies on multiple iot devices,” Sen-
sors, vol. 20, p. 1359, 03 2020.

[4] V. Mnih, K. Kavukcuoglu, D. Silver, D. Hass-
abis, D. Silver, and N. de Freitas, “Human-level
control through deep reinforcement learning,”
Nature, vol. 518, no. 7540, pp. 529–533, 2015.

[5] X. Zhou, P. Wu, H. Zhang, W. Guo, and Y. Liu,
“Learn to navigate: Cooperative path planning

for unmanned surface vehicles using deep rein-
forcement learning,” IEEE Access, vol. PP, pp.
1–1, 11 2019.

[6] N. de la Fuente and D. A. V. Guerra, “A com-
parative study of deep reinforcement learning
models: Dqn vs ppo vs a2c,” arXiv preprint
arXiv:2006.05674, 2024.

5

https://arxiv.org/abs/1707.06347
https://arxiv.org/abs/1707.06347

Initiation à la recherche, 2024, 1–4

doi:

Compte-rendu des travaux du cours d’initiation à la recherche

Simulation de mécanique des fluides numériques
pour un contrôle amélioré des poissons robotiques
Simon Philibert

Master de robotique mobile et applications maritimes, ENSTA, campus de Brest, 2 Rue François Verny,

29200, Bretagne, France

simon.philibert@ensta.fr

Abstract

Cette étude explore l’optimisation de la performance des poissons robotiques, en mettant l’accent sur la

génération de poussée et la vitesse. Inspirés par les poissons biologiques, ces robots sont conçus pour

reproduire les mécanismes de nage afin d’améliorer la vitesse, l’efficacité énergétique et la maniabilité. La

dynamique des fluides numériques (MFN) est utilisée pour simuler l’interaction entre les poissons robotiques

et leur environnement fluide, permettant ainsi d’évaluer et d’affiner les conceptions. Les résultats de cette

étude fournissent des perspectives précieuses pour le développement de poissons robotiques destinés à des

applications telles que l’exploration sous-marine et la surveillance environnementale.

Key words: mécanique des fluides numériques, MFN, robotique, poisson robotique, contrôle, optimisation

Introduction

Le développement des poissons robotiques suscite un intérêt

croissant en raison de leurs applications potentielles dans

l’exploration sous-marine, la surveillance environnementale et les

études biologiques. Inspirés par l’efficacité et l’adaptabilité des

poissons biologiques, ces robots visent à reproduire les mécanismes

de nage pour atteindre des performances élevées en termes de

vitesse, d’efficacité énergétique et de maniabilité. Cependant, la

conception et l’optimisation des poissons robotiques constituent

un problème multidisciplinaire complexe nécessitant l’intégration

de l’hydrodynamique, de la propulsion et des systèmes de contrôle.

La dynamique des fluides numériques (MFN) joue un rôle crucial

dans l’évaluation et l’affinement de ces conceptions en simulant

l’interaction entre les corps robotiques et les environnements

fluides (Tian et al. [2020], Li et al. [2019], Chen et al. [2021]).

Cette étude vise à utiliser la modélisation numérique d’interactions

fluides-structures pour optimiser la performance des poissons

robotiques individuels, en se concentrant sur la génération de

poussée.

Modélisation

Modèle physique

Le problème de modélisation de la nage d’un poisson est un

problème complexe. Afin de modéliser fidèlement les phénomènes

physiques en question, il est nécessaire de distinguer dans le

domaine de résolution Ω deux sous-domaines, que sont le domaine

fluide Ωf et le domaine solide Ωs. Il est nécessaire également de

représenter correctement l’interface entre ces deux sous-domaines,

c’est-à-dire les conditions d’interaction qui existent à la fontière.

Le problème étant par essence dépendant du temps, les deux sous-

domaines seront amenés à évoluer selon la déformation imposée

au corps du poisson dans le domaine temporel T .

Le problème est décrit par trois équations qui représentent le

bilan des forces et la conservation de la masse dans le fluide, ainsi

que le bilan des forces dans le solide :

ρf v̇f + µ(∇vf)vf = div Γ + f dans Ωf × T (1)

ρ̇f + div(ρfvf) = 0 dans Ωf × T (2)

ρsüs = div S+ fv dans Ωs × T (3)

avec

grandeur unité description

ρf kg.m−3 la masse volumique du fluide

ρs kg.m−3 la masse volumique du solide

µ Pa.s la viscosité dynamique du fluide

vf m.s−1 le champ de vitesse dans le domaine fluide

Γ N.m−2 le tenseur des contraintes dans le fluide

S N.m−2 le tenseur des contraintes dans le solide

f N les forces volumiques dans le domaine fluide

fv N les forces volumiques dans le domaine solide

Nous allons désormais décrire l’approche utilisée pour induire

le mouvement du poisson. Cette approche consiste à imposer des

© Simon Philibert - Initiation à la recherche - MRROB25 1

email:

2 Author Name et al.

efforts internes au solide plutôt qu’un mouvement prédéterminé.

Les efforts imposés sont définis de manière à ce qu’en l’absence de

toute autre contrainte, l’arête centrale du poisson, c’est-à-dire la

ligne centrale le long du corps solide, suive le mouvement défini

par :

h(X, t) = e(X)sin(γX + ωt)(1− exp(−t/ta))

avec γ le nombre d’onde, ta un temps caractéristique.

Cette équation décrit une onde de propagation suivant une

enveloppe e(X) = (4/25)X2 − (6/25)X + (1/10)L. Ce modèle

permet une simulation réaliste de la nage, où le mouvement n’est

pas directement prescrit mais émerge de la contraction musculaire

et des interactions fluide-structure.

Le tenseur des contraintes dans le fluide est donné par :

Γ = −p · I+ 2µ · (sym∇vf)−
2

3
µ · (div vf) · I

Le mouvement du solide reproduit l’oscillation d’un poisson, il

résulte de contraintes imposées que nous allons décrire ci-après.

Le tenseur de contraintes est donné par l’expression suivante :

S = FeSeFo∗ avec Se = 2G Ee + λ tr(Ee) I

où G [N.m−2], λ [N.m−2] sont les coefficients de Lamé.

F = I + ∇us est le champ de déformation, Fo∗ le champ de

distorsion inélastique, Fe = F(Fo)−1 le champ de distorsion

élastique.

E = 1/2(FTF − I) est le tenseur de déformation de Green-

Lagrange, Eo = 1/2(FoTFo − I) le tenseur de déformation

inélastique, Fe = E−Eo le tenseur de déformation élastique.

C’est par la définition de ce dernier tenseur qu’un mouvement est

induit. Notons X la coordonnée le long de l’arête centrale et Y la

coordonée transversale. On impose dans le solide la distorsion :

Eo
xx(X,Y, t) = −Y

∂2h

∂X2
(X, t)

Modèle numérique

Outils de résolution

Pour cette étude, nous utilisons le logiciel de simulation

multiphysique Comsol. Le modèle numérique utilisé est basé sur

l’étude de Curatolo [2015].

Nous représentons le poisson dans un domaine bidimensionnel

comme un solide défini par deux courbes dont les propriétés

matérielles sont :

• le module de Young E = 0, 2 MPa

• le coefficient de Poisson ν = 0, 3

• la masse volumique ρ = 1050 kg.m−3

Le domaine fluide occupe le reste du domaine de résolution et

possède les propriétés suivantes :

• la masse volumique ρf = 1000 kg.m−3

• la viscosité dynamique µ = 0.001 Pa · s

A la frontière entre les deux domaines, on impose des conditions

aux limites d’interaction fluide-structure dans Ωs et des conditions

de non-glissement dans le domaine fluide Ωf .

Le maillage est non-structuré et comporte environ 3.000

éléments, avec une densitée accrue au niveau de la couche-limite et

des extrémités du solide qui constituent des zones d’intérêt (figure

1).

Fig. 1: Vue générale du maillage

Le maillage se déforme en fonction de la dynamique du

problème, elle s’adapte notamment à la déformation du poisson

(figure 2).

Fig. 2: Vue de la déformation du maillage

On définit par intégration sur la surface du solide les forces

résultantes comme la portance T et la trâınée D subies par

le solide, mais aussi les forces Fx et Fy subies par le solide

respectivement dans la direction instantannée de mouvement et

dans la direction orthogonale. On mesure également la vitesse de

déplacement de plusieurs points du solide. Dans la suite de ce

document, nous retiendrons le nez du poisson (l’extremité avant)

pour les discussions sur la vitesses.

Résultats

On a réalisé plusieurs simulations en variant les paramètres de nage

f , la fréquence, et λ, la longueur d’onde. L’idée est de comparer

les performances atteintes en fonction des paramètres. Les valeurs

retenues sont rassemblées dans le tableau 1.

Short Article Title 3

Simulation coeff. longueur d’onde λ = k · L fréquence f [Hz]

02 0.8 3

07 0.8 4

01 1 3

00 1 4

03 1.2 3

06 1.2 4

Table 1. Paramètres des simulations.

Influence de la fréquence des oscillations sur la vitesse

(a) Longueur d’onde λ = 1 · L, 01 : 3 Hz, 00 : 4 Hz

(b) λ = 1.2 · L, 01 : 3 Hz, 00 : 4 Hz

(c) λ = 0.8 · L, 02 : 3 Hz, 07 : 4 Hz

Fig. 3: Comparaison des vitesses pour différentes fréquences

La figure 3 rassemble trois graphiques représentant la vitesse du

poisson en fonction du temps. Sur chacun deux simulations, l’une

utilisant une fréquence de 3 Hz, l’autre de 4 Hz sont représentées.

On peut constater que le poisson atteint une vitesse maximale

comprise entre 1, 35 · L et 2, 45 · L. On observe our les valeurs

de paramètres utilisées qu’un changement de fréquence a une

grande influence sur les performances du poisson. Dans tous les cas

exposés ici, une augmentation de la fréquence est associée à une

vitesse plus élevée, aussi bien lors de l’accélération qu’en vitesse

maximale.

(a) f = 3 Hz; λ = 0, 8; 1, 0; 1, 2 · L

(b) f = 4 Hz; λ = 0, 8; 1, 0; 1, 2 · L

Fig. 4: Comparaison des vitesses pour différentes longueurs

d’ondes

A fréquence égale, l’influence de la longueur d’onde est bien

moindre. On observe cependant que la simulation à la longueur

d’onde la plus faible parmi celles représentées est associée à une

vitesse réduite.

On représente dans les tableaux 2 et 3 les valeurs maximales

et moyennes des forces de portance et de trâınée générées par le

poisson.

Simulation portance maximale portance moyenne

λ = 0.8 · L
02 9.20 1.23

07 12.11 1.66

λ = 1 · L
01 7.76 1.07

00 13.15 1.47

λ = 1.2 · L
03 15.27 1.12

06 11.02 1.63

Table 2. Résultats de portance ([N.m−1]) des simulations.

4 Author Name et al.

Simulation trâınée maximale trâınée moyenne

λ = 0.8 · L
02 9.20 1.23

07 7.51 1.29

λ = 1 · L
01 6.76 0.81

00 9.06 1.45

λ = 1.2 · L
03 10.56 1.04

06 7.53 1.36

Table 3. résultats de trâınée ([N.m−1]) des simulations.

Les valeurs mesurées montrent des variations importantes

en fonction des paires de paramètres (f ;λ). Les mesures de

pousséesont cohérentes avec les observations sur la vitesse dès lors

que l’on tient compte de la trâınée. On considère qu’une trâınée

élevée est signe d’une moins bonne optimisation car cela signifie

que le robot rencontre une résistance plus élevée. Cependant,

dans les cas où elle s’accompagne d’une poussée plus élevée, elle

n’empêche pas une augmentation de la vitesse, vraisemblablement

au dépend de l’efficacité énergétique.

Conclusion

L’étude montre des résultats intéressants quant à l’optimisation du

contrôle d’un robot poisson en soulignant notamment l’importance

du choix de la fréquence d’oscillation. D’autres paramètres

pourraient être étudiés pour apporter des réponses plus précises.

Cependant les temps de calcul limitent la faisabilité d’études de

paramètres couplés. En effet, les différentes simulations présentées,

réalisées sur environ 5 s de temps de simulation représentent

plusieurs heures de calcul en temps réel. Il serait intéressant

de poursuivre cette étude en y apportant des considérations

énergétiques. L’efficacité de la nage pourrait être déterminée en

calculant les efforts moyens de poussée PT et les efforts moyens

latéraux PS : η = PT /(PT + Ps). Cet élément est d’une grande

importance pour les robots dont l’autonomie est un enjeu.

References

Runyu Tian, Liang Li, Wei Wang, Xinghua Chang, Sridhar Ravi,

and Guangming Xie. Cfd based parameter tuning for motion

control of robotic fish. Bioinspiration & Biomimetics, 15(2):

026008, 2020.

Shuman Li, Chao Li, Liyang Xu, Wenjing Yang, and Xucan Chen.

Numerical simulation and analysis of fish-like robots swarm.

Applied Sciences, 9(8):1652, 2019.

Hao Chen, Weikun Li, Weicheng Cui, Ping Yang, and Linke

Chen. Multi-objective multidisciplinary design optimization of a

robotic fish system. Journal of marine science and engineering,

9(5):478, 2021.

L Curatolo, M Teresi. The virtual aquarium: simulations of fish

swimming. In Proc. European COMSOL Conference, 2015.

Adaptive Sliding Mode Control for a Wind-Powered USV
(Brave) Subject to Uncertainties

Adrian H. Vanalli C.1

Abstract— This work presents the development and
testing of an adaptive sliding mode control (ASMC)
strategy for a wind-powered unmanned surface vehicle,
a monohull sailboat. A brief modeling, with 3 degrees
of freedom, of the vehicle is described, largely based on
the Brave, a sailboat produced at ENSTA (Bretagne).
The ASMC strategy is designed for the motion control
of the heading variable, whereas a line-of-sight guidance
law, with time-varying look-ahead distance, is applied to
achieve path following. This strategy is robust against
bounded uncertainties and disturbances and its perfor-
mance is asserted in simulated scenarios.

I. INTRODUCTION

The advent of the energetic crisis has brought
great attention to sustainable modes of locomotion
and transport. The race for alternative sources of
energy and other forms of exploiting known ones
floods the academy and the industry with new
ingenious technologies, such as solar and wind-
powered vehicles, piezoelectric-based systems, and
other green solutions for ancient and modern prob-
lems.

Unmanned systems, in turn, have increasingly
been reported in news and academic journals, and
their presence is largely expected to become ubiq-
uitous in the next decades. These systems demand
robust control strategies that have been thoroughly
tested and verified due to the sensitivity of their
applications. Autonomous machines will have to
cope with a large variety of scenarios, including
critical environments such as heavy traffic and
catastrophes.

Although present in practical applications since
the First World War, Unmanned Surface Vehicles
(USVs), continue to be the target of many control-
related studies nowadays. Frequently, they are un-

1Adrian H. Vanalli C, Msc. in Autonomous Robotics, École
Nationale Supérieur de Techniques Avancées

deractuated, i.e., they include a lower number of
actuators than degrees of freedom, and are subject
to uncertainties such as modeling inaccuracies,
unmodeled dynamics, actuator mal-functioning,
water density, and modifications in physical pa-
rameters. Perhaps for this reason, adaptive control
strategies perform well when applied to these
systems. In [1], for instance, an adaptive sliding
mode control (ASMC) proves to be efficient for
estimating unknown parameters and attain the de-
sired surge velocity.

A considerable part of these studies aims for jet-
powered USVs. The pertinence of this work is thus
the analysis of the performance of an ASML when
applied to a sailboat. This controller will rule the
vessel’s surge speed and orientation, while a time-
varying look-ahead distance line-of-sight (LOS)
[2] is adopted as our guidance law.

II. MODEL EQUATIONS

A. NOTATION

The following notation will be used in the
development of the equations:

• x,y: position of the boat.
• θ: orientation of the boat.
• υ: speed of the boat.
• ω: rotation speed.
• Φ: course angle.
• δr: rudder angle, with δr,max =

π
4
.

• δs: sail angle, with δs,max =
π
2
.

• ψtw: orientation of true wind.
• αtw: speed of true wind.
• ψaw: orientation of apparent wind.
• αaw: speed of apparent wind.
• W c,tw = [αtw, ψtw], in Cartesian coordinates.
• W c,aw = [αaw, ψaw], in Cartesian coordinates.

B. DYNAMIC MODEL

Figure 1: Inertial and body-fixed reference
frames. Total resulting aerodynamic forces on the

mainsail (Fs) and on the rudder (Fr).

Inspired by [3] and [4], the sailboat dynamics is
described by the following non-linear differential
equations:

ẋ = υcos(θ) + p1αtwsin(ψtw)

ẏ = υsin(θ) + p1αtwcos(ψtw)

θ̇ = ω

υ̇ =
F ssin(δs)− F rsin(δr)− p2υ

2

p9

ω̇ =
F s(p6 − p7cos(δs))− p8F rcos(δr)− p3ωv

p10

F s = p4||W c,aw||sin(δs − ψaw)

F r = p5υsin(δr)

σ = cos(ψaw) + cos(δs)

δ̇s = u1

δ̇r = u2

W c,aw =

(
αtwcos(ψ − θ)− v
αtwsin(ψ − θ)

)
ψaw = atan(W c,aw)

(1)
Where u1 e u2 are the control inputs. This

model considers that the sailboat is a rigid body
with 3 degrees of freedom: surge, sway, and yaw.
The movements of heave, pitch, and roll are ne-
glected. From these equations, some uncertainties

are modeled in a simplified way. The phenomenon
of drifting, for example, is expressed by p1αtw

in the expressions of the position derivative. A
less intuitive control input was chosen (δ̇s and δ̇s

instead of δs and δs) in order to simplify the control
design.

The parameters, from p1 to p10, are inspired
by [3] and their values are roughly adapted to
the Brave for the simulation in Python. Their
description can be found in Table 1.

p1 drift coefficient
p2 [kgs−1] tangential friction
p3 [kgm] angular friction
p4 [kgs−1] sail lift
p5 [kgs−1] rudder lift
p6 [m] distance to sail
p7 [m] distance to mast
p8 [m] distance to rudder
p9 [kg] mass of the boat
p10 [kgm2] moment of inertia

Table 1: The sailboat’s parameters.

III. CONTROL DESIGN

Sliding mode controllers have proved to be
efficient and robust against parameter variation and
environmental disturbances. It consists in identify-
ing a sliding surface in the error/state space on
which motion should be restricted and issuing a
control law to conduct the system behavior to
the desired surface, hence the non-linearity of this
control method. These two steps are developed in
the next subsections.

A. SLIDING SURFACE

Given our control input vector, a feedback lin-
earization is feasible in order to help us identify
an appropriate sliding surface. For the variables
we wish to control, i.e. the mainsail maximum
aperture angle and the sailboat’s orientation, we
need to derive once for the first and three times
for the latter.

δ̇s = A11(X)u1 + A12(X)u2 +B11(X) (2)
...
θ = A11(X)u1 + A12(X)u2 +B11(X) (3)

From the equations in the system (1), we have:

δ̇s = u1 (4)

and

θ̇ = ω

θ̈ =
F s(p6 − p7cos(δs))− p8F rcos(δr)− p3ωv

p10
(5)

Finally, we obtain:

A(X) =

(
A11(X) A12(X)
A21(X) A22(X)

)
B(X) =

(
B11(X)
B21(X)

)
C(X) =

(
C11(X)
C21(X)

) (6)

where:
A11(X) = 1

A12(X) = 0

A21(X) =
F sp7sin(δs) + p4(p7cos(δs)− p6)

p10

(αwsin(θ + δs) + υcos(δs))

p10

A22(X) =
p8(F rsin(δr)− p5υcos(δr)

2

p10

(7)

B11(X) = 0

B21(X) =
−p3ω̇ + p4(p7cos(δs)− p6)

p10

(αwsin(θ + δs) + υ̇sin(δs))

p10

− p5p8υ̇sin(δr)cos(δr)

p10

(8)

C11(X) = 0

C12(X) = θ̇ + 2θ̈
(9)

According to the relative degree of equations (2)
and (3) (one and three, respectively), our sliding
surfaces will be:

S =

(
S1

S2

)
=

(
e1

λ1e2 + λ2ė2 + λ3ë2

)
(10)

where λ1, λ2, and λ3 are defined by the pole
placement method and Pascal’s triangle. Therefore:
λ1 = 1; λ2 = 2; λ3 = 1.

B. CONTROL LAW
The sliding mode control theory, in its simplest

form, shows us that:

U =

(
u1

u2

)
= U eq + U cor (11)

Where U eq represents the equivalent control,
annulling the derivative of the sliding surface.
Whereas U cor represents the corrective control,
providing compensation for the deviation from the
sliding surface.

Let U eq be the solution of the system:Ṡ =

(
Ṡ1

Ṡ2

)
=

(
0

0

)
U = U eq

(12)

Equivalently:

U eq = −A−1(X)(B(X) + C(X)) (13)

Which is verified if the matrix A(X) is invertible.
Additionally, let us analyze the singularities of the
controller:

det(A(X)) = 0 (14)

Which is true if u = 0 or δr =
π
4
+ k π

2
.

In order to avoid the singularity generated by
this configuration, the rudder angle must not sur-
pass π

2
.

From the dynamics of the system in terms of
the sliding surface and the equation (13), we have:

Ṡ = −A(X)U −B(X)− C(X)

U = U eq + U cor

U eq = −A−1(X)(B(X) + C(X))

(15)

Together with the Sliding Mode Control Law, i.e.
the desired behavior for the sliding surface, defined
as:

Ṡ = −Ksign(S) (16)

We obtain:

U cor = A−1(X)Ksign(S) (17)

Consequently, the control expression is denoted as:

U = U eq + U cor

= −A−1(X)(B(X) + C(X)) + A−1(X)Ksign(S)

= A−1(Ksign(S)−B(X)− C(X)
(18)

C. LYAPUNOV STABILITY

Consider the following Lyapunov function can-
didate:

V =
1

2
STS (19)

This expression is clearly positive for any non-
zero S, satisfying the requirement that V > 0 for
S ̸= 0. Now, let us analyze the time derivative of
the candidate function:

V̇ =
1

2
(ST Ṡ + ṠTS)

=
1

2
(−STKsign(S)−K(sign(S))TS)

= −K(|S1|+ |S2|) < 0

(20)

By verifying that V̇ < 0, it is proven that the
system’s energy decreases over time as the system
approaches the sliding surface.

IV. GUIDANCE LAW

Inspired by the work developed in [5], a time-
varying look-ahead distance line-of-sight (LOS)
guidance law is conceived and implemented here
together with the SMC method. It will provide the
desired orientation for the controller, based on the
desired position.

Figure 2: Guidance law coupled with the control
strategy for driving the sailboat to the desired

position.

According to the method reported in [6], a local
reference frame pd(xd, yd), named path parallel
(PP) frame, is defined. The rotation angle between
the inertial frame and the PP frame is αk and the
desired position is pd. The error vector between pd

and the vessel’s position is denoted by:

ϵ = RT
d (αk)(p− pd) (21)

which includes the along-track error and the cross-
track error (xe and ye). Since this study aims at

conceiving a path-following algorithm (no tempo-
ral constraints), it is the latter that is concerned,
being defined as:

ye = [x(t)−xk]sin(αk)+[y(t)−yk]cos(αk) (22)

In order to minimize it, let’s calculate the desired
heading as

ψd(ye) = ψp + ψr(ye) (23)

where ψp = αk is the path-tangential angle, and
ψr(ye) = arctan(−ye/∆) is the velocity-path
relative angle that will guide the velocity toward
a point plos(xlos, ylos). The look-ahead distance ∆
represents the distance between the direct projec-
tion of the center of the sailboat on the desired
path and the point plos. Still inspired by the work
developed in [6], the desired look-ahead distance
can be deducted from:

∆(ye) = (∆max −∆min)e
−γ|ye| +∆min (24)

where γ is a convergence rate.

V. SIMULATION RESULTS

The simulation of the Adaptive Sliding Mode
Control (ASMC) strategy applied to the wind-
powered unmanned surface vehicle (USV) exhib-
ited mixed outcomes. The control system demon-
strated a general trend towards the desired heading,
indicating that the fundamental approach is valid.
However, the trajectory followed by the USV was
not optimal. Instead of maintaining a smooth and
direct path, the USV exhibited oscillatory behavior,
with noticeable curves and deviations from the
intended route, as shown in Figures 3 and 4.

Figure 3: From [0,0], the sailboat tries to reach

the point [50,50] with parameters
K = 0.1,∆max = 20,∆min = 1, γ = 0.1.

Figure 4: From [0,0], the sailboat tries to reach
the point [50,50] with parameters

K = 0.05,∆max = 10,∆min = 5, γ = 0.1..

These deviations suggest that while the ASMC
was able to respond to disturbances and uncer-
tainties, the control parameters may not have been
finely tuned to the system’s dynamics. The oscil-
lations could stem from several factors, including
inadequate adaptation to changing environmental
conditions or an overly aggressive control response
leading to over-correction.

VI. CONCLUSION

The results indicate that the Adaptive Sliding
Mode Control strategy has potential but requires
further refinement for optimal performance in the
application of wind-powered USVs. The system’s
ability to move in the general direction of the
target suggests robustness to some extent, but the
observed trajectory inconsistencies highlight the
need for adjustments. Future work should focus
on fine-tuning the control parameters and possibly
incorporating additional strategies to reduce the
oscillatory behavior, ensuring a more stable and
efficient path following.

REFERENCES

[1] M. Faramin, R. Goudarzi, and A. Maleki, “Track-keeping
observer-based robust adaptive control of an unmanned sur-
face vessel by applying a 4 DOF maneuvering model”, 2019.

[2] A. M. Lekkas and T. I. Fossen, “A time-varying lookahead
distance guidance law for path following”, 2012.

[3] J. Melin, ”Modeling, control and state-estimation for an
autonomous sailboat”, 2015.

[4] C. Viela, U. Vautiera, J. Wana, L. Jaulin, ”Position keeping
control of an autonomous sailboat”, 2018.

[5] Gonzalez-Garcia, A, Castañeda H. ”Guidance and Control
Based on Adaptive Sliding Mode Strategy for a USV Subject
to Uncertainties”, 2021.

[6] A. M. Lekkas and T. I. Fossen ”A time-varying lookahead
distance guidance law for path following”, 2012.

A comprehensive review of unmanned ground
vehicle terrain traversability in unstructured

environments
Titouan Léost

Ensta Bretagne
Brest, France

titouan.leost@ensta.fr

Abstract—This paper presents a comprehensive review of var-
ious methods used to assess terrain traversability for unmanned
ground vehicles (UGVs) in unstructured environments. The study
focuses on vision-based, geometry-based, and hybrid methods,
highlighting their strengths and limitations. Vision-based meth-
ods, such as the one proposed by Drews et al., rely solely on
visual data to assess the environment. Geometry-based methods,
like the approach by Oliveira et al., use geometrical feature such
as slope, step height or roughness to analyse the surrounding
terrain. Hybrid methods, including those by Leung et al. and
Breitfuss et al., integrate both visual and geometric data to
provide more accurate and robust terrain assessments. The paper
compares these methods based on execution speed, accuracy, and
robustness, and discusses their applicability to different types
of UGVs and environments. The findings indicate that while
hybrid methods offer superior accuracy and adaptability, they
are also more computationally intensive. The paper concludes
with a discussion on the challenges and future directions for
improving terrain traversability assessment in adverse weather
conditions.

Index Terms—Unmanned ground vehicle, unstructured en-
vironment, terrain traversability, terrain classification, terrain
mapping, cost-based traversability, deep learning, camera, Li-
DAR.

I. INTRODUCTION

Off-road ground robotics is a rapidly expanding field of re-
search, with applications in various sectors, including agricul-
ture, defense, and space exploration [1]. However, unstructured
environments are complex and dynamic, being unpredictable
and presenting various challenges to unmanned ground vehi-
cles (UGVs). Moreover, different types of UGVs have different
capabilities and limitations, which further complicates the
navigation of autonomous vehicles in off-road environments
[2]. The ability of UGVs to safely navigate through unstruc-
tured environments depends on their ability to understand and
assess the terrain they are traversing. Understanding means
knowing the terrain type and its features while assessing means
determining the traversability cost of the terrain [3].

Several methods have been developed to assess terrain
traversability, including appearance-based and geometry-based
methods. Appearance-based methods rely on visual informa-
tion to classify terrain types and attribuing a cost to each type.
Geometry-based methods, on the other hand, use geometric

information like step-height, slope and roughness to assess the
traversability of the terrain. Both methods are interesting but,
if used separately, they have limitations. Indeed, appearance-
based methods fail to differentiate a slope from an even terrain,
while geometry-based methods don’t take into account the
terrain type which can be crucial for traversability assessment,
a path made of dirt being easier to navigate than a path
made of sand. A more interresting approach is to use hybrid
methods, which combines both visual-based and geometry-
based methods to provide a more accurate and reliable terrain
traversability assessment [4].

The goal of this paper is to compare and analyze four differ-
ent methods used to assess terrain traversability in unstructured
environments. The paper is structured as follows: Section II
presents the different methods that have been selected for the
analysis, Section III presents the methodology used to compare
the different methods, Section IV presents the results of the
comparison and Section V concludes the paper.

II. METHODS

A. Vision-based method

The method proposed by Drews et al. [5] is based on the
use of a monocular camera to capture images of the terrain
facing the UGV. These images are then processed by a deep
convolutional neural network (DCNN) to compute a cost map
wich is fed into a model predicitve control (MPC) algorithm
to generate a trajectory for the UGV. The main goal of this
method is to allow the UGV to drive agressively on a track.
Agressive driving is defined as driving at the limit of the
vehicle’s handling capabilities, which requires a precise and
fast terrain traversability assessment.

The images captured by the camera are downscalled to
540x512 pixels and directly fed into the DCNN without
preprocessing. This allows faster computation and therefore
enhances the performance of the UGV. The DCNN is able to
output a top down cost map of the terrain while estimating
portion of the track that are not yet visible to the camera. The
cost map is constructed in such a way that the cost is minimal
at the center of the circuit and increases with distance from
the center. The top down perspective allows the cost map to
be directly fed into the MPC algorithm without any further

Fig. 1. Description of the method used by Drews et al. [5]

processing. This combined with the anticipation of the track
allows the UGV to drive at high speeds safely.

The method was tested on an ellipsoidal dirt track with
an RC rally car required to complete 10 laps in a row.
All the computation were performed online by a Nvidia
GTX750Ti. The driving performance are presented on Fig. 2.
It is important to note that the vehicle’s friction limits in the
track’s turns are approximately 5.5 m/s, requiring the control
algorithm to intelligently manage both steering and throttle to
ensure successful navigation.

Fig. 2. Testing statistics for top down (TD) network [5]

B. Geometry-based method

The approach described by Oliveira et al. [6] is based on
the use of a LiDAR and an IMU to gather geometric data
of the surrounding terrain to build a cost map. The idea is
to combine inertial and LiDAR data with a neural network to
compute the cost of a previously unvisited terrain. The method
is divised in three main steps:

• Three-dimensional mapping and localization
• Navigation cost estimation using inertial data
• Map augmentation through deep learning
Three-dimensional mapping and localization: For the first

step, a C-SLAM algorithm [7] is used to build a 3D map of
the terrain with the point clouds provided by the LiDAR. The
point clouds is aligned on the trajectory of the UGV thanks
to the IMU and is approximated to a 3D grid.

Navigation cost estimation using inertial data: The LiDAR
provides information about the geometry of the environment
surrounding the robot, while the IMU supplies inertial data

Fig. 3. Overview of the method proposed by Oliveira et al. [6]

for determining the robot’s position. IMU data is particularly
useful for characterizing terrain roughness, enabling the as-
signment of a traversability cost. These datasets can be fused
by synchronizing them, allowing inertial data to be estimated
from LiDAR measurements.

Map augmentation through deep learning: A model is
trained to learn the relationship between navigation cost,
inertial data, and point cloud information. This process results
in the creation of a continuous 3D map representing navigation
costs. A DCNN is used to fuse the data, taking as input the
discretized data from a 3D point cloud mapped onto a 2D grid
of 60 x 40 cells.

Th method was tested in real conditions on an UGV
equipped with a Velodyne VLP-16 LiDAR and a Xsens
MTi-30 IMU. The classification model predicted the terrain
roughness with a mean accuracy of 95.4% with a standard
deviation of 0.006 at a speed of 0.6m/s.

C. Hybrid methods

1) Method 1: The method proposed by Leung et al. [3]
relies on the use of an RGB camera and a LiDAR to take
into account both visual and geometric information. The
geometric data collected enables the creation of an elevation
grid projected onto a 2D cost map, while visual data are
processed by a DCNN. This system relies on three main
modules operating asynchronously. The first module performs
semantic segmentation on image retrieved by the camera to
identify terrain types, then projects the terrain types onto a 2D
map. The second module uses the LiDAR to generate a 2.5D
elevation map centered on the robot. Finally, the third module
combines these informations to produce a 2D traversability
map.

The generated map is structured into a grid where each
cell is associated with a global 3D coordinate system. It
contains information about height and traversability costs. The
generation of the traversability map is triggered periodically
using a timer.

Fig. 4. Overview of the method proposed by Leung et al. [3]

For semantic segmentation, each pixel of the RGB images
is assigned a label corresponding to a terrain type. The
images, initially at a resolution of 1920x1080, are resized to
640x400 to feed the neural network. Two network architectures
were tested: Gated-SCNN and ERFNet. Although ERFNet is
slightly less accurate, it was selected for its speed. The training
was conducted using the RELLIS-3D dataset, which consists
of 5957 images divided into 18 classes.

The elevation mapping is based on a library developed
by Fankhauser [8]. Using the 3D point cloud provided by a
LiDAR and information about the robot’s movement, a 2.5D
elevation map is generated. Each cell in the grid contains
height data and is positioned in a global coordinate system,
facilitating its fusion with semantic data.

The generation of the traversability map incorporates two
cost sources. The first source is based on terrain types identi-
fied by semantic segmentation. Image pixel data is projected
from the 2D camera frame to the global 3D frame, then
onto a 2D map centered on the robot. These projections
use rotation and translation matrices as well as the Pinhole
Camera model. Costs are assigned based on the terrain class
associated with each cell in the map. The second cost source
is calculated from the terrain’s geometric properties, such as
slope, roughness, and obstacle height. These costs account for
weights assigned to each parameter and critical values related
to the vehicle’s capabilities. The two cost maps are eventually
fused by addition, with specific weighting factors applied to
each contribution.

The method was validated by driving a Warthog platform
in different off-road environments. The results are presented
in Fig. 5 and illustrates good performance. For example, in
Fig. 5(a), the robot’s sides are covered with bushes, which are
correctly identified as obstacles. Indeed, the left and ride side
of the cost map are darker, indicating that the terrain is less
traversable.

2) Method 2: Similarly to [3], the methods developped by
Breitfuss et al. [2] proposes to combine geometric and visual
data to analyze terrain traversability in real time. This method

Fig. 5. Visualization of the traversability cost map generated by the framework
proposed by Leung et al. [3]. In each figure, the image on the top left corner
is the RGB image captured by the camera. The image below is the semantic
mask output from the semantic segmentation module. The right-hand side of
the figure depicts the visualization of the terrain traversability cost map. Grids
in deeper colour represent less traversable terrain.

has been developed with an emphasis on its ability to remain
effective for all types of vehicles, especially heavy ones.

Fig. 6. Overview of the method proposed by Breitfuss et al. [2]

Two analyses are performed simultaneously: a 3D point
cloud from a LiDAR is used to extract geometric data, and
semantic segmentation is applied to images to identify terrain
types. Traversability is treated as a function in a multidi-
mensional space that considers the environment’s topography
(geometric features), terrain type (visual features), and the
specifications of the UGV.

The core algorithm involves three main steps. First, an initial
estimate of traversability is generated using both geometric and
visual data. Second, this estimate is refined by incorporating
the vehicle’s characteristics. Finally, an iterative data-fusion
process combines raw data with point clouds representing
traversability calculated in previous iterations. Real-time con-
straints are a critical challenge, especially when processing
large point clouds. This is addressed using voxelization and
the Point-Update-State (PUS) principle.

Voxelization overlays a 3D grid of cubes onto the point
cloud, merging all points within a cube into a single averaged
value. During data fusion, four cases are considered: new
points (unexplored areas), old points (previously explored
but not revisited areas), overlapping new and old points
(unchanged if close, updated if significantly different), and

unchanged points marked for exclusion from further compu-
tation using PUS.

Fig. 7. Data fusion procedure: overlapping new inputs with the previously
analysed cloud leads to 1 of 4 cases [2]

Geometric data is processed in three stages. First, over-
hanging objects are identified by assigning points to primary
or secondary layers based on their height relative to the
vehicle. Successive points with height differences smaller
than the vehicle’s height are grouped into the same layer.
This process leverages the voxel grid structure, simplifying
the classification. Second, edges and obstacle heights are
detected by projecting the 3D space onto a 2D grayscale image
and applying contour detection (Canny). Obstacle heights
are calculated as the height difference between the upper
and lower boundary pixels of each contour. Depending on
the vehicle’s specifications, certain obstacles are marked as
impassable and excluded from further analysis. The edge
height information is reprojected onto the 3D point cloud.
Finally, slope is evaluated for all remaining points. This is
achieved using Principal Component Analysis (PCA), which
calculates the surface normal at each point by analyzing its
local neighborhood within a spherical region.

Visual data is processed using a convolutional neural net-
work based on the UNet architecture, selected for its high
precision in semantic segmentation. This allows semantic
classes to be accurately projected onto the 3D point cloud.
The RUGB dataset, which includes 25 classes representing
various objects and terrain types, was used for training.

The final traversability calculation at each point combines
terrain type from semantic segmentation with geometric data
(slope and obstacle height). These are compared to weights de-
termined by the vehicle’s characteristics. The result is a point
cloud where each point’s value ranges from 0 (impassable) to
1 (ideal terrain). This traversability map can subsequently be
used for tasks such as path planning.

The method was tested both in a simulated environment
and in real conditions. The results are presented in Fig. 8
and show that the method is able to adapt to different vehicle
specifications and terrain types.

III. METHODOLOGY

To compare the different methods presented in the previous
section, this paper is based on three main criteria: execution

Fig. 8. Results of a simulated outdoor environment for different vehicle
specifications depicted in the table [2]

speed, accuracy, and robustness. Execution speed refers to
the time required to run the method as well as the com-
putational power needed for its operation. This criterion is
particularly important for real-time applications where system
responsiveness is critical. Accuracy, on the other hand, reflects
the method’s ability to consider a wide range of parameters to
evaluate terrain traversability as precisely as possible. Finally,
robustness measures the method’s ability to adapt to different
environments, weather conditions, vehicle types, and more.

IV. COMPARISON RESULTS

A. Vision-based method [5]

The method proposed by Drews et al. [5] is particularly
efficient in terms of execution speed. Indeed, the use of raw
images to feed the DCNN makes the method very lightweight.
This results in a processing frequency of 40Hz on an Nvidia
GTX750Ti, which is very good for real-time applications.
Moreover, the capacity of the DCNN to anticipate the track
allows the UGV to drive at high speeds, which is a significant
advantage for agressive driving. However, the cost map is only
based on visual data, thus limiting the accuracy of the terrain
traversability assessment. Moreover, the method is well-suited
for circuits or dirt tracks, but may not be as effective in
more complex environments and does not take into account
the characteristics of the vehicule. Therefore, the method
is not very robust. In conclusion, [5] is an interesting and
very promising method delivering good results in real-world
scenarios, but adapted to a very specific use case.

B. Geometry-based method [6]

The method proposed by Oliveira et al. [6] is more compu-
tationally intensive than the previous one. The best results are
obtained for a speed of 0.6m/s, which is relatively slow. Being
solely based on geometric data, the method lacks in accuracy.
Indeed, the terrain type is not considered, which can be crucial
for the traversability assessment. However, the training of the
model is done based on the data of an IMU installed on
the robot. Thus, the model is automatically adapted to the
handling characteristics of the vehicle, which is a significant
advantage. The only downside is that the DCNN must be
retrained for each new vehicle. Moreover, the LiDAR gives

a 360° view of the environment, allowing the construction
of a cost map all around the robot. [6] is better suited to
unstructured environments than [5], while being more versatile
but less responsive.

C. Hybrid method 1 [3]

The hybrid aspect of the method proposed by Leung et al.
[3] leads necessarily to a more complex and computationally
intensive method. To optimize calculations, the 2.5D elevation
map is simplified by superimposing a grid and is calculated
only for the line-of-sight portion of the map. The combination
of both visual and geometric data allows for a more accurate
terrain traversability assessment. The DCNN is trained to
classify 18 different terrain types and geometric data includes
slope, roughness and step-height. The method is very robust
being able to adapt to different environments as well as
different vehicle types by taking into account the vehicle’s
characteristics in the cost map computation. Overall, this
method is more comprehensive than the two previous methods,
but also more computationally (and materially) expensive. The
author expresses the intention to optimize the DCNN to make
it more efficient, and to increase the number of classes in the
learning set.

D. Hybrid method 2 [2]

The optimization process in the method proposed by Breit-
fuss et al. [2] is based on the voxelization of the 3D point cloud
and the use of PUS principle. This allows to reduce the number
of points to be processed and thus to speed up the calculations.
Nonetheless, the method remains computationally intensive
due to the processing of both visual and geometric data.
Like [3], the method is very accurate, taking into account the
slope, step-height, overhanging objects and terrain types. The
DCNN is able to classify 25 different classes and is therefore
more accurate than [3]. The method is also highly robust and
particularly adaptable to different vehicle types. According to
the author, the efficiency of the method is independent of the
vehicle type and is well suited for heavy vehicles. Generally,
this method is very similar to [3], but has an accent on the
adaptability to different vehicle characteristics.

V. CONCLUSION

The comparison of the four methods presented in this paper
shows that each method has its own strengths and weaknesses.
The vision-based method proposed by Drews et al. [5] is
particularly efficient in terms of execution speed and is well
suited for agressive driving. However, the method lacks in
accuracy and robustness. The geometry-based method pro-
posed by Oliveira et al. [6] is more computationally intensive
and slower, but is more versatile and automatically adapts
to the vehicle handling characteristics. The hybrid methods
proposed by Leung et al. [3] and Breitfuss et al. [2] are more
comprehensive and accurate, but also more computationally
expensive. The method proposed by Breitfuss et al. [2] is
particularly well suited for heavy vehicles.

The main limitation of terrain traversability assessment
methods is the execution speed and the computational power
required. Indeed, the more accurate and comprehensive the
method, the more computationally intensive it is. Another
important limitation is the use of camera and LiDAR data
during rainy or foggy weather. Indeed, the performance of the
methods presented in this paper hugely depends on the quality
of the data collected. During bad weather conditions, the data
collected by camera and LiDAR may be of poor quality, which
can lead to inaccurate terrain traversability assessment [9],
[10]. Unfortunately, the methods presented in this paper were
not tested in bad weather conditions, so it is difficult to assess
their performance in such conditions. Some papers are starting
to address this issue such as [11] for LiDAR data.

REFERENCES

[1] P. Papadakis, “Terrain traversability analysis methods for unmanned
ground vehicles: A survey,” Engineering Applications of Artificial In-
telligence, vol. 26, no. 4, pp. 1373–1385, 2013.

[2] M. Breitfuß, M. Schöberl, and J. Fottner, “Safety through perception:
Multi-modal traversability analysis in rough outdoor environments,”
IFAC-PapersOnLine, vol. 54, no. 1, pp. 223–228, 2021, 17th IFAC
Symposium on Information Control Problems in Manufacturing INCOM
2021.

[3] T. H. Y. Leung, D. Ignatyev, and A. Zolotas, “Hybrid terrain traversabil-
ity analysis in off-road environments,” in 2022 8th International Con-
ference on Automation, Robotics and Applications (ICARA), 2022, pp.
50–56.

[4] S. Beycimen, D. Ignatyev, and A. Zolotas, “A comprehensive survey
of unmanned ground vehicle terrain traversability for unstructured
environments and sensor technology insights,” Engineering Science and
Technology, an International Journal, vol. 47, p. 101457, 2023.

[5] P. Drews, G. Williams, B. Goldfain, E. A. Theodorou, and J. M. Rehg,
“Aggressive deep driving: Model predictive control with a cnn cost
model,” ArXiv, vol. abs/1707.05303, 2017.

[6] F. Oliveira, M. Campos, and D. Macharet, “Three-dimensional mapping
with augmented navigation cost through deep learning,” 11 2020, pp.
97–108.

[7] D. Helmick, A. Angelova, and L. Matthies, “Terrain adaptive navigation
for planetary rovers,” Journal of Field Robotics, vol. 26, no. 4, pp. 391–
410, 2009.

[8] P. Fankhauser, M. Bloesch, and M. Hutter, “Probabilistic terrain mapping
for mobile robots with uncertain localization,” IEEE Robotics and
Automation Letters, vol. 3, pp. 3019–3026, 05 2018.

[9] A. Filgueira, H. González-Jorge, S. Lagüela, L. Dı́az-Vilariño, and
P. Arias, “Quantifying the influence of rain in lidar performance,”
Measurement, vol. 95, pp. 143–148, 2017.

[10] T. Brophy, D. Mullins, A. Parsi, J. Horgan, E. Ward, P. Denny, C. Eising,
B. Deegan, M. Glavin, and E. Jones, “A review of the impact of rain on
camera-based perception in automated driving systems,” IEEE Access,
06 2023.

[11] A. Piroli, V. Dallabetta, J. Kopp, M. Walessa, D. Meissner, and K. Diet-
mayer, “Energy-based detection of adverse weather effects in lidar data,”
IEEE Robotics and Automation Letters, vol. 8, no. 7, pp. 4322–4329,
Jul. 2023.

Adapting Object Detection for water column images
from multi-beam sounder

Laura Jouvet
3rd year engineering student

ENSTA Bretagne
29200, Brest, FRANCE

laura.jouvet@ensta.fr

Abstract
Object detection has become a crucial tool in
various fields, including autonomous driving,
surveillance, and medical imaging. State-of-
the-art deep learning models achieve remarkable
accuracy in detecting objects in natural images
but it has a hard time detecting objects in
other types of images such as those with low
contrast or high noise levels. Some researchers
succeeded in obtaining promising results for
medical images by employing fine-tuning tech-
niques but there is still a lack of research with
sonar and multi-beam sounder images. This
paper explores the challenges and potential
solutions for adapting object detection models
to water column images, aiming to bridge the
gap in research and improve detection capabil-
ities in this domain. First, we create our own
dataset with multi-beam sounder images and we
evaluate some neural networks on it and then
we train some of them on this dataset to obtain
significant improvement in the performance of
object detection with water column images.

Keywords: Object detection, Multi-beam
Sounder Image, Neural network

1 Introduction
Object detection has become a key component in nu-
merous applications, ranging from autonomous driving
and security surveillance to medical diagnostics where
it helps in identifying key objects or regions of interest
(ROIs) from complex data. Recent advancements in
deep learning have significantly improved the accuracy
and robustness of object detection models, particularly
for natural images.

Despite its success in natural images, these neural
networks struggles with non-natural imagery, particu-
larly in scenarios where images have low contrast, high
noise, or unconventional structures. This limitation be-
comes evident in specialized domains such as medical
imaging, where neural networks’ performance often de-
grades. Similarly, in sonar and multi-beam sounder im-
ages, which are used to map underwater environments,

their ability to perform object detection is significantly
compromised. These images present their own set of
challenges, including noise, scattering effects, low res-
olution, complex patterns and varying acoustic prop-
erties of the water column that differ vastly from the
more straightforward visual patterns of natural images.
These factors make it difficult for conventional neural
networks, which are primarily trained on natural image
datasets, to generalize effectively to this type of data.
Although recent studies have demonstrated progress in
adapting object detection models for medical imaging
using fine-tuning techniques, research on sonar-based
object detection remains scarce. Addressing this gap is
crucial for applications such as underwater exploration,
marine biology, and submerged infrastructure monitor-
ing.

This paper aims to investigate the adaptation of deep
learning-based object detection models for water col-
umn images obtained from multi-beam sounders. First,
we create our own dataset with multi-beam sounder
images because such a dataset does not exist. Then,
we evaluate existing neural networks on this dataset to
assess their limitations. Finally, we fine-tune selected
models on our own dataset to improve detection per-
formance in this challenging domain.

By evaluating neural networks performance and
training them with our own dataset, this study con-
tributes to enhancing object detection capabilities for
specialized and challenging domains such as underwa-
ter imaging. We hope that this work will pave the way
for more efficient and accurate analysis of sonar data
and other non-traditional images.

2 Related works
2.1 Ever More Efficient Neural Net-

works for Object Detection
Object detection has seen significant advancements
with deep learning, particularly through models like
YOLO (You Only Look Once) and Faster R-CNN.
YOLO is known for its speed, as it detects objects in
real-time by predicting bounding boxes and class labels
in a single pass [15]. Recent versions, like YOLOv4 and
YOLOv5, have improved accuracy and performance by
integrating advanced techniques [1] [8]. Faster R-CNN,

1

on the other hand, follows a two-stage approach, first
generating region proposals with a Region Proposal
Network (RPN) and then classifying them [16]. Al-
though slower than YOLO, Faster R-CNN offers higher
accuracy, especially in complex detection tasks, and has
seen improvements through methods like Feature Pyra-
mid Networks (FPN) [4] [12]. Both architectures con-
tinue to push the boundaries of object detection effi-
ciency and accuracy.

2.2 Sonar images
These architectures have been adapted and improved
across various domains, but object detection in specific
contexts like sonar or underwater images remains chal-
lenging due to the low image quality, high noise levels,
and complex features.

2.2.1 Side Scan Sonar (SSS) images

The growing marine economy and shipping industry de-
mand improved maritime safety, particularly in detect-
ing underwater targets like shipwrecks and submerged
containers. Side-scan sonar (SSS) plays a crucial role
in this, providing high-resolution images widely used in
maritime search and rescue [3, 11,21].

Traditionally, SSS object detection relied on man-
ual interpretation, prone to human error [13]. Ma-
chine learning (ML) methods leverage artificial features
like texture and edges but face challenges in feature
engineering and compatibility between extractors and
classifiers [6, 7, 19, 22, 23]. Deep learning (DL) offers
a more automated approach, yet struggles with lim-
ited SSS training data and adapting optical-based mod-
els [5, 9, 14].

To overcome these challenges, researchers have ex-
plored data augmentation, Generative Adversarial Net-
works (GANs), and deep learning models such as CNNs
and YOLO [2, 5, 10, 18]. However, real-time detection
remains difficult due to noise and sparse target features
in SSS images. Yu et al. addressed this by integrating
a transformer module with YOLOv5s, improving recog-
nition and efficiency through a novel down-sampling
strategy [20]. This paper further explores these en-
hancements, detailing preprocessing, sampling, recog-
nition, and target localization.

2.2.2 Multi-beam sounder (MBES) images

The multi-beam echo sounder is also a valuable tool
for detecting objects within the water column, such as
fish, marine debris, or other submerged structures. Un-
like side-scan sonar, which primarily focuses on seafloor
imaging, MBES provides detailed acoustic reflections
from the entire water column, enabling the identifica-
tion of dynamic and suspended elements. This capa-
bility makes MBES essential for applications in fish-
eries research, environmental monitoring, and underwa-
ter exploration. However, the detection and classifica-
tion of objects in the water column remain challenging
due to noise, signal attenuation, and the complexity
of acoustic scattering. Currently, there is no existing

dataset of images from multi-beam echo sounders, and
no known object detector has been thoroughly tested
or trained on this type of imagery while it would be
highly useful to detect objects in real time using such a
sounder.

3 Method
In this section, we will present our method for adapting
existing object detectors to our images from a multi-
beam sounder. First, we created a dataset, then we
selected an object detector, and finally, we optimized it
for our dataset.

3.1 Creation of a dataset
To create our dataset, we conducted multibeam sonar
surveys on lake of Guerlédan to generate training,
validation, and test sets for object detectors. This lake
is particularly interesting because there are fish, trees,
houses, and locks at the bottom. To avoid overlap by
using the same images in different sets, we conducted
surveys in distinct areas. We then converted this data
into images that could be used by object detectors.
Finally, we had to annotate all these data to train the
object detectors thanks to the software Labelme.

Figure 1: Labelisation on Labelme

In total, we annotated 33.541 images using the La-
belme software. Among these images, 54% contained
no objects, and the following elements were present:

Fish 3 649
Building 7 266

Tree 6 097

The number of images per class was sufficient and
fairly balanced across each set, so we did not need to
perform data augmentation.

2

3.2 Selection of the object detector
To select a detector suitable for our project, we com-
pared about ten neural networks by researching the
state of the art and identified several criteria such as
output data, processing speeds, memory consumption,
and different accuracy levels [17]. The main aspect
we focused on was the ability to use the detector in
real time since, ultimately, the final goal of our project
is to detect objects in real time beneath a boat. To
achieve this, we decided to choose a detector capable of
processing the entire image to perform detection in a
single step rather than in two steps (region separation
followed by detection).

The most efficient detector using single-step detec-
tion (Single-Shot Detection) is YOLO (You Only Look
Once). There are 12 versions of YOLO released be-
tween 2015 and 2025. Versions 6 to 8 allow real-time
detection, and version 8 is highly efficient, so we se-
lected it. Additionally, for each YOLO version, differ-
ent models exist, ranging from the smallest N to the
largest X. The main difference between these models
lies in the number of parameters. The N model has the
fewest parameters, making it faster, lighter, and ideal
for embedded and real-time systems. Therefore, we will
prioritized it, especially as we trained the networks on
our personal computers.

3.3 Optimization of the object detector
To optimize YOLOv8, we first had to compare its per-
formance on our images between the pre-trained and
non-pre-trained models, then adjust its hyperparame-
ters. Next, we made several adjustments to our datasets
to determine which organization led to the best training
results. For example, we experimented with the number
of empty images, image saturation, and image quality.

4 Experiments and results
We first evaluated the performance of YOLOv8 on our
water column images from multibeam sonar. Next, we
optimized its parameters, and finally, we modified our
dataset to further improve the results.

4.1 Evaluating YOLOv8 on our dataset
In this section, we first apply the original YOLOv8 for
the multi-beam sounder images detection task. The
model learns well on the training set, with loss func-
tions converging towards 0. Furthermore, the evalu-
ation loss functions converge to 2.2±0.1, but they do
not diverge; therefore, we do not have actual overfit-
ting. The mAP50 is 0.46 which is pretty good just like
the precision (0.52) and the recall (0.43). However, it
can be observed in the confusion matrix that, while the
model performs well in locating and identifying trees, it
is less effective when it comes to fish and even more so
for buildings. Indeed, it is noticeable that when the im-
age is empty, the model has a strong tendency to detect

a building or a fish.

Figure 2: Confusion matrix for untrained YOLOv8

It is still important to note that the model has very
rarely confused different classes with each other. Thus,
the majority of our areas for improvement and experi-
mentation will focus on handling empty images as well
as improving the annotations of our buildings and fish.

4.2 Optimizing YOLOv8 for our
dataset

To optimize the performance of YOLOv8 on our
dataset, we had to adjust some of its parameters.
One of the options offered by YOLO is the use of
pre-trained models through fine-tuning. Fine-tuning
is a deep learning technique that involves adjusting
a pre-trained model on a new, specific dataset. This
approach allows for optimal performance without the
need to train a model from scratch, significantly reduc-
ing computational time and resources. To determine
if this method is relevant, we conducted two trainings
with equivalent parameters and a dataset, with the
number of epochs and batch size set to 50 and 32,
respectively. We observed slightly better performance
when using a pre-trained model, both in terms of
precision metrics and confusion matrix. We also
obtained similar loss curves for classification, with the
evaluation curve of the pre-trained model converging to
a lower value. Therefore, we can conclude that using a
pre-trained YOLO model leads to better performance
with our dataset, and we decided to keep this model.

Next, we adjusted the hyperparameters of this model
to improve its training on our dataset. The hyperpa-
rameters include the number of epochs, batch size, and
input image size. Regarding the input image size, the
optimal recommended size for YOLO is 640, so that is
what we used. Regarding the number of epochs, too
few epochs may lead to underfitting, while too many
epochs can cause overfitting and a longer training du-
ration. For the batch size, it is also necessary to find a
balance, as a larger batch size shortens the training time
but requires more RAM. Therefore, we had to choose
values that were low enough to ensure an acceptable

3

training time while being high enough for the results to
be usable and analyzable.

In the following graph, we can observe the average
precision as a function of the number of epochs.

Figure 3: Average precision based on the number of
epochs

We can see that the best performance is achieved
with 50 epochs. Moreover, with this number of epochs,
the loss function converges properly, and the training
duration remains acceptable (3 hours and 22 minutes).
As for the batch size, the RAM of our GPUs limited
it to 32, we therefore performed three trainings with
batch sizes of 8, 16, and 32, respectively. Below are the
durations and average precisions of these trainings:

Batch size 8 16 32
Training duration 05:36:19 3:45:35 03:22:25
Average precision 0.5251 0.5204 0.542

We can observe that a batch size of 32 provides the
best performance while reducing the training duration.

For the rest of our project, we therefore set the num-
ber of epochs to 50 and the batch size to 32.

4.3 Optimizing our dataset
After selecting the model and its parameters to
achieve the best training performance, we needed
to choose our datasets, as the type of data has a
significant impact on a model’s performance. In this
section, we evaluate the influence of certain param-
eters on the training performance of the selected model.

4.3.1 Percentage of empty images

First, we analyzed the percentage of empty images
present in the dataset. To ensure proper generalization,
a dataset should include some empty images, but not
too many. It is generally recommended to use between
20% and 30% of empty images, whereas our datasets
contained 54%. We conducted three tests to evaluate
the impact of this percentage: one with all empty im-
ages, one after removing all empty images, and one
keeping only 20% of the original empty images. By
analyzing the results obtained on the same dataset, we
observed the importance of the percentage of empty im-
ages.

% of empty images retained 0 20 100
Precision 0.61 0.59 0.54
mAP50 0.48 0.46 0.44

When keeping all empty images, the model is
trained on too many non-informative samples, which
reduces overall precision and weakens object detection.
Conversely, removing all empty images significantly
increases precision and improves object detection.
However, to maintain realism, it is essential to keep a
certain number of empty images to ensure the model is
exposed to all types of images. Thus, despite slightly
lower results, we decided to retain 20% of the empty
images in our dataset.

4.3.2 Image saturation

Next, we experimented with image saturation. Indeed,
when converting water column data into images, we ini-
tially set the saturation limits randomly. Increasing the
lower saturation bound helps to homogenize surfaces
with low backscatter (BS), such as water. Conversely,
decreasing this bound introduces noise in the water, as
low BS variations are no longer limited. On the other
hand, reducing the upper saturation bound causes trees
to appear red, similar to the background, as high BS
variations become homogenized. Conversely, increas-
ing this bound allows for greater color diversity among
objects with high BS values.

To analyze the impact of these adjustments, we com-
pared training results using two different saturation set-
tings: [-50, 40] and [-64, 10].

Figure 4: Different saturations

We observed very similar performance between the
two, although images with saturation limits set to [-
50, 40] yielded slightly better results. The mAP50,
confusion matrix, and model precision were all higher
for this configuration. Additionally, the loss function
curves were smoother, indicating better consistency in
training. However, we also noted that the second model
with [-64, 10] confused trees and buildings less, likely
due to the higher lower saturation bound.

Further testing would be required to determine the
optimal saturation limits for this specific application.
However, within the scope of this project, we chose to
use the [-50, 40] settings.

4.3.3 Difficult images management

After adjusting the percentage of empty images and
saturation, our model still struggled to correctly detect

4

buildings and fish. We then decided to focus on difficult
images, specifically those where we were unsure about
the annotation. As a result, we modified our build-
ing annotations by keeping only those that were clearly
identifiable as buildings and ensured that no fish had
been left unannotated.

Figure 5: Results after the improvement of the annota-
tions

Although the results are not perfect, we observed a
significant improvement, particularly in terms of aver-
age precision and the detection of buildings and fish.
This highlights the importance of having consistent and
precise annotations, which is challenging for a dataset
annotated manually by different people. Indeed, these
annotations are subject to human errors as well as sub-
jective criteria.

However, we noticed that the model still frequently
confuses the background with buildings. This issue
arises due to the unique nature of the objects in our im-
ages. In fact, most of the annotated buildings are locks,
which are excavated into the lakebed. The only distin-
guishing feature between them and the background is
the presence of right angles. Additionally, the variation
in image quality within the same survey could further
explain the complexity of training for these detections.

Figure 6: Different images from the same swath

Here, we can observe discrepancies in the presence of
noise as well as in the color of the background, even
though both images come from the same swath. The
composition of the lakebed also adds another layer of
difficulty compared to more conventional images. A
substrate made of fine particles, such as sand or silt,
tends to absorb more acoustic waves than a bottom
composed of concrete or rocks.

Some rocks appear with a similar color to build-
ings and sometimes even a shape resembling locks or
lock houses, which could explain this confusion between

buildings and the background.

4.4 Testing our final model
We finally tested our final model with pre-trained
YOLOv8, an image size of 640, 50 epochs, and a batch
size of 32. For our dataset, we used 20% of the total
number of empty images and saturation bounds of [-50,
40]. Finally, we used the images we had re-annotated,
removing those that were excessively noisy, and we ob-
tained the following results:

Figure 7: Final results

The confusion matrix is much better than the one we
had for the untrained model. Indeed, tree detection still
performs just as well, while fish and building detection
has significantly improved. Moreover, we obtain a mAP
of 0.86 and a precision of 0.84, which are very good
results and much better than those we had with the
untrained YOLOv8.

5 Conclusion
In this study, we propose the adaptation of YOLOv8
for water column images from multibeam sonar. Di-
rectly applying YOLOv8 to images from multibeam
sonar presents a challenge due to the significant gap
between the domain of these images and the training
samples typically used for YOLO. To address this is-
sue, we adjusted various model parameters and dataset
configurations, and YOLOv8 demonstrates significant
improvements in performance.

These performances could be further enhanced by
improving image annotations and providing access to
neighboring images of the one being processed by
YOLO, helping it detect objects in challenging images.

Acknowledgments
This work was realized with Simon Barbarit–Gaboriau,
Nicolas Cloarec–Riouat and Arthur Coron with the help
of Tyméa Perret and Hughes Moreau.

5

References
[1] Alexey Bochkovskiy, Chien-Yao Wang, and Hong-

Yuan Mark Liao. Yolov4: Optimal speed and accu-
racy for real-time object detection. arXiv preprint
arXiv:2004.10934, 2020.

[2] N. Bore and J. Folkesson. Modeling and simulation
of sidescan using conditional generative adversarial
network. IEEE Journal of Oceanic Engineering,
46:195–205, 2020.

[3] T. Celik and T. Tjahjadi. A novel method for sides-
can sonar image segmentation. IEEE Journal of
Oceanic Engineering, 36:186–194, 2011.

[4] Jifeng Dai, Kaiming He, and Jian Sun. Instance-
aware semantic segmentation via multi-task net-
work cascades. In CVPR, 2016.

[5] D. Einsidler, M. Dhanak, and P. Beaujean. A deep
learning approach to target recognition in side-scan
sonar imagery. In Proceedings of the MTS/IEEE
Charleston OCEANS Conference, pages 1–4.

[6] E. Fakiris, G. Papatheodorou, M. Geraga, and
G. Ferentinos. An automatic target detection algo-
rithm for swath sonar backscatter imagery, using
image texture and independent component analy-
sis. Remote Sensing, 8:373, 2016.

[7] L. Guillaume and G. Sylvain. Unsupervised extrac-
tion of underwater regions of interest in sidescan
sonar imagery. Journal of Oceanic Engineering,
15:95–108, 2020.

[8] Glenn Jocher et al. Yolov5. https://github.com/
ultralytics/yolov5, 2020.

[9] J. Kim, J. Choi, H. Kwon, R. Oh, and S. Son.
The application of convolutional neural networks
for automatic detection of underwater object in
side scan sonar images. Journal of the Acoustical
Society of Korea, 37:118–128, 2018.

[10] S. Lee, B. Park, and A. Kim. Deep learning based
object detection via style-transferred underwater
sonar images. In Proceedings of the 12th IFAC
Conference on Control Applications in Marine Sys-
tems, Robotics, and Vehicles (CAMS 2019), pages
152–155.

[11] S. Li, J. Zhao, H. Zhang, Z. Bi, and S. Qu. A
novel horizon picking method on sub-bottom pro-
filer sonar images. Remote Sensing, 12:3322, 2020.

[12] Tsung-Yi Lin, Piotr Dollár, Ross B. Girshick,
Kaiming He, and Bharath Hariharan. Feature
pyramid networks for object detection. In CVPR,
2017.

[13] D. Neupane and J. Seok. A review on deep
learning-based approaches for automatic sonar tar-
get recognition. Electronics, 9:1972, 2020.

[14] H. Nguyen, E. Lee, and S. Lee. Study on the clas-
sification performance of underwater sonar image
classification based on convolutional neural net-
works for detecting a submerged human body. Sen-
sors, 20:94, 2019.

[15] Joseph Redmon, Santosh Divvala, Ross B. Gir-
shick, and Ali Farhadi. You only look once: Uni-
fied, real-time object detection. CVPR, 2016.

[16] Shaoqing Ren, Kaiming He, Ross B. Girshick, and
Jian Sun. Faster r-cnn: Towards real-time object
detection with region proposal networks. In NIPS,
2015.

[17] Saagie. Qu’est-ce que la détection d’objet ?, 2023.
Consulté le 20 décembre 2024.

[18] Y. Steiniger, D. Kraus, and T. Meisen. Generating
synthetic sidescan sonar snippets using transfer-
learning in generative adversarial networks. Jour-
nal of Marine Science and Engineering, 9:239,
2021.

[19] W. Xiao, J. Zhao, B. Zhu, T. Jiang, and T. Qin. A
side scan sonar image target detection algorithm
based on a neutrosophic set and diffusion maps.
Remote Sensing, 10:295, 2018.

[20] Yongcan Yu, Jianhu Zhao, Quanhua Gong, Chao
Huang, Gen Zheng, and Jinye Ma. Real-time un-
derwater maritime object detection in side-scan
sonar images based on transformer-yolov5. Remote
Sensing, 13:3555, 2021.

[21] G. Zheng, H. Zhang, Y. Li, and J. Zhao. A uni-
versal automatic bottom tracking method of side
scan sonar data based on semantic segmentation.
Remote Sensing, 13:1945, 2021.

[22] L. Zheng and K. Tian. Detection of small objects in
sidescan sonar images based on pohmt and tsallis
entropy. Signal Processing, 142:168–177, 2017.

[23] B. Zhu, X. Wang, Z. Chu, Y. Yang, and J. Shi.
Active learning for recognition of shipwreck target
in side-scan sonar image. Remote Sensing, 11:243,
2019.

6

https://github.com/ultralytics/yolov5
https://github.com/ultralytics/yolov5

Localisation de robot - comparaison des méthodes
probabilistes et ensemblistes

Ylona Provot

Abstract—La localisation est un des problèmes majeurs en
robotique mobile. Ce travail vise à comparer les méthodes ensem-
blistes et probabilistes , c’est à dire une méthode de localisation
par intervalles ou bien grâce à un filtre de Kalman. Cet article
s’interesse à un problème de localisation dans un environnement
constitué de 3 balises auxquelles le robot mesure sa distance. La
résolution d’un tel problème grâce aux intervalles puis à un filtre
de Kalman déterminera laquelle des deux méthodes est la plus
efficace dans ce contexte précis en tenant compte des incertitudes
des capteurs.

Index Terms—Localisation, filtre de Kalman, analyse par
intervales.

I. INTRODUCTION

Lors du contrôle d’un système, nous supposons souvent que
le vecteur d’état du système est entièrement connu. Ce n’est
pourtant pas le cas en réalité car ce vecteur est estimé à partir
des capteurs soumis à leurs incertitudes de mesures. Il s’agit
donc de filtrer ces mesures afin d’obtenir un vecteur d’état le
plus fiable possible.

II. MODÉLISATION DU PROBLÈME

Soit un robot terrestre modélisé par les équations d’état
d’une voiture de Dubins :

ẋ1

ẋ2

ẋ3

ẋ4

 =


ẋ
ẏ

θ̇
v̇

 =


v cos θ
v sin θ
u0

u1


avec :

• x, y la position du robot
• θ son cap
• v sa vitesse d’avance
Le robot est entouré de 3 landmarks de positions connues

et capable de mesurer sa distance à ces 3 landmarks.
On considère que le robot connait son cap à tout instant

avec une bonne précision.

III. CONTRÔLE

Appliquons un contrôle par feedback pour que le robot
dessine une trajectoire circulaire de rayon R, notée W

W =

[
R cos(t)
R sin(t)

]
D’après l’équation d’état du système, nous avons la relation :{

ẍ = u0 cos θ − u1 sin θ

ÿ = u0 sin θ + u1 cos θ

Fig. 1. Représentation du robot et des landmarks

C’est à dire

(
ẋ
ẏ

)
=

(
− sin θ cos θ
cosΘ sinΘ

)(
u0

u1

)
En prenant comme entrée(

u0

u1

)
=

(
−v sin θ cos θ
v cos θ sin θ

)−1

·
(
v0
v1

)
où (v0, v1) est le nouveau vecteur d’entrées on obtient le

système linéaire:

(
ẍ
ÿ

)
=

(
v0
v1

)
.

Plaçons les pôles en -1.{
v0 = ẅx − x+ 2(ẇx − ẋ) + ẅx

v1 = ẅy − y + 2(ẇy − ẏ) + ẅy

et {
ẍe = ẅx − xe + 2(ẇx − ẋe) + ẅe

ÿ = ẅy − y + 2(ẇy − ẏ) + ẅy

Soit finalement l’expression du vecteur d’entrées(
u0

u1

)
=

(
−v sin θ cos θ
v cos θ sin θ

)−1

·
[
ẅx − x+ 2(ẇx − ẋ) + ẅx

ẅy − y + 2(ẇy − ẏ) + ẅy

]

IV. FILTRE DE KALMAN

Pour utiliser le filtre de Kalman , on souhaite avoir un
système de la forme{

xk+1 = Akxk + uk +αk

yk = Ckxk + βk
(1)

où αk et βk sont des bruits blancs gaussiens indépendants
dans le temps. [1] C’est à dire que les vecteurs αk1

et αk2

(ou βk1
et βk2

) sont indépendants les uns des autres si
k1 ̸= k2. Le filtre opère en deux parties :

• La correction :
Prenons la mesure yk. Le vecteur représentant l’état est
maintenant xk|k, qui est différent de xk|k−1 puisque xk|k
a connaissance de la mesure y. L’espérance x̂k|k et la
matrice de covariance Γk|k associées à xk|k sont données
par les équations suivantes.

(i) x̂k|k = x̂k|k−1 +Kk · ỹk (estimation corrigée)
(ii) Γk|k = Γk|k−1 −Kk ·CkΓk|k−1 (covariance

corrigée)
(iii) ỹk = yk −Ckx̂k|k−1 (innovation)
(iv) Sk = CkΓk|k−1C

T
k + Γβk

(variance de
l’innovation)

(v) Kk = Γk|k−1C
T
k S

−1
k (gain de Kalman)

• La prédiction qui permet d’obtenir l’état à l’instant k+1.

x̂k+1|k = Akx̂k|k + uk

Γk+1|k = Ak · Γk|k ·A⊤
k + Γαk

.

Pour utiliser le filtre de Kalman, nous avons besoin
d’équations linéaires de la forme

xk+1 = Akxk + uk +αk (2)

Dans le cas de notre robot, on considère que le cap est
connu à tout instant avec une bonne précision. Considérons
donc le vecteur d’état réduit :

Z =

x1

x2

x4

 =

x
y
v


Z vérifie l’équation d’évolution suivante

ż = Az + u

où

A =

0 0 cos(θ)
0 0 sin(θ)
0 0 0


et

u =

 0
0
u1


Après discrétisation :

⇒ z(k + 1) = z(k) + dt ż(k)

⇒ z(k + 1) =

1 0 dt cos(θ)
0 1 dt sin(θ)
0 0 1


︸ ︷︷ ︸

Ak

z(k) +

 0
0

dt.u1

+ α(k)

Si on ne connait pas précisément la position de départ :

Γż(0) =

∞ ∞
∞


On considère que le robot mesure sa distance à un des

trois landmarks choisi aléatoirement tous les 2.dt. Le robot
est capable de mesurer sa vitesse et sa distance au landmark.
En se référant à la figure 1, on obtient le vecteur de mesures

y(k) =

 0 0 1
− sin(θ + δi1) cos θ + δi1) 0
− sin(θ + δi2) cos(θ + δi2) 0


︸ ︷︷ ︸

Ck

z(k) + β(k)

où β(k) est un bruit blanc.
Ce modèle établi, nous pouvons à présent calculer l’erreur

en position comme la norme entre la moyenne des points de
l’ellipsoide de confiance et la position véritable du robot.[2]
Nous obtenons ainsi le graphique :

Fig. 2. Erreur en position après filtrage de Kalman

La bonne connaissance du modèle cinématique du robot
nous permet donc d’obtenir une bonne estimation de sa
position.

V. INTERVALLES

Notre robot est régi par une équation d’état. L’estimation
par intervalles de l’état consiste alors à estimer l’ensemble des
trajectoires réalisables qui sont solutions de cette équation . Il
s’agit de propager les incertitudes dans le temps et à prendre
en compte les observations issues de mesures. Pour cela, nous
utilisons la propagation de contraintes sur tubes. [3]
Avant prise en compte des contraintes liées aux landmarks, le
tube englobant toutes les trajectoires possibles est représenté
figure 3 :

Fig. 3. Avant contraction

On utilise un réseau de contracteurs pour prendre en
compte les contraintes liées à la détection de landmarks selon
l’algorithme suivant :

Algorithm 1 Boucle de traitement des observations dans le
réseau de contracteurs
Input:

• v_m (ensemble des positions des landmarks)
• v_m_boxes (boîtes associées aux landmarks)
• x_truth (trajectoire vraie du robot)
• x, v (états et commandes sous forme de tubes)
• cn (réseau de contracteurs)

Output:
• L’état contracté x(t) sur le domaine, avec les contraintes

d’observations intégrées.
Boucle principale :

4) tant que t < tdomain.ub()− 1 faire
a) si (t− prev_t_obs) > 2× dt alors ▷ Nouvelle

observation toutes les 2 · dt
i) choisir un landmark aléatoirement

ii) pos_x← x_truth(t)[0 : 2] ▷ Position vraie du
robot (composantes x et y)

iii) pos_b← v_m[landmark_id] ▷ Position du
landmark sélectionné

iv) yi← Interval
(

distance au landmark
)

.
v) INFLATE(yi, 0.03) ▷ Ajouter une incertitude

bornée sur la distance
vi) ti← Interval(t).

vii) xi← IntervalVector(4). ▷ Création de
variables intermédiaires

viii) CN.ADD(ctc.eval, [ti, xi, x, v]) ▷ Ajouter la
contrainte d’évaluation

ix) CN.ADD(ctc.dist, [xi[0], xi[1], b[0], b[1], yi]) ▷
Ajouter la contrainte de distance

b) contraction sur la tranche à l’instant t
5) fin tant que
6) CN.CONTRACT(True) ▷ Exécuter les contractions

restantes

Un rectangle noir représente l’ensemble des sets du robot

à l’instant de la simulation. Les anciens rectangles restent
affichés. La figure 4 illustre l’animation au temps t = tf .

Fig. 4. Après contraction

Calculons maintenant l’erreur de positionnement comme la
norme entre la position véritable et le centre de masse du
sous-pavage à un instant t.

Fig. 5. Erreur de position

Nous constatons donc que l’erreur est deux fois plus im-
portante qu’avec un filtrage de Kalman.

VI. CONCLUSION ET PERSPECTIVES

Le modèle cinématique du robot étant connu, le filtre de
Kalman est très efficace dans cette situation. En revanche, la
méthode par intervalles utilisée peut aussi être adaptée sans
connaitre les équations d’état qui régissent le système : elle
sera donc beaucoup plus robuste pour des applications mettant
en jeu des systèmes plus complexes. Pour cette application
toutefois, la méthode probabiliste par filtrage de Kalman
permet de minimiser l’erreur en position et se montre plus
efficace d’après ce critère.

REFERENCES

[1] L. Jaulin, Kalman filter. 2025.
[2] J. Nicola and L. Jaulin, “Comparison of kalman and

interval approaches for the simultaneous localization and
mapping of an underwater vehicle,”

[3] L. J. Simon Rohou Benoit Desrochers, “Set-membership
state estimation by solving data association,” 2020.

Control Strategies for the Autonomous Navigation
of a Ducted Fan Flying Robot

Juliette Faury1

1 ENSTA Bretagne

Abstract

Ducted Fan are small and discreet secure platforms, which are able to perform vertical takeoff and landing (VTOL) and
stationary flight. A ducted-fan UAV is a UAV that has similar rotors configuration with a coaxial helicopter, but the rotors
are mounted within a cylindrical duct. The duct helps to reduce thrust losses of the propellers, and the ducted fans normally
have rotational speed. They are of evident interest for civil and military operations in an urban environment (shrouding
a rotating propeller protects against blade strikes with objects at low altitude and people around the aircraft). However,
this kind of vehicle is unstable and its dynamics along the three axes are strongly coupled. The purpose of this paper is to
compare several control strategies for the autonomous navigation of a ducted fan UAV.

Introduction

In recent years, vertical take-off and landing (VTOL)
unmanned aerial vehicles (UAVs) have attracted
increasing attention in transportation, surveillance,
detection and many other areas. A notable example
is the ducted fan UAV,with some exemples visibles
in Figure 1. It is well known for its compact layout
that enables the vehicle to operate safely in crowded
urban environments. [1] However, it is sensitive to
overcoming wind disturbance, and can be limited by
weather condition. [2]. That is why having a robust
flight control system is important.

But controling a ducted fan UAV is a challenging
task. Indeed, the aerodynamic efforts that apply
on the vehicle are complex and hard to estimate
and model (the aerodynamic effects are strongly
nonlinear and involve flow discontinuities). This
type of vehicle is also unstable and its dynamics
along the three axes are strongly coupled. [3]

According to recent literature, control techniques
can be classified into three categories: linear flight
control, nonlinear model-based flight control ap-
proach, and learning-based flight control approach
[4] (there are described in Table 1). In this paper,
we present examples from these categories that have
been successfully tested on real robots.

1. Linearisation

The linear controllers can be employed through the
linearization by applying relative equilibrium near
the operating point. Although the linear controllers
are easy to implement and require less computa-
tional resources, the control performance deteriorates,

when the linear controllers are applied during the
transition between horizontal and vertical flight [4].

Proportional-derivative controller

An experimental test using a prototype and this con-
troller on its motor was performed in August 2007 in
Canada. Due to the presence of noise, several filters
were used. In addition to the filters, saturation was
applied to the control effort to limit the movement
of the control surfaces.The desired attitude shown
was obtained from a pilot input which attempted
to minimize the linear motion of the system. Due
to physical limitations of the aircraft surroundings,
larger deviations in attitude was not possible. The
results of the paper show a correlation between the
desired and estimated attitude for the system[5]

Linear quadratic regulator

A linear quadratic regulator (LQR) can be shown to
be efficient and relatively simpler than classical con-
trol system design to apply to the ducted-fan system.
Tracking problem is introduced since the desired out-
put is not zero. A linear quadratic tracker (LQT) can
be used for the tracking problem, but the steady-state
error may occur. To reduce the steady-state error, a
linear quadratic tracker with integrator (LQTI) can
be proposed for the CNU ducted-fan UAV. The lin-
ear quadratic regulator is basic technique by using
the optimal control theory. Designing the LQR, the
linearized model can be derived from mathemati-
cal modeling as the six-degree-of-freedom nonlinear
equations of motion such as the Jacobian lineariza-
tion method [2]

Control Stategies of DFAVs

Figure 1: Exemple of ducted fan: on the left is the Bertin VTOL UAV [3] , while on the right is the Chungnam National University
(CNU) ducted-fan UAV [2]

2. Back-stepping

Hierarchical control strategy

This controller is divided in two parts: the High
Level Controller, dedicated to position control
in which the magnitude and the direction of the
thrust are considered as control inputs and the
Low-Level controller which is designed to stabilize
the attitude of the vehicle to the direction required
by the High Level Controller. The method takes
advantage of the connected structure of the system
to design a controller dedicated to position control
and another one dedicated to attitude stabilization.
Global stability of the connected system has been
proved, even though only asymptotic stability can be
achieved on the rotational dynamics. Both controllers
structure can be easily implemented in real time. [6]

Lemma : Let {λ1, λ2, λ3} ∈ R∗
+. Define {a, b, c} ∈

R∗
+ as:

a = ∑
i

λi, b = ∑
i<j

λiλj, c = ∏
i

λi

We assume that the discriminant ∆ = b2 − 4ac is
positive. Define the gains k1, k2, kF as:

k2 = a, k1 =
b −

√
∆

2a
, kF =

b +
√

∆
2

And the following error terms:

δ1 = ξD − ξs Position error

δ2 = mk1δ1 + mvD Velocity error

F̃ext = Fext − F̂ext Estimation error

The system is exponentially stabilizable with the
control law on the thrust vector:

ūnd = k2δ2 + F̂ext + mge3

and the following adaptive filter on Fext:

˙̂Fext = kFδ2

Moreover, the adaptive filter converges to the real
value of Fext. More precisely, ξ → ξs and F̂ext → Fext.
[6]

Hovering flight stabilization

The back stepping technique is used to design
acontrol law which adapts to incertainties Fext and
Mext..We suppose in the control design that the de-
sired thrust is constant. This hypothesis is acceptable
because the rotational dynamics is tuned up to be
much faster than the translational dynamics.The con-
trol law must define magnitude and orientation of
the thrust in order to counteract perturbing wind
forces. During, the tests, even though the estimated
parameters only converge to a neighborhood of the
real ones due to unmodelled dynamics, the vehicle
stabilizes its position to the desired one. [2]

3.Neural Network

A neural-networks-based controller can be used to
learn the system dynamics and compensate for the
tracking error between the aircraft dynamics and the
desired dynamic performance and achieve a steady
transition from hover to high-speed flight. Aircraft
dynamics is reconstructed into a better arranged non-
linear cascade form. Then,the proposed NNs-based
control scheme on two cascade closedloop systems
is applied. With all the efforts, the aircraft is able to
track a certain trajectory from hover to high-speed
flight. This process is successfully performed by prac-
tice flight test.[1]

2 Journal of Biological Sampling (2024) 12:533-684

Control Stategies of DFAVs

Technique Knowledge of Performance in Robustness Real-time
the system complex systems Implementation

Linear (PID) Not Required Not guaranteed Acceptable Easier

Adaptive Partially Required Depend on the knowl-
edge of the dynamics

Poor performance in
fast adaptation rates

Hard

Robust Partially Required Depend on the knowl-
edge of the bounds of
uncertainty

Good Hard

Learning-based Not Required Guaranteed Good Easy

Table 1: Comparison between different flight control approaches for DFAV [1].

Figure 2: DFAV flight from ascending to landing

Conclusion

All the previous controllers can be used,because the
control of a ducted fan UAV requires extensive adap-
tations to different flight configurations. Linearisa-
tion is adapted to hovering and cruise mode whereas
back-stepping and neural network are also adapted
to transition modes. Futhemore, when drones oper-
ate in confined spaces, significant proximity effects
may interfere with the aerodynamic performance and
pose challenges to flight safety. [7].

References

[1] Zihuan Cheng, Hailong Pei, and Shuai Li.
“Neural-Networks Control for Hover to High-
Speed-Level-Flight Transition of Ducted Fan
UAV With Provable Stability”. In: IEEE Access
8 (2020), pp. 100135–100151. doi: 10 . 1109 /
ACCESS.2020.2997877.

[2] Junho Jeong, Seungkeun Kim, and Jinyoung Suk.
“Control System Design for a Ducted-Fan Un-
manned Aerial Vehicle Using Linear Quadratic
Tracker”. In: International Journal of Aerospace

Engineering (Nov. 2015). doi: 10.1155/2015/
364926.

[3] J.M. Pflimlin, P. Soueres, and T. Hamel. “Hover-
ing flight stabilization in wind gusts for ducted
fan UAV”. In: 2004 43rd IEEE Conference on Deci-
sion and Control (CDC) (IEEE Cat. No.04CH37601).
Vol. 4. 2004, 3491–3496 Vol.4. doi: 10.1109/CDC.
2004.1429251.

[4] Tayyab Manzoor et al. “Flight control techniques
and classification of ducted fan aerial vehicles
| 涵道风扇飞行器飞行控制技术与分类 ”. In:
Kongzhi Lilun Yu Yinyong/Control Theory and Ap-
plications 39 (Mar. 2022), pp. 201–221. doi: 10.
7641/CTA.2021.00779.

[5] Andrew David Roberts. “Attitude estimation
and control of a ducted fan VTOL UAV”. enUS.
Thesis. Lakehead University, 2007. url: http:
//knowledgecommons.lakeheadu.ca/handle/
2453/3699.

[6] J.M. Pflimlin et al. “A hierarchical control strat-
egy for the autonomous navigation of a ducted
fan flying robot”. In: Proceedings 2006 IEEE In-
ternational Conference on Robotics and Automation,
2006. ICRA 2006. 2006, pp. 2491–2496. doi: 10.
1109/ROBOT.2006.1642076.

[7] Yiwei Luo et al. “Numerical simulation and
analysis of a ducted-fan drone hovering in con-
fined environments”. In: Advances in Aerodynam-
ics 6.1 (July 2024), p. 18. issn: 2524-6992. doi:
10.1186/s42774- 024- 00179- z. url: https:
//doi.org/10.1186/s42774-024-00179-z.

Journal of Biological Sampling (2024) 12:533-684 3

https://doi.org/10.1109/ACCESS.2020.2997877
https://doi.org/10.1109/ACCESS.2020.2997877
https://doi.org/10.1155/2015/364926
https://doi.org/10.1155/2015/364926
https://doi.org/10.1109/CDC.2004.1429251
https://doi.org/10.1109/CDC.2004.1429251
https://doi.org/10.7641/CTA.2021.00779
https://doi.org/10.7641/CTA.2021.00779
http://knowledgecommons.lakeheadu.ca/handle/2453/3699
http://knowledgecommons.lakeheadu.ca/handle/2453/3699
http://knowledgecommons.lakeheadu.ca/handle/2453/3699
https://doi.org/10.1109/ROBOT.2006.1642076
https://doi.org/10.1109/ROBOT.2006.1642076
https://doi.org/10.1186/s42774-024-00179-z
https://doi.org/10.1186/s42774-024-00179-z
https://doi.org/10.1186/s42774-024-00179-z

1

A Comparison of RRT-connect,
RRT*-connect and Informed RRT*-connect

Path Planning Algorithms
Harendra RANGARADJOU

harendra.rangaradjou@ensta.fr

Abstract—Path planning is a critical component in
the navigation of autonomous mobile robots, ensur-
ing efficient, collision-free traversal in dynamic and
complex environments. Sampling based planning al-
gorithms derived from the Rapidly-exploring Random
Tree (RRT) algorithm have been extensively studied
in recent years. They are probabilistic complete al-
gorithms and are particularly well-suited for solving
high-dimensional complex problems. This paper fo-
cuses on the RRT-connect algorithm and two of its
evolutions, namely RRT*-connect and informed RRT*-
connect. Firstly, a succinct analytical overview of the
three algorithms is provided. A performance compar-
ison based on optimality criteria such as path cost, pro-
cess time, and the total number of vertices in the tree is
then conducted through simulation-based experiments,
offering insights into their relative strengths and trade-
offs.

Index Terms—Path Planning, RRT-Connect, RRT*-
Connect, Informed RRT*-Connect, Comparison, Re-
view

I. Introduction

Path planning has played an essential role in various
fields ranging from graphics animation to the navigation
of autonomous mobile robots (see [1]–[7] in [1]). Planning
algorithms can be broadly classified into two categor-
ies, graph-based and sampling-based. These use different
strategies to explore the configuration space wherein they
operate [2]. On the one hand, graph-based algorithms, like
A* [3], fully discretize the configuration before exploring it.
This allows them to be resolution complete, meaning they
always find a solution if one exists, provided that they are
properly tuned. However, this prevents them from being
scaled easily to high dimensionality problems. On the
other hand, Sampling-Based Planning (SBP) algorithms
randomly sample the configuration space. As a result,
they are at best probabilistic complete, meaning that
they will only find a solution with a probability of 1
for an infinite number of samples. Nevertheless, they are
particularly well-suited for high-dimensional and complex
problems. In addition, SBP can be further divided into
two types: single-query and multi-query [4]. Single-query
implies searching for a path between two points in the
configuration space while multi-query implies searching for
a graph connecting three or more points.

Rapidly-exploring Random Tree (RRT) algorithms are
a cornerstone of SBP. The original RRT algorithm was
introduced by LaValle [5]. It uses a random tree rooted at
a start state in the configuration space, extending it until
it reaches a goal state. This solution offers consistent beha-
viours, probabilistic completeness and scalability but does
not guarantee optimality. Extensions of this algorithm
were later proposed to account for this drawback. For
instance, RRT* [6] ensures the asymptotic optimality of
the obtained path. Other solutions, like RRT*-smart [7]
and Informed RRT* [8], were later introduced to enhance
the convergence speed of RRT*.

Before the introduction of RRT*, RRT-Connect [9]
improved on RRT by using a bidirectional tree expansion
strategy to accelerate pathfinding. It uses two trees, grow-
ing from the start state and goal state respectively, which
extend simultaneously until they meet. Building upon
this method, RRT*-Connect [10] and Informed RRT*-
Connect [1] further ensure asymptotic optimality and
higher convergence speeds, by adapting improvements
made to the original RRT algorithm.

This paper provides a comparative review of RRT-
Connect, RRT*-Connect, and Informed RRT*-Connect
algorithms. Simulation-based experiments are used to ana-
lyze the performance of these algorithms using criteria
such as path cost, process time, and tree density. The
trade-offs between computational efficiency and path qual-
ity are also discussed.

II. Algorithms overview
A. Problem definition and notations

We define the optimal motion planning problem in a
manner similar to [1, 4, 8, 10]. Let X be the configuration
space and Xobs ⊆ X be the subset of states that imply
collisions with obstacles. We denote Xfree = cl(X \Xobs)
the subset of valid states, where cl is a closed set. Let
xstart ∈ Xfree be the start state and Xgoal ⊂ Xfree be
the goal region. We define a tree G over the configuration
space as the pair (V,E), where V ⊆ X and E ⊆ V × V
are the set of its vertices and edges, respectively.

We further define a path between two states xa, xb ∈ X
as a continuous function σ : [0, 1] → X such that
σ(0) = xa and σ(1) = xb. Let ΣXfree be the set of all

2

collision-free paths between xstart and Xgoal (i.e. ΣXfree =
{σ ∈ C([0, 1], X) | σ(0) = xstart, σ(1) ∈ Xgoal and
∀ s ∈ [0; 1] , σ(s) ∈ Xfree}). We define a cost function
c : ΣXfree → R+ that assigns a cost value to all collision-
free paths. Therefore, the optimal motion planning defin-
ition is to search for a path σ∗ ∈ ΣXfree minimizing the
cost function c, as shown in Equation 1.

σ∗ = argmin
σ∈ΣXfree

{c(σ)} (1)

We denote Xf ⊆ X the subset of the configuration space
which can provide a better solution cost than the existing
one, cbest.

Xf = {x ∈ X | f(x) < cbest} (2)

f is defined as the cost of an optimal path passing
through x. Planners can therefore increase their conver-
gence rate by limiting their search on states that belong
to Xf . However, f in equation 2 is unknown, and it
is computationally complicated to be found. Instead, a
heuristic function f̂ can be considered as an estimation.
This heuristic f̂ is admissible if it never overestimates the
actual value of f .

B. RRT-Connect
The RRT-Connect [9] algorithm is summarized in Al-

gorithm 3. As stated previously, two trees are grown from
xstart and xgoal respectively, and a path forms when the
two trees meet. The algorithm uses the same expansion
strategy as RRT [5] for each individual tree (i.e. Extend).
Once it obtains a new valid candidate xnew for the tree
Ga, it attempts to connect the trees. The Connect
function, detailed in Algorithm 2, extends the tree Gb
until it reaches either xnew or an obstacle. If an obstacle is
reached, the trees are swapped, and the process is repeated
until they meet. Nevertheless, like RRT, RRT-Connect
does not guarantee path optimality.

The Sample function returns a random state in
the configuration space. The Extend algorithm returns
Reached when the new state is the goal state, otherwise
it returns Advanced when the new state is added to the
tree (i.e. the new state is valid) and Trapped when the
new state is not added to the tree (i.e. the new state is
invalid). The Nearest function returns the closest vertex
in the tree to a given state. The Steer function returns a
new state that respects a certain set of constraints relative
to the nearest vertex in the tree. The CollisionFree
function returns whether the path between two states is
collision-free.

Algorithm 1 Extend
1: in: G = (V,E), x
2: out: S ∈ {Reached,Advanced,Trapped}
3:
4: xnearest ← Nearest(G, x)

5: xnew ← Steer(xnearest, x)
6: if CollisionFree(xnearest, xnew) then
7: V ← V ∪ {xnew}
8: E ← E ∪ {(xnearest, xnew)}
9: if xnew = x then

10: return Reached
11: else
12: return Advanced
13: end if
14: end if
15: return Trapped

Algorithm 2 Connect
1: in: G = (V,E), x
2: out: S ∈ {Reached,Advanced,Trapped}
3:
4: repeat
5: S ← Extend(G, x)
6: until S 6= Advanced
7: return S

Algorithm 3 RRT-Connect
1: in: xstart, xgoal, n
2: out: Ga = (Va, Ea), Gb = (Vb, Eb)
3:
4: Va ← {xstart}, Ea ← ∅
5: Vb ← {xgoal}, Eb ← ∅
6: Ga ← (Va, Ea) Gb ← (Vb, Eb)
7: for i = 1, . . . , n do
8: xrand ← Sample()
9: if Extend(Ga, xrand) 6= Trapped then

10: if Connect(Gb, xnew) = Reached then
11: return Ga, Gb
12: end if
13: end if
14: Swap(Ga, Gb)
15: end for
16: return Ga, Gb

C. RRT*-Connect
RRT*-Connect improves upon RRT-Connect by adding

a near neighbor search and rewiring steps, first introduced
in RRT* [6], to its tree expansion strategy. All the changes
are located in the Extend* function, presented in Al-
gorithm 4. Once a new candidate xnew is obtained via the
Steer function, the near neighbor search (lines 9–21) will
look for vertices of G which could be used to minimize the
cost of xnew in G, within a radius rRRT∗ of xnew. The list
of these neighbors is given by the Near function. Once
the proper edges are added to E, the rewiring process
(lines 22–30) will look for vertices of G, in the same
neighborhood, that could be reached more efficiently from
xnew than from their current parent and rewire the tree
accordingly.

3

Algorithm 4 Extend*
1: in: G = (V,E), x
2: out: S ∈ {Reached,Advanced,Trapped}
3:
4: xnearest ← Nearest(G, x)
5: xnew ← Steer(xnearest, x)
6: if CollisionFree(xnearest, xnew) then
7: V ← V ∪ {xnew}
8: xmin ← xnearest
9: Xnear ← Near (G, xnew,min (rRRT∗ , η))

10: cmin ← Cost(xnearest, G)+
11: Cost(Line(xnearest, xnew))
12: for all xnear ∈ Xnear \ {xnearest} do
13: if CollisionFree(xnear, xnew) and
14: Cost(xnear, G) + Cost(Line(xnear, xnew))
15: < cmin then
16: xmin ← xnear
17: cmin ← Cost(xnear, G)+
18: Cost(Line(xnear, xnew))
19: end if
20: end for
21: E ← E ∪ {(xmin, xnew)}
22: for all xnear ∈ Xnear \ {xmin} do
23: if ObstacleFree(xnew, xnear) and
24: Cost(xnew, G) + Cost(Line(xnew, xnear))
25: < Cost(xnear, G) then
26: xparent ← Parent(xnear, G)
27: E ← E \ {(xparent, xnear)}
28: E ← E ∪ {(xnew, xnear)}
29: end if
30: end for
31: if xnew = x then
32: return Reached
33: else
34: return Advanced
35: end if
36: end if
37: return Trapped

Algorithm 5 Connect*
1: in: G = (V,E), x
2: out: S ∈ {Reached,Advanced,Trapped}
3:
4: repeat
5: S ← Extend*(G, x)
6: until S 6= Advanced
7: return S

Algorithm 6 RRT-Connect*
1: in: xstart, xgoal, n
2: out: Ga = (Va, Ea), Gb = (Vb, Eb)
3:
4: Va ← {xstart}, Ea ← ∅
5: Vb ← {xgoal}, Eb ← ∅
6: Ga ← (Va, Ea) Gb ← (Vb, Eb)

7: for i = 1, . . . , n do
8: xrand ← Sample()
9: if Extend*(Ga, xrand) 6= Trapped then

10: if Connect*(Gb, xnew) = Reached then
11: return Ga, Gb
12: end if
13: end if
14: Swap(Ga, Gb)
15: end for
16: return Ga, Gb

D. Informed RRT*-Connect
Lastly, Informed RRT*-Connect [1] expands upon

RRT*-Connect by introducing informed sampling [8],
presented in Algorithm 8, to further improve efficiency and
path quality. The algorithm initially operates like RRT*-
Connect. Once an initial feasible path is found, sampling
is restricted to an ellipsoidal region defined by the current
best path cost and the positions of xstart and xgoal. This
focused exploration reduces sampling in irrelevant regions
of the configuration space. Additionally, Informed RRT*-
Connect retains the bidirectional search and optimal path
refinement capabilities of its predecessors, achieving high-
quality solutions while maintaining asymptotic optimality.

The RotationToWorldFrame function returns a
rotation matrix that aligns the informed sampling ellips-
oid with the best path. The SampleUnitBall func-
tion returns a random point in the unit ball. The
CalculateShortestPathLength function returns the
length of the shortest path found so far. Note that tree
pruning step, shown in lines 12–14 of Algorithm 9 and
detailed in Algorithm 7, is not present in the implement-
ation used in the benchmarks but is included here for
completeness.

Algorithm 7 PruneTree
1: in: V ⊆ X, E ⊆ V × V , cbest ∈ R+
2: out: V,E
3:
4: repeat
5: Vprune ← {v ∈ V | f̂(v) > cbest and ∀
6: w ∈ V, (v, w) /∈ E}
7: E←{(u, v) ∈ E | v ∈ Vprune}
8: V←Vprune
9: until Vprune = ∅

Algorithm 8 InformedSample
1: in: xstart, xgoal, cmax
2: out: xrand
3:
4: if cmax <∞ then
5: cmin ← ‖xgoal − xstart‖2
6: xcenter ← xstart+xgoal

2

4

7: C ← RotationToWorldFrame(xstart, xgoal)
8: r1 ← cmax

2

9: {ri}i=2,...,n ←
√

c2
max−c2

min
2

10: L← diag{r1, r2, . . . , rn}
11: xball ← SampleUnitBall()
12: xrand ← (CLxball + xcenter) ∩X
13: else
14: xrand ∼ U(X)
15: end if
16: return xrand

Algorithm 9 Informed RRT-Connect*
1: in: xstart, xgoal, n
2: out: Ga = (Va, Ea), Gb = (Vb, Eb)
3:
4: Va ← {xstart}, Ea ← ∅
5: Vb ← {xgoal}, Eb ← ∅
6: Ga ← (Va, Ea), Gb ← (Vb, Eb)
7: Xsoln ← ∅
8: cbest ←∞
9: for i = 1 to n do

10: cbest,prev ← cbest
11: cbest ← CalculateShortestPathLength(Xsoln)
12: if cbest < cbest,prev then
13: PruneTree(V,E, cbest)
14: end if
15: xrand ← InformedSample(xstart, xgoal, cbest)
16: if Extend*(Ga, xrand) 6= Trapped then
17: Connect*(Gb, xnew)
18: end if
19: Swap(Ga, Gb)
20: if isSolutionFound(xnew) then
21: Xsoln ← Xsoln ∪ {xnew}
22: end if
23: end for
24: return Ga, Gb

III. Experiments
Two distinct 2D scenarios were used to evaluate the

performance of the algorithms. Both scenarios were simu-
lated over 20 independent runs of 3000 iterations each. All
benchmarks were executed using Python 3.10.9 on a 64-
bit Ubuntu 20.04.6 system, running on an AMD Ryzen 7
5800H CPU (base frequency of 3.2 GHz, with Turbo Boost
up to 4.4 GHz) and 16 GB of memory. The unoptimized
implementation was shared as much as possible between
the three algorithms to ensure a fair relative comparison.
All code is available on GitHub [11].

A. Single obstacle map
In the first scenario, a simple environment featuring

a single obstacle is used, as shown in Figure 1. The
configuration space is defined as X = [0, 100] × [0, 100].
The start state xstart is placed at coordinates (15, 50) and
the goal state xgoal at coordinates (85, 50). A single 40×40

square obstacle is placed at coordinates (50, 50), resulting
in Xobs = [30, 70]× [30, 70].

Figure 1: Map used in the single obstacle scenario.

B. Cluttered map
In the second scenario, a cluttered map containing

multiple randomly generated obstacles provided a more
challenging testbed, as illustrated by Figure 2. The con-
figuration space is once again defined as X = [0, 100] ×
[0, 100]. The start state xstart is placed at coordinates
(0, 0) and the goal state xgoal at coordinates (100, 100).
Forty rectangular obstacles are placed randomly in the
configuration space without overlapping and are then left
unchanged throughout all runs. The edge lengths of each
obstacle are randomly set between 1 and 10% of the
configuration space size along the corresponding axis (e.g.
between 1 and 10 along both the x and y axes in our case).

Figure 2: Map used in the cluttered scenario.

5

Figure 3: Sample run for single obstacle scenario. Top:
RRT-Connect. Middle: RRT*-Connect. Bottom: Informed

RRT*-Connect.

Figure 4: Sample run for cluttered scenario. Top:
RRT-Connect. Middle: RRT*-Connect. Bottom: Informed

RRT*-Connect.

6

IV. Results
The performance metrics recorded in our experiments

include the CPU times, cost of the best path, and tree
density, as well as the iteration count at which the first
solution was found. Figures 5 and 6 summarize the process
times and path costs for the cluttered and single obstacle
scenarios, respectively, while Table I compiles the median
scores for each algorithm across all measured metrics.

Figure 5: Median costs and CPU times for single obstacle
scenario

Figure 6: Median costs and CPU times for cluttered scenario

Scenario Algorithm Success
rate

Total
CPU time

Single
obstacle

RRT-connect 1.0 2.64 ± 0.11
RRT*-connect 1.0 87.92 ± 3.76
Informed RRT*-connect 1.0 685.81 ± 73.59

Cluttered
obstacle

RRT-connect 1.0 2.54 ± 0.18
RRT*-connect 1.0 70.09 ± 10.28
Informed RRT*-connect 1.0 673.22 ± 142.68

Iteration
of first

solution
Best

path cost

Tree density

start
tree

goal
tree total

66 ± 17 115 ± 9 2983 ± 12 2986 ± 8 5969 ± 19
73 ± 17 111 ± 8 2981 ± 10 2977 ± 12 5956 ± 21
74 ± 22 110 ± 7 2984 ± 16 2984 ± 16 5967 ± 30
454 ± 129 187 ± 9 2416 ± 125 2417 ± 121 4834 ± 234
491 ± 195 182 ± 7 2343 ± 184 2350 ± 148 4664 ± 325
365 ± 247 180 ± 8 2457 ± 262 2448 ± 206 4905 ± 466

Table I: Comparison of median scores for all scenarios and
all algorithms with associated standard deviation

RRT-Connect consistently achieved the fastest runtimes
in the single obstacle scenario, reflecting its lightweight

expansion strategy. Although incurring higher runtimes,
RRT*-Connect successfully converged to lower-cost paths
compared to RRT-Connect, confirming that the additional
computation invested in near neighbor searches and re-
wiring operations directly contributes to improved path
quality. Lastly, while exhibiting significantly higher com-
putational costs, Informed RRT*-Connect returned both
the best path quality and the highest convergence rate,
underlining the effectiveness of informed sampling. Similar
trends were observed in the cluttered scenario.

While expectedly higher than that of RRT-Connect,
the computational cost per iteration of RRT*-Connect
after finding a first solution was significantly higher than
anticipated, even for suboptimal implementations. This
discrepancy is even more pronounced for the gap between
RRT*-Connect and Informed RRT*-Connect. Indeed, the
gaps in process times shown in Figure 5 are akin to a whole
degree of polynomial complexity going from RRT-Connect
to RRT*-Connect or from RRT*-Connect to Informed
RRT*-Connect. As a result, no process time based review
can be conducted in a meaningful way, even relatively.
We suspect that the implementation of the method used
to return the neighbourhood used for the near neighbor
search and the rewiring operations is the main culprit.

V. Conclusion
This study provided a comparative review

of RRT-Connect, RRT*-Connect, and Informed
RRT*-Connect algorithms for path planning. Simulation-
based experiments were conducted in two 2D scenarios–a
simple single obstacle map and a more complex cluttered
map–where performance was evaluated in terms of path
cost, runtime, and tree density.

While the experiments demonstrated the expected re-
lative strengths of each algorithm, the exceedingly high
process times prevented any related evaluation of the
algorithms, even relative. Future work should therefore
focus on code optimization, specifically on the analysis of
the data structures used and associated methods. Despite
this unexpected setback, the results in this paper still
provide some insights into the qualitative performance
differences between RRT-Connect, RRT*-Connect, and
Informed RRT*-Connect.

Note—This paper was written as an assignment for
an introductory course on research methodology [12]
and should be treated as such. The contents of this
paper were heavily inspired by existing literature [13]
and should not be considered original or novel work.

References
[1] Reza Mashayekhi et al. ‘Informed RRT*-Connect:

An Asymptotically Optimal Single-Query Path
Planning Method’. In: IEEE Access 8 (2020),
pp. 19842–19852. issn: 2169-3536. doi: 10 . 1109 /
ACCESS.2020.2969316.

7

[2] Steven M. LaValle. Planning Algorithms. en. Cam-
bridge University Press, May 2006. isbn: 978-1-139-
45517-6.

[3] Peter E. Hart, Nils J. Nilsson and Bertram Raphael.
‘A Formal Basis for the Heuristic Determination of
Minimum Cost Paths’. In: IEEE Transactions on
Systems Science and Cybernetics 4.2 (July 1968).
Conference Name: IEEE Transactions on Systems
Science and Cybernetics, pp. 100–107. issn: 2168-
2887. doi: 10.1109/TSSC.1968.300136.

[4] Sertac Karaman and Emilio Frazzoli. ‘Sampling-
based algorithms for optimal motion planning’. en.
In: The International Journal of Robotics Research
30.7 (June 2011). Publisher: SAGE Publications Ltd
STM, pp. 846–894. issn: 0278-3649. doi: 10.1177/
0278364911406761.

[5] S. LAVALLE. ‘Rapidly-exploring random trees : a
new tool for path planning’. In: Research Report
9811 (1998). Publisher: Department of Computer
Science, Iowa State University.

[6] Sertac Karaman et al. ‘Anytime Motion Planning
using the RRT*’. In: 2011 IEEE International Con-
ference on Robotics and Automation. ISSN: 1050-
4729. May 2011, pp. 1478–1483. doi: 10.1109/ICRA.
2011.5980479.

[7] Jauwairia Nasir et al. ‘RRT*-SMART: A Rapid Con-
vergence Implementation of RRT*’. en. In: Inter-
national Journal of Advanced Robotic Systems 10.7
(July 2013). Publisher: SAGE Publications, p. 299.
issn: 1729-8806. doi: 10.5772/56718.

[8] Jonathan D. Gammell, Siddhartha S. Srinivasa and
Timothy D. Barfoot. ‘Informed RRT*: Optimal
sampling-based path planning focused via direct
sampling of an admissible ellipsoidal heuristic’. In:
2014 IEEE/RSJ International Conference on Intel-
ligent Robots and Systems. ISSN: 2153-0866. Sept.
2014, pp. 2997–3004. doi: 10 . 1109 / IROS . 2014 .
6942976.

[9] J.J. Kuffner and S.M. LaValle. ‘RRT-connect: An
efficient approach to single-query path planning’.
In: Proceedings 2000 ICRA. Millennium Confer-
ence. IEEE International Conference on Robot-
ics and Automation. Symposia Proceedings (Cat.
No.00CH37065). Vol. 2. ISSN: 1050-4729. Apr. 2000,
995–1001 vol.2. doi: 10.1109/ROBOT.2000.844730.

[10] Sebastian Klemm et al. ‘RRT*-Connect: Faster,
asymptotically optimal motion planning’. In: 2015
IEEE International Conference on Robotics and
Biomimetics (ROBIO). Zhuhai, China: IEEE, Dec.
2015, pp. 1670–1677. isbn: 978-1-4673-9675-2. doi:
10.1109/ROBIO.2015.7419012.

[11] Harendra Rangaradjou. ReveR42/rrt-algorithms.
3rd Mar. 2025. url: https://github.com/ReveR42/
rrt-algorithms (visited on 03/03/2025).

[12] Luc Jaulin. Initiation à la recherche 2024-25. 2024.
url: https : / / www . ensta - bretagne . fr / jaulin /
learnsearch2024.html.

[13] Iram Noreen, Amna Khan and Zulfiqar Habib. ‘A
Comparison of RRT, RRT* and RRT*-Smart Path
Planning Algorithms’. en. In: (2016).

Research Article 1

Comparison between interactive robots and screens in
social assistance
ALIX AGNES1

1ROB 2025, Initiation à la recherche, alix.agnes@ensta.fr

The goal of socially assistive robots is to provide assistance to humans in need of their services, and this
assistance is carried out via social interaction. These services can be used in many settings : education,
healthcare, entertainment... But as their use becomes more and more widespread, the question of their
improved usefulness as opposed to screens or tablets accomplishing the same actions is an important one.
This article intents to compare the benefits and drawbacks of both robots and screens in social settings.
There are many factors that come into play when it comes to this comparison, such as the cost of production,
its ease of use, the perception users have of these interfaces, its flexibility... The end goal of this article is to
determine which of these two types of human-machine interfaces (HMI) is more relevant for users.

INTRODUCTION

In the late 1990s, the then-doctoral student at MIT Cynthia
Breazeal developed Kismet, the first robot designed to interact in
a natural and expressive way and to be able to recognize the emo-
tions of the people using it.[1]. Since this original breakthrough,
the field of Social Robotics has seen tremendous growth, with
many more social robots being created in the past three decades.

The goal of socially assistive robots is to provide assistance
to humans in need of their services, and this assistance is carried
out via social interaction. Socially assistive robots are meant
to be used in people’s lives in various ways. Some are used
to help teach, notably small children, others can be used to
improve day to day life by helping people adopt better behaviors.
Helping people in this way is something that is also possible via
tablets, using various apps and tools. The goal of this article is
to compare these two types of interfaces, and see which is best
for users.

1. AN OVERVIEW OF SOCIAL ROBOTS AND SCREENS

A. Definitions and key differences
Robots and tablets share many similarities: both are machines
that can interact with humans in various ways, such as through
visual, tactile, and auditory interactions. Although some robots
do not include a screen, many have a graphical user interface
(GUI) that functionally operates like a tablet. They usually can
both connect to the Internet and utilize artificial intelligence in
the form of chatbots and personalized treatment based on user
feedback. They are commonly used in healthcare, education,
and entertainment for their assistive functions.

However, there are several key differences between robots
and screens :

• Physical Embodiment: The most obvious difference be-
tween robots and tablets lies in their general shape. A robot
will have a physical body that can move and interact in
3D space, while a tablet is a flat, stationary device with no
movement.

• Design complexity: Robot hardware will include more ele-
ments, such as actuators, motors, and sensors than tablets.
This also enables them to perform actions autonomously
(such as physical gestures like waving, blinking, walking,
sitting..) while tablets will usually require a user action.

• Interactions: Users can interact with robots via touch, un-
like tablets that are restricted to visual and audio communi-
cation.

B. State of the art
B.1. A timeline of social robots

Following the creation of Kismet, several social robots were de-
signed and commercialized in the late 1990s and early 2000s. In
May 1999, Sony first released their dog-like robot AIBO, present-
ing it as the first robot pet to be widely available to the public.
AIBOs can move around, see their environment and recognize
voice commands. They can learn and mature under the guid-
ance of their owner, through stimuli from their environment or
from other robots. Furthermore, AIBOs were designed to be
temperamental and do not systematically obey orders.[2]

In 2000, Honda began producing the ASIMO (Advanced
Step in Innovative Mobility) humanoid robots. Although never
commercialized, it was used for eighteen years to further the
development of bipedal social robots. ASIMO robots can rec-
ognize moving objects, gestures, sounds, faces, and their envi-
ronment, enabling human interaction. They can interpret voice

Research Article 2

commands and gestures and distinguish those commands from
other sounds, responding to handshakes, waves, and pointing.
It answers questions verbally or with gestures and can recognize
and address about ten different people by name.[3]

Fig. 1. The AIBO (left) and ASIMO (right) social robots

With time, more specific social robots were progressively
designed, such as the PARO robot commercialized in 2003 in
Japan. The goal of this seal-shaped robot was to soothe and elicit
emotional responses in elderly patients suffering from cognitive
disorders such as dementia and Alzheimer’s. It also showed
positive results with young autistic children.[4]

The 2010s saw the creation of ever more evolved social robots,
using AI to better understand and react to social interactions.
One such example is the robot Pepper, commercialized in 2014
by Aldebaran Robotics. This robot does not have a particular
domestic purpose, and has for its only goal to connect with
people.[5] It is able to recognize emotion based on detection
and analysis of facial expressions and voice tones, and is one
of the best selling social robot with around 27 000 units sold
worldwide. [6]

Fig. 2. The PARO (left) and Pepper (right) social robots

B.2. A timeline of digital screens

In 1961, the RAND tablet was created and is credited as the
first digital graphic device. Combining a tablet interface and
a monitor, users could write and draw on the tablet, and the
input would be displayed on the monitor. [7] This technology
was refined over the following decade, leading to the release
of the Apple II tablet in 1979, although this release was not
commercially successful.

The first commercial success in tablet technology was the
release in 1989 of the GRiDPad, a pen-enabled tablet by Grid
Systems Corporation. Several other models followed suit in the
late 1990’s and early 2000’s from companies such as Apple and
Hewlett-Packard (with the HP Compaq TC1100 model in 2001).

The next major breakthrough was the release of the iPad by
Apple in 2010. Although not a new creation, this tablet pushed

touch-screen tablets into the mainstream, and led to a rise in
affordable and user-friendly devices.[8] Similar products were
quickly released by market competitors such as Samsung with
its Galaxy Tab, also released in 2010.

The rise of tablets in mainstream culture led to many new
possibilities in the field of human-machine interactions. Their
user-friendliness and intuitive use made it easy to integrate them
in industries such as healthcare, business and education as a
learning or monitoring aid. It also encouraged app development
dedicated to tablets, leading to a wave of tablet-specific games
and tools (such as productivity tools).

Fig. 3. From the RAND to the iPad : tablets over the years

2. COMPARATIVE ANALYSIS OF THE TWO INTERFACES

Robots and tablets are complex machines: to compare the two,
several performance axes need to be used to ensure a compre-
hensive comparison.

A. Cost
The first criteria one can study when it comes to comparing prod-
ucts is the price. There are many different robots and tablets: the
selection here takes a range of product to ensure the comparison
remains fair.

For the robots, the models chosen are three widely commer-
cialized models (PARO, Nao and iRobiQ), and an experimental
model called Philos that aims to be a "low-cost" social robot [9] :
this model will thus be considered a good representative of the
cheapest a social robot can get.

Category Model Price (in €)

Robots PARO 6000 [9]

Nao 10000[9]

iRobiQ 4000 (15 000 in 2008)[10]

Philos 3000 [9]

Tablets Ipad (2024 models) 200-800

Samsung (2024 models) 250-900

Refurbished tablets 100-200

Table 1. Comparison of Robot and Tablet Prices

On average, robot prices tend to be around ten times higher
than tablet prices, and this amount doesn’t account for eventual
price decrease. Indeed, tablet prices are reduced drastically
the longer they have been produced, and tablets that have the
necessary requirements to be used in a social context can be
easily found for less than 200€. On the other hand, robots can
also lose value (like the iRobiQ model used in Korean schools,

Research Article 3

which now retails at 4000€ instead of 15000€ at its launch) but
most will remain close to their original price for much longer
than tablets (here, the Nao and PARO models).

This price difference can be explained by the manufacturing
cost and the generally more complex mechanics and electronics
of robots : nevertheless, this difference favors tablets, as it makes
it easier to buy them in high volume. If one wants to provide
a social interface for a significant number of people, they will
prefer having a larger amount of tablets than an insufficient
amount of robots.

B. Flexibility and adaptability

Another factor to account for is the flexibility and adaptability
of the device chosen. Both tablets and robots can accomplish a
variety of actions and can be reprogrammed to adapt to a new
mission, but robots are usually designed for a specific set of
objectives. This specialization shows in the physical design of
the robot: a robot designed for education like iRobiQ and one
for play like AIBO will not look the same, and no amount of
reprogramming will change its outward appearance to fit a new
purpose.

Fig. 4. iRobiQ (left) and AIBO (right), two very different
robots

The physical presence of robots also impacts their flexibility
of use. Although some robots can be quite small, tablets are
designed to be compact and portable, while robots are not. In
many cases such as in schools, hospitals or research labs, their
size do not stop robots from accomplishing their objectives, but
in public or at home tablets remain the most practical option.

C. Ease of use and longevity

One of the leading domain of use for social robots and tablets is
healthcare, and specifically care for elderly people : as the life
expectancy continues to rise globally, the number of people in
need of support is quickly exceeding the number of caretakers
currently trained to help them. Using digital tools can help
alleviate the pressure put on healthcare workers, and improve
elderly people’s experience with medical care. Studies have
shown that using robots has a more lasting effect than tablets, by
helping them improve their cognitive functioning and overall
well-being[11]. As opposed to tablets, the physical component in
robots such as gestures and embodied voice help them interact
better with people unfamiliar with technology, as the use is
simpler and more human-like than a 2D interface.

For longevity, although both tools have electrical and me-
chanical components that need maintenance, robots are gener-
ally made to last longer than tablets. The rise of tablets in the
mainstream has lead to reduced prices compared to robots, but
it has also lead to shorter lifespans : tablet are rarely expected to
last longer than 5 years, while robots are a longer term invest-
ment. Unlike tablets, robots are also usually seen as a way to
reduce human workforce : most of the time, firms investing in a
robot will factor in the savings made thanks to this into the cost
of a robot. A robot might cost 16 000€, but help save more than
80 000€ every year once it is in place[10].

D. User perception and experience
The final criteria to take into account is a crucial one : what is the
user perception of these tools ? Do people consistently prefer
one over the over, and does one perform significantly better than
the other when it comes to its goals ?

Several studies have been performed in different environ-
ments to see the difference between tablet use and robot use.

First, studies have been done to compare tablet and robot
uses in the workforce. A 2020 experiment aiming to test the
efficiency of a socially assistive robot compared to a regular
tablet buzzer in the context of break-taking at work[12].

Fig. 5. Results of post-experiment survey. Purple line repre-
sents the median.

Across several metrics linked to user perception, the overall
results show people favor using the robot, and find it to be a
much more pleasant experience.

In the healthcare sector, the trend remains the same. In ex-
periments carried out to see how people interacted with either
a robot or a tablet computer delivering healthcare instructions,
results showed participants had more positive interactions with
the robot compared to the computer tablet, like increased speech
and positive emotion such as smiling. After the experiment, the
robot was rated higher on scales of trust, enjoyment, and desire
for future interaction[13].

Another experiment comparing a robotic weight loss coach
and a regular computer showed that participants developed a
close relationship with the robot and ended up tracking their
calorie consumption and exercise for nearly twice as long when
using the robot than with the other methods[14].

Finally, studies conducted on students, and notably young
children, show that robots are also favored in education. In a
2020 Kazak study, children were taught a new script and its
handwriting system in three conditions: a robot and a tablet, a
tablet only, and a teacher. Children’s ratings and positive mood
change scores demonstrated significant benefits favoring the
robot over a traditional teacher and tablet only approaches[15].

Research Article 4

Although those studies seem to point to a total robot superi-
ority in practice, the difference between performance and user
perception is important to point out. In most studies, the actual
difference in performance tends to remain very close between a
tablet and a robot : children learning a new script gained similar
knowledge in all three experimental conditions[15], and workers
taking a break did not take a significantly higher amount with
the social robot[12].

Fig. 6. Results of post-experiment survey. Purple line repre-
sents the median.

What differs with robots is the user perception : even without
significant improvement in the performance, people feel better
when they use a robot and enjoy their experience much more.
Enjoyment plays an important role in learning new skills and
keeping up positive habits : it is an important parameter to take
into account when comparing different tools such as robots and
tablets.

CONCLUSION

Tablets and robots share many similarities, but robots tend to
perform better in the context of social assistance when it comes
to user experience. The main drawbacks of a robot over a tablet
are its cost, lack of flexibility and eventually size. For small
scale use, such as in research labs, in classrooms in addition
to a teacher, or specific retirement homes, they remain the best
choice. As of now, for wider scale, public, or individual use,
tablets remain the more versatile and logical choice, although
new breakthroughs leading to a drastic reduction of robot prices
could contest their current domination.

REFERENCES

1. C. Breazeal, “Kismet: Overview,” https://web.media.mit.edu/~cynthiab/
research/robots/kismet/overview/overview.html (2025).

2. S. Corporation, “Aibo - the companion robot,” https://us.aibo.com/
(2025).

3. M. Eaton, Evolutionary Humanoid Robotics, SpringerBriefs in Intelli-
gent Systems (Springer Berlin, Heidelberg, 2015), 1st ed.

4. PARO Robots, “Paro - therapeutic robot,” http://www.parorobots.com/
index.asp (2025).

5. Aldebaran Robotics, “Pepper - the humanoid robot,” https://aldebaran.
com/en/pepper/ (2024).

6. Reuters, “Exclusive: Softbank shrinks robotics business, stops pepper
production - sources,” (2021).

7. M. Davis and T. O. Ellis, The RAND Tablet: A Man-Machine Graphi-
cal Communications Device (RAND Corporation, Santa Monica, CA,
1964).

8. D. Nations, “First-generation ipad: Hardware specs and features,” https:
//www.lifewire.com/first-generation-ipad-hardware-specs-1999509
(2024).

9. C. Puehn, T. Liu, K. Hornfeck, and K. Lee, “Design of a low-cost social
robot: Towards personalized human-robot interaction,” (2014), pp. 704–
713.

10. V. Young, “Is that a dalek in the surgery, dr ropata?” National Bus. Rev.
(2013).

11. B. Sawik, S. Tobis, E. Baum et al., “Robots for elderly care: Review,
multi-criteria optimization model and qualitative case study,” Healthc.
(Basel) 11, 1286 (2023).

12. B. J. Zhang, R. Quick, A. Helmi, and N. T. Fitter, “Socially assistive
robots at work: Making break-taking interventions more pleasant, en-
joyable, and engaging,” in 2020 IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS), (2020), pp. 11292–11299.

13. J. A. Mann, B. A. MacDonald, I.-H. Kuo, et al., “People respond better
to robots than computer tablets delivering healthcare instructions,”
Comput. Hum. Behav. 43, 112–117 (2015).

14. C. D. Kidd and C. Breazeal, “Robots at home: Understanding long-term
human-robot interaction,” in 2008 IEEE/RSJ International Conference
on Intelligent Robots and Systems, (2008), pp. 3230–3235.

15. Z. Zhexenova, A. Amirova, M. Abdikarimova, et al., “A comparison
of social robot to tablet and teacher in a new script learning context,”
Front. Robotics AI 7 (2020).

https://web.media.mit.edu/~cynthiab/research/robots/kismet/overview/overview.html
https://web.media.mit.edu/~cynthiab/research/robots/kismet/overview/overview.html
https://us.aibo.com/
http://www.parorobots.com/index.asp
http://www.parorobots.com/index.asp
https://aldebaran.com/en/pepper/
https://aldebaran.com/en/pepper/
https://www.lifewire.com/first-generation-ipad-hardware-specs-1999509
https://www.lifewire.com/first-generation-ipad-hardware-specs-1999509

Comparative Study of Swarm Robotics Control
Methods
Antoine MORVAN

Filière Robotique 3e année
ENSTA Bretagne

Brest, France
antoine.morvan2@ensta.fr

Abstract—Swarm robotics control plays a crucial role in
enabling large groups of autonomous agents to achieve collective
behaviors. This paper presents a comparative analysis of different
control strategies, including leader-based, decentralized, and bio-
inspired methods. By reviewing key contributions from recent
literature, we evaluate their efficiency in terms of convergence
time, robustness, and scalability. Our analysis highlights the
strengths and limitations of each approach, providing insights
into their applicability in real-world swarm robotics applications.

Index Terms—agent, swarm, robotics, control, bio-inspired,
centralized, decentralized

I. INTRODUCTION

Swarm robotics has gained significant attention due to its
potential in applications such as search and rescue, surveil-
lance, and environmental monitoring. The challenge lies in
developing control mechanisms that ensure coordination while
maintaining adaptability and scalability. Various control strate-
gies have been proposed, ranging from centralized leader-
based methods to fully decentralized approaches inspired by
biological swarms. This paper compares these strategies based
on their effectiveness in different swarm conditions.

In the near future, swarms of robots may replace humans
and single robots for a number of common tasks. Because
swarm systems are composed of multiple interacting robots,
they can offer robustness, redundancy, and scalability, making
them suitable for applications such as exploration and forag-
ing [10], construction, and hazardous environment operations
like firefighting or HAZMAT interventions. Indeed, recent
advancements [8] have transitioned swarm robotics from the-
oretical models to real-world implementations in laboratory
environments.

The fundamental principle behind swarm robotics lies in
the use of simple, scalable control laws applied uniformly
across all agents. These rules, often inspired by biological
swarms, lead to emergent collective behaviors such as flock-
ing, coordinated navigation, and task allocation. For instance,
flocking can emerge from a few simple rules: maintaining
a safe distance from nearby agents, moving toward distant
neighbors, and aligning movement direction with local peers.
This balance of attractive and repulsive forces allows a swarm
to move cohesively and adapt dynamically to changing envi-
ronments.

Fig. 1. Example of the zones of an agent – zone of repulsion (zor), zone of
orientation (zoo), and zone of attrac- tion (zoa) [1]

While fully autonomous swarms are envisioned for many
applications, in several scenarios, human intervention remains
essential. Operators may need to influence swarm behavior
in tasks such as large-scale area surveillance, search-and-
rescue missions, or coordinated UAV operations. However,
direct teleoperation of individual robots in large-scale swarms
is impractical due to cognitive and bandwidth constraints.
Consequently, various control strategies have been developed
to inject human influence into swarms, ranging from global
approaches—where a central command influences the entire
swarm—to bottom-up leader/follower approaches, where spe-
cific agents guide the swarm’s movements.

This study examines these control strategies, assessing their
efficiency, robustness, and applicability to different operational
contexts. By understanding the trade-offs between leader-
based and decentralized control, we aim to highlight the best
practices for designing effective swarm systems in real-world
environments.

Fig. 2. Front leaders are selected as the closest agents to a reference point
which is generated at 1000 m away along the direction of the average heading
angle of the swarm, b) Middle leaders are selected after removing agents from
the convex hull, and those that have maximum connectivity with the remaining
agents (purple dotted lines show neighbours of the leaders), and c) Periphery
leaders are chosen from the convex hull. The number of leaders selected are
about 20% leaders of the swarm and they are black in color. Leaders are
selected at t = 0. [1]

II. LEADER BASED SWARM CONTROL

Leader-based control relies on a small subset of agents
influencing the movement of the entire swarm. The study
by Tiwari et al. (2017) [1] explores the effect of number
and placement of leaders within a swarm, demonstrating that
middle and periphery positions lead to faster convergence than
front placements. While leader-based control offers a struc-
tured approach, it faces challenges in robustness, particularly
when leaders are lost or compromised.

A key advantage of leader-based control is its ability to
introduce directed movement and structured behavior in a
swarm. Leaders act as reference points that dictate the swarm’s
global behavior, making it easier to execute predefined for-
mations and coordinated maneuvers. This is especially useful
in applications where precision is crucial, such as military
operations, search-and-rescue missions, and coordinated drone
formations. By strategically placing leaders within the swarm,
operators can optimize performance in terms of efficiency and
response time.

However, this method also has significant drawbacks. The
reliance on specific agents means that if leaders fail or are
removed, the entire swarm may experience disorganization or
drift. The effectiveness of leader-based control is also highly
dependent on the percentage of leaders within the swarm.
Studies suggest that an optimal balance exists, where too few
leaders result in inefficient guidance, while too many may
lead to excessive control efforts and reduced swarm flexibility
[1](Fig. 4). Moreover, leader-based control typically requires
robust communication between leaders and followers, which
can be disrupted in environments with high interference or
limited connectivity.

To mitigate these challenges, hybrid strategies have been
proposed, integrating leader-based control with decentralized
mechanisms to improve resilience. One approach involves
dynamic leader selection, where new leaders are assigned
based on predefined rules or emergent behaviors when ex-
isting leaders are lost. Another method introduces secondary
layers of communication to enhance redundancy, ensuring that
information can still propagate effectively within the swarm.

Overall, leader-based control provides a strong foundation
for structured swarm coordination but must be carefully de-
signed to ensure adaptability and robustness, particularly in
unpredictable environments.

III. DECENTRALIZED AND BIO-INSPIRED CONTROL

Decentralized methods, such as those proposed by Koifman
et al. (2024) [2], leverage local agent interactions to achieve
emergent behaviors. These approaches mimic natural systems,
ensuring flexibility and robustness without relying on prede-
fined leaders. Similarly, Vega et al. (2023) [3] introduce in-
direct control strategies that modify environmental conditions
to influence swarm behavior, reducing the need for explicit
communication among agents.

Bio-inspired control strategies take inspiration from natural
collective behaviors observed in flocks of birds [7], schools of
fish, and colonies of insects. These strategies rely on simple
local rules followed by individual agents, which result in com-
plex global behaviors without requiring central coordination
[9]. For example, pheromone-based communication, inspired
by ant colonies, allows robots to deposit virtual markers in
an environment that guide the swarm toward a collective ob-
jective. Another approach mimics the alignment and cohesion
rules observed in bird flocking behavior to maintain formation
integrity while allowing adaptability to environmental changes.

One of the key benefits of decentralized and bio-inspired
control is scalability. Since agents interact based on local
information, these methods naturally extend to large swarms
without the communication bottlenecks associated with leader-
based approaches. Additionally, decentralized control en-
hances robustness, as no single agent is critical to the swarm’s
function. If individual agents fail, the overall system can
still function effectively by redistributing influence among
remaining members.

However, decentralized control also presents challenges.
Achieving precise global coordination can be difficult since
decision-making is distributed among agents. Convergence
time may vary depending on environmental complexity and
communication constraints. Furthermore, ensuring that local
behaviors lead to a desired global outcome requires careful
tuning of interaction rules, often requiring extensive simula-
tions or real-world experimentation.

Overall, decentralized and bio-inspired methods offer
promising alternatives to leader-based control by enhancing
flexibility and robustness. Future research aims to refine these
approaches to improve predictability and control in dynamic
environments.

IV. PERFORMANCE COMPARISON

We compare these control methods based on key perfor-
mance metrics:

A. Convergence Time:

Leader-based control achieves faster convergence in struc-
tured environments, while decentralized methods excel in
dynamic settings. The structured nature of leader-based control

Fig. 3. The influence of various reception probabilities and swarm sizes
on the swarm mobility towards the task area. The figure shows two rows of
images taken at time=100. The top row, from left to right, displays 120 agents’
positions with a reception probability of 20%, 50%, and 80%. The bottom row
from, left to right, displays 200 agents with a reception probability of 20%,
50%, and 80% from right to left. The comparative graph depicts distance to
task area of 50, 120, 200 agents with reception probability of 20%, 50%, and
80% [2].

allows for quicker information dissemination among agents,
reducing the time required for the swarm to adjust its trajec-
tory. On the other hand, decentralized control methods can
adapt more effectively to unexpected environmental changes,
albeit sometimes at the cost of increased convergence time due
to the reliance on local interactions.

B. Robustness:

Decentralized and bio-inspired approaches demonstrate
higher fault tolerance, as they do not depend on specific
agents. In a leader-based system, if key leaders are removed
or malfunction, the entire swarm can become disorganized. By
contrast, decentralized methods distribute control responsibili-
ties among all agents, ensuring that failures of individual units
have minimal impact on the overall system performance.

C. Scalability:

Decentralized methods scale more efficiently as they
eliminate the need for global coordination. As swarm size
increases, communication overhead and decision-making

Fig. 4. Variation of the time-to-converge with percentage of leaders for a)
50 agents and b) 100 agents. The lower bound denotes the time to con- verge
for a single leader with no influence [1].

bottlenecks become prominent in leader-based approaches.
Decentralized approaches avoid these issues by relying on
local agent interactions, enabling seamless scalability even in
very large groups.

Hybrid models are being explored to balance the advan-
tages of both paradigms. Some systems use leader agents for
high-level guidance while allowing decentralized behaviors
for adaptability. This combination enhances efficiency while
maintaining resilience against failures. Research by Koifman
et al. (2024) [2] supports the notion that distributed decision-
making can complement leader-based strategies by dynam-
ically adjusting the role of leaders based on environmental
conditions and mission objectives.

Overall, the choice of control strategy depends on the

application requirements. Tasks requiring high precision may
benefit from leader-based control, while those demanding
adaptability and robustness favor decentralized approaches.

V. APPLICATIONS AND CASE STUDIES

Leader-based control is well-suited for structured missions
requiring precise coordination, such as drone formations. In
contrast, decentralized methods are preferable for exploration
tasks where adaptability is crucial. Case studies in search-
and-rescue operations demonstrate the superiority of hybrid
approaches that combine leader guidance with decentralized
adaptation [11].

In disaster response scenarios, decentralized swarms have
been used to map unknown environments and identify sur-
vivors autonomously. For example, the work by Dirafzoon
and Lobaton (2013) [4] illustrates how topological mapping
using robotic swarms can enhance navigation in complex
environments. Similarly, the research by Han, Rossi, and Shen
(2007) [5] shows that covert leader-based strategies enable
efficient swarm guidance with minimal external control.

Industrial applications also benefit from swarm robotics,
particularly in warehouse automation and agricultural mon-
itoring. Swarms of autonomous drones have been deployed
for crop surveillance, leveraging decentralized coordination
to cover large areas efficiently. Studies such as those by
PheroCom (2022) [6] emphasize the potential of bio-inspired
communication methods, such as virtual pheromones, to en-
hance swarm collaboration in real-world settings.

VI. CONCLUSION

Swarm robotics control remains an active research area
with diverse approaches catering to different operational needs.
While leader-based methods offer structured control, decen-
tralized approaches provide robustness and scalability. Future
research should explore hybrid models that integrate the
strengths of both paradigms to enhance swarm efficiency
in complex environments. Further exploration of AI-driven
control mechanisms could help refine decentralized strategies
by allowing agents to dynamically adapt their behaviors based
on real-time environmental feedback.

Another promising direction involves enhancing swarm
resilience in dynamic environments through adaptive learn-
ing techniques. Machine learning models can be integrated
into swarm control frameworks to allow robots to improve
decision-making based on previous experiences. Additionally,
increasing research into human-swarm interaction could help
refine ways for operators to efficiently influence swarm be-
havior without reducing autonomy. By addressing these chal-
lenges, swarm robotics can be further optimized for real-world
deployment across various industries and scientific domains.

REFERENCES

[1] R. Tiwari, P. Jain, S. Butail, et al., ”Effect of Leader Placement on
Robotic Swarm Control,” AAMAS, 2017.

[2] Y. Koifman, A. Barel, A. M. Bruckstein, ”Distributed and Decentralized
Control and Task Allocation for Flexible Swarms,” arXiv, 2024.

[3] R. Vega et al., ”Indirect Swarm Control: Characterization and Analysis
of Emergent Swarm Behaviors,” arXiv, 2023.

[4] A. Dirafzoon, E. Lobaton, ”Topological Mapping of Unknown Environ-
ments Using an Unlocalized Robotic Swarm,” IROS, 2013.

[5] X. Han, L. F. Rossi, C.-C. Shen, ”Autonomous Navigation of Wireless
Robot Swarms with Covert Leaders,” IEEE Press, 2007.

[6] C. R. Tinoco, G. M. B. Oliveira, ”PheroCom: Decentralised and Asyn-
chronous Swarm Robotics Coordination,” arXiv, 2022.

[7] M. Nagy, Z. Ákos, D. Biro, and T. Vicsek, ”Hierarchical group dynamics
in pigeon flocks,” Nature, 464(7290), 2010.

[8] L. Parker, ”Multiple mobile robot systems,” Springer Handbook of
Robotics, 2008.

[9] I. D. Couzin, J. Krause, R. James, et al., ”Collective memory and spatial
sorting in animal groups,” Journal of Theoretical Biology, 2002.

[10] S. Nunnally, P. Walker, A. Kolling, et al., ”Human influence of robotic
swarms with bandwidth and localization issues,” IEEE International
Conference on Systems, Man, and Cybernetics, 2012.

[11] R. Bähnemann et al., L’article de Bähnemann et al. (2017) s’intitule ”A
Decentralized Multi-Agent Unmanned Aerial System to Search, Pick
Up, and Relocate Objects”, arXiv, 2017.

Numerical modelling of optical tweezers applied to
mobile micro-robots automatization

Gaétan PEREZ

UE 5.1 – Initiation à la recherche

March 5, 2025

Abstract

Optical tweezers are contactless tools that enable precise manipulation of micron-sized particles. Discovered in
1987, this technology can be integrated into robotic systems for enhanced performance. This project aims to
develop a numerical simulation to model the interactions between optical tweezers and optical receptors, facilitating
the automated control of microrobots. Optical tweezers operate using a Gaussian light beam focused on a mi-
croparticle, where the beam exerts a force similar to a harmonic oscillator, depending on the particle’s equilibrium
position within the beam. The precise and automated control of such microrobots has great potential across
various fields, especially in biology, where accurate manipulation is crucial for the success of delicate operations.

1 Introduction

Micro-scale mobile robotics, meaning actuation of sub-millimeter components, is a wide field of mobile robotics
but still a bit behind classical mobile robotics due to its numerous challenges. Indeed, components can be hard
to manufacture because of its size and micro robots often need very specific installations in order to be able to
observe it. However, progresses in the fabrication of micro components, and scientific discoveries enabled this field
of mobile robotics to grow and become a relevant solution to loads of applications such as biology, surgery, micro
manufacturing [1].
Thanks to recent progresses, many actuation technics of micro sized robotics has been developed such as using
electromagnetic fields, piezoelectric components or lasers for example [1] [2]. In this article, the focus will be on
optical trapping (also called optical tweezers) technic applied to mobile micro robotics. Optical tweezers enable to
leverage the momentum transfer between the cell and a laser beam to trap the cell within the beam, enabling
precise control over its position and movement through the laser beam. Optical trapping was first discovered in
the 80s and was used to manipulate cells and make them "levitate" to be able visualize them from every angle
[3]. Many examples prove that optical trapping is of great importance for biology and cell manipulation [4][5][6],
and therefore it can also be applied to robotics for automation. Currently, there are two potential methods for
actuation using optical trapping. The first involves directly actuating a micro-sized robot via receptors. Indeed, a
micro-robot controlled by optical trapping was introduced in 2019, demonstrating the ability to move across six
degrees of liberty (three translational and three rotational) only through optical trapping [7]. Another way is to
trap a cell on an actuated platform and to move the platform while the cell is not moving. As a result, the cell will

1

move on the platform layout [8].
However, one of the principal issue with optical tweezers, and more generally micro-sized robotics is its difficult
control. Indeed because of its size, it is complicated to visualize precisely the moves of the robots, and to automatize
its control. To complete the robot presented in[7], an manual haptic solution was proposed to control the micro
robot with great precision. Nevertheless, another step for automation would be a system fully autonomous using
guidance algorithm to control the robot. Such program could enable to accelerate cells preparation in biology
or automatized micro-sized manufacturing. Then in this context, this study will be about developing guidance
algorithm to automatize the control of the micro-sized robot presented in [7]. A dynamic python simulation will be
presented to illustrate this guidance program. However, this simulation will not take in account the changes of the
evolution of systems at very low Reynold number which happen at such small scale.

2 The optical Tweezers

An optical tweezers are a tool enabling trapping and manipulation of specific targets such as cells, or micro-sized
particles, in air or in a liquid [9]. This tool can also be used to create "optical levitation" when only using the laser
beam’s force, the target is held in air without any external help.
This trap created by the laser beam interacting with the target is induced by the dipolar forces linked to the
Gaussian structure of the beam. Indeed, ideal Gaussian beams has a specific electromagnetic amplitude envelope
following a Gaussian curve in the transverse plan. Using lens and mirrors, a high precision focus on the target can
be done as presented in figure 1

Figure 1: Laser focus using lens and mirror [10]

The interaction between the beam and the target can be expressed using the dipolar forces which represent the
movement of a system impacted by a laser, linked with the coupling energy between the system and the beam:

Ū = −α ∗ E(r, z)2

2
where E(r, z)2 is the amplitude of the electric field and α is the polarizability of the target [11]. Then, depending
on the coefficient α, the target will be attracted by the minimal or maximums of intensity of the electrical field
induced by the laser beam. Then, the dipolar force can be expressed:

Fdip(r, z) = α ∗ ∇(E(r, z)2)
2

2

and α can be expressed like this for micro-sized targets [11]:

α = n2
e ∗ ((nt

ne
)2 − 1) ∗ a3

nt
ne

2 + 2
with ne and nt the optical indices of the environment and the target. Since, a Gaussian laser beam is used, the

amplitude of the electrical field is expressed like this:

E(r, z) = E0 ∗ ω(0)
ω(z) ∗ e− r2

ω(z)2 ∗ e−i(kz+ r2
2R(z) −Φ(z))

where Φ(z) = arctan(λz
πω2(0)), with λ the wavelength of the laser,

k = 2π νv , with ν the temporal frequency of laser and v the speed of propagation of the beam (here the speed of
light).
r2 = x2 + y2, the "width" of the beam,
R(z) = z(1 + (πω

2(0)
λz)2), the bending radius of the beam,

ω(z) = ω2(0)(1 + (λz
πω2(0))2), the beam waist as it is shown in figure 2.

Figure 2: Scheme of a Gaussian beam profile focused on a point z=0

Using sympy, it is possible to obtain the expressions for Fx, Fy and Fz and
Taylor’s development around (0, 0), we get these simplified formula of the forces, similar to an harmonic oscillator:

Fx,Taylor = − 4π4E2
0w

6
0xα

(π2w4
0 + z2λ2)2

Fy,Taylor = − 4π4E2
0w

6
0yα

(π2w4
0 + z2λ2)2

Fz,Taylor = − π2E2
0w

4
0zαλ

2

(π2w4
0 + z2λ2)2

.
Then, with kx(z) = 4π4E2

0w
6
0α

(π2w4
0+z2λ2)2 , ky(z) = 4π4E2

0w
6
0α

(π2w4
0+z2λ2)2 and kz(z) = π2E2

0w
4
0αλ

2

(π2w4
0+z2λ2)2 we get:

Fx,Taylor = −kx(z)x (1)
Fy,Taylor = −ky(z)y (2)
Fz,Taylor = −kz(z)z (3)

With x, y, z the positions relatively to the focus. Thanks to these simplifications, it will be easier to include the
optical forces applied to the system in the simulation.

3

3 Simulation
In this section, a dynamic simulated micro robot based on the vehicle presented in [7] will be done. The simulation
will follow the block diagram presented in figure 3, based on Lapierre’s theory [12].

Figure 3: Block diagram of a dynamic simulation using Euler Angles [12]

3.1 Kinematic model

First, lets write the kinematic model of the robot which links the velocity and the angular speed in the global
frame, with the velocity and angular speed in the body frame. The model will use the Euler angles as the gimbal
lock should never be :
Then, we get η̇ = Reulcin · ν, with the Euler matrix:

Reul
cin =



cosψ · cos θ cosψ · sin θ · sinϕ− sinψ · cosϕ cosψ · sin θ · cosϕ+ sinψ · sinϕ 0 0 0
sinψ · cos θ sinψ · sin θ · sinϕ+ cosψ · cosϕ sinψ · sin θ · cosϕ− cosψ · sinϕ 0 0 0

− sin θ cos θ · sinϕ cos θ · cosϕ 0 0 0
0 0 0 1 sinϕ · tan θ cosϕ · tan θ
0 0 0 0 cosϕ − sinϕ
0 0 0 0 cos θ cos θ



, η =
[
X
Q

]
the the position and orientation of the system in the world frame, and ν =

[
Vr
ωr

]
the velocity and angular

speed in the body frame.

3.2 Dynamic model

In order to make the dynamic simulation, a dynamic model is necessary to link the forces at the entry of the
system and the kinematic model. As previously said in the section 1, an this dynamic model does not consider
the effect of having a very low Reynolds number. Indeed E.M Purcell explains in [13] that at such scale, physics
behaves differently. We will approximate this behavior with a strong depreciation factor. In the figure 3, the
dynamic model is represented by the function fd. Since the robot is considered in levitation thanks to the optical
tweezers [7], we can apply an aerodynamical model to our robot. Because the robot is constraint by the 4 laser
beams, we can neglect the Coriolis forces into our model and thus do not consider the potential sliding effect when
the robot is rotating. Then, here is the dynamic model chosen:

Fu
Fv
Fw
Γp
Γq
Γr


=



Xu|u| · u|u| +Xu̇ · u̇
Xv|v| · v|v| +Xv̇ · v̇
Xw|w| · w|w| +Xẇ · ẇ
Kp|p| · p|p| +Kṗ · ṗ
Kq|q| · q|q| +Kq̇ · q̇
Kr|r| · r|r| +Kṙ · ṙ


Where Xu|u| is the fluid friction coefficient in the direction of u and Xu̇ is the coefficient representing the inertia of
the system in the direction of u. Then, if we reverse this model, we can obtain the derivative of the system’s state

4

in the body frame ν̇:

ν̇ =



u̇
v̇
ẇ
ṗ
q̇
ṙ


=



1
Xu̇

(Fu −Xu|u| · u|u|)
1
Xv̇

(Fv −Xv|v| · v|v|)
1
Xẇ

(Fw −Xw|w| · w|w|)
1
Kṗ

(Γp −Kp|p| · p|p|)
1
Kq̇

(Γq −Kq|q| · q|q|)
1
Kṙ

(Γr −Kr|r| · r|r|)


Where F(x) and Γ(x) are the force and the torque in the x direction. These are computed using the formulas (1),
(2), and (3) expressed in the body frame. The coefficients X(x)|(x)|, X ˙(x) can be estimated or experimentally found.
In this paper, they will be estimated for the simulation since no experimental data on this particular micro-sized
robot was found by the author. However, we know that in such scale, the friction are much bigger than the inertial
effects.
Thus, having the kinematic model and the dynamic model, the simulation can now be implemented. Using the
data of the laser, and of the shape of the robot from [7], we can create an accurate simulation with coherent values
of the forces induced by the laser beams on the receptors. Figure 4 shows the visual of the robot in the simulation,
in different orientations.

(a) Visual of the simulated robot, with
the laser beams (b) Simulated robot oriented: ϕ = π/2 (c) Simulated robot oriented: θ = π/4

(d) Simulated robot oriented: θ = π/4,
ψ = π/2

Figure 4: Simulated robot in different positions

5

4 Guidance and control

Now that we have a working simulation, it would be interesting to see how it can be controlled. Indeed, first very
simple tests shows that the system responds correctly to the laser beams in the simulation, but the response can be
optimized. Without guidance and control system, the command introduced in the system are too abrupt making
the response oscillating for a long time as it is shown in figure 5.

(a) The norm between each sphere and its corresponding
laser beam in function of the time

(b) The forces applied by the laser beams on each corre-
sponding sphere in function of the time

Figure 5: Forces and norm between the laser beams and the spheres in the simulation

Our objective in this section is to remove the oscillation so that the system converges directly to the wanted
state, and if it exists, we should try to remove the static error. To understand how the guidance and the control
programs impact the system, we should complete figure 3 and add the guidance blocks. To simplify the scheme, all
the blocks represented in figure 3 will be transformed in one block named "system" as it is a model of the real
system.

Figure 6: Block diagram representing the implementation of guidance and control in the pipeline [12]

As presented in figure 6, the guidance program gives a desired state of the robot (this can be for example its
position and orientation) that will be introduced in the control program. This control program is responsible of
removing the oscillation and errors in the response of the robot. The control can be for example a proportional–
integral-derivative controller (PID) but other types of controllers exist. In order to test the controller, we will
implement a simple stabilization program consisting in reaching a fixed point in the 3D space. However, for now,
the third dimension will be omitted since we can split the evolution in 3D in 2 steps:

• Evolution in the plane : the robots moves in the 2D space (x, y) to go to its objective;

6

• Change of plane : if the robots needs to move according to z axis, then the motion according to (x, y)
stops, and only the movement in the z axis is enabled.

Then, in this context, we define the 2D objective this way:

e0 =

xd − x
yd − y
ψd − ψ

, the error expressed in the global frame, and eB = Reul · e0, the error expressed in the body frame.

Then, simply we express the wanted state in the body frame like this (in 2 dimensions so νd is a 3 dimensional
vector):

νd =

Ku · tanh(Kx · eB,x +Kẋ · ˙eB,x)
Kv · tanh(Ky · eB,y +Kẏ · ˙eB,y)
tan(Kψ · eB,ψ +Kψ̇ · ˙eB,ψ)

.

Here we used a simple proportional controller saturated using a tanh function, but we could put also a complete
PID inside it to be more precise. Here the objective is only to show that any kind of controller could be used with
this simulation, quite easily. So, now that we have νd, we can follow the chain represented in figure 6 and get to
the wanted input.

(a) The norm between each sphere and its corresponding
laser beam in function of the time

(b) The forces applied by the laser beams on each corre-
sponding sphere in function of the time

(c) The distance between the objective and the robot in
function of the time

Figure 7: Forces and norm between the laser beams and the spheres in the simulation using a guidance program

7

The figure 7 shows the the same plots as in figure 5 but with the previously explained guidance program
implemented. We can see that the oscillations disappeared as expected. However, on plot 7c, we can see that the
robot seems to never achieve its objective (I let the simulation during a long time and it never achieves its goal).
In order to remove this static error, an integral term should be added in the controller.

5 Conclusion
This work presents a dynamic simulation of the micro-sized robots described in [7]. The ultra-precise control
provided by optical tweezers makes these micro-robots highly promising for various applications. However, to fully
automate their operation, the development of guidance programs is essential.
In this context, the simulator enables easy testing of guidance algorithms without requiring complex infrastructure
or high computational power. It provides a flexible and accessible environment to design and refine control
strategies before deploying them in real-world experiments. However, a strong hypothesis has been made when not
considering the effects of a low Reynolds number of the environment on the system.

8

Keywords : Optical Tweezers, Gaussian Beam

References
[1] Eric Diller and M. Sitti. Micro-scale mobile robotics. Foundations and Trends in Robotics, 2:143–259, 01 2013. 1

[2] Nicolas Andreff Stéphane Régnier Ali Oulmas, Johan E Quispe. Comparing swimming performances of flexible and
helical magnetic swimmers. IEEE/RSJ International Conference on Intelligent Robots and Systems, 2019. 1

[3] D. E. Smalley, E. Nygaard, K. Squire, J. Van Wagoner, J. Rasmussen, S. Gneiting, K. Qaderi, J. Goodsell, W. Rogers,
M. Lindsey, K. Costner, A. Monk, M. Pearson, B. Haymore, and J. Peatross. A photophoretic-trap volumetric display.
Nature, 553(7689):486–490, January 2018. 1

[4] David G. Grier. A revolution in optical manipulation. Nature, 424(6950):810–816, August 2003. 1

[5] Carlos Bustamante, Steven B Smith, Jan Liphardt, and Doug Smith. Single-molecule studies of dna mechanics. Current
Opinion in Structural Biology, 10(3):279–285, 2000. 1

[6] A. Ashkin. History of optical trapping and manipulation of small-neutral particle, atoms, and molecules. IEEE Journal
of Selected Topics in Quantum Electronics, 6(6):841–856, 2000. 1

[7] Stéphane Régnier Edison Gerena and Sinan Haliyo. High-bandwidth 3d multi-trap actuation technique for 6-dof real-time
control of optical robots. IEEE Robotics and Automation Letters, 2019. 1, 2, 4, 5, 8

[8] Alioune Badara Diouf, Ferhat Sadak, Edison Gerena, Abdelkrim Mannioui, Daniela Zizioli, Irene Fassi, Mokrane
Boudaoud, Giovanni Legnani, and Haliyo Sinan. Robotic sorting of zebrafish embryos. 02 2024. 2

[9] A. Ashkin. Observation of a single-beam gradient force optical trap for dielectric particles. Optica Publishing Group,
1986. 2

[10] EdmundOptics. https://www.edmundoptics.com/knowledge-center/application-notes/lasers/gaussian-beam-propagation/
?srsltid=AfmBOoovtUaSrxpq3LexgJNhlWgyFS1KVkd7cLDUn9EO4xLVmwiPfsqa. 2

[11] S.KIELICH J.R. LALANNE, A. DUCASSE. Interaction Laser Molécule: Physique du laser et optique non linéaire
moléculaire. 1994. 2, 3

[12] Lionel Lapierre. Teaching. https://www.ensta-bretagne.fr/lapierre/Teaching/. 4, 6

[13] E.M Purcell. Life at low reynolds number. Physics and our world: a symposium in honor of Victor F. Weisskopf, 1976. 4

9

https://www.edmundoptics.com/knowledge-center/application-notes/lasers/gaussian-beam-propagation/?srsltid=AfmBOoovtUaSrxpq3LexgJNhlWgyFS1KVkd7cLDUn9EO4xLVmwiPfsqa
https://www.edmundoptics.com/knowledge-center/application-notes/lasers/gaussian-beam-propagation/?srsltid=AfmBOoovtUaSrxpq3LexgJNhlWgyFS1KVkd7cLDUn9EO4xLVmwiPfsqa
https://www.ensta-bretagne.fr/lapierre/Teaching/

Interval Approach for Marine Robot Localization
Without GPS or LIDAR

Salah El Din SEKAR1

Abstract— This paper addresses the localization of a
marine robot in an environment where access to received
information is limited, within a critical situation where
GPS is unavailable. The robot must localize itself relying
on Inertial Measurement Unit (IMU), a camera and
a Doppler Velocity Log (DVL), based on pre-defined
beacons on a map. To solve this problem, we pro-
pose a method based on interval computation [2] and
contractors [3] to reduce uncertainties in the various
possible regions. This approach is particularly well-suited
when the initial position of the robot is unknown. We
implement our approach using Codac[1] and evaluate its
performance on simulated data

I. INTRODUCTION

In this paper, we address the problem of robot
localization using bearing measurements. We con-
sider the following assumptions:

• The initial position of the robot is known.
• The position of the landmarks is known.
• The landmarks are distinguishable.
• The map is known.
The problem of localization has always been a

major challenge in robotics. Numerous solutions
exist, each with different implementations, and
the choice of method depends on the available
resources and the specific constraints of the en-
vironment. In cases where GPS is unavailable,
maintaining an accurate estimate of the robot’s po-
sition becomes a critical issue, requiring alternative
approaches [5].

To perform localization, we rely on sensor data
to estimate the robot’s position and orientation.
The following measurements are used:

• Velocity: Measured using a Doppler Velocity
Log (DVL).

1Salah El Din SEKAR, Msc. in Autonomous Robotics, École
Nationale Supérieur de Techniques Avancées

• Bearing angles: Obtained from cameras and
LiDAR.

• Heading (Yaw/Cap): Provided by an Inertial
Measurement Unit (IMU).

II. MATHEMATICAL FOUNDATION

Let us consider the robot in Figure 1 moving on
a plane. We call bearing the angle αi between the
axis of the robot and the vector pointing towards
the landmark.

Fig. 1: A robot moving on a plane, measuring
angles to locate itself.

Goniometric localization [4] determines the po-
sition of a robot by using bearing angles measured
from known landmarks. The fundamental equation
governing this technique is:

(xi−x) sin(θ+αi)− (yi−y) cos(θ+αi) = 0 (1)

where:
• (xi, yi) are the known coordinates of the land-

mark,
• (x, y) is the unknown position of the robot,
• θ is the robot’s heading angle,

• αi is the measured bearing angle to the land-
mark.

Given multiple landmarks, the system of nonlin-
ear equations can be solved to estimate the robot’s
position. However, in real-world scenarios, mea-
surements contain uncertainty due to sensor noise,
which can lead to errors in position estimation.

To address this issue, interval analysis is intro-
duced to model the uncertainty by representing
bearing measurements as intervals rather than ex-
act values. This ensures a more robust estimation
process in the presence of measurement noise [7].

III. CONSTRAINT NETWORK

the evolution function and the observation func-
tion that are shown in the equations 2 will define
the constaraint for the problem we are facing.
therefore, the contactors that i will use are related
to those constraint

{
ẋ(t) = f(x(t),u(t)) (evolution eq.)

g(x(t),mi) = 0 (observation eq.) (2)

where mi represents the known position of the
landmark

the evolution function that will represnet the
dynamic of the robot in my simulation will be
presented by the following equations:

f(x, u) =

10 cos(x3)
10 sin(x3)
u+ nu

 (3)

The observation function represents the mea-
sured bearing angle , which can be obtained using
various sensors such as cameras and LiDAR

g(x,m) = tan−1
(

yi−y
xi−x

)
− θ (4)

those functions can be summed to obtain the
following constrains [9] that will be used in our
contractor 

(i) v(·)(ti) = v(ti)
(ii) xθ(·)(ti) = θ(ti)
(iii) ẋ(·) = v(·)
(iv) pi = x(ti)
(v) ai = θ(ti)
(vi) pi = g(yi,mi)

(5)

We define the right domain for each variable
so we can apply the contractors on them. We
define the tubes [Xxy](·), [Xθ](·), that contain the
trajectories of the position (x, y) and the heading
θ. we also define the tubes [v](·),[u](·). As for the
boxes we have [mi],[pi], and for the Intervals we
have [yi],[ai].

to solve the problem of those constrains we
apply the right contractors on thses domain in
an interative way. the procedure stops when the
contractors are no more efficient. we we show you
next the contractos used for each constrains most
of those constrains are similare to the one that
exists in the article of data association [10].

• (i),(ii): adds continuous data to a tube at a
time t. the contractor used is Cadd data. In this
case, the tube represents an enclosure of a
trajectory of measurements that are given in
realtime.

• (iii): this constrain bind the trajectory [x](·)
to the corresponding derivative [v](·). The
related contractor Cd/dt allows contractions on
the tube [x](·) to preserve only trajectories
consistent with the derivatives enclosed in the
tube [v](·).

• (iv),(v): pi = x(ti) is a constraint that links
the vectors pi and ai to the evaluation of the
trajectory x(·) and θ(·) at time ti . A dedicated
contractor Ceval has been provided. It will
allow the correction of the positions of the
robot.

As for the final constraint, it represents the
bearing constrain and for this one there is no
defined contractor to use so we had to create
our own contractor that is called gonio contractor.
in this following section we will talk about this
contractor

IV. GONIO CONTRACTOR

The contractor enforces the bearing constraints
derived from goniometric equations that was men-
tion in the mathematical foundation section. for
better understanding, we will take an example of
a robot with bearing with two different landmarks.
the system will be represeneted by the following
matrix equation

A(θ, α1, α2) ·
(
x
y

)
= b(θ, α1, α2, x1, y1, x2, y2).

with:

A =

(
sin(θ + α1) − cos(θ + α1)
sin(θ + α2) − cos(θ + α2)

)
and

b =

(
x1 sin(θ + α1)− y1 cos(θ + α1)
x2 sin(θ + α2)− y2 cos(θ + α2)

)
i.e.,(
x
y

)
= A−1(θ, α1, α2) · b(θ, α1, α2, x1, y1, x2, y2).

This system is solved iteratively using backward
propagation, which reduces uncertainty in position
estimation. we will show you an example of a
static situation where we have a robot in a position
that is given

To illustrate the application of goniometric lo-
calization, we present an example in a static
scenario. We consider a robot with a true state
of:

xtruth = (−3,−2,
π

4
)

where the robot’s position is unknown. However,
we assume that the robot is equipped with sensors
that measure the bearing angles from known
landmarks.

The two landmarks in this scenario are located
at: (0, 6) and (4, 0)

Since measurements in real-world applications
are subject to uncertainties, we introduce error
intervals to account for potential inaccuracies:

TABLE I: Uncertainties on Data Used for the
example.

Data Description Uncertainty Unit
mi Landmark position [−0.05, 0.05] m
yi Measured bearing angle [−0.05, 0.05] rad
θ Heading angle Known rad

(x, y) Robot position Unknown m

Given these uncertainties, we apply the Go-
niometric Contractor to estimate the robot’s

position using only bearing measurements. The
estimation is performed using a paving algorithm,
specifically SIVIA (Set Inversion Via Interval
Analysis), as implemented in the CODAC library.

Below, we provide an illustration of this exam-
ple, showing the computed position estimations
based on the interval constraints.

Fig. 2: Illustration of the Goniometric Localization
Example using SIVIA [8] Algorithm.

V. APPLICATION

Now that we have explored all the constraints
necessary to solve our localization problem and
demonstrated the use of the goniometric contractor,
we will move on to solving a real-time dynamic
localization problem.

In this scenario, we assume that the robot starts
with a known initial position but eventually loses
its localization. Our goal is to use the previously
defined constraints to continuously track and refine
the robot’s estimated position over time.

To achieve this, we will introduce landmarks on
the map that the robot can detect and identify. Us-
ing bearing measurements, we will progressively
refine the robot’s estimated position, improving
localization accuracy as more landmarks are ob-
served.

This simulation will demonstrate how we can
apply the goniometric contractor in a real-time

setting, integrating dynamic state updates, sen-
sor measurements, and interval-based reasoning
to maintain an accurate estimate of the robot’s
position. Finally, we will present an example to
illustrate the approach in action.

Fig. 3: Illustration of a live contraction for the
position of the robot using the network that was
defined at the start.

In the example, we assume that the initial po-
sition is known with xtruth = (0, 0, 2) and the
evolution function is as defined in Equation 3 In
the example we shown orange boxes represnts the
landmarks that are predefined on our map and they
are precieved as follows:

TABLE II: Landmark Positions and Their Time of
Perception

Time (t) Landmark Position mi

t = 5 (1, 15)
t = 10 (−2,−7)
t = 12 (5,−5)

(a) (b)

Fig. 4: Illustration of goniometric contraction for
an evolving system.

in the 2 figures we zoom in to 2 landmarks
that gives a good data for our contractor network
to gives more precision for our location, we can
see after the perception of each landmark how
the position box is being contracted gives a better
result that englob the real position of our system,
and the boxes with black borders

VI. CONCLUSION

In this work, we demonstrated how goniometric
localization combined with interval analysis pro-
vides a robust approach to estimating a robot’s po-
sition under uncertainty. By leveraging contractor-
based methods, we ensured that the feasible region
for the robot’s location was rigorously bounded,
unlike traditional probabilistic approaches. This
method offers guaranteed consistency, resilience to
measurement noise, and computational efficiency
compared to classical techniques like Extended
Kalman Filters (EKF) [12] or Particle Filters (PF)
[11]. The results highlight the potential of interval-
based localization as a reliable alternative for real-
world robotic applications, where precise state es-
timation is crucial. In future work, we aim to apply
this method in scenarios where the initial position
of the robot is unknown, no LiDAR is available for
localization, and the robot must identify landmarks
autonomously.

REFERENCES

[1] https://codac.io/
[2] C. Jermann, G. Trombettoni, B. Neveu, and P. Mathis. De-

composition of geometric constraint systems: a survey. Inter-
national Journal of Computational Geometry & Applications,
16(05n06):379–414, 2006.

[3] Chabert, G., Jaulin, L. ”Contractor Programming.” Artificial
Intelligence Journal, 2009.

[4] Jaulin, L. ”kalmooc” https://www.ensta-
bretagne.fr/jaulin/kalmooc.html

[5] L. Jaulin. Mobile Robotics. ISTE editions, 2015.
[6] Briechle, K., & Hanebeck, U. D. (2002). Localization of a

Mobile Robot using Relative Bearing Measurements. IEEE
Transactions on Robotics and Automation, 18(6), 963–972.

[7] Jaulin, Luc & Walter, Eric & Meizel, Dominique. (2000). Ro-
bust Autonomous Robot Localization Using Interval Analysis.
Reliable Computing. 6. 337-362. 10.1023/A:1009990700281.

[8] V. Drevelle and P. Bonnifait. Localization confidence domains
via set inversion on short-term trajectory. IEEE Transactions
on Robotics, 29:1244–1256, 2013.

[9] Rocca, P., Anselmi, N., Benoni, A., & Massa, A. (2021). Prob-
abilistic Interval Analysis for the Analytic Prediction of the
Pattern Tolerance Distribution in Linear Phased Arrays With
Random Excitation Errors. arXiv preprint arXiv:2102.02255

[10] Rohou, Simon, Benoı̂t Desrochers, and Luc Jaulin. ”Set-
membership state estimation by solving data association.”
2020 IEEE International Conference on Robotics and Au-
tomation (ICRA). IEEE, 2020.

[11] D. Talwar and S. Jung, ”Particle Filter-based Localiza-
tion of a Mobile Robot by Using a Single Lidar Sen-
sor under SLAM in ROS Environment,” 2019 19th In-
ternational Conference on Control, Automation and Sys-
tems (ICCAS), Jeju, Korea (South), 2019, pp. 1112-
1115, doi: 10.23919/ICCAS47443.2019.8971555. keywords:
ROS;localization;autonomous driving;AMCL;SLAM,

[12] Eman, Alhamdi, and Hedjar Ramdane. ”Mobile robot local-
ization using extended Kalman filter.” 2020 3rd International
Conference on Computer Applications Information Security
(ICCAIS). IEEE, 2020.

Basile Mollard

Ensta Bretagne
Etudiant en robotique

Positionnement par mesures goniométrique

Résumé

This paper addresses the localization of a boat using only its camera. In military contexts, the
first action in the event of war between major powers would be to destroy the adversary’s satellites,
thus disabling GNSS-based localization. To counter this, alternative methods for localizing military
assets must be developed. This work employs goniometry, using angular measurements between no-
table objects and the vehicle’s heading for localization. The camera serves as the sensor for detecting
and distinguishing objects, though object detection itself is beyond the scope of this paper. Once the
angles are obtained, interval theory and the CODAC [1] library developed by ENSTA Bretagne are
used for localization. Interval theory offers a rigorous approach to handling measurement uncertain-
ties, which is particularly useful when working with noisy sensor data. The CODAC library, which
manipulates intervals and multidimensional boxes, allows for reliable uncertainty propagation. Addi-
tionally, a goniometric contractor is introduced to refine localization by reducing uncertainty bounds
while maintaining the inclusion of all valid solutions. This method is integrated with velocity-based
localization when no objects are detectable, utilizing a DVL (Doppler Velocity Log) to measure the
boat’s speed. The combination of goniometric contractors and velocity integration provides a robust
localization solution even in the absence of GNSS signals, as demonstrated through simulations.
However, challenges such as the necessity of an initial position and the degradation of accuracy over
time suggest the need for a SLAM algorithm to further refine the boat’s location estimation.

Introduction

Dans ce papier, nous allons aborder la lo-
calisation d’un bateau avec seulement l’aide de sa
caméra. En effet, dans le cadre militaire, la première
action, en cas de guerre entre deux grandes puis-
sances, sera de détruire les satellites adverses et
donc la localisation GNSS. Dans ce contexte, il est
essentiel de développer d’autres méthodes afin de
localiser les différentes armes de notre armée. Ici,
nous utiliserons donc la goniométrie, c’est-à-dire
que nous nous aiderons de la mesure des angles pour
nous localiser. Nous mesurons les angles entre les
différents objets remarquables et le cap du véhicule,
et pour cela, nous utiliserons comme capteur la
caméra. Il faut donc un algorithme pour détecter et

différencier les objets, mais cela n’est pas le sujet de
ce papier. Enfin, une fois les angles obtenus, nous
utiliserons la théorie des intervalles, des contrac-
teurs et la librairie CODAC associée, développée
par l’ENSTA Bretagne.

Théorie des intervalles

Comme dit précédemment, nous utiliserons
la théorie des intervalles. Cette dernière est une ap-
proche mathématique permettant de manipuler des
incertitudes et des erreurs de mesure de manière ri-
goureuse. Contrairement à l’arithmétique classique,
où les valeurs sont représentées par des nombres
réels précis, la théorie des intervalles représente les
grandeurs par des bornes inférieure et supérieure,

1

formant ainsi un intervalle contenant la valeur réelle
inconnue. Cette approche est particulièrement utile
dans notre cas, car nos données sont entachées d’in-
certitudes dues à des erreurs de capteurs, des ap-
proximations numériques ou des phénomènes non
modélisés. En goniométrie, l’utilisation de la théorie
des intervalles permet d’améliorer la robustesse des
méthodes de localisation en tenant compte des in-
certitudes angulaires et positionnelles, garantissant
ainsi que la solution obtenue est cohérente avec l’en-
semble des mesures disponibles.

Afin d’utiliser cette théorie, nous nous ai-
derons de la bibliothèque CODAC. Cette li-
brairie utilise, premièrement, les intervalles, qui
sont représentés sous la forme d’ensembles bornés
[xmin, xmax], où xmin et xmax définissent respective-
ment les limites inférieure et supérieure de l’incer-
titude sur une grandeur donnée. CODAC permet
également de manipuler des bôıtes, qui sont des en-
sembles multidimensionnels formés de plusieurs in-
tervalles, facilitant ainsi la modélisation des incerti-
tudes sur plusieurs variables simultanément. Grâce
à ces outils, il est possible d’effectuer des opérations
d’intersection, d’union et de propagation d’incerti-
tudes de manière fiable et rigoureuse.

Enfin, un contracteur est un opérateur de
la librairie CODAC permettant de réduire un en-
semble d’intervalles tout en garantissant que la
solution correcte demeure incluse dans l’ensemble
réduit. Il repose sur le principe de contraction des
domaines définis par des contraintes, ce qui est par-
ticulièrement utile pour traiter des problèmes de lo-
calisation et de filtrage en présence d’incertitudes.
Un contracteur agit donc comme un filtre en sup-
primant les valeurs impossibles sans exclure les so-
lutions valides.

Contracteur goniométrique [2]

Figure 1 – Véhicule sur un plan mesurant des
angles pour se localiser

Sur ce schéma, on voit trois bouées repérées
à l’aide d’angles par rapport au cap du bateau. On

utilisera seulement deux d’entre elles.
Pour commencer, nous avons les vecteurs sui-

vants : [
xi − x
yi − y

]
et

[
cos(θ + αi)
sin(θ + αi)

]
qui sont colinéaires, donc on a :

det

([
xi − x
yi − y

]
,

[
cos(θ + αi)
sin(θ + αi)

])
= 0

On a finalement :

(xi − x) sin(θ + αi)− (yi − y) cos(θ + αi) = 0

Donc d’après la relation suivante on obtient ce
système :{
(x1 − x) sin(θ + α1)− (y1 − y) cos(θ + α1) = 0

(x2 − x) sin(θ + α2)− (y2 − y) cos(θ + α2) = 0

On peut donc mettre le problème sous la forme ma-
tricielle :

AX = b

avec :

A =

[
sin(θ + α1) − cos(θ + α1)
sin(θ + α2) − cos(θ + α2)

]
et

b =

[
y1 cos(θ + α1)− x1 sin(θ + α1)
y2 cos(θ + α2)− x2 sin(θ + α2)

]
Enfin, il nous reste plus à implémenter ceci avec
l’aide de la version 2 de codac :

Figure 2 – Implémentation du contracteur en py-
thon et avec codac2

Repérage sans observation

Maintenant que nous avons ce contracteur,
nous pouvons nous localiser lorsque nous observons
au moins deux bouées dont nous connaissons la po-
sition. Cependant, il est fort probable qu’en mer, il
y ait des moments où l’on ne détecte aucun objet.
Or, dans notre configuration, dès que l’on ne voit
rien sur les caméras, nous ne pouvons pas nous si-
tuer dans l’espace. Ainsi, nous allons utiliser le cap

2

et la vitesse pour nous localiser en attendant de
revoir des objets remarquables. En effet, nous pou-
vons facilement mesurer la vitesse d’un bateau sans
satellite grâce au DVL. Le DVL est un capteur de
vitesse qui utilise l’effet Doppler avec le fond marin
pour mesurer la vitesse d’un robot.

Figure 3 – Illustration de la méthode

Sur ce schéma est représentée la position en
x en fonction du temps. On suppose qu’aux temps
20, 50 et 75, on utilise le contracteur présenté ci-
dessus. Entre-temps, on intègre la vitesse projetée
en x et y pour continuer à se localiser.

Ainsi, il faut définir une façon d’intégrer la
vitesse afin de conserver l’avantage des intervalles.
On pourrait utiliser la méthode des rectangles, par
exemple, mais on perdrait alors le côté pessimiste
des intervalles. En effet, ce côté pessimiste nous
permet d’assurer que la position réelle du robot se
trouve bien dans l’intervalle trouvé. C’est pour cela
que nous allons faire l’union [3] de la vitesse et du
cap du robot à chaque instant. Puis, toutes les se-
condes, nous allons intégrer cette union de vitesses
selon x et y. Ainsi, en formalisant, cela donne à
chaque instant :

{
vrslice = vrslice ∪ vt

capslice = capslice ∪ capt

Et toutes les secondes nous projetons la vitesse sur
les axes x et y :

{
vxslice = vrslice ∗ cos(capslice)
vyslice = vrslice ∗ sin(capslice)

Ensuite on regroupe dans une boxe vslice les deux
vitesses. Et puis on integre :

pslice = pslice + dt · vslice

Figure 4 – Implémentation de l’intégration de la
vitesse

Si on implémente cette méthode pour visua-
liser ce que cela donne sur une trajectoire quel-
conque, on obtient la figure ci-dessus. La ligne
bleue est la trajectoire théorique, tandis que les
différentes bôıtes représentent les positions du ro-
bot avec l’intégration de la vitesse. On voit donc
que la bôıte grossit en fonction du temps tout en
gardant la trajectoire théorique en son sein. On
vient, au final, de reconstituer les tubes de CODAC.

L’avantage de cette méthode par rapport aux
tubes est qu’ici, on n’a pas à décider d’un temps de
mission. De plus, on n’est pas obligé de garder en
mémoire les intervalles passés.

Union des deux méthodes

Maintenant, il faut regrouper le contracteur
goniométrique et l’intégration de la vitesse. Pour
cela, nous décidons qu’au moment d’intégrer la vi-
tesse, nous vérifions si des observations d’objets re-
marquables sont disponibles. Si c’est le cas, nous
contractons la bôıte xslice avec le contracteur go-
niométrique.

Figure 5 – Simulation finale

Sur cette simulation [4], on voit le bateau
ainsi que les bouées qu’il peut observer. On dis-

3

tingue également les boxes de localisation du ro-
bot : celles en gris correspondent aux estimations
passées, tandis que celle en vert représente l’esti-
mation actuelle. On observe que les boxes suivent
la trajectoire du robot tout en se contractant
lorsque celui-ci perçoit les bouées. À l’inverse, elles
s’élargissent lorsque le bateau est en aveugle et que
l’estimation repose uniquement sur la vitesse et le
cap.

Conclusion

Pour conclure, nous avons mis au point un
contracteur goniométrique qui collabore avec une
intégration de la vitesse. Ceci permet de se locali-
ser dans son repère en cas de perte de signal GNSS.
Grâce à une simulation, nous pouvons valider notre
implémentation et notre théorie.

Cependant, cette méthode comporte plu-
sieurs limites. Tout d’abord, une position initiale
est nécessaire pour se repérer dans le monde ainsi
que de connaitre celles des amers. Une solution se-
rait de considerer seulement la distance qui sépare

le bateau et les bouées [5]. De plus, en mer, les
amers sont peu nombreux, ce qui oblige à s’ap-
puyer principalement sur la vitesse. Le problème
est qu’après un long laps de temps, la précision de
la position du bateau se dégrade considérablement.
Il serait donc nécessaire de mettre en place un al-
gorithme de SLAM afin d’affiner l’estimation de la
localisation du robot.

Références

[1] https://codac.io/ ENSTA.

[2] Kalmooc Luc Jaulin. 2023.

[3] Analyse par intervalles pour la détection de
boucles dans la trajectoire d’un robot mobile
Clément Aubry. 2014.

[4] https ://github.com/AA-Katsrg/Guerledan-
projet-gonio 2025.

[5] Pure range-only slam with indistinguishable
marks. Constraints, 21(4) :557–576, Luc Jau-
lin. 2016.

Vidéo youtube du simulateur final, utilisant l’intégration de la vitesse et le contracteur gogniométrique :

https://youtu.be/S2m_YWOU58o

4

https://codac.io/
https://youtu.be/S2m_YWOU58o

Metric-Semantic Localization and Mapping:
Exploring the Integration of Semantics in Visual

SLAM
Barbarit–Gaboriau Simon

Autonomous Robotics
ENSTA Bretagne

Brest, France

Abstract—This paper explores the integration of semantic
information into traditional visual simultaneous localization and
mapping (SLAM) algorithms, aiming to enhance environmental
understanding and improve robot perception. We begin with a
detailed examination of the standard visual SLAM pipeline, out-
lining its key components and challenges. Next, we introduce the
concept of semantic visual SLAM, where semantic segmentation
networks are incorporated into the SLAM framework to enable
object recognition and scene understanding. This integration
enhances localization accuracy and mapping efficiency, partic-
ularly in dynamic and unstructured environments. Finally, we
compare visual SLAM and semantic visual SLAM using public
datasets and libraries. By analyzing the benefits, implementation
challenges, and potential applications of semantic integration, this
paper provides insights into the future of intelligent localization
and mapping systems.

Index Terms—Computer vision, SLAM, visual SLAM, robotics

I. INTRODUCTION

Simultaneous Localization and Mapping (SLAM) is a fun-
damental capability for robotics in general, enabling robots
to construct maps of their surroundings while determining
their own position within those maps. Visual SLAM (vSLAM),
which relies on camera-based perception, has become a widely
used approach due to its cost-effectiveness and ability to work
in GPS-denied environments. Traditional vSLAM methods
primarily focus on geometric features such as points, lines,
and planes to represent the environment. However, these purely
geometric maps lack higher-level scene understanding, which
can limit their effectiveness in complex, dynamic environments
where recognizing objects and semantic elements is crucial.

To address this limitation, Semantic Visual SLAM (Seman-
tic vSLAM) has emerged as an extension of traditional vS-
LAM by incorporating semantic information into the localiza-
tion and mapping process. By leveraging deep learning-based
semantic segmentation, Semantic vSLAM allows robots to not
only localize themselves but also recognize and label objects in
the environment, leading to richer and more informative maps.
This integration enhances navigation, decision-making, and
interaction with dynamic and unstructured scenes, making it
particularly useful in applications such as autonomous driving,
service robotics, and augmented reality.

This paper explores the incorporation of semantics into
vSLAM and its impact on localization and mapping. We begin
with a comprehensive review of the standard visual SLAM
pipeline, outlining its key components and challenges. Next,
we introduce Semantic vSLAM and discuss how semantic
segmentation can be integrated into the SLAM framework.
Finally, we provide a comparative analysis of vSLAM and Se-
mantic vSLAM using public datasets and libraries to evaluate
their performance and advantages. Through this exploration,
we highlight the potential of semantic integration in advancing
the field of intelligent mapping and localization systems.

II. THE TRADITIONAL VISUAL SLAM PIPELINE

In monocular visual SLAM, there are two main approches
which are the EKF approach and the Keyframe approach with
the latter being more accurate given the same computational
effort [1]. We will then focus on the Keyframe approach,
illustrating it using a simplified ORB-SLAM C++ code on
the TUM-RGBD dataset.

The complete and simplified ORB-SLAM systems are in
figure 1:

The simplified version simply focuses on two main aspects:
Tracking and Mapping.

Fig. 1. Complete and simplified ORB-SLAM systems [2]

A. Tracking

As its name implies, the tracking thread’s end goal is to
track the position of the camera. However, doing so requires
feature extraction and matching, as well as camera calibration.

a) Feature extraction: Feature extraction is done using
the ORB (Oriented FAST and Rotated BRIEF) [4] algorithm,
which is a combination of the FAST (Features from Accel-
erated Segment Test) [3] feature extractor and the BRIEF
(Binary Robust Independent Elementary Features) [5] feature
descriptor.

The FAST algorithm finds a corner by identifying a pixel
p surrounded by n consecutive pixels, all brighter (or darker)
than p by a threshold t:

Ii ≥ Ip + t (brighter region) or Ii ≤ Ip −
t (darker region)

Fig. 2. FAST corner detector [3]

The original FAST algorithm evaluates all 16 pixels in the
circular neighborhood, which can be computationally expen-
sive. To improve efficiency, an optimized approach leverages

a decision tree classifier to reduce the number of intensity
checks required for corner detection.

To minimize unnecessary computations, an initial check is
performed on four strategically selected pixels at positions
1, 5, 9, and 13 in the circle. If at least three out of these
four pixels fail to meet the corner condition, the evaluation
is terminated early, eliminating the need for further intensity
comparisons.

To further enhance performance, a machine learning-based
decision tree classifier is trained using real-world corner data.
Instead of systematically evaluating all 16 pixels, the classifier
predicts whether a candidate pixel is a corner using a reduced
number of comparisons. This approach significantly acceler-
ates the corner detection process while maintaining detection
accuracy.

Once the feature is found, the SLAM algorithm stil needs
to give it a vector called a descriptor to identify it. This is
done using the BRIEF descriptor which compares the intensity
of pixels in the immediate vincinity of the feature using a
diagram. The descriptor is then created as a binary string
containing these comparisons:

dp = {b1, b2, . . . , bk} with bi =

{
1 if I(pi) > I(pj)

0 else
With p the feature, I the light intensity and pi the pixels

adjacent to p. With this, the feature extraction is done:

Fig. 3. Feature extraction of the simplified ORB

b) Feature matching: Feature matching in ORB is a
critical step in establishing correspondences between keypoints
(features) detected in consecutive frames. It involves com-
paring the extracted binary descriptors between two sets of
keypoints, typically from the current and previous frames. The
binary descriptors are compared using the Hamming distance,
which measures the number of differing bits between two
binary strings. Specifically, given two descriptors d1 and d2,
the Hamming distance is defined as:

Hamming distance(d1, d2) =
k∑

i=1

|b1i − b2i|

where k is the number of bits in each descriptor, and
b1i and b2i are the individual bits of descriptors d1 and
d2, respectively. The lower the Hamming distance, the more
similar the two descriptors, indicating a match between the
corresponding features.

2

For example, consider two binary descriptors:

d1 = {1, 0, 1, 1, 0, 1}, d2 = {0, 0, 1, 0, 0, 1}

The Hamming distance between d1 and d2 is calculated by
counting the number of differing bits:

Hamming distance(d1, d2) = 2

Thus, the Hamming distance between these two descriptors
is 2, indicating that they differ in two bit positions.

There are two primary methods for performing feature
matching in ORB: brute force matching and guided matching.

1. Brute force matching: In this method, each descriptor
from the current frame is compared to every descriptor in the
previous frame using the Hamming distance. This approach,
while simple, can be computationally expensive, especially for
large sets of descriptors.

2. Guided matching: To improve efficiency, ORB often
uses more advanced matching techniques, such as FLANN
(Fast Library for Approximate Nearest Neighbors). These
methods reduce the computational complexity by indexing
the descriptors and efficiently finding the closest matches,
improving both speed and accuracy.

In our implementation, we decided to use a guided matching
algorithm that is a direct improvement over the brute force
approach. Instead of finding the shortest Hamming distance
for a keypoint, we select the two best corresponding keypoints
by Hamming distance and then add the match with the feature
having the shortest distance only if the second-best match is
far enough (using a simple threshold on the percentage of the
distance). In case the second-best match is too close to the
first, we resolve this uncertainty by detecting and removing
this keypoint:

Fig. 4. Matching between the first two frames for a treshold of 0.9 and 0.7
respectively

Before doing the camera pose tracking, it is important to
calibrate our camera by establishing its intrinsic parameters.
The general equation for camera calibration is based on the

pinhole camera model, where the 3D world coordinates are
projected into 2D image coordinates.

The projection equations are given as:

[
u
v

]
=

fx 0 cx
0 fy cy
0 0 1

XY
Z


Where:
- (X,Y, Z) are the 3D coordinates of a point in space.
- (u, v) are the 2D image coordinates.
- fx and fy are the focal lengths of the camera along the

x- and y-axes, respectively.
- cx and cy represent the principal point (the point where

the optical axis intersects the image plane).

-

fx 0 cx
0 fy cy
0 0 1

 is the calibration matrix

Once the initial matches are established and the camera
is calibrated, the algorithm performs pose estimation using
the matches. Pose estimation involves determining the relative
camera motion (rotation and translation) between consecutive
frames within one scale factor, typically using RANSAC
(Random Sample Consensus) to robustly estimate the trans-
formation while rejecting outliers. RANSAC is an iterative
algorithm that selects random subsets of correspondences,
computes a potential transformation for each subset, and
evaluates its quality based on the consensus set (i.e., how
many correspondences agree with the transformation). By
iterating and refining the transformation based on the largest
consensus, RANSAC effectively handles the presence of noisy
or incorrect matches, ensuring that the pose estimate is robust
to outliers. This process is part of short-term data association
(DA), where the goal is to correct the current pose estimate
based on the matches from the previous frame, enabling real-
time tracking of the camera.

In addition to short-term tracking, ORB-SLAM also per-
forms mid-term data association (DA) by tracking the local
map over several frames. The local map is composed of
keyframes and their corresponding 3D points. During mid-
term DA, the system refines the current camera pose by
adjusting it relative to this local map, ensuring consistency
over time. Pose correction is applied to maintain the accuracy
of the camera trajectory in the global map.

Both short-term and mid-term tracking benefit from several
optimization techniques to improve their accuracy and robust-
ness. The key optimizations include:

- Bundle Adjustment: A global optimization technique that
refines the camera poses and 3D point positions by minimizing
the reprojection error across all frames and keypoints.

- Loop closure detection: A mechanism to detect when the
camera revisits a previously mapped area, triggering global
pose correction and reducing drift in the map over time. We
will not be implementing this optimization method in the
simplified ORB-SLAM however.

These optimizations, particularly bundle adjustment, help
maintain accurate and robust tracking of the camera’s trajec-

3

tory, enabling ORB-SLAM to perform effectively in real-time
applications while also providing precise 3D mapping.

B. Mapping

In ORB-SLAM, the map has two elements: map points
which are 3D landmarks and keyframes which are the most
important frames.

First, we need to choose a criterion to add keyframes to
the map. The most important ones are: the minimum number
of frames since the last keyframe that we set at 5 and the
number of features matched with the last keyframe which must
be greater than 30. This criterion is lax because we want to
insert a lot of keyframes to make the tracking robust to fast
camera motions, and redundant keyframes will be removed
later.

Once a keyframe is added to the map, it brings with it new
information, we must therefore add the new corresponding
map points. The keypoints can only become map points if they
are matched with points from previous keyframes. However,
before doing this matching, we first need to compute the
essential matrix between the new keyframe and the older one
we are trying the matches on:

E = t×R (1)

Where:
- E is the essential matrix
- R is the rotation matrix
- t is the translation vector
- t× is the antisymmetric matrix (or cross-product matrix)

associated with t, defined as :

t× =

 0 −tz ty
tz 0 −tx
−ty tx 0

 (2)

This new keyframe (kf1) is then compared with co-visible
older ones (kf2) in order to match keypoints and triangulate
new map points. For each keypoint from kf1, we look for
a match among kf2’s keypoints using the guided matching
approach described earlier. Using this approach, we can count
the number of matches between the current keyframe and the
older ones. We then triangulate new map points using the
keyframes that have at least 20 matching keypoints.

Once a match is found, we check that the keypoint in
kf2 is not associated with a map point before computing the
normalized projection ray of both keypoints and verifying the
coplanarity constraint using the essential matrix. Thanks to
the two projection rays, we can then solve the triangulation
equation and obtain the 3D coordinates of the map points.

However, before adding the latter to the map, we establish
a few tests that it must pass to reduce the number of corrupted
map points:

- Parallax angle test: We check the parallax angle between
both projection rays, defined as:

θ = cos−1 (x1 · x2) (3)

After testing, we found that if the parallax is less than 1 rad,
it means that the camera did not rotate enough between the
two frames, making the depth measurement unreliable.

- Depth consistency check: The 3D point must be correctly
positioned in front of the camera in both cases.

- Reprojection error test: The 3D point is reprojected into
the images and compared with its actual position to compute
the reprojection error. If this error is too high, the point is not
added.

e =
∥∥u−K

[
R t

]
X
∥∥2 (4)

C. Map managing and Evaluation

To make our algorithm lighter, we need to implement a map
points and keyframes culler:

- A MapPoint is considered unused if it has not been seen
in the 2 following KeyFrames after its triangulation or if it
has not been matched in at least 25 frames that should see the
point

- A KeyFrame is considered redundant if at least a 90% of
its matched MapPoints are seen by at least 3 other KeyFrames
in the local map.

To evaluate our SLAM algorithm we decided to use the Root
Mean Square Error (RMSE) Absolute Translation Error (ATE).
The RMSE is a commonly used metric in visual odometry and
SLAM (Simultaneous Localization and Mapping) to evaluate
the accuracy of estimated trajectories compared to ground truth
trajectories.

RMSE ATE measures how far the estimated trajectory is
from the ground truth trajectory in terms of absolute position
differences. It quantifies the global drift of the trajectory
without considering orientation errors.

Given:
• P = {p1, p2, ..., pN} as the estimated trajectory (3D

positions).
• Q = {q1, q2, ..., qN} as the ground truth trajectory (3D

positions).
The Absolute Translation Error (ATE) for each timestamp

is:
ei = ∥pi − qi∥ (5)

where ∥ · ∥ is the Euclidean norm.
The RMSE ATE is then computed as:

RMSEATE =

√√√√ 1

N

N∑
i=1

e2i (6)

where N is the number of trajectory points.

III. INTEGRATING SEMANTICS INTO VISUAL SLAM

The integration of semantic information into the SLAM
pipeline aims to overcome the limitations of purely geometric
methods by adding higher-level cues that enable robust percep-
tion in dynamic and complex environments. In short, it aims
to replace classical geometrical features and informations with

4

semantiac information which contains the position, orientation,
colour, texture, shape, and specific attributes of objects in the
environment. For instance, the Kimera library [7] demonstrates
a successful fusion of visual-inertial odometry with dense 3D
semantic reconstruction.

A. Semantic information extraction

Semantic information is typically extracted using deep
learning techniques by following one the three main ap-
proaches:

• Object Detection: Detectors like YOLO or Faster R-
CNN are employed to localize objects in images. These
bounding-box detections provide a first-level semantic
cue that can be used to replace features or be an addition
to it. Moreover, the recent versions of yolo can now
detect and identify even partially hidden objects, adding
robustness to semantic SLAM. Unfortunately [8] tells
us that most simple semantic SLAM algorithms are
not robust to dynamic environments. To correct this, an
other layer of object classification is added on the more
recent algorithms. This additionnal layer aims to identify
potentially moving objects such as people, vehicules and
animals.

• Semantic Segmentation: Semantic segmentation is the
cornerstone technology of image understanding, which
can give the exact pixels corresponding to each type of
object but cannot distinguish different individuals of the
same type. It is pivotal in autonomous driving and UAVs.
Approaches such as U-Net or PSPNet can deliver pixel-
wise labels, enabling a dense classification of scene ele-
ments. In Kimera [7], 2D semantic segmentation outputs
are combined with depth estimates (from dense stereo)
to label reconstructed 3D points for exemple.

• Instance Segmentation: This approach is the perfect
mixt of the previous two as it allows object detec-
tion while also achieving pixel-level object separation.
Contrary to the semantic segmentation, this approach
can distinguish different individuals of the same type.
However, its computing cost is too high to allow for real-
time SLAM.

Integrating semantics into a SLAM system is not limited
to the extraction of semantic information (via detection, seg-
mentation, or instance segmentation) but also requires the
correct association of semantic measurements with persistent
3D landmarks, referred to as semantic landmarks, especially
for the localization. This association step, which is critical for
robustness in dynamic environments, ensures that observations
of the same object across multiple images and time instants
are grouped together. Another approach described in [9] aims
to replace the semantic landmarks with 3D bounding boxes.

The most important aspect of semantic SLAM however
is the mapping part of SLAM. The objective of semantic
mapping in SLAM is not only to enable robust localization by
building a map that the robot can reuse without reconstructing
it at each mission, but also to enrich the geometric map with
high-level semantic information. Traditional vSLAM systems

generate maps that can be sparse, semi-dense, or dense. While
dense maps provide a detailed 3D reconstruction suitable for
localization, navigation, and obstacle avoidance, they often
lack the semantic labels needed for intelligent human–machine
interaction and complex task execution.

Early approaches to semantic mapping often relied on a
priori CAD model databases to annotate 3D reconstructions.
However, these methods were limited by the predefined set of
objects available in the database. Later works integrated dense
vSLAM with 2D semantic segmentation labels to build static
semantic maps, and some methods even used instance-aware
segmentation to differentiate between background, moving, or
potentially moving objects. Unfortunately, such approaches
sometimes struggle to achieve real-time performance. To
address this, several researchers have proposed constructing
sparse semantic maps in real time using frameworks like ORB-
SLAM2, where semantic objects are directly fused into sparse
3D maps.

An illustrative example of these advancements is Kimera (
[7]) which can create maps of various difficulties depending
on the usage:

Fig. 5. Illustration semantic mapping using Kimera

IV. CONCLUSION

The incorporation of semantic information into visual
SLAM has been shown to provide significant improvements
over traditional, geometry-only methods. Traditional visual
SLAM systems rely solely on low-level features such as
corners and edges. While effective in static environments,
these systems are vulnerable to errors in dynamic or texture-
less scenes. In contrast, semantic visual SLAM enhances
localization by:

• Providing Contextual Constraints: Semantic labels help
distinguish static landmarks from dynamic objects. For
example, Kimera uses semantic cues to filter out feature
points on moving objects (e.g., vehicles or pedestrians),
leading to lower drift and more stable loop closures.

• Improving Data Association: Object-level information
facilitates more robust feature matching across frames.

5

Traditional SLAM generates point clouds or sparse maps
that lack high-level information about scene objects. Semantic
SLAM, by contrast, produces maps where landmarks are
enriched with semantic labels and allows for dense environ-
ment reconstruction or simpler semantic mesh reconstructions.
These dense semantic 3D maps are a lot more suited for
obstacle avoidance and human-robot interaction. Semantic
visual SLAM can also be used for visual navigation and allow
robot control tu use simple images as position goals [10].

While the integration of semantic information introduces
additional processing stages, recent implementations demon-
strate that this overhead is mostly manageable. Kimera for
exemple runs entirely on a CPU, with its semantic module
(Kimera-Semantics) incurring an extra cost that does not pre-
vent real-time operation. The modular architecture of Kimera
allows for the system to fall back to a traditional solution
if semantic labels are unavailable, offering flexibility based
on computational resources. However, the dense environment
reconstruction can only be done in post-processing as it cannot
be done in real-time.

In summary, while traditional visual SLAM systems are
efficient and simpler to deploy, they lack the capacity for rich
scene understanding. Semantic visual SLAM, as exemplified
by Kimera, achieves:

• Lower localization drift through semantic data associa-
tion.

• Superior map quality with semantically annotated 3D
reconstructions.

• Robust performance in dynamic environments by filtering
out non-static features.

These benefits justify the additional computational complexity,
particularly in applications requiring high-level environmental
understanding and robust operation in real-world, dynamic
settings.

REFERENCES

[1] J. M. M. Montiel, Andrew J. Davison, Real-time Monocular SLAM:
Why Filter?. IEEE Int. Conf. Robotics and Automation, ICRA 2010.

[2] Raul Mur-Artal, J. M. M. Montiel, and Juan D. Tardos, ORB-SLAM:
a Versatile and Accurate Monocular SLAM System. IEEE Int. Conf.
Robotics and Automation, 2015

[3] E Rosten, T Drummond , Machine learning for high-speed corner
detection, European Conf. on Computer Vision 2006

[4] Rublee, E., Rabaud, V., Konolige, K., and Bradski, G. ORB: an efficient
alternative to SIFT or SURF, ICCV 2011

[5] Calonder, M., Lepetit, V., Strecha, C., and Fua, P. (2010). BRIEF:
Binary Robust Independent Elementary Features. European Conference
on Computer Vision (ECCV 2010), pp. 778–792.

[6] Kaiqi Chen, Jianhua Zhang, Jialing Liu, Qiyi Tong, Ruyu Liu, Shengy-
ong Chen. Semantic Visual Simultaneous Localization and Mapping:
A Survey. JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8,
AUGUST 2021

[7] Antoni Rosinol, Marcus Abate, Yun Chang, Luca Carlone. Kimera: an
Open-Source Library for Real-Time Metric-Semantic Localization and
Mapping. IEEE Int. Conf. Robot. Autom. (ICRA), 2020.

[8] F. Zhong, S. Wang, Z. Zhang, and Y. Wang, “Detect-slam: Making
object detection and slam mutually beneficial,” in 2018 IEEE Winter
Conference on Applications of Computer Vision (WACV). IEEE, 2018,
pp. 1001–1010.

[9] S. Yang and S. Scherer, “Cubeslam: Monocular 3-d object slam,” IEEE
Transactions on Robotics, vol. 35, no. 4, pp. 925–938, 2019.

[10] Devendra Singh Chaplott, Ruslan Salakhutdinov, Abhinav Gupta1,
Saurabh Gupta. Neural Topological SLAM for Visual Navigation. Face-
book AI Research, 3 UIUC

6

Swarm robotics: Analysis of social learning methods

Camilo Ortiz
camilo.ortiz@ensta.fr

March 2025

Abstract

During a mission in an unknown environment, a swarm of robots needs to have a high potential of
adaptivity to realize the mission in the most effective way possible. Swarms are well known for their ability
to perform complex tasks, despite each individual robot having few control options. Through simulations of
swarm learning, we demonstrate that a swarm of robots can, on average, learn and optimize its controller
faster than an individual robot learning alone. In this paper, we discuss the forms of swarm learning that
exist in the literature and try to present, through a simulation, the different learning rates between those
forms of learning.

Contents

1 Introduction : Swarm robotics 2
1.1 Swarm systems’ properties . 2
1.2 Types of tasks in which swarm robotics can bring value . 2

2 Social learning in swarm robotics 3

3 Simulating foraging tasks 3
3.1 The environment . 3
3.2 Sensors simulation . 4
3.3 Information transfer . 4
3.4 Fitness function . 4
3.5 Results . 4

4 Comparison between swarm adaptation methods 5

5 Conclusion 6

1

1 Introduction : Swarm robotics

The idea of swarm robotics [8] was first inspired by the
study of social insects such as ants, bees, wasps, etc.
These insects are individually incapable of performing
complex tasks, but as a cohesive group, they accom-
plish remarkable feats that benefit the entire swarm.
Ants build bridges and collect food, wasps build nests
with complex geometrical properties. What’s interest-
ing about this is how complex behaviors can emerge
from a group of animals that individually have limited
capabilities. Swarm robotics, as described by Beni [1],
is the study of how to coordinate large groups of rel-
atively simple robots through the use of local rules.
In [11], Sahin outlines the property of the emergence
of complex synchronization as a key point to swarm
robotics:

Swarm robotics is the study of how large
number of relatively simple physically em-
bodied agents can be designed such that
a desired collective behavior emerges from
the local interactions among agents and be-
tween the agents and the environment.

To become a coherent swarm of robots, automati-
cally synchronized and working towards a same goal,
the robots must individually follow some general rules:

1. The robots of the swarm must be autonomous
robots, able to sense and actuate in a real envi-
ronment.

2. The swarm must consist of a large number of
robots, or at least be governed by control rules
that allow scalability.

3. Robots should be homogeneous. While different
types of robots may exist within the swarm, their
diversity should be limited.

4. The robots must collaborate to ensure success
and enhance the overall performance of the
swarm.

5. Robots have only local communication and sens-
ing capabilities. It ensures the coordination is
distributed, so scalability becomes one of the
properties of the system.

1.1 Swarm systems’ properties

In [7], Isaeva demonstrated that social insects act in
a decentralized way, which means that they have no
leader or human operator sending information orders.
All the robots are hierarchically equal, yet their sys-
tem and task repartition is robust, flexible and scal-
able. Those properties are the reason why swarms of
robots can be efficient for specific tasks [11].

1. Robustness measures the adaptability of the sys-
tem in case of failures of one or more robots, or
disturbances in the environment. Swarms’ prop-
erties make the systems robust by essence. First,

the redundancies in the system. The swarm pos-
sesses more robots than needed, thanks to the low
fabrication cost of ’simple’ robots. This makes
the robots dispensable. In addition, the decen-
tralized property makes the swarm robust to the
loss of any robot, whereas losing a leader in a cen-
tralized system would be bothersome. Secondly,
the multiplicity of sensing, in a system in which
robots communicate their vision of the environ-
ment, can help increase the total signal-to-noise
ratio of the system.

2. Flexibility requires the swarm robotic system to
have the ability to generate proficient solutions
to different tasks, provided they have the time to
learn how as a group.

3. Scalability requires that a swarm robotic system
should be able to operate under a wide range of
group sizes. That is, the coordination mecha-
nisms that ensure the operation of the swarm
should be relatively undisturbed by changes in
the group sizes.

Swarm robotics is considered a promising approach
for a wide range of applications. The list being inex-
haustible, we can mention agriculture, rescue mission,
foraging, exploration and environmental monitoring.
We can describe in the grand lines the characteristics
of the tasks in which swarms can be efficient.

1.2 Types of tasks in which swarm
robotics can bring value

1. In any task that require a repartition over a field,
We can simply deploy a swarm of robots with a
homogeneous repartition, in such a way that each
robot can communicate with the robots nearby.
This allows for an extremely fast transfer of in-
formation across a large field. In case of a res-
cue mission for instance, once one robot finds the
target, information can spread and all the robots
will converge to the location and help in the res-
cue. Such strategy is efficient thanks to the cre-
ation of a network of sensors.

2. For high-risk tasks, the expendability of individ-
ual robots makes swarm robotics a suitable so-
lution. For instance, clearing a path through a
mined field can be accomplished quite efficiently
by a swarm of ”suicidal” robots. This is possible
because the swarm can be deployed with more
robots than strictly necessary.

3. Tasks that scale-up or scale-down in time can be
handled efficiently with a swarm. For instance,
an oil leakage from a sinking ship can increase
due to the tanks slowly breaking down. When
the problem’s urgency is low, only a few robots
are enough to handle the task. And with time,
as the leakage becomes more important, we can
add robots little by little to help fixing the issue.

2

4. Finally, tasks that require redundancy are han-
dled thanks to the redundancy property of the
swarm. This redundancy allows the swarm
robotic system to degrade in a non blocking way,
making the system less prone to catastrophic fail-
ures. For instance, swarm robotic systems can
create dynamic communication networks in the
battlefield. Such networks can enjoy the robust-
ness achieved through the reconfiguration of the
communication nodes when some of the nodes are
hit by enemy fire.

Now that we have discussed the use cases of swarm
robotics, we have to think about how to recreate the
insect-like behaviors that we observe in nature. In this
paper we will talk about social learning, i.e. how robots
can evolve while accomplishing a mission, and converge
together towards a positive solution. Section 2 will ex-
plain the concepts of social learning, section 3 will dis-
play a simulation of those concepts in foraging tasks,
section 4 will be an analysis of diverse techniques of
swarm learning found in the literature, and finally sec-
tion 5 will talk about the future of social learning in
swarm robotics.

2 Social learning in swarm
robotics

Social learning as presented in this article is a sub cate-
gory of machine learning, that uses gradient free meth-
ods [9]. This means that the robots will never use
the derivatives of the fitness function to improve their
performances. Instead, they will communicate and ex-
change their own experiments, their local information
of the environment, they will transfer information that
spreads among the whole swarm, or more simply, they
will share their own control functions. As explained
in [2], social learning in swarm robotics is framed by
constraints of locality.

1. Local interaction: All the robots can see the
world only through their own sensors, thus ex-
periencing their own local version of what is sur-
rounding them. This can lead to detrimental be-
haviors, such as robots hindering or degrading
each other. But it can also lead to unexpected
collective behaviors, such as robots aligning with
one another, unifying their motion. Whatever
behavior may emerge from the learning process,
the robots only perceive what’s near them. They
don’t possess wide knowledge of the environment.

2. Local communication: Communication between
robots is limited in radius (either by choice, or
because of technical limitations, which we’ll talk
about in section 3). Besides, the information
transferred can be limited in size and in speed.
This implies that diffusion over the swarm can
take time even if all the robots are packed to-
gether. But as mentioned previously, informa-
tion transmission would still remain faster than

having one robot physically move to be in the
communication range of another robot.

3. Local performance self-assessment: The swarm
is autonomous, both as a group and individually.
This means that there is no operator computing
the contributions of each robot. The robots of
the swarm need to have its own self-assessment
method. The job of the human operator, before a
mission, would be to provide this self-assessment
function. This is a central nerve in the learn-
ing process of the swarm, because this function
needs to compute the benefits brought by one
robot to the whole swarm. For instance, in a
foraging mission, gathering objects is obviously
a contribution to the swarm, but operating too
close to other robots will reduce efficiency due to
an overcrowding effect.

The two first rules allow for different methods of
social learning : imitation through observation, or
through communication of the control function that
maps the sensors to the actuators of the robot. The
third aspect of locality is where the artificial diverges
from the natural. While in nature the performance
of an individual is evaluated in terms of its ability to
survive and reproduce, this is not the case here. In
swarm robotics, performance assessment is explicitly
calculated by a fitness function designed by a human
supervisor. Hence, a robot may be measured as effi-
cient with respect to its participation to the accom-
plishment of the task, without its own integrity being
taken into account. This has a major implication for
the dynamics of social learning, as the very definition
of successful behavioral strategies now depends both on
their ability to diffuse over the population, and their
ability to perform well on a user-defined task.

3 Simulating foraging tasks

In this section, we will develop a simulation for a prac-
tical case of social learning. We will implement robots
with the task of foraging.

3.1 The environment

The robots resemble Dubins’ cars. They have two ac-
tuators, left wheel and right wheel. Nine distance sen-
sors are attached to the robot, uniformly distributed
around the z-axis. They are limited in range, which
makes the robots only aware of what’s in a circle of ra-
dius max range. The function that maps the sensors
output to the actuators (the motors of each wheel) is
a neural network called a perceptron. In our case, the
perceptron has no hidden layer, it maps 9 sensors into
2 outputs, hence the number of parameters is 18. The
robots’ objective is to find objects. Those objects are
represented as green disks. In order to validate the
task, the robot must be at a certain distance from the
object. There are 150 objects in the world, distributed
randomly, and in order to keep the number of objects

3

constant, an object will re-spawn immediately in the
world, at a new random location.

3.2 Sensors simulation

The sensors placed around the robot allow it to detect
the distance between the sensor and the object. In or-
der to manage this in a computational point of view,
we need to solve a geometrical intersection problem be-
tween a ray and a circle. Our goal is to determine the
intersection points between the ray and the circle. A
ray can be expressed parametrically as:

x = x0 + t · dx

y = y0 + t · dy

A circle is defined by:

(x− xc)
2 + (y − yc)

2 = r2

This means all points (x, y) on the circle satisfy this
equation. Replacing x and y in the circle equation us-
ing the ray equations gives:

(x0 + t · dx− xc)
2 + (y0 + t · dy − yc)

2 = r2

Developing this equation gives a polynomial equa-
tion for t:

At2 +Bt+ C = 0

where:
A = dx2 + dy2

B = 2(dx · (x0 − xc) + dy · (y0 − yc))

C = (x0 − xc)
2 + (y0 − yc)

2 − r2

The quadratic formula solves for t:

t =
−B ±

√
B2 − 4AC

2A

If the solutions exist, it means the ray crosses the
circle at least once. Among the two solutions, we only
keep the positives ones, as we are looking for a dis-
tance. And if both are positive, we keep the smaller
one. We repeat this operation for all 9 sensors.

3.3 Information transfer

In this simulation, robots learn from each other by
transferring their own perceptron to other robots they
meet along the mission. When two robots are within
communication range, a Horizontal Information Trans-
fer algorithm is triggered [5]. First, the two robots com-
pare their self-assessed score. The robot with the high-
est score will transfer its perceptron. In the literature,
a common procedure is to only transfer a percentage α
of the perceptron, in which case the transferred param-
eters are chosen randomly. This is due to a simulation
of any communication failure that might happen. In
real life applications, the distance between two robots,
the harsh environment, the cheap computers embedded
in each robot, are all factors that might create failures
in the information transfer. But in this simulation, we
will purposely use this parameter to create new geno-
type combinations, hopefully resulting in new positive
behaviors.

3.4 Fitness function

To assess the performances of the robots, we will use a
simple function that computes the number of objects
found within the last N steps of the simulation.

f =

CurrentStep∑
n=CurrentStep−N

ObjectsFound (1)

By computing the number of objects found within
a precise amount of time, we can have a rough idea of
how efficient the robot is compared to its peers. At
the beginning of the simulation, we let some time be-
fore beginning the mating processes, so the robots can
have a good, full evaluation of their perceptron. Once
the a robot self-assessed its performance, it becomes
open to meeting other robots. We then use the HIT
algorithm as explained in 2, the robot with the least
good performance copies a fraction of the other’s per-
ceptron. Then his score is resetted to 0, and it re-
turns to an evaluation phase. Once a robot has been
self-evaluating during enough time and becomes open
to communication, its fitness function keeps running,
and we only keep the objects found during the last N
steps. This allows to reduce the score of a robot that
was lucky at the beginning of its assessment but that
ended up stuck in a corner of the field for instance.

3.5 Results

The simulation was tested with various parameters as
previously explained (see 1).

My simulation didn’t work as expected, it lacks
some adjustments for the social learning to be effec-
tive. One way to improve it would be to introduce to
swarm some agents with a perceptron of our choice,
one that would be effective. Doing so wouldn’t prove
the creation of new behavior but the perceptron intro-
duced would normally be able to spread to the whole
swarm.

Figure 2: The average score of the swarm of robots
with respect to the step number, with α = 0.9

4

Figure 1: An image of the simulation. Green dots represent the objects to forage. The triangles are the robots,
at the center of a blue circle representing their circle of detection. Blue robots have found zero objects. A
gradient of color from yellow to red display the number of objects found by each robot

?? Shows that the simulation starts with a peak
of performance, which corresponds to the randomness
of the system’s initialization. Then quickly after, the
robots end up stuck in the corners of the map and the
performance decreases rapidly.

In a simulation similar to the one implemented,
Bredeche [2] proved that it is possible for the robot’s
perceptrons to converge towards one genotype that ren-
ders good performance for the whole swarm. The fact
that one genotype manages to emerge from the initial-
ization batch proves that its performance is consistent
and does not depend on luck or circumstance. In most
cases, its performance will surpass that of the others.

One advantage of gradient-free machine learning
methods is their ease of implementation and low com-
putational requirements. It makes the methods suit-
able for real-time learning in simulations and even pos-
sible to run on interpreted languages such as Python.
However, if we add more than 100 robots, the simu-
lation will slow down considerably. The first improve-
ment would be to implement the same code in C++,
or to use simulators already implemented in the liter-
ature, such as e-puck [4].

Another improvement, to help converge towards an

effective controller, would be to combine the concepts
of social learning with other gradient-free methods of
machine learning. We can mention genetic algorithms,
or imitation through observation of the other robots,
self learning through experimentation. In the next sec-
tion, we will analyze how to implement these methods
and how beneficial they can be in solving the problem
of creating a collective intelligence of the swarm.

4 Comparison between swarm
adaptation methods

In this section we present two other approaches to
evolving robot controllers in a swarm during a mis-
sion (we talk about on-line learning). While social
learning has proven to be a robust solution, explor-
ing alternative approaches in the literature is worth-
while. The first method is an on-board learning one.
[3] aims to evolve robot controllers on-line using only
the robots’ computational resources. The key focus
is on optimizing obstacle avoidance and movement ef-
ficiency through phenotype evolution. The core ma-
chine learning approach used in this study is a (1+1)-

5

for evaluation← 0 to N do
if random() ≤ Preevaluate then

Recover(Champion)
FitnessChampion ← RunAndEvaluate(Champion)

end
else

Challenger ← Champion + N (0, σ) Recover(Challenger)
FitnessChallenger ← RunAndEvaluate(Challenger)
if FitnessChallenger ≥ FitnessChampion then

Champion ← Challenger
FitnessChampion ← FitnessChallenger

σ ← σmin

end
else

σ ← σ × 2
end

end

end
Algorithm 1: (1+1)-ONLINE Evolutionary Algorithm

ONLINE Evolutionary Algorithm. Like social learn-
ing, this method involves the learning of a perceptron.

This algorithm is mutation-based and noise-
smoothing. The evolutionary strategy relies on Gaus-
sian mutation by a small step σ. When a mutated con-
troller outperforms its predecessor, the mutation rate
is reduced, and it increases if no improvement occurs.
The algorithm includes a reevaluation step, which al-
lows to reduce the noise of ”lucky” perceptrons. Due to
noisy fitness evaluation (changing environmental con-
ditions), successful controllers are retested at random
intervals to ensure robustness. A fitness function is
used to evaluate the performance of the perceptrons.
In this experience, the function was chosen so that
straight movements with minimal collisions are appre-
ciated.

The study demonstrated that on-line evolution is
feasible, but with certain concessions. Evolution grad-
ually improved the performance of the controller, with
robots having increasingly optimized obstacle avoid-
ance behaviors. But sometimes performance would
regress because the controllers got stuck in local op-
tima and adaptation was slow because the system re-
lied solely on mutation without an additional learning
mechanism. One of the biggest values of the algorithm
is the reevaluation that helps mitigate overfitting. In
this way, we ensure that selected controllers remain
effective over multiple tests. This method proves to
be generally feasible. The (1+1)-Online approach fa-
vors stability but is limited in its elasticity. When con-
fronted with a whole new environment, robots have
difficulties adapting.

—

In [6], a new approach is considered: the idea
of cross-implementing various gradient-free machine
learning methods. This allows to speed up the opti-
mization of the perceptrons. In this article, the ”Three-
fold adaptivity” is a combination of three concepts.
Genetic algorithm, Individual learning (like the previ-

ous study) and social learning (like the previous simu-
lation). As we already explained the concepts of social
and individual learning, we will now focus on Genetic
algorithm [10]. This method requires that a ranking of
the more efficient individuals (always according to their
fitness function). The first batch of robots (the most ef-
ficient) remain the same, and the second batch will un-
dergo a genetic transformation based on the barycenter
of two genotypes chosen among the first batch. It is
also possible, as a variant method, to add some ran-
domness with a Gaussian mutation during the trans-
formation process. These algorithms are renowned for
their fast convergence, making the learning method
very suitable for online learning. As expected, the
robots’ adaptation in Heinerman’s study was signifi-
cantly faster compared to the example in [3] due to
the combination of evolution, individual learning, and
social learning. Social learning had the greatest im-
pact in homogeneous robot groups (groups of robots
that had the same sensory layout), while its effect was
reduced in heterogeneous groups. As a plus, evolu-
tion favored more efficient designs, reducing compu-
tational complexity by limiting the number of active
sensors. Finally the study made clear that a hybrid
approach combining genetic evolution with individual
and social learning is more effective than relying on
mutation alone.

5 Conclusion

Obtaining complex behaviors from a swarm of robots
on the fly is not easy but not impossible thanks to
gradient-free methods of machine learning. Every pa-
rameter of the robot, ranging from its perceptron to its
configuration (i.e. which sensors is the robot allowed
to use) can evolve, be learned/taught and transferred.
Three-fold adaptivity may be a subject of further study
to implement in more complex tasks. Whether it is for-
aging or obstacle avoidance, those tasks do not require

6

much synchronization from the swarm. In future re-
search it may be interesting to focus on swarm tasks

that require the robots to work together (moving a
heavy object, having a synchronous locomotion...)

7

References

[1] Gerardo Beni. From swarm intelligence to swarm robotics. In International Workshop on Swarm Robotics,
pages 1–9. Springer, 2004.

[2] Nicolas Bredeche and Nicolas Fontbonne. Social learning in swarm robotics. Philosophical Transactions of
the Royal Society B, 377(1843):20200309, 2022.

[3] Nicolas Bredeche, Evert Haasdijk, and Agoston E Eiben. On-line, on-board evolution of robot controllers.
In Artifical Evolution: 9th International Conference, Evolution Artificielle, EA, 2009, Strasbourg, France,
October 26-28, 2009. Revised Selected Papers 9, pages 110–121. Springer, 2010.

[4] Christopher M Cianci, Xavier Raemy, Jim Pugh, and Alcherio Martinoli. Communication in a swarm
of miniature robots: The e-puck as an educational tool for swarm robotics. In Swarm Robotics: Second
International Workshop, SAB 2006, Rome, Italy, September 30-October 1, 2006, Revised Selected Papers 2,
pages 103–115. Springer, 2007.

[5] Nicolas Fontbonne, Olivier Dauchot, and Nicolas Bredeche. Distributed on-line learning in swarm robotics
with limited communication bandwidth. In 2020 IEEE Congress on Evolutionary Computation (CEC),
pages 1–8. IEEE, 2020.

[6] Jacqueline Heinerman, Dexter Drupsteen, and Agoston Endre Eiben. Three-fold adaptivity in groups of
robots: the effect of social learning. In Proceedings of the 2015 annual conference on genetic and evolutionary
computation, pages 177–183, 2015.

[7] Valeria Isaeva. Self-organization in biological systems. Izvestiia Akademii nauk. Seriia biologicheskaia /
Rossĭıskaia akademiia nauk, 39:144–53, 04 2012.

[8] Iñaki Navarro and Fernando Mat́ıa. An introduction to swarm robotics. International Scholarly Research
Notices, 2013(1):608164, 2013.

[9] John C. Raisbeck. On the term “gradient-free” in machine learning, 2024. Consulté le 3 mars 2025.

[10] Nesma M Rezk, Yousra Alkabani, Hassan Bedor, and Sherif Hammad. A distributed genetic algorithm
for swarm robots obstacle avoidance. In 2014 9th International Conference on Computer Engineering &
Systems (ICCES), pages 170–174. IEEE, 2014.

[11] Erol Şahin. Swarm robotics: From sources of inspiration to domains of application. In International
workshop on swarm robotics, pages 10–20. Springer, 2004.

8

A Lightweight Approach to Efficient Multimodal 2D Navigation and
Mapping: Unified Laser-Scans as an Alternative to 3D Methods

Ocean Noel1,∗, Rafael Cisneros-Limón1, Kenji Kaneko1 and Fumio Kanehiro1

Abstract— In this paper, we propose a novel approach for
efficient 2D navigation using a multimodal sensor fusion tech-
nique. Our method focuses on merging data from multiple
sensors, such as LiDARs, cameras, and ultrasonic sensors, into
a unified Laser-Scan, which serves as a foundation for faster
and more lightweight navigation. By fusing sensor data at the
Laser-Scan level, our approach enables the use of basic 2D
Simultaneous Localization And Mapping (SLAM) algorithms
for mapping tasks, or any others Laser-Scan based features,
while still benefiting from the rich information provided by
multimodal 3D inputs. This results in a more computationally
efficient solution compared to traditional 3D methods that
rely on depth points or full multimodal SLAM systems. Our
experimental results demonstrate that the proposed approach
achieves comparable accuracy in mapping and localization
while significantly reducing computational complexity and pro-
cessing time. This research offers a promising alternative for
real-time 2D navigation in resource-constrained autonomous
systems, such as drones or any small unmanned vehicles.

Index Terms— Sensor fusion, Multimodal sensors, SLAM,
Navigation, 2D mapping, Real-time processing.

I. INTRODUCTION

Autonomous navigation in complex and dynamic envi-
ronments is a critical challenge for various applications, in-
cluding robotics, self-driving vehicles, and drones. Accurate
mapping and efficient localization are essential components
of any navigation system, enabling autonomous agents to
understand their surroundings and make informed decisions.
For addressing these challenges, Simultaneous Localization
and Mapping (SLAM) has emerged as a popular solution,
particularly with the advent of 3D SLAM techniques that
leverage depth information from sensors like 3D LiDARs,
stereo cameras, and RGB-D cameras [1]. However, 3D
SLAM methods as well as most current navigation fea-
tures considering 3D obstacles, often require substantial
computational resources [2], which can be a limiting fac-
tor for resource-constrained autonomous systems. Moreover,
processing data from multiple sensors in real-time can be
challenging, leading to delays and reduced performance [2].
To address these issues, we propose a lightweight alternative
to 3D methods such as those using depth points. Throughout
this paper, the term ’Laser-Scan’ will refer to the LaserScan
message in the Robotic Operating System (ROS) [3][4], a
standard message type used to publish 2D LiDAR data.
This format typically stores data in a simple list containing
the ranges (distances) of detected obstacles or INFINITY
value if no obstacle is detected. The position of a range
in this list allows to know the direction of the obstacle,

1 CNRS-AIST JRL (Joint Robotics Laboratory), IRL, Tsukuba, Japan.
∗ Corresponding author E-mail: ocean.noel.jp@gmail.com

based on the Field of View (FoV) of the sensor specified
in the Header of the LaserScan message. The LaserScan
message is widely used in robotics applications for tasks
such as mapping, localization, and obstacle detection, due
to its ability to provide a detailed representation of the
environment surrounding the robot [5]. Our method focuses
on fusing sensors data at the Laser-Scan level, creating a
unified Laser-Scan that serves as a foundation for faster and
more lightweight 2D navigation.

When navigating in a 2D space, it is still important to
consider 3D obstacles, as their shape might not be detected
by classical 2D LiDARs and the robot might collide with
them. This is particularly true for objects with a shape that
changes with the height (i.e a chair or a person), since 2D
LIDAR only detects a single layer at a time, whereas a
camera can yield 3D information. This allows the system
to consider shapes and obstacles outside the 2D LiDAR’s
plane, addressing the problem that the robot may be taller
than the clearance under certain objects. Therefore, we aim to
integrate these 3D data into our 2D mapping and navigation
system.

Several methods are possible for this integration. We
can use usual 3D mapping/navigation algorithms like
RTAB-Map [6] or ORB-SLAM3 [7] to represent the en-
vironment and project the map [8][2]. However, this can
add unnecessary computing time, as Visual SLAM has
higher computational requirements than LiDAR SLAM [2].
Also considering 2D navigation, using 3D LiDAR based
algorithms like SC-LeGO-LOAM [9] may also lead to un-
necessary 3D data computing and storage. Other solutions
have already been developed for 2D navigation considering
the 3D environment [10][11]. Compared to those solutions,
that will be detailed in Section II, we propose an easy-to-plug
modular package implemented in ROS2 Humble [12][13]. It
takes an unrestricted amount of inputs formatted as Laser-
Scans, such that any robot can easily plug and play this
package into their current mapping, or navigation, system
using several different sensors. For example, the result of
SC-LeGO-LOAM [9] can easily be adapted and used as
inputs to our package for lighter high-level computations.
Also, the Laser-Scan called ”virtual 2D scan” generated from
Wulf’s system [10][11] can be used with our package and
fuse with ”other sensor data.

Laser-Scans are the lightest 360-degree representation
of the current closest environment around the robot. By
converting everything into Laser-Scan prior to any mapping
or navigation algorithm, we can avoid the need of heavy 3D
approaches. Also, many Laser-Scan-based algorithms already

exist in the literature for mapping [14][15][16][17][18], or
for navigation purposes [19][20][21][22][23][24][25]. Thus,
having a rich Laser-Scan message containing 3D-sourced
data can leverage all the existing features using Laser-Scans
and lighten the entire navigation stack.

The remainder of this paper is organized as follows:
• Section II provides an overview of the related work.
• Section III details the problem statement; that is, the

current limitations.
• Section IV proposes a methodology for fusing sensor

data at the Laser-Scan level.
• Section V presents and discusses the experimental re-

sults and evaluations.
• Section VI concludes the paper and outlines future

work.

II. RELATED WORK

A. Sensor Fusion

Sensor fusion is a crucial technique in robotics that
combines data from multiple sensors to enhance feedback
accuracy and reliability. By integrating complementary in-
formation from diverse sensors, such as LiDARs (Light
Detection and Ranging), cameras, and IMUs (Inertial Mea-
surement Unit), sensor fusion mitigates individual sensor
limitations and uncertainties. This process often employs
probabilistic robotics principles, using Bayesian inference
and statistical methods to estimate the system’s state. Fusing
data reduces noise, handles sensor failures gracefully, and
improves confidence in the estimated state, leading to more
reliable performance in complex environments. Traditional
methods like Kalman filters, particle filters, and Bayesian
networks have been extensively used to integrate data from
various sensors. For example, Thrun et al. [26] provide a
comprehensive overview of probabilistic methods for sensor
fusion in robotics.

Recent advancements in deep learning have introduced
neural network-based approaches for sensor fusion, offering
improved performance in complex environments. For in-
stance, Chen et al. [27] demonstrate the use of Convolutional
Neural Networks (CNNs) for fusing LiDAR and camera data
to improve object detection and localization. Similarly, Wang
et al. [28] employ deep learning to fuse data from multiple
sensors for enhanced navigation and obstacle avoidance.

B. 2D Navigation Using 3D Sensors Data

Multimodal mapping involves creating maps using data
from various sensors, leveraging each sensor’s strengths to
build a comprehensive and accurate representation of the
environment. A LiDAR provides distance measurements with
centimeter-level accuracy, operates effectively in low-light
conditions, and offers a wide FoV, making it ideal for precise
obstacle detection and mapping. Cameras offer rich visual
information, including color and texture, crucial for identify-
ing landmarks and understanding the environment’s context.
However, cameras may struggle in low-light conditions and
can be affected by environmental factors such as fog or
rain. Combining these sensors enhances the robot’s ability to

navigate accurately and safely in diverse conditions. Tech-
niques such as probabilistic mapping, occupancy grids, and
feature-based mapping are commonly employed to integrate
multimodal data. The work by Wulf et al. [10] presents
a method for integrating 3D data into 2D navigation by
projecting 3D point clouds onto a 2D plane, creating a
colored occupancy grid map. While this approach allows
the robot to consider 3D obstacles while navigating in a 2D
space, it relies solely on a 3D LiDAR and does not directly
allow merging data from different sensors.

Similarly, the ROS2 plugin Navigation2 allows the
generation of 2D costmaps from 3D depth points and Laser-
Scan inputs [19]. These costmaps are then used to perform
path planning and navigation. However, this method does
not efficiently consider useful-only data (basically the inner
part of obstacles can be ignored), making it computationally
costly when several points are considered.

III. PROBLEM STATEMENT

While current 3D multimodal mapping and navigation
systems offer high accuracy and robustness, they often re-
quire substantial computational resources and can be chal-
lenging to implement in real-time on resource-constrained
platforms. The processing of high-dimensional data from
multiple sensors can lead to delays and reduced performance,
making these methods less suitable for applications where
computational efficiency is critical.

Moreover, most existing optimized methods focus on a
single type of sensor. For example, LiDAR-based SLAM
methods, such as LOAM [29], are highly effective for 3D
mapping but do not efficiently integrate data from other sen-
sors like cameras. Similarly, visual SLAM methods, such as
ORB-SLAM [30], focus on using monocular camera images.
This specialization limits the flexibility and adaptability of
these systems in diverse and dynamic environments and on
various robot’s systems.

Currently, there is a lack of ROS packages that allow
for an accurate and efficient fusion of data from multiple
sensor types using a standard shared representation. Existing
solutions often require custom integration and optimization,
which can be time-consuming and complex. For instance,
the work by Cadena et al. [1] highlights the challenges in
integrating different sensor modalities and the need for more
robust and generalized fusion techniques.

In summary, the primary challenges in the current state
of the art for 2D Navigation include: 1. High computational
requirements for processing high-dimensional data from mul-
tiple sensors. 2. Lack of efficient and accurate methods for
fusing data from different sensor types. 3. The need for a
standardized and modular approach to sensor fusion that can
be easily integrated into existing robotic systems.

IV. METHODOLOGY

In this section, we present the methodology for converting
and merging sensor data into a unified Laser-Scan format,
which is essential for efficient and accurate navigation and
mapping. We have divided this section into subsections to

provide a comprehensive overview of our approach. The first
subsection, ”All Sensors to Laser-Scan,” details the process
of converting data from various sensors, such as depth
cameras, into a common Laser-Scan format. This focuses
on the specific method for transforming a point cloud of
depth points to Laser-Scan, addressing the challenges posed
by moving cameras in the robot’s frame. The subsequent
subsection, ”Laser-Scan Merger,” focuses on the merging
of Laser-Scan data from multiple sensors. This involves
transforming the data to a common reference frame, synchro-
nizing the data using odometry interpolation, and performing
fusion to create a unified representation of the environment.
Each subsection provides detailed steps and considerations
to ensure the accuracy and reliability of the merged data. Our
method is ready-to-use and available on the public GitHub
repository multi-laserscan-toolbox-ros2 [12].

A. All Sensors to Laser-Scan

Our approach involves converting data from various sen-
sors into a unified Laser-Scan format. For instance, depth
information from cameras can be transformed into a Laser-
Scan-like representation. This conversion simplifies the data
processing pipeline and reduces the computational load.

1) Laser-Scan format: The desired Laser-Scan is repre-
sented in polar coordinates, where each point is defined by
an angle a and a range r. Mathematically, a Laser-Scan
can be described as a set of ordered pairs (ai,ri), where ai
represents the angle of the i−th point relative to a reference
direction, and ri represents the distance from the sensor to
the detected obstacle at that angle. The angle a typically
ranges from 0 to 2π radians (or 0 to 360°) for a full 360°
scan. This representation is particularly useful for navigation
and mapping tasks, as it provides a straightforward way to
represent the environment in terms of distances to obstacles
in various directions.

2) Depth Points to Laser-Scan: The output of depth
cameras is usually a point cloud, and we need to convert it
to a Laser-Scan. The point cloud is represented by a list of
points, that we call depth points all along this paper, defined
by their position x, y, and z in the camera’s frame. The safest
way of conversion for navigation is to keep the closest points
to the robot from the point cloud projected on the floor plan,
and retain this data in the Laser-Scan.

Some algorithms are available to perform such a con-
version [31][32]. However, to our best knowledge, none of
these algorithms can consider a moving camera in the robot’s
frame when filtering the depth points. For example, our
robot, described in the following Section V, is equipped with
two cameras, each with a 52° vertical FoV. These cameras
are mounted on servomotors, allowing for tilt movement,
which enables them to sweep up and down to gather more
information. This dynamic capability should not negatively
impact the navigation quality. However, existing algorithms
impose constraints to the camera specified in the initial
or fixed configuration of the camera. A major limitation
of this approach is that it prevents the specification of
desired obstacle filtering constraints in the world frame.

Fig. 1: Point Cloud to Laser-Scan algorithm’s Logic.

For instance, consider a scenario where our robot needs to
navigate through a doorway with a high overhead clearance.
If the camera is tilted downwards to scan the floor, the
algorithms may interpret the floor as an obstacle due to the
fixed reference configuration. Similarly, if the camera is tilted
upwards to scan the ceiling, high objects like door frames
might be detected as obstacles, even though the robot could
easily pass beneath them. To address this, we developed our
own point cloud to Laser-Scan converter that takes into con-
sideration relative motion. Our algorithm allows specifying
constraints in the world frame, and using the camera-robot
transformation, it automatically extracts the desired filtered
point cloud. This allows to consistently filter the wanted
depths points even when the camera is tilted up or down.
Additionally, our package includes the capability to detect
holes and treat them as obstacles. A concise overview of the
algorithmic strategy employed by this package is presented
in Fig. 1. Although further details cannot be provided in this
paper, the package is freely available in our repository [33].

B. Laser-Scan Merger

Once our sensor’s data is lightened by being converted
into Laser-Scans, they can be used as inputs to our Laser-
Scan Merger. An unrestricted number of inputs can be set to
the Laser-Scan merger, and each input can be configured
individually by specifying the desired FoV, ranges limits
(minimum or maximum distances to consider for obstacles),
and more. The result is a Laser-Scan containing the syn-
chronized merged information from each sensor. This output
can also be further transformed to have a specific FoV or
specific ranges. The following subsections will detail the
steps involved in this process, including the transformation
to a virtual common standard 360° Laser-Scan, the synchro-
nization using odometry interpolation and the global fusion
of the data.

1) Transformation to virtual common standard 360°
Laser-Scan: Before merging Laser-Scans from multiple sen-
sors, our algorithm standardizes their formats by aligning
the resolution (number of points), the FoV, and the reference
frame to a common format. Specifically, the common format
includes the final desired resolution specified by the user for
the output Laser-Scan, a FoV of 360° to encompass data from
all possible sensors around the robot, and the output frame
specified by the user. The steps involved in this process are
illustrated in Fig. 2 and will be detailed in this subsection.

The first step allows to take into consideration Laser-Scans
with different resolutions. Indeed, for example, in our case,
camera data contains many points, so we decided to convert it
into a Laser-Scan with 1440 points, whereas our two LiDARs
only have 360 points each. A simple embedded remapping
program allows converting a low-resolution Laser-Scan to
a higher one and vice-versa. This remapping program also
converts the Laser-Scan to a 360° format by adding IN-
FINITY values for out of FoV values, and filter the values
according to the constraints fixed by the user (Maximum
range, minimum range, specific FoV). The implementation
logic for those steps is illustrated in Fig. 2 with, respectively,
the names ”Resolution conversion”, ”FoV conversion” and
”User preferences Filtering”. For the resolution conversion,
Eq. (1) is used to determine the new position inew of a polar
point in the final Laser-Scan point list of resolution nnew,
based on its position in the initial Laser-Scan point list iinit
with ninit points.

inew =
nnew

ninit
· iinit (1)

In the case of low-resolution data extended to a higher one,
the gaps between the known data are filled with INFINITE
range values. These INFINITE values are replaced during
the global fusion if another sensor has more data here due
to a better resolution or a different origin.

Secondly, merging Laser-Scans from several sensors
placed at different origins on the robot requires knowing
their relative positions. The algorithm extracts those relative
positions from the Laser-Scans directly, as they contain the
frame name in which the data are expressed, and transform
all the 360° formatted Laser-Scans into virtual common
origin Laser-Scans. The transformation involves aligning the
data from each sensor to a common reference frame, ensuring
that the Laser-Scans are spatially consistent. This means that
the positions of obstacles detected by different sensors are
correctly mapped relative to each other and to the robot’s
position, creating a coherent and consistent representation of
the surroundings. This step is crucial for accurate fusion of
the sensor data. We first transform each Laser-Scan’s points
from polar coordinates to Cartesian coordinates ((x,y) in 2D).
For that, using the definition detailed in Subsection IV.A.1
above, we use Eq. 2.

x = r · cos(a) y = r · sin(a) (2)

Fig. 2: Algorithm’s logic that converts any Laser-Scan to
the wanted standard format.

Then, using homogeneous coordinates [34], we transform
each Cartesian point to the wanted common virtual frame
using the relation Eq. 3, with:

• A|1: The homogeneous coordinates of the point A in
reference frame R1.

• A|2: The homogeneous coordinates of the point A in
reference frame R2.

• T2−1: The linear homogeneous transformation matrix
from R2 to R1.

• R2−1: The angular homogeneous transformation matrix
from R2 to R1.

A|2 = (T2−1R2−1)A|1 (3)

And then, we transform each Cartesian point in R2 back to
polar coordinates, this time with respect to the new frame,
using the relations 4.

r2 = x2 + y2 tan(α) =
y

x
(4)

This step corresponds to the block named ”Spatial Transfor-
mation” in Fig. 2.

Finally, the overall algorithm to have compatible Laser-
Scans matching the user preferences is as shown in Fig. 2.

2) Laser-Scan Synchronization Using Odometry Interpo-
lation: Format compatibility problems have been solved as
described in the previous subsection. However, each sensor
might publish its data asynchronously with different rates
and with some delay. So the data are not time-compatible
and cannot yet be merged as they are. To perform an accurate
and consistent fusion, we need to synchronize all the data
on a given timestamp. This is a well-known problem when
dealing with distributed sensors [35].

In order to deal with that, our algorithm is able to apply
a transformation on the received Laser-Scans. If the Laser-
Scan message is late, it will apply the correct transformation
to it so that even if the data is old, we can extrapolate
it to the current timestamp. For that, the algorithm uses
the robot’s odometry to estimate the motion between the
data’s timestamp and the current timestamp. However, using
the odometry data as a Laser-Scan synchronizer can be
problematic. Indeed, as it is also published asynchronously,
we might not have the robot’s state at the exact timestamp of
the sensors’ data. Thus, our algorithm contains an embedded
odometry interpolator to estimate the robot’s state at the
time of the sensor data, knowing the state before and after.
This interpolator uses the algorithm Slerp [36] for quater-
nion interpolation for orientation and linear interpolation for
position. Let’s say we have two odometries Odom1 and
Odom2, we define xi, yi, qi, ti, respectively, the position on
the x-axis, the position on the y-axis, the Quaternion and the
timestamp of Odomi, which represents the robot’s state at
time ti. If the package receives a Laser-Scan at a timestamp
ta with t1 < ta < t2, our algorithm will estimate the robot’s

state (position, orientation) at ta with Eq. (5):

u =
ta − t1
t2 − t1

xa = x1(1− u) + x2u

ya = y1(1− u) + y2u

qa = Slerp(q1, q2, u)

(5)

The last available odometry will be used if the wanted state is
in the future (i.e., when the sensor’s data is available before
the odometry at the current timestamp). For state requests
older than the oldest available odometry, the oldest data will
be used. Our algorithm allows the odometry queue size to
be specified. Additionally, a sensor data timeout can be set,
which determines the maximum allowable delay between the
sensor data and the current time, to avoid using too old data.

It is worth to note that the odometry data are usually not
fully accurate enough for integration; indeed, small errors
in speed measurements can accumulate over time, leading
to drift in the estimated robot position and orientation.
This makes the odometry data unsuitable for determining
the robot’s true current state without additional correction
methods. But, this problem doesn’t affect our Laser-Scan
merger as it is based on odometry differences. The error that
is introduced is therefore the error between two consecutive
odometry data, and this is usually small enough to have good
accuracy when transforming Laser-Scans. The full code logic
to synchronise a Laser-Scan on a wanted timestamp is as
shown in Fig. 3.

3) Global Fusion: Finally, we perform the global fusion
of the aligned and synchronized Laser-Scans to create the
wanted unified representation of the 3D environment in a
2D Laser-Scan. This step allows combining the data from
all sensors to build a rich Laser-Scan that can be used
for navigation or mapping. The fusion simply consists of
comparing all Laser-Scans and keep the smallest ranges,
which represent the closest obstacles. The overall algorithm
merging the Laser-Scans from an unrestricted amount of
sensors is as described in Fig. 4.

V. EXPERIMENTS AND RESULTS

Our algorithm is implemented as a ROS2 package, making
it easily integrable with any existing robot already using
ROS2[4]. In our case, we integrated our ROS2 package with
the navigation system of an omnidirectional robot called
CALL-M. This robot is designed to collect cardboards and

Fig. 3: Algorithm’s logic to synchronize a Laser-Scan with
current robot’s state.

Fig. 4: Algorithm’s logic for a consistent Laser-Scans fusion.

Fig. 5: CALL-M robot’s sensors.

trash bags in a shopping mall, requiring it to navigate in an
environment filled with complex-shaped objects and dynamic
obstacles.

To achieve this, CALL-M is equipped with two 2D
RpLidars SLAMTEC A11, two Zed-Mini2 cameras, and
four Ultrasonic sensors Maxbotic MB14033. Also, the two
cameras are mounted on servomotors allowing them to sweep
up and down. The Ultrasonic sensors were added later and
are not yet implemented in the ROS2 navigation system, so
they were not used in the experiments presented here. The
sensors were arranged as shown in Fig. 5, with the hardware
on the left and the corresponding simulated robot model for
the mobile base only (without the Ultrasonic sensors) on the
right. Table I outlines how each sensor enhances the robot’s
environmental awareness and navigation capabilities.

The robot is also equipped with two computers, a Nvidia
JETSON Orin NX 16 Gb4 to manage GPU related packages
(especially for the Zed-Minis) and a NUC 13 Pro Kit5 to run
other programs related to control. We use a TriOrb6 mobile
base allowing for omnidirectionnal motion, and UR5e robotic
arm7 for further grasping tasks. The robot is around 85 Kg
(with the UR5e), has a rectangle footprint of 0.48 m x 0.74
m, and an height of 0.60 m without the UR5e on top.

The inputs to our algorithm are unrestricted but need to
be Laser-Scans. Therefore, the data from the Depth Cameras
have been converted to Laser-Scan using our developed

1https://www.slamtec.ai/product/slamtec-rplidar-a1/
2https://www.stereolabs.com/en-fr/store/products/zed-mini
3https://maxbotix.com/products/mb1403
4https://www.nvidia.com/en-us/autonomous-machines/embedded-

systems/jetson-orin/
5https://www.asus.com/displays-desktops/nucs/nuc-mini-pcs/asus-nuc-

13-pro/techspec/
6https://triorb.co.jp/en/
7https://www.universal-robots.com/products/ur5-robot/

LiDARs Provide accurate 2D obstacle detection, robust to lumi-
nosity variations. The two LiDARs offer a 360° FoV.

Cameras

Allow 3D detection of obstacles, considering the height
of obstacles. However, the two cameras combined cover
only a 164° FoV. Also, data is sensitive to luminosity
variations, fog, and other environmental factors.

Ultrasonic
sensor

Currently not in use, but intended for detection of glasses
and mirrors. They detect obstacles accurately within a
certain range, though the position accuracy is limited.

TABLE I: Advantages and drawbacks of mounted LiDARs,
Cameras and Ultrasonic sensors.

Specification LiDAR Camera
Laser-Scan Publish Rate (Hz) 8 14
Laser-Scan Resolution (number of points) 360 1440
Laser-Scan FoV (°) 360 82

TABLE II: LiDARs and Cameras ROS2 specifications.

package presented in Section IV. This package appeared
to be efficient and could run at more than 300 Hz8 when
processing 52000 depth points from each camera on a CPU
i7-7700HQ. Additionally, given the LiDARs’ arrangement,
we needed to filter their outputs to prevent the robot’s body
from being detected and also to merge their data. As the
LiDARs’ outputs are Laser-Scans, we use them directly as
inputs to our algorithm. So we can filter and fuse them with
the cameras’ Laser-Scans into a virtual LiDAR at the center
of the robot. Also, our package facilitates this process of
individually customizing each source easily through a .yaml
ROS2 configuration file.

The performance specifications of each sensor are pre-
sented in Table II.

To validate our algorithm efficiency when merging data
from two LiDARs and two Cameras, two experiments are
presented in this paper. First, we demonstrate how our
algorithm enhances 2D mapping by considering 3D obstacles
with the cameras’ data. Then, we show how our algorithm
allows to lighten an existing navigation system while main-
taining the navigation quality considering 3D obstacles. Both
experiments presented here have been done in a simulated
environment in Gazebo. Complications with the hardware of
the mobile base prevented us to conduct those final experi-
ments on the real robot. Those experiments also demonstrate
that our package seamlessly enables the combination and
customization of data from multiple sources.

A. Light mapping with LiDARs and Cameras Using ROS2

Fig. 6 shows that we could correctly fuse cameras’ 3D
data and 2D LiDARs’ data into a rich unified Laser-Scan
from which a rich map containing also the 3D obstacles
information can be generated through a classic 2D SLAM. In
our case slam-toolbox package has been used [14]. The
left part shows the 3D scene used to perform the mapping.
The middle part shows the map before integrating cameras,
where we can note that only the footprints of tables and

8The measured frequency is based on the processing time for 52000 depth
points. During runtime, the package fits to the maximum rate of the cameras’
publications which was 14 Hz in our case.

(a) Simulated environ-
ment.

(b) Map using LiDARs (c) Map using LiDARs
and cameras

Fig. 6: Mapping using LiDARs Only and with Depth
Cameras’ data integration.

shelves appear on the map. However, considering the robot
height and the arm that is mounted on it, we want to avoid
the robot to go below these objects; thus, we had to consider
3D camera’s data. The right part shows the map resulting
from this integration. We can see that this map contains the
appropriate obstacles that should be considered according to
our robot’s height, improving the environment knowledge
and proving that we could correctly enhance the classical
2D SLAM using our package. The mapping of the shelves
in the top left corner is incomplete because the robot did not
navigate between each shelf to perform a thorough mapping
during this experiment.

We noted that the generated map when integrating cam-
eras contains thicker obstacles than the one using LiDARs.
This effect doesn’t appear from our package merging the
Laser-Scans, but from our depth to Laser-Scan package
converting camera’s data to Laser-Scan. This is due to the
high resolution of the cameras’ Laser-Scan (1440 points like
specified in Table II). Due to this high resolution, some inside
points like holes between boxes or shelves’ support might be
considered as the closest points. But this effect doesn’t add
wrong points and the amount of inner points considered is
negligible compared to the true closest point detected. This
effect wasn’t a problem for accurate mapping and navigation
in our case. Anyway, our Depth to Laser-Scan converter
package can be adjusted, and the resolution can be reduced
to avoid this effect if needed.

B. Light navigation in dynamic Environment with LiDARs
and Cameras Using ROS2

We also tested our approach in a dynamic environment
where the robot needs to navigate considering 3D data from
two cameras and 2D data from two LiDARs. To measure
how our strategy allows to lighten the navigation, we used
Navigation2 ROS2 plugin (NAV2) [19]. This plugin
contains several ready-to-use 2D path planning and con-
trollers. And NAV2 can take as inputs Laser-Scans and point
clouds, so we wanted to compare the performance when
using our LiDARs’ Laser-Scans and cameras’ depth points
directly as inputs to the default system of Navigation2,
and when using only our rich Laser-Scan that contains all

Model Acer Predator G9-793
Processor Intel® Core™ i7-7700HQ CPU @ 2.80 GHz × 8
Memory 20 Gb
Graphic Card NVIDIA GeForce GTX 1060 Mobile 6 Gb
OS Ubuntu 22.04.4 LTS

TABLE III: Experiment’s computer details.

Fig. 7: Simulated world for the Navigation experiment.

the information. We operate the same navigation simulation
through the same obstacles and compare the navigation
system load and the duration to reach the goal. As shown
Fig. 7, the experiment consists of asking the robot to go
from point A to point B while navigating through the moving
obstacles, represented by simulated humans. The details of
the computer used to perform the experiment can be found
in Table III.

We operate the experiment several times with different
amounts of depth points from the cameras, and for each
following method:

• Raw inputs: The two LiDARs and two cameras are
directly given as inputs to NAV2 navigation system.

• Merged Laser-Scan: The two LiDARs and cameras are
merged into one Laser-Scan using our algorithm, and
only this Laser-Scan is given to the navigation system.

Fig. 8 shows the measured duration to reach the goal, and
the different loads (CPU and Memory) for each case.

First, we observe that the navigation duration is unaffected
regardless of the method used. This demonstrates that our
method maintains good navigation quality. Then, as more
depth points are considered, the CPU usage of the default
NAV2 navigation system increases, while our algorithm al-
lows to maintain a constant CPU load. This is because the de-
fault system only computes one Laser-Scan when using our
method. And the multi-laserscan-toolbox-ros2
package, processes fixed-size Laser-Scan inputs and has also
a constant CPU Load. However, our approach requires an
additional conversion of depth points to Laser-Scan using the
depth-filter-scan-converter package described
in Section IV.A.2.

As shown in Fig. 9, we also monitor the overall computer’s
system loads. A large amount of the measured loads are
due to the simulated environment but we can still note
a difference when using our method or the default NAV2
navigation system. Especially with large amounts of depth

points, using the default NAV2 system slows down the
computer, with a simulation running at 40 FPS rather than
the usual 61 FPS, because of the large CPU Load reaching
100%, but our algorithm still allows the computer to run
properly considering the same sensors with a maximum load
around 97%.

Those results demonstrate the efficiency of merging all
sensors into a rich Laser-Scan using our algorithm for a
lighter and enhanced mapping or navigation. Our rich Laser-
Scan will enhance any higher-level algorithm using it for
mapping or navigation.

VI. CONCLUSION

In this paper, we presented a lightweight approach to
efficient 2D navigation using multimodal sensor fusion. Our
method is based on converting data from various sensors
into a standardized Laser-Scan format and performing fusion
to create a rich Laser-Scan for mapping or any Laser-
Scan based navigation system. Experiments using ROS2
demonstrated the effectiveness of our approach, showing
similar quality navigation and significant reduced computa-
tional load compared to traditional 2D navigation methods
considering 3D obstacles. Additionally, our approach proved
to be fast enough for robustness and efficiency in handling
dynamic environments and for enhancing the mapping of a
common 2D SLAM with 3D obstacles data.

Our proposed method aims to provide a lightweight and
modular ROS2 solution for fusing sensor data at the Laser-
Scan level from an unrestricted amount of sensors, enabling
efficient and accurate 2D navigation or mapping while con-
sidering 3D obstacles. It does not aim to replace existing
methods for 2D mapping and navigation but rather seeks to
enhance them by reducing their computational load, through
the efficient formatting of sensor data into the Laser-Scan
format and integrating data from multiple 3D and 2D sensors.

Future work will integrate ultrasonic sensors into the
navigation system, requiring further study to convert their
imprecise range data into Laser-Scan format. Additionally,
future research will explore synergy with the robotic arm to
enhance navigation by considering its motion.

REFERENCES

[1] C. Cadena, L. Carlone, H. Carrillo, Y. Latif, D. Scaramuzza, J. Neira,
I. Reid, and J. J. Leonard, “Past, present, and future of simultaneous
localization and mapping: Toward the robust-perception age,” IEEE
Transactions on robotics, vol. 32, no. 6, pp. 1309–1332, 2016.

[2] Y.-L. Zhao, Y.-T. Hong, and H.-P. Huang, “Comprehensive Perfor-
mance Evaluation between Visual SLAM and LiDAR SLAM for
Mobile Robots: Theories and Experiments,” Applied Sciences, vol. 14,
no. 9, p. 3945, 2024.

[3] M. Quigley, K. Conley, B. Gerkey, J. Faust, T. Foote, J. Leibs,
R. Wheeler, A. Y. Ng et al., “ROS: an open-source Robot Operating
System,” in ICRA workshop on open source software, vol. 3, no. 3.2.
Kobe, Japan, 2009, p. 5.

[4] ROS, “ROS: An open-source robot operating system,” https://www.
ros.org/.

[5] ——, “Introduction to Working with Laser Scan-
ner Data,” http://wiki.ros.org/laser pipeline/Tutorials/
IntroductionToWorkingWithLaserScannerData.

[6] M. Labbé and F. Michaud, “RTAB-Map as an open-source lidar and
visual simultaneous localization and mapping library for large-scale
and long-term online operation,” Journal of field robotics, vol. 36,
no. 2, pp. 416–446, 2019.

https://www.ros.org/
https://www.ros.org/
http://wiki.ros.org/laser_pipeline/Tutorials/IntroductionToWorkingWithLaserScannerData
http://wiki.ros.org/laser_pipeline/Tutorials/IntroductionToWorkingWithLaserScannerData

Fig. 8: Duration and Navigation system load for different cameras’ amount of points and for each method.

Fig. 9: Overall CPU load during Navigation for different
amount of depth points and for each method.

[7] C. Campos, R. Elvira, J. J. G. Rodrı́guez, J. M. Montiel, and
J. D. Tardós, “Orb-slam3: An accurate open-source library for visual,
visual–inertial, and multimap SLAM,” IEEE Transactions on Robotics,
vol. 37, no. 6, pp. 1874–1890, 2021.

[8] Y. Nitta, D. Bogale, Y. Kuba, and Z. Tian, “Evaluating SLAM 2d
and 3d mappings of indoor structures,” in ISARC. Proceedings of the
international symposium on automation and robotics in construction,
vol. 37. IAARC Publications, 2020, pp. 821–828.

[9] T. Shan and B. Englot, “Lego-loam: Lightweight and ground-
optimized lidar odometry and mapping on variable terrain,” in 2018
IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS). IEEE, 2018, pp. 4758–4765.

[10] O. Wulf, C. Brenneke, and B. Wagner, “Colored 2D maps for robot
navigation with 3D sensor data,” in 2004 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS)(IEEE Cat. No.
04CH37566), vol. 3. IEEE, 2004, pp. 2991–2996.

[11] O. Wulf, K. O. Arras, H. I. Christensen, and B. Wagner, “2D mapping
of cluttered indoor environments by means of 3D perception,” in
IEEE International Conference on Robotics and Automation, 2004.
Proceedings. ICRA’04. 2004, vol. 4. IEEE, 2004, pp. 4204–4209.

[12] O. Noel, “multi-laserscan-toolbox-ros2,” https://github.com/Noceo200/
multi-laserscan-toolbox-ros2.

[13] ROS, “ROS 2 Humble Documentation,” https://docs.ros.org/en/
humble/index.html.

[14] S. Macenski and I. Jambrecic, “SLAM Toolbox: SLAM for the
dynamic world,” Journal of Open Source Software, vol. 6, no. 61,
p. 2783, 2021, http://wiki.ros.org/slam toolbox.

[15] G. Grisetti, C. Stachniss, and W. Burgard, “Improved techniques for
grid mapping with rao-blackwellized particle filters,” IEEE transac-
tions on Robotics, vol. 23, no. 1, pp. 34–46, 2007, http://docs.ros.org/
en/hydro/api/gmapping/html/index.html.

[16] S. Kohlbrecher, O. Von Stryk, J. Meyer, and U. Klingauf, “A flexible
and scalable SLAM system with full 3D motion estimation,” in 2011
IEEE international symposium on safety, security, and rescue robotics.
IEEE, 2011, pp. 155–160, http://wiki.ros.org/hector slam.

[17] W. Hess, D. Kohler, H. Rapp, F. Andert, and W. Burgard, “Real-Time

Loop Closure in 2D LIDAR SLAM,” https://google-cartographer-ros.
readthedocs.io.

[18] F. Dellaert, D. Fox, W. Burgard, and S. Thrun, “Monte carlo local-
ization for mobile robots,” in Proceedings 1999 IEEE international
conference on robotics and automation (Cat. No. 99CH36288C),
vol. 2. IEEE, 1999, pp. 1322–1328, http://wiki.ros.org/amcl.

[19] S. Macenski, F. Martı́n, R. White, and J. Ginés Clavero,
“The Marathon 2: A Navigation System,” in 2020 IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS),
2020, https://docs.nav2.org/. [Online]. Available: https://github.com/
ros-planning/navigation2

[20] O. Noel, “ROS2 Vector Field Controller,” https://github.com/
Noceo200/ros2-vector-field-controller.

[21] R. N. S. Maintainers, “Costmap 2D Documentation,” http://wiki.ros.
org/costmap 2d.

[22] R. P. Maintainers, “Voxel Grid Documentation,” http://wiki.ros.org/
voxel grid.

[23] R. N. S. Maintainers, “Move Base Documentation,” http://wiki.ros.
org/move base.

[24] D. Fox, W. Burgard, and S. Thrun, “The dynamic window approach to
collision avoidance,” IEEE Robotics & Automation Magazine, vol. 4,
no. 1, pp. 23–33, 1997, http://wiki.ros.org/dwa local planner.

[25] C. Rösmann, F. Hoffmann, and T. Bertram, “Integrated online trajec-
tory planning and optimization in distinctive topologies,” Robotics and
Autonomous Systems, vol. 88, pp. 142–153, 2017, http://wiki.ros.org/
teb local planner.

[26] S. Thrun, “Probabilistic robotics,” Communications of the ACM,
vol. 45, no. 3, pp. 52–57, 2002.

[27] X. Chen, H. Ma, J. Wan, B. Li, and T. Xia, “Multi-view 3d object
detection network for autonomous driving,” in Proceedings of the
IEEE conference on Computer Vision and Pattern Recognition, 2017,
pp. 1907–1915.

[28] Z. Wang, Y. Wu, and Q. Niu, “Multi-sensor fusion in automated
driving: A survey,” Ieee Access, vol. 8, pp. 2847–2868, 2019.

[29] J. Zhang, S. Singh et al., “LOAM: Lidar odometry and mapping in
real-time.” in Robotics: Science and systems, vol. 2, no. 9. Berkeley,
CA, 2014, pp. 1–9.

[30] R. Mur-Artal, J. M. M. Montiel, and J. D. Tardos, “ORB-SLAM: a
versatile and accurate monocular SLAM system,” IEEE transactions
on robotics, vol. 31, no. 5, pp. 1147–1163, 2015.

[31] R. P. Maintainers, “depthimage to laserscan,” https://wiki.ros.org/
depthimage to laserscan.

[32] ——, “pointcloud to laserscan,” https://github.com/ros-perception/
pointcloud to laserscan.

[33] O. Noel, “Depth point filter-converter to Scan,” https://github.com/
Noceo200/depth-filter-scan-converter.

[34] J. Bloomenthal and J. Rokne, “Homogeneous coordinates,” The Visual
Computer, vol. 11, pp. 15–26, 1994.

[35] M. Kam, X. Zhu, and P. Kalata, “Sensor fusion for mobile robot
navigation,” Proceedings of the IEEE, vol. 85, no. 1, pp. 108–119,
1997.

[36] V. E. Kremer, “Quaternions and SLERP,” in Embots. dfki.
de/doc/seminar ca/Kremer Quaternions. pdf, 2008.

https://github.com/Noceo200/multi-laserscan-toolbox-ros2
https://github.com/Noceo200/multi-laserscan-toolbox-ros2
https://docs.ros.org/en/humble/index.html
https://docs.ros.org/en/humble/index.html
http://wiki.ros.org/slam_toolbox
http://docs.ros.org/en/hydro/api/gmapping/html/index.html
http://docs.ros.org/en/hydro/api/gmapping/html/index.html
http://wiki.ros.org/hector_slam
https://google-cartographer-ros.readthedocs.io
https://google-cartographer-ros.readthedocs.io
http://wiki.ros.org/amcl
https://docs.nav2.org/
https://github.com/ros-planning/navigation2
https://github.com/ros-planning/navigation2
https://github.com/Noceo200/ros2-vector-field-controller
https://github.com/Noceo200/ros2-vector-field-controller
http://wiki.ros.org/costmap_2d
http://wiki.ros.org/costmap_2d
http://wiki.ros.org/voxel_grid
http://wiki.ros.org/voxel_grid
http://wiki.ros.org/move_base
http://wiki.ros.org/move_base
http://wiki.ros.org/dwa_local_planner
http://wiki.ros.org/teb_local_planner
http://wiki.ros.org/teb_local_planner
https://wiki.ros.org/depthimage_to_laserscan
https://wiki.ros.org/depthimage_to_laserscan
https://github.com/ros-perception/pointcloud_to_laserscan
https://github.com/ros-perception/pointcloud_to_laserscan
https://github.com/Noceo200/depth-filter-scan-converter
https://github.com/Noceo200/depth-filter-scan-converter

INTRODUCTION TO RESEARCH 1

Comparative Evaluation of Path Planning
Algorithms for Autonomous Vessels in Dynamic

Maritime Environments
Marie Dubromel, Member, ENSTA, Brest, France,

Abstract—This paper presents a comprehensive comparison
of path planning algorithms for autonomous vessels, focusing
on their efficiency and adaptability in dynamic maritime en-
vironments. Building on a previously developed Python-based
simulator using the Artificial Potential Field (APF) method,
this work extends the simulator by integrating four additional
path planning algorithms: A* (A Star), D* Lite (for dynamic
environments), Ant Colony Optimization, and Particle Swarm
Optimization. The primary objective is to evaluate these algo-
rithms based on their ability to plan efficient, collision-free paths
while navigating complex maritime scenarios, including encoun-
ters with both manned and unmanned vessels. The performance
of each algorithm is assessed through multiple criteria, including
path length, computational runtime, and their ability to replan in
real-time during dynamic vessel encounters. This paper provides
a detailed analysis of how each algorithm performs in fixed and
dynamic environments, offering valuable insights for enhancing
the autonomy and safety of maritime navigation in compliance
with the International Regulations for Preventing Collisions at
Sea (COLREGs).

Index Terms—path planning, USV, anti-collision, autonomous,
simulator, maritime.

I. INTRODUCTION

AUTONOMOUS vessels have emerged as a transformative
innovation in maritime operations, offering significant

advantages across commercial, tourism, and defense sectors.
By eliminating the need for onboard crew, these vessels
remove humans from potentially hazardous situations and en-
able advanced operations in increasingly hostile environments.
However, achieving full autonomy for marine vessels requires
robust and reliable control and guidance systems capable of
handling diverse encounters with both manned and unmanned
vessels. These systems must operate effectively under various
sea conditions while guaranteeing safety and respecting the
International Regulations for Preventing Collisions at Sea
(COLREGs).

COLREGs [1], initially conceived in the 19th century, were
designed with human sailors in mind, relying on their interpre-
tation and execution of ambiguous language. Adapting these
regulations for autonomous systems presents significant chal-
lenges, particularly in mixed scenarios involving both manned
and unmanned vessels. Human navigators’ often unpredictable
behavior further complicates the task of designing collision

M. Shell was with the Department of Electrical and Computer Engineering,
Georgia Institute of Technology, Atlanta, GA, 30332 USA e-mail: (see
http://www.michaelshell.org/contact.html).

J. Doe and J. Doe are with Anonymous University.
Manuscript received April 19, 2005; revised August 26, 2015.

avoidance systems. While traditional model-based approaches
can address certain situations, their complexity makes them
inadequate for the vast range of potential encounters and
environmental conditions.

To address these challenges, modern advancements in au-
tonomous navigation have explored various methodologies,
including the development of path planning algorithms with
avoiding-collision system. Last year, a Python-based simulator
was developed to model and test path planning algorithms
[2] , serving as a foundation for this work. The simulator
initially used the Artificial Potential Field (APF) method to
ensure a collision-free navigation. Using this simulator as a
start, it has since been enhanced to incorporate and compare
additional algorithms, including A* (A Star), D* Lite, Ant
Colony Optimization, and Particle Swarm Optimization. Here
is a list of the relevant COLREGs rules which have been
implemented in the inital COLSim Simulator:

• Rule 8 - Actions to avoid collision: if there is sufficient
sea-room, alteration of course alone may be most effec-
tive. Reduce speed, stop or reverse only if necessary.

• Rule 13 - Overtaking: Any vessel overtaking any other
shall keep out of the way of the vessel being overtaken.

• Rule 14 - Head-on: Each head-on vessel shall alter her
course to starboard so that each shall pass on the port
side of the other.

• Rule 15 - Crossing: The vessel which has the other on
her own starboard side shall keep out of the way.

• Rule 16 - Actions by give-way vessel: Take early and
substantial action to keep well clear.

• Rule 17 - Actions by stand-on vessel: Keep her course
and speed but may take action to avoid collision if the
other vessel is not taking a COLREGs-compliant action.

This paper presents a comparative study conducted with
the help of Tiphaine Calvier-Moisson of these algorithms,
focusing on their efficiency, adaptability, and compliance with
COLREGs. The performance of each algorithm is evaluated in
both static and dynamic maritime environments, with metrics
such as path length, computational runtime, and real-time col-
lision avoidance capabilities. By analyzing these approaches,
this work contributes to the development of adaptive and
efficient guidance systems for autonomous vessels, paving the
way for safer and more reliable maritime operations.

INTRODUCTION TO RESEARCH 2

II. COLSIM SIMULATOR : POTENTIAL ARTIFICIAL FIELD
ALGORITHM

A. State of the art

Before the implementation of the COLSim, two other
simulators have been studied in order to identify possible
solutions for similar problem around USV in a simulator. The
Fossen Simulator [3] is designed to simulate the behavior of
different types of vehicles in a 3D simulation environment.
It takes into account different simulation parameters such
as gravity, friction, air resistance, and vehicle dynamics to
simulate the movement and behavior of vehicles in real- time.
Users can adjust simulation parameters to represent different
types of vehicles and environments. Each vehicle is modeled
as an object in Python and the vehicle class has methods for
guidance, navigation and control. However, it does not take
into account the concept of collision with other boats, and
because of the accuracy of the simulation, the complexity of
the program is a bit too high to be run a thousand times in
an AI training context. However, the state equations chosen to
implement a maritime environment such as waves and currents
could be useful to upgrade the COLSim if needed in the future.
// The UTSeaSim simulator [4] is a multi-agent simulation
environment for underwater robotics research. It allows users
to simulate underwater vehicles and their interactions with the
environment, as well as communication between vehicles and
with a surface station. The simulation environment includes
several modules, such as a physics engine, a sensor module, a
communication module, and a behavior module. The physics
engine simulates the dynamics and kinematics of the under-
water vehicles, while the sensor module simulates various
sensors such as sonar and vision sensors. The communication
module simulates acoustic and radio communication between
vehicles and with the surface station. The behavior module is
responsible for controlling the behavior of the vehicles in the
simulation. It also uses an RTT algorithm to avoid obstacles
wich in the context of the COLSim may not work if the
obstacles are close.

B. Simulator A

To effectively evaluate COLREGs scenarios involving mul-
tiple vessels, both manned and unmanned, a simple yet re-
alistic tool was needed, as existing complex tools like the
ones presented in the state of the art, were not well-suited
for this purpose. The COLSim is intended to support the
development of reinforcement learning-based path planning
algorithms while ensuring compliance with COLREGs. It also
provides a benchmark for comparing the performance and
efficiency of different path planning approaches, different than
the APF initially implemented [5]. The Simulator A can be run
in two different ways :

• The simulation with the scene with the different USV
displayed

• The simulation without any display, but with the USV’s
following information : MMSI number, x, y, theta, v
saved in a .csv file

The simulator also features four types of agents representing
a variety of manned or unmanned surface vehicles, ranging

from small boats to large commercial ships, along with
dynamic objects like marine animals or drifting debris with
unpredictable behaviors. Additionally, it includes a static
agent to represent non-navigable areas, such as coastlines,
on the navigation map. This diverse set of agents creates a
comprehensive framework for testing and improving collision
avoidance strategies. In real-world scenarios, vessels often
come from different operators and follow distinct procedures,
reflecting the simulator’s design where no communication
occurs between agents. This highlights the importance of each
agent independently navigating and avoiding collisions.

Fig. 1: Illustrations of different simulation runned with differ-
ent types of agents

C. Simulator B : AIS data

The second simulator introduced offers the capability to
recreate real-life scenarios using AIS data from various regis-
tered boats and add multiple ASV in the scene without causing
any disturbance. The datasets are sourced from the AISHub
website, providing an authentic and dynamic backdrop for
simulation scenarios. With this simulator, users can immerse
themselves in maritime environments, and understand the
actual vessel movements and interactions. This simulator also
takes into account the rules of the COLREGs to avoid any
kind of collision.

Both simulators operate on a 2D map, simplifying scenarios
by excluding variables like weather and sea conditions. This
controlled planar environment enables a focused analysis of
the effectiveness and efficiency of different path planning
algorithms, free from the added complexity of environmental
factors.

III. COMPARISON OF DIFFERENT PATH PLANNING
ALGORITHMS

A. Local or global path planning

In their review of path planning algorithms for Maritime Au-
tonomous Surface Ships (MASS) with a focus on navigation
safety [6], researchers categorized various algorithms based on
their suitability for local or global path planning and whether
they employ heuristic or artificial intelligence-based methods.
On the one hand, global path planning relies on prior knowl-
edge of the environment, including obstacle positions and the
final goal, and is typically designed for fully known environ-
ments. And on the other hand, local path planning deals with

INTRODUCTION TO RESEARCH 3

unknown or partially known environments, requiring reactive
strategies to adapt in real time. Traditional global approaches
often use methods like cell decomposition and potential fields,
which, while effective, lack the advanced adaptability of more
intelligent systems. Local strategies, being reactive, are better
suited to dynamically evolving scenarios and are capable of
autonomously adjusting plans.

Similarly, a review of path planning strategies for mobile
robot navigation [7] offers a detailed summary of popular
algorithms. Drawing from over 200 papers, it highlights their
applications in navigating static obstacles, dynamic obstacles,
and dynamic goals, as well as their use in hybrid systems
or multi-robot environments. While fewer studies focus on
dynamic environments, the review concluded that reactive
strategies generally outperform classical approaches due to
their superior ability to manage environmental uncertainties.

For the simulator COLSim of the study, the constraints and
requirements are clearly known. The simulation environment
represents a local navigation scenario where obstacles are
only known within the map, and while obstacles may be
dynamic, the goal remains fixed. The algorithms are not
intended for multi-robot systems and must generate efficient,
smooth trajectories without unnecessary backtracking. Based
on these criteria, five algorithms have been selected, each
reflecting a distinct approach to path planning, to evaluate their
performance in this controlled environment. These algorithms
have been added to the COLSim [8], but unlike the APF, the
COLRegs have been added into the new algorithms

B. Path planning algorithms
1) APF: APF follows potential lines and is the only algo-

rithm that includes directives for adhering to the COLREGs
(Convention on the International Regulations for Preventing
Collisions at Sea), the sea navigation rules, among the imple-
mented algorithms in the COLSim. When there is no nearby
obstacle, a move straight() function directs the agent towards
its goal at each iteration. If the vessel is in a collision situation
(an object is in his safety zone), the vessel will try to avoid
the obstacle or other agents by following the COLREGs rules
[2]. APF works by treating the goal as an attractive force and
obstacles as repulsive forces, creating a potential field that
guides the agent [5].

Fig. 2: Illustration of Rule 14 - Head-on situation from the
COLREGs implemented in the simulator.

2) A Star: A* (A-star) is an efficient and widely used
pathfinding algorithm that finds the shortest path between a
start and goal node on a grid or graph as demonstrated in the
article [9]. It is commonly applied in robotics, video games,
and navigation systems. The algorithm balances two factors:

• g(n): The cost from the start node to the current node.
• h(n): A heuristic estimate of the cost from the current

node to the goal.
• f(n) = g(n) + h(n): The total estimated cost of the path

through node n.

A* iteratively selects the node with the lowest f(n) value by
computing their g, h, and f values, and adds them to the open
list if they haven’t been explored., expands its neighbors, and
updates their costs until it reaches the goal. If no path exists,
it determines that no feasible route is available. If a neighbor
is the goal node, the path is reconstructed by backtracking
from the goal to the start. If the open list is emptied without
reaching the goal, it indicates that no valid path exists. The
simulator of this study requires an efficient local path-planning
algorithm that operates in a dynamic 2D environment where
obstacles and other vessels are present, therefore, this type of
path planning algorythm could be interesting as it’s :

• Optimized for Shortest Paths : A* guarantees finding the
shortest path if the heuristic function h(n) is admissible
(so it never overestimates the true cost). This is interesting
in a real life scenario where saving fuel is environmen-
tally and economically crucial.

• Handles Static and Dynamic Obstacles : While A* is
traditionally used for static environments, it can be
adapted for dynamic obstacles by recalculating the path
when new obstacles appear. This makes it effective in
maritime navigation, where other vessels may change
course unpredictably.

3) D-Star-Lite: D* Lite (Dynamic A*) is an efficient in-
cremental path-planning algorithm designed for environments
where obstacles or terrain conditions can change over time. It
is an improved version of the D* algorithm but is simpler to
implement while maintaining the ability to efficiently replan
paths in real-time when the environment changes as illustrated
in the article [10]. Like A*, D* Lite uses a heuristic func-

tion to estimate the best path, but instead of computing the
shortest path from start → goal, it works backward (goal →
start) and updates only the necessary parts of the path when
changes occur. This allows it to adapt dynamically without
re-computing everything from scratch. If an obstacle appears
or disappears, instead of recomputing the entire path, D* Lite
only updates the affected regions of the previous path. This
real-time adaptability is very useful considering the context
of the study, where the simulation does not allow direct
agent communication, each vessel must independently adjust
its path when encountering new obstacles. It significantly
reduces computational overhead, making it ideal for real-
time applications. D* Lite will allow autonomous vessels to
navigate dynamically without prior knowledge of all obstacles,
improving collision avoidance.

INTRODUCTION TO RESEARCH 4

4) ACO : Ant Colony Optimization: Ant Colony Opti-
mization (ACO) is a bio-inspired algorithm used for solving
complex optimization problems, espacially pathfinding and
graph traversal. It is inspired by how real ants all work together
to find the shortest route between their nest and a food source
using pheromones. Instead of directly computing the shortest
path like A* or D* Lite, ACO simulates a swarm of artificial
ants that explore multiple paths and improve the best ones
over time. Therefore, the ’ants’ will move from the start to
the end, leaving pheromones on their paths. The probability
of choosing a path increases with the pheromone concen-
tration and a heuristic value calculated using the potential
field method. Over time, pheromones evaporate, preventing
premature convergence on suboptimal solutions, and balancing
exploration and exploitation. The process iterates until the
best path is found or the maximum iterations are reached.
Therefore, the shortest path is the one corresponding to the
highest pheromone concentration and the best heuristic value.

5) PSO : Particle Swarm Optimization : This algorithm
works for a known environment [11] and is also based on the
concept of social interaction among animals searching for food
or the social behavior of bird flocking or fish schooling. In
PSO, each ”particle”—explores the search space by adjusting
its position and velocity based on its own experience (its
best-known position) and the experience of the entire swarm
(the global best-known position). Particles are initialized with
random positions and velocities, and updated using formulas
that incorporate:

• Their current velocity.
• The difference between their personal best and current

position.
• The difference between the global best and current posi-

tion.
Over time, this guides them toward more promising regions

in the search space. They converge toward optimal or near-
optimal solutions by sharing information and adapting their
trajectories accordingly until a stopping criteria, such as the
number of iteration in the case of this simulator. The PSO

could work for the COLSim as its ability to explore multiple
solutions concurrently means it can adapt to changes in real
time by continuously updating the particles’ positions. This
would be very useful to avoid moving obstacles. Moreover,
PSO is relatively simple to implement compared to other
optimization algorithms. Its straightforward update rules make
it easy to adapt for path planning purposes, allowing you to
incorporate various constraints, such as adherence to COL-
REGs.
Another interesting aspect of this algorithm, is that it has a
multi-agent approach, so this could to lend to scenarios where
each vessel can be modeled as a particle or where a swarm of
particles collectively explores the solution space for optimal
navigation strategies.

C. Performance comparison
A* and D* Lite are easy-to-implement, grid-based algo-

rithms, meaning movement is restricted to the eight neigh-

boring cells (up, down, left, right, or diagonally to the
four corners). This limitation can lead to less smooth and
suboptimal paths, as vessels cannot move in a direct line unless
it aligns with the grid. Reducing the grid step size can improve
accuracy but increases computational cost.

Therefore, to address this, a path smoothing function was
introduced by Tiphaine CALVIER-MOISSON. It removes un-
necessary waypoints while ensuring the path remains obstacle-
free. Using Bresenham’s line algorithm, the function skips
intermediate points if a direct path is clear, resulting in a
more efficient and realistic trajectory. Although it adds a slight
computational overhead, it significantly improves navigation
quality.

To compare the algorithms various situations are gonna be
analyzed, with USV with the same level of privilege:

• The trajectory of one vessel in a environment with one
or two obstacles

• Crossing situations (Red to Red)
• Overtaking situations

The criteria to consider are whether the vessel reached the
goal without any failures (not crossing the Distance to the
Closest Point of approach DCPA displayed in red in Fig 1
and 2, the duration of simulation and length of the path.

A very important aspect to keep in mind during this analysis
is that the APF algorithm can’t be directly compared to the
other algorithm as unlike the others, it already complies to the
COLREGs. Therefore, its algorithm is more complex and can’t
be less effective on specific criteria than the A*, D*Lite, ACO,
and PSO which were implemented in the simulator, with pre-
existing versions adapted and improved to suit the simulator
without complying to the COLREGs at all.

1) One vessel and one or two obstacles: The trajectories
observed here with A* (orange curve, beneath the red curve
in env. 2) and ACO (red curve) produce very appealing
trajectories thanks to the path smoother. For PSO (purple
curve), the use of splines creates a direct and visually pleasing
path as well. D* Lite (green curve), on the other hand, may
start with a good trajectory but often ends up stopping far from
the goal.

According to these plots in Figure 3, it can be noted that
the APF can get ”stuck” in a potential minima zone, such as
in environment 3, , blue curve. This occurs when the agent
reaches a point where the combined attractive and repulsive
forces balance out, resulting in no net force to push the agent
towards the goal. Essentially, the agent gets ”trapped” in a
local minimum of the potential field, unable to move towards
the goal or away from obstacles, as the algorithm perceives it
as already being in a balanced state.

For the time and distance to reach the goal APF appears to
be the best algorithm as illustrated in 4, as it is the fastest,
and the priority here is to comply to the COLREGs, which
explains why it could use a longer path to reach its goal.

INTRODUCTION TO RESEARCH 5

Fig. 3: Trajectories after simulations with different algorithms
and obstacles

Fig. 4: Comparison of simulation times and distances traveled
for different algorithms

2) Crossing situations (Red to Red): The results in the
Appendix A (Fig5) show that some algorithms perform better
than others because they ”anticipate” the behavior of the other
vessels. Even without knowing the future trajectory of the
USVs, certain algorithms, such as A*, ACO and PSO, planned
to avoid the other USV from the very first step, resulting
in a much smoother path. This proactive approach to path
planning demonstrates the effectiveness of algorithms that can
account for potential future movements, even in uncertain and
dynamic conditions. With APF, both ships realized they were
in a collision situation and entered each other’s safety zone
(marked as a collision, but is not a proper collision). The APF
followed the COLREGs with the ’Red to Red’ rule or Rule
14: for a head-on, each head-on vessel shall alter her course to
starboard so that each shall pass on the port side of the other,
unlike the others, which just chose the most suitable path for
them according to their implementation.

3) Overtaking situations: According to the COLREGs,
an ideal overtaking maneuver should occur as follows: the
overtaking vessel can pass on either side and must keep clear
of the vessel being overtaken. The vessel being overtaken has
priority and should be able to maintain its course without
altering it. APF still shows a sharp trajectory due to its lack of
anticipation. In contrast, A*, ACO, and PSO achieve smooth
trajectories, allowing the blue ship to overtake the orange one
without altering its course. However, D*Lite fails to reach the
goal, resulting in the two ships remaining in collision.

IV. CONCLUSION

This study compared several path planning algorithms for
autonomous maritime navigation, highlighting their respective
strengths and limitations. A* is easy to implement and efficient
in static environments, producing smooth trajectories when
combined with a path-smoothing function, though its grid-
based limitations can lead to suboptimal paths without post-
processing. Also, to deal with a more dynamic environment,
modifications in the algorithm would be needed. For D Lite*
it works very well in dynamic environments by replanning in-
crementally, but it sometimes fails to reach its goal, especially
in complex scenarios. Ant Colony Optimization (ACO) offers
smooth trajectories through probabilistic exploration, though
its performance can be inconsistent due to its stochastic nature
and sensitivity to parameter tuning. Similarly, Particle Swarm
Optimization (PSO) produces direct and visually appealing
paths using splines but shares ACO’s variability across runs.
Artificial Potential Field (APF), while not directly comparable
due to its inherent COLREGs compliance, demonstrated strong
performance in head-on and overtaking situations but often got
trapped in local minima and produced less smooth paths. In
the end, while A*, ACO, and PSO offer smoother and more
anticipatory paths in crossing and overtaking situations, their
consistency can be an issue. And D* Lite’s adaptability makes
it suitable for dynamic environments but requires refinements
to ensure goal completion.

Therefore, this paper highlights the direction to take in
order to keep enhancing the COLSim Simulator to have
simulations of complex martime scenrios with autonomous
and safe navigation path planning methods in compliance with
the COLREGs. Indeed, future work should focus on hybrid
approaches, and not only one path planning algorithm, that
combine D* Lite’s real-time replanning with the smoothness
of A*, ACO, or PSO and keep a strong algorithm like APF,
guaranteeing a safe path and adaptability in its code to achieve
both COLREGs compliance and efficient, adaptable navigation
in complex maritime scenarios for both manned and unmanned
vessels.

INTRODUCTION TO RESEARCH 6

APPENDIX A
TRAJECTORIES AFTER SIMULATION WITH DIFFERENT

ALGORITHMS. TWO BOATS FACING EXACTLY EACH OTHERS
(RED TO RED RULE FROM THE COLREGS)

Fig. 5: Comparison of simulation times and distances traveled
for different algorithms

APPENDIX B
TRAJECTORIES AFTER SIMULATION WITH DIFFERENT

ALGORITHMS. ONE BOAT OVERTAKING ANOTHER BOAT

Fig. 6: Comparison of simulation times and distances traveled
for different algorithms

INTRODUCTION TO RESEARCH 7

REFERENCES

[1] A. Cockcroft and J. Lameijer, A Guide to the Collision Avoidance Rules
(Seventh Edition). Oxford: Butterworth-Heinemann, 2012.

[2] B. Clement, M. Dubromel, P. Santos, K. Sammut, M. Oppert, and
F. Dayoub, “Hybrid navigation acceptability and safety,” Proceedings
of the AAAI Symposium Series, vol. 2, pp. 11–17, 01 2024.

[3] T. I. Fossen, “Python vehicule simulator,” 2013. [Online]. Available:
https://www.cs.utexas.edu/ UTSeaSim/

[4] E. Crase, C. Wideman, M. Noble, and A. Tarantola, “Utseasim documen-
tation,” p. 10, 2013. [Online]. Available: https://www.cs.utexas.edu/ UT-
SeaSim/download/1.0/Oct2013Documentation.pdf

[5] L. Jaulin, “Mobile robotics: Guidance,” ENSTA Bretagne,
Tech. Rep., 2023. [Online]. Available: https://www.ensta-
bretagne.fr/jaulin/guidage.html

[6] Ülkü Öztürk, M. Akdağ, and T. Ayabakan, “A review
of path planning algorithms in maritime autonomous
surface ships: Navigation safety perspective,” Ocean Engi-
neering, vol. 251, p. 111010, 2022. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0029801822004334

[7] B. Patle, G. Babu L, A. Pandey, D. Parhi, and A. Jagadeesh, “A review:
On path planning strategies for navigation of mobile robot,” Defence
Technology, vol. 15, no. 4, pp. 582–606, 2019. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S2214914718305130

[8] B. C. Marie DUBROMEL, Tiphaine CALVIER-MOISSON,
“Colsim simulator,” Tech. Rep., 2024. [Online]. Available:
https://github.com/clemenbe/COLSim

[9] G. Tang, C. Tang, C. Claramunt, X. Hu, and P. Zhou, “Geometric a-star
algorithm: An improved a-star algorithm for agv path planning in a port
environment,” IEEE Access, vol. 9, pp. 59 196–59 210, 2021.

[10] K. Al-Mutib, M. AlSulaiman, M. Emaduddin, H. Ramdane, and E. Mat-
tar, “D* lite based real-time multi-agent path planning in dynamic en-
vironments,” in 2011 Third International Conference on Computational
Intelligence, Modelling Simulation, 2011, pp. 170–174.

[11] J. Kennedy and R. Eberhart, “Particle swarm optimization,” in Proceed-
ings of ICNN’95 - International Conference on Neural Networks, vol. 4,
1995, pp. 1942–1948 vol.4.

	Introduction
	Related Work
	State of the Art on Terrain Traversability Contact Models
	Deterministic Path Planning in Muddy Environments
	Graph-Based Path Planning Methods
	Optimization-Based Path Planning Methods
	RRT-Based Path Planning in Muddy Environments

	Methodology
	Terrain Modeling
	Vehicle and Muddy Terrain Modeling

	Experimental Results
	Introduction
	Methods
	Dynamic Model
	Parameter Estimation

	Results
	Discussion
	Conclusion
	Introduction
	Dynamic Window Approach
	Principle of Dynamic Window
	Admissible Velocities and Obstacle Avoidance
	Objective Function and Trajectory Selection
	Limitations

	Potential Field Approach
	Principle of Potential Fields
	Path Generation and Motion Control
	Limitations and Challenges

	Comparison of Methods
	Point-to-Point Navigation Without Obstacles
	Navigation With a Single Obstacle
	Navigation With Multiple Obstacles
	Navigation in a Corridor
	Navigation in a Maze

	Overall Performance Comparison
	Conclusion
	Introduction
	Context and Objectives of DeepBlueAI
	Presentation of DeepBlueAI
	Importance of Marine Technologies

	DBAI Integrated Technological Advances
	Applications of Underwater AI
	Technologies Utilized
	Preprocessing and Data Management

	Current Challenges and Limitations
	Technical Constraints
	Environmental Issues

	Future Perspectives and Conclusion
	Potential of DeepBlueAI
	General Conclusion

	references
	Introduction
	Related Work
	Methodology
	Introduction of AI Models: Proximal Policy Optimization (PPO) and Deep Q-Network (DQN)
	Simulation Environment for Classical AI Models
	Simulation Environment for Interactive AI Models

	Results
	Comparison of classical models
	Results with the implementation of Interactive Learning during training

	Conclusion
	Introduction
	Modélisation
	Modèle physique
	Modèle numérique
	Outils de résolution

	Résultats
	Influence de la fréquence des oscillations sur la vitesse

	Conclusion
	Introduction
	Related works
	Ever More Efficient Neural Networks for Object Detection
	Sonar images
	Side Scan Sonar (SSS) images
	Multi-beam sounder (MBES) images

	Method
	Creation of a dataset
	Selection of the object detector
	Optimization of the object detector

	Experiments and results
	Evaluating YOLOv8 on our dataset
	Optimizing YOLOv8 for our dataset
	Optimizing our dataset
	Percentage of empty images
	Image saturation
	Difficult images management

	Testing our final model

	Conclusion
	Introduction
	Modélisation du problème
	Contrôle
	Filtre de Kalman
	Intervalles
	Conclusion et Perspectives
	Introduction
	1. Linearisation
	Proportional-derivative controller
	Linear quadratic regulator

	2. Back-stepping
	Hierarchical control strategy
	Hovering flight stabilization

	3.Neural Network
	Conclusion
	An overview of social robots and screens
	Definitions and key differences
	State of the art
	A timeline of social robots
	A timeline of digital screens

	Comparative analysis of the two interfaces
	Cost
	Flexibility and adaptability
	Ease of use and longevity
	User perception and experience

	1 Introduction
	2 The optical Tweezers
	3 Simulation
	3.1 Kinematic model
	3.2 Dynamic model

	4 Guidance and control
	5 Conclusion
	Introduction
	Related work
	Sensor Fusion
	2D Navigation Using 3D Sensors Data

	Problem Statement
	Methodology
	All Sensors to Laser-Scan
	Laser-Scan format
	Depth Points to Laser-Scan

	Laser-Scan Merger
	Transformation to virtual common standard 360° Laser-Scan
	Laser-Scan Synchronization Using Odometry Interpolation
	Global Fusion

	Experiments and Results
	Light mapping with LiDARs and Cameras Using ROS2
	Light navigation in dynamic Environment with LiDARs and Cameras Using ROS2

	Conclusion
	References

