
Image Preprocessing Strategies for Improving
ArUco Marker Detection Underwater

BELIER Titouan
3rd year engineering student

ENSTA Bretagne
29200, Brest, FRANCE

titouan.belier@ensta-bretagne.org

Abstract—In underwater computer vision, enhancing the de-
tection of ArUco markers presents significant challenges due to
environmental factors such as turbidity and variable lighting
conditions. This study explores image preprocessing strategies
aimed at improving ArUco marker detection performance in un-
derwater environments. Three distinct preprocessing approaches
are investigated: an enhancements to the Adaptive Histogram
Equalization, a frequency-domain-based method focusing on
local and global processing, and an automatic preprocessing
technique targeting lighting correction, noise reduction, contrast
enhancement, and color adjustment. Experimental validation is
conducted to evaluate the effectiveness of these strategies using
real underwater imagery. This research sheds light on effective
preprocessing techniques tailored for underwater ArUco marker
detection applications, offering insights for the development of
robust underwater computer vision systems.

Index Terms—preprocessing, vision, aruco, underwater, ROV

I. INTRODUCTION

In the scope of an other project, we are attempting to dock a
BlueRobotics BlueROV robot [5] to an appendage. To achieve
this docking, we employ vision-guided techniques. This vision
guidance is facilitated using ArUco markers, allowing us to
position ourselves in space relative to the appendage. By
knowing the distance between the ArUco markers and the
appendage, we can guide our robot to successfully accomplish
the docking maneuver. Despite significant advancements in
underwater exploration, challenges persist in underwater image
and video processing techniques, particularly in computer
vision applications. One of the primary challenges stems
from light absorption and scattering in water, leading to
color shifts and contrast degradation in underwater images.
Color distortion, often appearing bluish-green, arises from
the propagation of light wavelengths in water, while contrast
degradation results from the random attenuation and scattering
of light by suspended particles in water.

To address these issues and enhance the quality of under-
water imaging, various image restoration and enhancement
methods have been proposed. These methods aim to recover
degraded images by modeling the degradation process directly.
In this context, our study explores the work of three papers
that contribute to improving underwater detection. The paper
Pizer, Amburn and Austin (1987) [3], proposes a novel algo-
rithm that discusses enhancements to the Adaptive Histogram
Equalization (AHE) method to improve its speed and quality.

It introduces variants such as Interpolated Adaptive Equal-
ization, Weighted Equalization, and Thresholded Equalization
to mitigate noise amplification. Another paper presents an
automatic preprocessing method tailored for underwater image
denoising, focusing on lighting correction, noise reduction,
contrast enhancement, and color adjustment Bazeille (2008)
[2]. Lastly, Donghui and Wanchun and Xiaogang (2017) [1]
introduces a two-step approach for single underwater image
enhancement, addressing color distortion and low contrast
issues separately to achieve optimal results.

Through our analysis and comparison of these approaches,
we aim to evaluate their effectiveness in enhancing ArUco
marker detection underwater, thereby contributing to the de-
velopment of robust underwater computer vision systems. A
comparative analysis of these three methods in this specific
context would determine which one is best suited to the needs
of the ROV system for effective underwater marker detection.

II. CONTRAST-LIMITED ADAPTIVE HISTOGRAM
EQUALIZATION (CLAHE)

The provided paper explores the field of image restoration
and presents an innovative method to enhance the visual
quality of degraded images. This study originates from a
research team in the Computer Science department at Stanford
University, known for its pioneering work in computer vision
and image processing.

The primary focus of this paper lies in proposing an
advanced algorithm for contrast histogram equalization, which
constitutes a crucial step in the image restoration process.
This technique corrects brightness variations and enhances
image contrast, resulting in a significant improvement in visual
quality and detail perception.

To design their contrast histogram equalization algorithm,
the researchers leveraged advanced techniques in image pro-
cessing and computer vision. They began by analyzing the
luminance histogram of each image to be restored to identify
areas with significant contrast variations. The Figure represents
the CIELAB color space. The world is divided into three
dimensions: the luminance dimension along the vertical axis,
the red-green axis, and the yellow-blue axis. The CIELAB
color representation offers a standardized and perceptually
uniform color space, facilitating accurate color analysis and
manipulation in various imaging applications [4]. Afterward,

they developed an adaptive transformation function based on
these local contrast variations, allowing precise adjustment of
the distribution of grayscale levels in each region of the image.

(a) Original (b) AHE

(c) CLAHE (d)

Fig. 1: Comparison AHE vs CLAHE

CLAHE (Contrast Limited Adaptive Histogram Equaliza-
tion) adds a local contrast limitation to AHE (Adaptive His-
togram Equalization), allowing for better control over the
intensity distribution and preventing excessive amplification
of noise in low-contrast regions of the image. The Figure 1
represents a comparison of the AHE and CLAHE methode,
in Figure 1b you can see the difference between the two
algorithm thanks to a diagram.

The innovative approach of this paper offers several ad-
vantages over traditional histogram equalization methods. By
considering local contrast variations, the algorithm proposed
by the researchers can preserve fine details while improving
the overall contrast of the image. Moreover, its adaptive nature
enables it to automatically adapt to different types of images
and scenes, making it particularly effective in diverse contexts,
ranging from the restoration of old images to the enhancement
of the quality of modern digital images.

III. TWO STEP ENHANCING STRATEGY

The paper titled ”Two-Step Approach for Single Underwater
Image Enhancement” presented at the 2017 International Sym-
posium on Intelligent Signal Processing and Communication
Systems in Xiamen, China, addresses the challenges of im-
proving the quality of underwater images, which often suffer
from color distortion and low contrast due to light absorption
and scattering in water.

The paper highlights various existing methods for under-
water image enhancement, including those focusing on con-
trast distortions, blurring effects, polarization haze removal,
wavelength compensation, and restoration based on dictionary
learning and radiation transfer function. These methods, while
effective to some extent, have limitations such as sensitivity
to modeling assumptions and computational complexity.

In response to these challenges, the authors propose a two-
step enhancement strategy that aims to individually address
color distortion and low contrast issues in underwater images.

A. Color Correction

The first step involves a color correcting strategy based
on piecewise linear transformation to mitigate color distortion
caused by light absorption in water. This method is robust and
effectively deals with varying degrees of color distortion.

Firstly, they operate under the assumption of a grey world,
meaning that the average value of the image is equal to 128.
Then, they employ two methods to correct the color. The first
method involves selecting, for each RGB channel, the average
of the values as a criterion for correcting the image.

ScCR =

{
(Sc − Scmean)×

Scmin−128

Scmin−Scmean
+ 128, si Scmean ≤ 128

(Sc − Scmean)×
Scmax−128

Scmax−Scmean
+ 128, si Scmean > 128

where c ∈ {R,G,B}. Scmean , Scmax , and Scmin are the maximum
and minimum in the c channel, respectively, and SCR is the
color corrected image.

However, this method is not always satisfactory, particularly
underwater where red wavelengths are quickly attenuated.

ScCR =

(Sc − Scmean)×

Scmin−128

Scmin−Scmean
+ 128, si Scmean ≤ 128

(Sc − Scmean)×
Scmax−128

Scmax−Scmean
+ 128, si Scmean > 128

Sc − λ× (Scmean − 128), si Pc < 0.7

where λ is a positive parameter to control the shifting range
and P is the probability of pixel values that are less than or
equal to 40.

B. Optimal constrast improvement

The second step focuses on enhancing contrast in underwa-
ter images to highlight objects and details. A novel optimal
contrast method is proposed, which efficiently reduces artifacts
and improves contrast without requiring prior knowledge of
imaging conditions.

The proposed approach is straightforward to implement
as it uses CLAHE algorithm as explained in former paper.
Experimental results demonstrate significant improvements in
color, contrast, naturalness, and object prominence in en-
hanced underwater images.

The paper concludes that the proposed two-step enhance-
ment strategy offers an effective and efficient solution for
improving the quality of single underwater images, making
it suitable for real-time applications. Additionally, the compu-
tational time is reasonable, indicating its practical feasibility.

IV. ALGORITHM COMPARISON FOR ARUCO’S DETECTION

To compare the relevance of these preprocessing algorithms
in the context of Aruco detection, two aspects can be com-
pared. Firstly, the ’Detection Rate’, which is the percentage
of algorithm detection over a large number of images. The
second aspect is ’Temporal’. Indeed, these algorithms will
then be embedded on autonomous underwater robots such as
ROVs. In the case of a robot aiming to orient itself in space

using Arucos, it is important to ensure that the preprocessing
does not cause significant delays in the robot’s guidance. After
conducting a comparative analysis of these two models, we
will create a decision matrix to choose the most relevant
algorithm according to us.

We will use two videos from a BlueRov at a distance of
approximately 50 cm from a 15 cm long Aruco 4x4. The robot
is located in Lake Guerlédan, in central Brittany - France.
The water in the lake is very murky, so we face all the
problems of underwater vision: water turbidity, a light gradient
between the surface and deeper water, water bubbles, etc.
These complications related to the aquatic environment cause
distortion of vision and chromatic aberrations.

You can find these two videos here: Vidéo 1 and Vidéo
2. In the first video, the camera is first in the air and then
we immerse the robot underwater. This video is interesting to
study the differences in detection between air and water. We
will choose the robust algorithm that allows us good detection
in both cases. The second video is another underwater video,
which we chose to have a second example of underwater
video. The results on both coupled videos will allow us to
make our choice.

(a) Original (b) Bazeille

(c) CLAHE (d) Two Step 1

(e) Two Steps 2

Fig. 2: Different algorithm results

The Figure 2 illustrates the diverse result images generated
by the algorithms. In Figure 2a, the original view of the robot
is presented, displaying a noticeable light gradient and a color
tone shifting towards green.

Figure 2b showcases the output of the algorithm derived
from Bazeille’s paper. While the edges are clearly defined, the
loss of flat colors disrupts the detection process. Additionally,
this algorithm exhibits significantly longer detection times
compared to others, as later observations will reveal.

In Figure 2c, the original image is subjected to Con-
trast Limited Adaptive Histogram Equalization (CLAHE).
Although the image may not appear visually appealing and
might even seem deteriorated, it demonstrates exceptional
performance in Aruco detection.

Lastly, Figures 2d and 2e portray the output of Donghui
and Wanchun’s algorithm at two processing stages. Despite
minimal observable differences between the images, the result-
ing outputs exhibit the sharpest details among all algorithms,
achieving impeccable image restoration. However, this algo-
rithm does not necessarily offer the best detection performance
as we will see after.

A. Detection Rate Aspect

To conduct our detection rate analysis, at each time step, we
capture an image, apply preprocessing to it, and measure the
elapsed time. For this study, we use a laptop with an Intel®
Core™ i5-6300U CPU @ 2.40GHz × 4 processor. To compare
these algorithms, we use a common reference. In our case,
it’s a video taken from the BlueRov’s perspective in Lake
Guerlédan. Knowing the actual duration of the video, we can
compare the time taken by the program to retrieve the video,
perform preprocessing, and conduct detection. We will display
all the results in a diagram to compare our findings.

(a) Video 1 (b) Video 2

Fig. 3: Comparaison de détection d’Aruco

The Figure 3a is a representation of the detection. At each
frame, the code will look if there is a detection. If it is the
case, it will add a point. This way, if there is a hole in the line
made by all points, we can monitor that the algorithm don’t
allow the ROV to detect the Aruco. The y axis is only to have
every detection algorithm results in one diagram. As you can
see, the results of Bazeille’s algorithm are not satisfying as
our implementation only enhance edges and not only contrast.
There are only few detections made. On the contrary, the
CLAHE algorithm detect really often, the two-step algorithm
is also pretty accurate.

To quantify the dectection rate, we have detailed in Table
I the detection rates for each algorithm and each video to
ensure a fair comparison. It can be observed that Aruco
detection is consistently better with a simple CLAHE. Video
1 yields poorer results compared to the second one because
the detection was more challenging, especially during the
phase when the robot is submerged underwater, resulting in a
prolonged period with no possible detection. Henceforth in the

https://youtu.be/6fqcW8X_W6I
https://youtu.be/APEUbgcAdVg
https://youtu.be/APEUbgcAdVg

report, we will not discuss the results of Bazeille, as they are
unusable for Aruco detection, presumably due to our Python
implementation being incorrect.

Method Detection rate (Video 1) Detection rate (Video 2)
Original 0.265 0.920
Clahe 0.614 0.920
Bazeille 0.009 0.008
Two Step 1 0.235 0.849
Two Step 1 Better 0.235 0.807
Two Step 2 0.537 0.849

TABLE I: Detection rates for different methods on Video 1
and Video 2.

Finally, the better algorithm for detection is CLAHE as it
really improves the detection rate. The most interesting result
is for the two step algorithm. In fact, the resulting image of
this algorithm seems really better when we look at it, this
algorithm is very good to create good-looking images. On the
contrary, it’s not the perfect algorithm for Aruco’s detection
as it keeps the halo from the above light-source.

B. Temporal Aspect

To study the temporal aspect of these algorithms, we record
the time elapsed since the beginning of the video for each
frame. An algorithm will be considered relevant if the image
processing time allows for real-time analysis without loss of
information. However, we observe that some image processing
algorithms are computationally expensive. In such cases, the
frames per second (fps) drop drastically, and the robot cannot
use all the images for its guidance.

Fig. 4: Time Comparison

As the time gap remains constant regardless of the video
duration, we chose to conduct this study on a 14-second video.
Figure 4 illustrates the time elapsed since the beginning of
the video for each frame. It can be observed from Figure 4
that the algorithm by Donghui and Wanchun and Xiaogang
(2017) [1] causes the most processing delay. The average
duration for viewing the video and performing detection alone
is 24 seconds. Adding CLAHE preprocessing results in a total
duration of 32 seconds, while adding TwoStep preprocessing
yields a total duration of 54 seconds.

These results are significant and greatly affect the robot’s
vision-guided navigation. Indeed, our robot may lose up to

74% of the information required for navigation, as shown in
Table II.

Analysis duration FPS Information loss (%)
Video Only 14 60 0,00%

Simple detection 24 35 41,67%
CLAHE + detection 32 26 56,25%
TwoStep + detection 54 16 74,07%

TABLE II: Summary of analysis results

Fig. 5: Time comparison between different algorithms

The Figure 5 represents the time difference between two
frames of the video at each frame. This graph allows us to
better analyze the reasons for these slowdowns. We find that
the twoStep algorithm is slower than the others and often
experiences peaks of delay, suggesting that it may struggle
more under certain conditions to perform the processing.
However, we can now observe that the CLAHE algorithm
shows less consistency in its processing time, as there is a 60
ms difference between the best and worst detections, whereas
the TwoStep algorithm has a difference of only 20 ms.

Additionally, it is noticeable that at the beginning of the
video, there is a significant time gap between each of the
first frames for each of the algorithms. This is simply because
the initial frames are affected by the camera startup, which
produces inconsistent images. Therefore, these initial frames
should not be considered in the analysis.

V. CONCLUSION

In conclusion, this study has evaluated the effectiveness
of various image preprocessing strategies to enhance ArUco
marker detection in underwater environments. The results
obtained reveal that the examined preprocessing methods,
notably Contrast Limited Adaptive Histogram Equalization
(CLAHE) and the two-step approach proposed by Donghui
et al., play a crucial role in improving the visual quality of
underwater images, thereby facilitating more accurate detec-
tion of ArUco markers.

The comparative analysis demonstrated that CLAHE pre-
processing offers significant improvements in terms of visual
quality and contrast, leading to enhanced marker detection
accuracy. On the other hand, while the two-step approach also
showed promising results in terms of image quality, it is not

really suited for Aruco’s detection and it presents drawbacks
in terms of processing time, which may limit its utility in
real-time detection applications.

Considering these findings, it appears that CLAHE pre-
processing is better suited for ArUco marker detection ap-
plications in underwater environments, providing an optimal
balance between image quality and processing time. However,
future work could involve further optimization of the param-
eters of these preprocessing methods or exploration of other
techniques that are faster while maintaining a high level of
detection accuracy.

Additionally, an idea for future development would be to
migrate the preprocessing algorithms to more efficient pro-
gramming languages such as C++, which would significantly
improve processing times and pave the way for more robust
and efficient real-time applications.

REFERENCES

[1] Wei, Donghui and Chen, Wanchun and Chen, Xiaogang. (2017). A
Two-Step Approach for Underwater Image Enhancement. 985-988.
10.1109/ICCSEC.2017.8446772.

[2] Bazeille, Stéphane and Quidu, Isabelle and Jaulin, Luc and Malkasse,
Jean-Philippe. (2008). Une méthode de pré-traitement automatique pour
le débruitage des images sous-marines.

[3] S. M. Pizer, E. P. Amburn, J. D. Austin, and et al, “Adaptive histogram
equalization and its variations,” Computer vision, graphics, and image
processing, vol. 39, no. 3, pp. 355–368, 1987

[4] Ly, Bao and Dyer, Ethan and Feig, Jessica and Chien, Anna and
Bino, Sandra. (2020). Research Techniques Made Simple: Cutaneous
Colorimetry: A Reliable Technique for Objective Skin Color Mea-
surement. The Journal of investigative dermatology. 140. 3-12.e1.
10.1016/j.jid.2019.11.003.

[5] https://bluerobotics.com/, consulted on march 1st 2024

Solving a pentacube puzzle as an exact cover problem

Victor BELLOT
ENSTA Bretagne

victor.bellot@ensta-bretagne.org

Abstract

This article introduces the exact cover problem, some of its well known algorithmic solutions and its
application domains. A practical use of the Dancing Links X algorithm [2] is proposed to solve a pentacube
puzzle.

Introduction

Let’s consider the two following set problems (inspired by [5]) :

set cover Given a collection C of subsets of a finite set Ω, a set cover is a subcollection S ⊆ C such that⋃
Sk∈S Sk = Ω, and the minimum set cover problem (SC) is to find a cover of minimum size.

set packing Given a collection C of finite sets, a packing is a subcollection S ⊆ C, all members of which are
mutually disjoint and the maximum set packing problem (SP) is to find a packing of maximum size.

Both constraint satisfaction problems can be expressed as integer linear programs of the form :

SC Minimize bTx subject to ATx ≥ b.

SP Maximize bTx subject to ATx ≤ b.

With x ∈ F|C|
2 the variable of the program (encoding the subcollection S), b a vector full of ones of size |C|

and A ∈M|C|,|Ω|(F2) the constraint matrix (encoding the collection C).

The exact cover (EC) problem can therefore be defined as the intersection of SC and SP. A solution
of EC covers Ω while having all its members mutually disjoints. Equivalently, an exact cover of Ω is a
subcollection S of C that partitions Ω.

No matter how it is stated, EC has been proven to be NP-complete :

• it’s NP : candidate solutions can be verified in polynomial-time

• it’s NP-hard : any NP problem can be translated into EC using polynomial-time reduction

Unless P (the set of problems that can be solved in polynomial-time) equals NP, EC can’t be solved
easily (in polynomial-time).

1

Classical algorithmic solutions

Approximation

Because of the hardness of EC, a good idea to solve such problem is to find suboptimal solutions using
an accuracy/time trade-off. A survey comparing approximately optimal solutions to some covering and
packing problems has been conducted in [5].

Backtracking & Dancing Links

One common approach for solving constraint satisfaction problems is the backtracking method. In the
case of EC, we may want to enumerate every solution of the problem. A backtracking algorithm is a method
for systematically exploring all possible solutions by recursively trying different options, and backtracking
when a dead end is reached. The key idea is to incrementally build a solution candidate and explore different
choices at each step. If a choice leads to a dead end, the algorithm backtracks to the previous decision point
and tries another option. This process continues until all possible solutions have been found.

An evaluation of the performance of such method is proposed in [3]. The authors analyze the tree search
done by backtracking methods (the number of nodes visited, the evolution of depth. . .).

One of the most famous algorithm using this method is Donald Knuth’s Algorithm X [2]. In addition
to the use of backtracking, Knuth introduces in his article a new data structure : dancing links. As depicted
in 1a, dancing links is a doubly linked list of nodes enabling easy removing and restoring elements from the
structure. It’s a powerful data structure for backtracking implementation because tree exploration (forward
and backward) can easily be done by removing and restoring elements of a partial solution.

(a) The Dancing Links data structure

1 If A is empty , the problem is solved.

2 Otherwise choose a column , c. (dtm)

3 Choose a row , r, such that A[r,c]=1. (ndtm)

4 Include r in the partial solution.

5 For each j such that A[r,j]=1,

6 delete column j from matrix A;

7 for each i such that A[i,j]=1,

8 delete row i from matrix A.

9 Recursively call this algorithm on the new A.

(b) Algorithm X

Figure 1: Dancing Links enable Algorithm X

Listing 1b is a pseudocode implementation of Knuth’s Algorithm X. The matrix A is the constraint
matrix introduced previously. On line 2, a deterministic choose of an element of Ω is made (it doesn’t
matter how it is done as long as it is done consistently). On line 3, a non-deterministic choose of an element
of C is made. It is where the tree exploration happens and where backtracking is done (in the case where no
row r satisfies A[r, c] = 1).

2

Satisfiability

Another well known NP-complete problem is the satisfiability (SAT) problem. The aim is to find the
interpretations that satisfy a given boolean formula. In other words, it asks how can the variables of a given
boolean formula be consistently replaced by the values TRUE or FALSE in such a way that the formula
evaluates to TRUE.

Because it is a very fundamental problem, a lot of algorithms have been developed to solve it efficiently.
The paper [1] explains how to translate EC into SAT, thus enabling the use of the basic Davis-Putnam-
Logemann-Loveland procedure (a classical and powerful SAT solver technic). Moreover, an empirical com-
parison of this method with Knuth’s Algorithm X is proposed.

Applications

As mention above, every problem those solutions can be checked in polynomial-time can be translated
into EC. Therefor the exact cover problem has a wide range of application domain.

As mention in [6], EC has been used to formulate a variety of practical problems in such areas as capital
budgeting, crew scheduling, cutting stock, facilities location, graphs and networks, manufacturing, personnel
scheduling, vehicle routing and timetable scheduling among others.

A detailed implementation for military timetabling and trainee assignment problems can be found in [4].
Scheduling is a serious subject in computer science. Efficient algorithms are required to schedule processes
at the OS level, to manage energy nationwide, to regulate public transportation. . .

Solving a pentacube puzzle

Now that we understand how to solve the exact cover problem, let’s try to create a program finding the
solution of a puzzle. The puzzle is made of 25 y-pentacubes that have to fit a 5x5x5 cube :

Figure 2: A 5x5x5 wooden pentacube puzzle

Puzzle 2 involves paving the 3D space using identical 3D pieces. It can naturally be expressed as an
exact cover problem : Ω represents the set of all cubes composing the 5x5x5 puzzle and C lists all the possible
ways of placing y-pentacubes in the puzzle (thus described as subsets of Ω). Not too formally :

3

Ω = J1; 5K3 C = {p ∈ Ω5 | p embodies the placement of a y-pentacube in the puzzle}

Now that our puzzle is translated into EC, we can create the corresponding constraint matrix A, and
apply Algorithm X to find all its solutions! (see video demonstration of a Python implementation)

Conclusion

Exact cover is an easy problem to state, but quite difficult to solve. In this article we discuss some of
its classical algorithmic solutions while focusing on Knuth’s Algorithm X to solve a 3D puzzle. Applications
and their references have been introduced to strengthen the power of this single NP-complete problem.

List of Figures

1 Dancing Links enable Algorithm X . 2
a The Dancing Links data structure . 2
b Algorithm X . 2

2 A 5x5x5 wooden pentacube puzzle . 3

References

[1] Tommi Junttila and Petteri Kaski. “Exact Cover via Satisfiability: An Empirical Study”. In: Principles
and Practice of Constraint Programming – CP 2010. Ed. by David Cohen. Berlin, Heidelberg: Springer
Berlin Heidelberg, 2010, pp. 297–304. isbn: 978-3-642-15396-9.

[2] Donald E. Knuth. Dancing links. 2000. arXiv: cs/0011047 [cs.DS].
[3] Grzegorz Kondrak and Peter van Beek. “A theoretical evaluation of selected backtracking algorithms”.

In: Artificial Intelligence 89.1 (1997), pp. 365–387. issn: 0004-3702. doi: https://doi.org/10.

1016/S0004-3702(96)00027-6. url: https://www.sciencedirect.com/science/article/pii/
S0004370296000276.

[4] Vivian Nguyen et al. “An efficient and exact algorithm for military timetabling and trainee assignment
problems”. In: Computers and Industrial Engineering 169 (2022), p. 108192. issn: 0360-8352. doi:
https://doi.org/10.1016/j.cie.2022.108192. url: https://www.sciencedirect.com/science/
article/pii/S0360835222002625.

[5] Vangelis T. Paschos. “A survey of approximately optimal solutions to some covering and packing prob-
lems”. In: ACM Comput. Surv. 29.2 (June 1997), pp. 171–209. issn: 0360-0300. doi: 10.1145/254180.
254190. url: https://doi.org/10.1145/254180.254190.

[6] R. R. Vemuganti. “Applications of Set Covering, Set Packing and Set Partitioning Models: A Survey”.
In: Handbook of Combinatorial Optimization: Volume1–3. Ed. by Ding-Zhu Du and Panos M. Pardalos.
Boston, MA: Springer US, 1998, pp. 573–746. isbn: 978-1-4613-0303-9. doi: 10.1007/978-1-4613-
0303-9_9. url: https://doi.org/10.1007/978-1-4613-0303-9_9.

4

https://youtu.be/d5UK0_SP1ss
https://arxiv.org/abs/cs/0011047
https://doi.org/https://doi.org/10.1016/S0004-3702(96)00027-6
https://doi.org/https://doi.org/10.1016/S0004-3702(96)00027-6
https://www.sciencedirect.com/science/article/pii/S0004370296000276
https://www.sciencedirect.com/science/article/pii/S0004370296000276
https://doi.org/https://doi.org/10.1016/j.cie.2022.108192
https://www.sciencedirect.com/science/article/pii/S0360835222002625
https://www.sciencedirect.com/science/article/pii/S0360835222002625
https://doi.org/10.1145/254180.254190
https://doi.org/10.1145/254180.254190
https://doi.org/10.1145/254180.254190
https://doi.org/10.1007/978-1-4613-0303-9_9
https://doi.org/10.1007/978-1-4613-0303-9_9
https://doi.org/10.1007/978-1-4613-0303-9_9

INITIATION À LA RECHERCHE, MARS 2024 1

A Survey on 3D Reconstruction
from Multiple View Images

Léo BERNARD1

1Ecole Nationale Supérieur des Techniques Avancées Bretagne (ENSTA Bretagne), Brest, Bretagne 29200, FRANCE

The abstract goes here.

Index Terms—Keywords : Computer vision, Stereovision, Multi-view images, 3D reconstruction.

I. INTRODUCTION

STEREOPSIS, the ability of humans and animals to per-
ceive depth in three dimensions, has always been a fasci-

nating aspect of visual perception. The intricate interplay be-
tween our eyes, each capturing a slightly different perspective,
allowing us to navigate the world with depth and precision.
This natural phenomenon has served as a cornerstone for
our understanding of spatial relationships and has proven
invaluable for survival in the natural world.

In the realm of technology, the quest to replicate and harness
stereopsis has led to significant breakthroughs. Computers,
once limited to two-dimensional representations of the world,
have now evolved to perceive depth through stereo vision. This
technological leap has opened new frontiers in fields such as
computer vision, enabling machines to interpret and interact
with the environment in ways that were once solely within the
domain of living organisms.

Traditionally, 3D reconstruction has been a meticulous
process, often relying on stereoscopic pairs of images captured
by calibrated cameras. These pairs provide the necessary depth
cues for algorithms to triangulate and reconstruct a three-
dimensional scene. Classical methods involve techniques like
Structure from Motion (SfM), Multiple View Stereo (MVS)
and stereo matching, where correspondences between image
features are identified and used to derive the spatial structure
of the scene. While effective, these classical approaches often
necessitate controlled environments, precise camera calibra-
tion, and extensive computational resources.

However, the scope of stereo vision has expanded even
further in the age of the Internet. With the proliferation of
digital imagery on the web, computers have gained access
to an extensive repository of visual data. Now, not only can
computers perceive depth in individual images, but they can
also reconstruct three-dimensional representations of entire
cityscapes. The abundance of pictures available online has
transformed the way machines ”see,” paving the way for the
exploration and understanding of vast and complex environ-
ments.

The advent of the Internet has revolutionized 3D recon-
struction by introducing an unprecedented volume of diverse
visual data. The abundance of images available online enables
the application of novel techniques, such as large-scale image-
based reconstruction. Internet-derived images, captured by var-

ious cameras with uncalibrated parameters, provide a wealth of
perspectives on a given subject, allowing for more robust and
detailed reconstructions. This shift from controlled laboratory
conditions to the dynamic, uncontrolled realm of the Internet
has expanded the possibilities of 3D reconstruction, making it
applicable to a wide array of real-world scenarios.

Despite the remarkable progress in 3D reconstruction, chal-
lenges persist in achieving accurate and reliable results. Vari-
ability in lighting conditions, occlusions, and the uncalibrated
nature of images from diverse sources on the Internet can
impede the accurate extraction of depth information. Addi-
tionally, the sheer volume and diversity of Internet-acquired
images pose challenges in terms of data management and
processing efficiency. Ensuring the alignment of multiple
views, handling noisy data, and addressing scalability issues
become crucial aspects in the pursuit of high-fidelity 3D
reconstructions. Overcoming these challenges, especially in
the context of uncalibrated stereo vision from the Internet, is
essential for the continued advancement and practical appli-
cation of 3D reconstruction techniques in complex, real-world
environments.

In this survey, we delve into the fascinating realm of
3D reconstruction from multiple view images, exploring the
technological advancements that enable computers to navigate
the rich tapestry of our three-dimensional world, as seen
through the lens of the Internet.

II. ESTABLISHING CORRESPONDENCES BETWEEN
MULTIPLE IMAGES

In the pursuit of computing the 3D position of an observed
point in an image, the first step is to get different views of
this point. This is the problem of correspondence : finding
correspondences between different views of the same points
in a set of images. This is a well studied subject in computer
vision, it relies on robust techniques for feature matching
and geometric refinement. One pivotal approach involves the
utilization of the Scale-Invariant Feature Transform (SIFT) and
the Random Sample Consensus (RANSAC) algorithm.

SIFT is a method developped by Lowe in 1999 [1] to
extract features from an image. This algorithm stands out as
a powerful tool for finding correspondences due to its ability
to detect and extract distinctive features invariant to scaling,
rotation, translation, and changes in illumination. By focusing

INITIATION À LA RECHERCHE, MARS 2024 2

on keypoint detection, localization, orientation assignment
SIFT provides a set of robust features that serve as key land-
marks across images. These distinctive features, essential for
matching, contribute to the establishment of correspondences
between different views. Despite its local nature, SIFT forms a
crucial foundation for subsequent analysis in computer vision
applications.

Using those features, we can match some points in two
different images (if the features are close).

However, SIFT features are local and lack global infor-
mation about the image. To address this, the Random Sam-
ple Consensus (RANSAC) algorithm is employed to impose
geometric constraints on the matching process. RANSAC
deals with outliers in the data and iteratively estimates model
parameters by randomly selecting minimal subsets of feature
points. More precisely, RANSAC method estimates the best
fondamental matrix (which is the matrix that contains the
parameters of the camera) for the current points. This matrix
can then be used to project a point seen from a camera
into another image from another camera, using the following
equation, we get a line (called epiline) where the point should
be in the other image.

x⊤
ijFxij = 0. (1)

RANSAC method then excludes the outliers : the points
that are too far from the epiline where they should be. Then
it iterates the two previous steps to improve the estimation of
the fondamental matrix and reject more outliers.

This technique is particularly useful in refining matches
based on SIFT features, enhancing the accuracy of correspon-
dence found between our images.

The next fig(1) represents the results of matching of fea-
tures in two images using SIFT to extract the feautures then
RANSAC to refine the matches.

Fig. 1. Matching between keypoints found using Sift then RANSAC

III. 3D RECONSTRUCTION OF AN ENVIRONMENT

A. Structure from Motion (SfM)

Structure from Motion is a computer vision technique
that addresses the challenge of reconstructing the three-
dimensional (3D) structure of a scene from a set of two-
dimensional (2D) images. The fundamental difficulty lies in
the fact that a photograph captures a 3D world as a flat, 2D
projection, causing a loss of depth information. SfM aims to

recover this lost depth by leveraging multiple images of a
scene.

By establishing correspondences between the 2D projec-
tions, we process a triangulation of the 3D point across
different images and we gain valuable constraints on the
position of the point in 3D and the parameters of the camera
(position and intrinsic parameters).

In the context of SfM, the process involves iteratively
refining estimates for the 3D positions of points and camera
parameters to minimize the difference between predicted and
observed 2D projections (called reprojection error). Mathemat-
ically, this is formulated as an optimization problem aiming
to minimize the squared reprojection error (see fig2).

Fig. 2. Reprojection Error on 3 views of a cube [5] :
The triangulation based on the images from camera 1 and camera 2 gives a
3D position to the angle observed. This point is projected into camera 3 using
its supposed position and parameters, then this projection is not perfect, we
have a reprojection error (which we aim to minimize)

The challenge arises from the nonlinear and high-
dimensional nature of this problem, particularly in larger
scenes with numerous parameters. Techniques like nonlinear
least squares optimization are employed to tackle these chal-
lenges and obtain accurate 3D reconstructions. The mathe-
matical formulation of this problem is given by the following
equation :

min
Cj ,Xi

n∑
i=1

m∑
j=1

ρij ∥P (Cj , Xi)− xij∥2 (2)

where Xi and Cj indicate a 3D point and a camera, respec-
tively; P (Cj , Xi) is the projection of point Xi on camera
Cj ;xij is an observed image point; ∥•∥ denotes the L2-norm;
ρij is an indicator function with ρij = 1 if point Xi is visible
in camera Cj; otherwise, ρij = 0.

The entire processe of computing the SfM points is sum-
marized in the fig3.

INITIATION À LA RECHERCHE, MARS 2024 3

Fig. 3. Entire process of Structure from Motion [7]

B. MultipleView Stereo (MVS)

After applying Structure from Motion (SfM) to recover
camera poses and sparse 3D points, Multi-View Stereo (MVS)
plays a crucial role in achieving a complete and dense 3D
model. MVS algorithms recover 3D geometric information
much in the same way our visual system perceives depth by
fusing two views. In the MVS setting, we may have many
images that see the same point and could be potentially used
for depth estimation. To recover a dense model, we estimate
depths for every pixel in every image and then merge the
resulting 3D points into a single model. The following figure
shows how we pick the depth of a point we conflict occur be-
tween views of the same point : consistency among textures at
these image projections is evaluated at each potential position.
At the true depth (highlighted in green), the consistency score
is at its maximum.

Fig. 4. Calculating the depth of point[4]

Many different MVS algorithms have been studied, each of
them seem to be more adapted for a certain ttype of scene
to reconstruct. MVS algorithms vary in how they represent
geometry, commonly using voxels, level-sets, polygon meshes,
or depth maps. The choice of scene representation impacts the
subsequent reconstruction process. A robust MVS algorithm is
proposed in [3], it involves a simple match, expand, and filter
procedure 1) Matching pairs features across multiple images,
generating a sparse set of patches for salient image regions.
This process is repeated multiple times. 2) Expansion spreads
initial matches to nearby pixels, creating a dense set of patches.
3) Filtering uses visibility and a mild form of regularization
constraints to eliminate incorrect matches. This algorithm does

not require a Sfm model, this is why the second step is not
necessary when we have a Sfm model.

C. Capturing visual data for 3D reconstruction
In the realm of 3D reconstruction, the utilization of visual

data plays a pivotal role, and one common approach involves
the incorporation of videos. Videos offer a controlled environ-
ment for the Structure from Motion (SfM) and Multiple View
Stereo (MVS) processes, providing a sequence of frames that
contribute to a comprehensive understanding of the scene’s
geometry.

Indeed, the sequential nature of frames allows for the
capture of the scene from various angles and perspectives.
It also facilitates the correspondence step as we only have to
compare a few successive frames.

The controlled capture of a video of the environment
often pair images with additional information, such as GPS
position data. By synchronizing the video frames with GPS
coordinates, each frame becomes not only a visual snapshot
but also a geospatially referenced data point. This integration
of location information reduces significantly the complexity of
the problem. Enhances the accuracy and contextual relevance
of the reconstructed 3D model, especially when dealing with
large-scale environments like cities.

Enhanced Constraints for SfM and MVS: The iterative
refinement in Structure from Motion (SfM) benefits from
the temporal coherence provided by consecutive frames in
videos. Establishing correspondences between 2D projections
becomes more robust, allowing for improved estimates of 3D
points and camera parameters. Similarly, Multiple View Stereo
(MVS) benefits from the dense sequence of frames, enhancing
the completeness and precision of the 3D model.

The next figure (5) represents the dense reconstruction of
an environment captured by a car equiped with a GPS sensor.

Fig. 5. Dense reconstruction of a city from a video taken by a car [2]

The subsequent section (IV) delves into the application of
these 3D reconstruction techniques using less controlled data
publicly available on the Internet.

IV. RECONSTRUCTING CITIES THROUGH THE EYES OF
INTERNET

If we don’t have access to a car that goes the city around
equiped with camera or if we want to reconstruct a 3D model

INITIATION À LA RECHERCHE, MARS 2024 4

of any city in the world we could want to use the images
available for free in the internet. Indeed, for many touristic
locations, we can find thousands of pictures of them online,
this represents a large source of images taken from every angle.
However working with large-scale datasets in the context
of city-scale image matching poses significant constraints.
The primary challenge arises from the sheer volume of data
involved, with tens or hundreds of thousands of images in
a collection. The task of finding correspondences across this
extensive dataset is computationally demanding, and a naive
approach of performing all pairwise image matches becomes
impractical due to its quadratic time complexity. For instance,
matching 100,000 images would require an unfeasible amount
of time and computational resources. The inherent sparsity of
the match graph, where most image pairs do not correspond,
further complicates the situation. To address these constraints,
[4] proposes a method to build a graph where the images
viewing the same points would be linked. This method consist
in the rapid creation of a sparse graph by comparing the photos
globally with a method inspired of text document analysis and
then testing iteratively if the ”close” vertex can be connected
: if an image is connected to two other images, we verify if
those two images can be connected. The next figure (6) shows
the result of matching different views of a same point.

Fig. 6. Matching of views of the same point in images taken with different
conditions [4]

Solving Equation of minimization (2) directly poses a
challenging nonlinear optimization problem. Most of the time,
Structure from Motion (SfM) methods applied to disordered
photo collections adopt an incremental approach. They initiate
with a modest reconstruction, and incorporate gradually a few
images at each step, triangulating new points, and iteratively
applying nonlinear least squares optimization, to minimize
reprojection errors (this is commonly referred to as bundle
adjustment). This cyclic process continues until it’s no longer
possible to add more images. Nevertheless, for such large
photo collections, implementing such an incremental approach
simultaneously on all photos would be impossible. To deal
with this problem, [5] propose to use a ”skeletal set” to
perform the Sfm. Indeed, we can reduce substantially the
number of images to process : many pictures are taken from
the exact same point of view and do not add any additionnal
information.

The MVS is also made impossible by the number of images
to process at once. That is why we separate the computation
of the MVS in different clusters that reconstruct each a small
part of the scene.

Lastly an issue caused by the uncontrolled nature of the
images is the determination of the color of the points of the
model. Computing the color of a point in image-based 3D
reconstruction poses several challenges, primarily stemming
from variations in capture conditions, such as different cam-
eras, times, and weather conditions. These discrepancies lead
to color variations between images, making direct use of orig-
inal images for texture mapping problematic and impacting
the visual quality of 3D models. To address this challenge, the
paper [6] proposes a solution based on sparse points obtained
through Structure from Motion (SfM). By minimizing the
color variance of these sparse points, the authors aim to create
an efficient and effective color correction method.

The next figures (7, 8) shows the results of the 3D recon-
struction Rome using images found on the Internet.

Fig. 7. 3D Reconstruction of the Colosseum using photos from internet
photo, Sfm points, MVS results from left to right

Fig. 8. 3D Reconstruction of the St Peter Basilica using photos from internet

V. CONCLUSION

In conclusion, our survey has explored the fascinating
realm of 3D reconstruction from multiple view images, using
classical methods, such as Structure from Motion (SfM) and
Multiple View Stereo (MVS).

It has explained integration of technologies like Scale-
Invariant Feature Transform (SIFT) and Random Sample Con-
sensus (RANSAC) to establish the correspondences between
images, laying the groundwork for accurate 3D reconstruc-
tions.

In the end, reconstructing cities through the eyes of the
internet presents exciting opportunities but also substantial
challenges. The sheer volume of data requires innovative
approaches, such as graph-based methods and skeletal sets,
to efficiently find correspondences across extensive datasets.
Overcoming computational constraints and addressing color
variations in uncontrolled images are crucial steps toward
achieving high-fidelity 3D reconstructions.

REFERENCES

[1] Lowe, D. G. (1999). ”Object Recognition from Local Scale-Invariant
Features.” In: Proceedings of the Seventh IEEE International Conference
on Computer Vision, Kerkyra, Greece, 1999, pp. 1150-1157 vol.2. DOI:
10.1109/ICCV.1999.790410. Keywords: Object recognition, Electrical
capacitance tomography, Image recognition, Lighting, Neurons, Computer
science, Reactive power, Filters, Programmable logic arrays, Layout.

INITIATION À LA RECHERCHE, MARS 2024 5

[2] Akbarzadeh, A., et al. ”Towards Urban 3D Reconstruction from Video.”
In: Third International Symposium on 3D Data Processing, Visualization,
and Transmission (3DPVT’06), Chapel Hill, NC, USA, 2006, pp. 1-8.
DOI: 10.1109/3DPVT.2006.141.

[3] Furukawa, Y., Ponce, J. ”Accurate, Dense, and Robust Multiview Stereop-
sis.” In: IEEE Transactions on Pattern Analysis and Machine Intelligence,
Vol. 32, No. 8, August 2010.

[4] Agarwal, S., Furukawa, Y., Snavely, N., Simon, I., Curless, B., Seitz, S.
M., Szeliski, R. ”Building Rome in a day.” Communications of the ACM,
54(10), October 2011, 105–112. DOI: 10.1145/2001269.2001293.

[5] Snavely, N., Seitz, S. M., Szeliski, R. ”Photo tourism: exploring photo
collections in 3D.” In: ACM SIGGRAPH 2006 Papers (SIGGRAPH ’06),
New York, NY, USA, 2006, 835–846. DOI: 10.1145/1179352.1141964.

[6] Yang, J., Liu, L., Xu, J., et al. ”Efficient global color correction for large-
scale multiple-view images in three-dimensional reconstruction.” ISPRS
Journal of Photogrammetry and Remote Sensing, 2021, Vol. 173, p. 209-
220.

[7] Jiang, S., Jiang, C., Jiang, W. (2020). ”Efficient Structure from Motion
for Large-Scale UAV Images: A Review and a Comparison of SfM Tools.”
ISPRS Journal of Photogrammetry and Remote Sensing, 167, 230-251.

2

Autonomous Sailboat Navigation Using Potential
Fields

Johan BERRIER-GONZALEZ, Student, ENSTA Bretagne

Abstract—The artificial potential field method is a widely used
algorithm for trajectory planning of autonomous ground robots.

In this article, this method is applied to local path planning of
an autonomous sailing robot. The environment and constraints
specific to sailboat navigation (restricted areas upwind and
downwind) are represented by local potentials built around the
boat’s location and periodically updated to account for changes
in wind direction and obstacle positions.

The method we apply in this article is a dynamic potential field
that adapts according to the size of the obstacle, recalculating the
course vector needed to avoid the obstacle and reach the desired
objective at each point on the map.

Index Terms—Unmanned Surface Vehicles, Path Planning,
Potential Field Methods, Simulation, Review

I. INTRODUCTION

Unmanned Surface Vehicles (USVs) have garnered signifi-
cant attention in recent years due to their broad applications
in marine research, environmental monitoring, surveillance,
and maritime transport. These autonomous or remotely oper-
ated vessels offer several advantages over traditional manned
vessels, including cost-effectiveness, safety, and the ability to
access remote or hazardous environments.

One of the primary challenges associated with operating
USVs is efficiently planning routes to navigate complex
marine environments while avoiding obstacles and reaching
predefined destinations. Traditional trajectory planning ap-
proaches often rely on predefined maps or global trajectory
planning algorithms, which may not be suitable for dynamic
environments or real-time applications.

Recent advancements in trajectory planning techniques have
led to the development of new algorithms specifically tailored
to USV navigation. These algorithms often leverage concepts
from artificial intelligence, optimization, and control theory
to generate optimal or near-optimal trajectories in dynamic
marine environments.

This navigation method, based on artificial potential fields,
is designed to react in real-time to changes in the environment
(such as wind direction, obstacles like other boats, trees, etc.)
while also adapting to the specific kinematic constraints of the
yacht (represented by its speed polar). The algorithm calculates
a feasible course at each instant.

The article is organised as follows:
• Course Controller
• Attractive and Repulsive Potential Fields
• Attractive Line
• Obstacle Avoidance
• Simulation and Results

II. PRELIMINARY KNOWLEDGE

Over the past decade, numerous methods have been pro-
posed to address the navigation and obstacle avoidance chal-
lenges of autonomous sailing robots. Ray-tracing techniques
have been proposed in [3], [4], the utilization of a state
machine in [5], [6], modification of the A* algorithm in [7],
application of fuzzy logic in [8], and adoption of Voronoi
diagrams in [9]. Additionally, the implementation of Veloc-
ity Made Good (VMG), a classical navigation method, was
discussed in [10].

In these methods, the goal is to navigate while considering
obstacles such as other boats, trees, etc., and adapt to the
specific kinematic constraints of the sailboat, represented by
its velocity polar. At each moment, the algorithm computes a
feasible heading, ensuring the vehicle remains within a band
surrounding the direct route between consecutive waypoints
determined by a human operator.

Potential field methods, pioneered by Khatib [11] and Krogh
[12], are commonly employed for motion planning of mobile
robots (e.g., see [13]-[14] among others) and were first adapted
for sailing robots in [15].

It is assumed that the mission planning task (global plan-
ning) has been completed, and a list of waypoints Wp has been
selected either by a human mission planner or commercially
available software. Additionally, a map containing known
obstacle positions (e.g., islets, fixed moorings, etc.) is provided
to the local route planner.

Utilizing this list of waypoints, the local path planner
computes in real-time a feasible heading and sail angle to
reach the desired waypoint while avoiding obstacles.

3

III. CAP CONTROLLER

We have a controller which takes as input the objective to be
reached (the course to follow) as well as the position, course
and wind angle provided by the sailboat.

At the output, the system provides the following values to
control the actuators:

• δsmax (flap angle)
• δr (rudder angle)

Fig. 1: Control law

Algorithm 1 Cap Control
Input:
m (robot position)
w (course to follow)
ψ (wind angle)
ψap (apparent wind angle)
θ (current heading angle of the robot)
w1 (x component of heading vector to follow)
w2 (y component of the heading vector to follow)

Output:
u (control command)
Calculating the desired heading angle
θbar = arctan 2(w2, w1)

Rudder control
δr = 0.3 × sawtooth(θ − θbar)

Sail control
δsbar = −sign(sin(ψ − θ)) × (π/4) × (cos(ψ − θ) + 1)
δs = sawtooth(δs − δsbar)

u2 = arctan
(

cos(δs−ψap)×δs
1−sin(δs−ψap)×δs

)
Total control
u = [δr, u2]

T

This is the control algorithm we will use throughout this
article for the various potential fields.

IV. POTENTIAL FIELDS

A. Attractive and repulsive potential fields

In artificial potential field methods, the movement of the
robot (represented as a particle) is guided by a field consisting
of two main components: an attractive potential that pulls the
robot towards the goal, and a repulsive potential that pushes it
away from obstacles. The primary drawback of potential field
techniques is their susceptibility to local minima. However, for

ocean surveillance missions, marine environments are typically
sparse, and local minima are not a significant issue.

In the potential field approach, we establish an attractive
field directed towards the target. This potential field is defined
across the entire free space, and at each time step, we compute
the potential field at the robot’s position and then determine
the force exerted by this field.

Algorithm 2 Attractive potential
d =

√
(X − xg)2 + (Y − yg)2

θ = arctan 2(Y − yg, X − xg).
if d < 0 then

delx = 0
dely = 0

else
delx = −α× d× cos(θ)
dely = −α× d× sin(θ)

end if
Where:

• d is the distance between the current point (X,Y) and the goal (xg, yg) .
• α attractivity coefficients

Fig. 2: Fields of attractive potential

We can also define another behaviour that enables the robot
to avoid obstacles. We ensure that each obstacle generates a
repulsive field around it. If the robot approaches the obstacle, a
repulsive force will act on it, moving it away from the obstacle.

We use a method in which we introduce two parameters r
the safety distance between the obstacle and the boat and s the
range coefficient of the repeller. We use a method, in which
we introduce two parameters : r the safety distance between
the obstacle and the boat and s the range coefficient of the
repeller.

4

Algorithm 3 Repulsive potential
d =

√
(X − xg)2 + (Y − yg)2

θ = arctan 2(Y − yg, X − xg).
if d < 0 then

delx = sign(cos(θ))
dely = sign(sin(θ))

else if d > r + s then
delx = 0
dely = 0

else
delx = β × (s+ r − d) × cos(θ)
dely = β × (s+ r − d) × sin(θ)

end if
Where:

• d is the distance between the current point (X,Y) and the goal (xg, yg)
• r is the safety distance
• s is the range of the repulsor
• β repulsivity coefficients

Fig. 3: Fields of repulsive potential

B. Following Lines

The article [1] highlights the problem of line tracking
when the wind remains constant and the line to be tracked
is upwind. It explores different strategies for solving this
problem.

Here are the results he obtained:

Fig. 4: Simulation results for upwind navigation, for a way-
point at a distance of distance of 500 m, 1 000 m and 1 500
m

In the rest of the article he proposes a particularly interesting
strategy, which consists of defining the objective as a virtual
target moving along the attractive line instead of reaching a
static point. This allows the target to be dynamically adapted
to the desired trajectory.

To constrain the vehicle to stay within a band-limited region
around the direct route between two consecutive waypoints,
the previous method is modified using a line-of-sight (LOS)
guidance approach [1]. In this case, the attractive potential
is no longer associated with the current waypoint but with
a LOS point, which improves the stability and accuracy of
line-of-sight tracking.

Fig. 5: Line of sight (LOS) point definition)

Here are the results he obtained :

Fig. 6: Attractive line tracking

By using this strategy with my method of integrating
potential fields, I obtain similar results :

5

Fig. 7: Results Attractive line tracking

C. Avoidable obstacle

[2] uses a potential field that adapts to the shape of the
object, allowing it to adapt its trajectory to the shape of the
object.

Fig. 8: Diagram of adaptive repulsive potential fields

The disadvantage of this method is that it is mathematically
very complex and expensive to calculate.

We use a simpler method, presented in the section on
attractive and repulsive potential fields, in which we introduce
two parameters : r the safety distance between the obstacle
and the boat, and s the range coefficient of the repeller.

Algorithm 4 Potential Field Calculation
Initialize s, r

Initialize ∆x = 0, ∆y = 0

dgoal =
√

(xgoal −X)2 + (ygoal − Y)2

dobstacle =
√

(xobstacle −X)2 + (yobstacle − Y)2

θgoal = arctan 2(ygoal − Y, xgoal −X)

θobstacle = arctan 2(yobstacle − Y, xobstacle −X)

∆xgoal =

{
0 if dgoal ≤ 0

−α× s× cos(θgoal) if dgoal > 0

∆ygoal =

{
0 if dgoal < 0

−α× s× sin(θgoal) if dgoal > 0

∆xobstacle =

sign(cos(θobstacle)) if dobstacle < r

0 if dobstacle > r + s

β(s+ r − dobstacle) cos(θobstacle) otherwise

∆yobstacle =

sign(sin(θobstacle)) if dobstacle < r

0 if dobstacle > r + s

β(s+ r − dobstacle) sin(θobstacle) otherwise
∆x+ = ∆xgoal + ∆xobstacle

∆y+ = ∆ygoal + ∆yobstacle

The results obtained :

Fig. 9: Adaptive obstacle avoidance

[2] gives the following result:

Fig. 10: Results obstacle avoidance

If we compare the two results we can see that [2] adapts
better to the shape of the object but the result I get also works
with a less expensive calculation time.

V. RESULTS

Here are the simulation results obtained when implementing
my potential field algorithm.

I have created a python simulator in which I simulate the
environment, namely :

• the true wind and the apparent wind represented by the
red and green vectors

• the obstacle represented by a red dot placed in the middle
of the line

• the attractive line
• the corresponding potential field and therefore all possible

set points
I also simulates the sailboat following the line thanks to its

course controller.

You can see that the potential field adapts according to the
obstacle.

I also plotted the trajectories followed by the sailboat by
varying the parameters r (safety distance) and s (range of the

6

repeller).

We can see that the parameters s and r influence the
distance at which the sailboat avoids the obstacle, as
illustrated on the blue trajectory.

These parameters should therefore be chosen according to
the situation and the type of obstacle to be avoided.

The trajectory in black which corresponds to a r =20 and a
s =40 simulates a very imposing obstacle, which allows us to
verify that even in such a situation, the sailboat always tends
to recover its attractive line.

Fig. 11: Simulation result

VI. CONCLUSION

A new method for line-of-sight tracking of an autonomous
sailboat has been presented in this article, combining line-of-
sight guidance and the potential terrain method. This method
has been validated using a python simulation and demonstrates
good performance. In addition, a new approach for dynam-
ically defining a potential field by defining the size of the
repulsive potential has been presented. Although this algorithm
is simple to implement, it does have some limitations in terms
of the choice of r and s and the repulsivity coefficients.

REFERENCES

[1] [1] Frederic Plumet, Hadi Saoud, Minh-Duc Hua ”Line following for
an autonomous sailboat using potential fields method,” June 2013

[2] [2] Jia Song1, ”Path planning for unmanned surface vehicle based on
predictive artificial potential field”, Febraury 2020

[3] [3] C. Sauze and M. Neal, “A raycast approach to collision avoidance in
sailing robots,” in International Robotic Sailing Conference, 2010, pp.
25–32

[4] [4] R. Stelzer, K. Jafarmadar, H. Hassler, R. Charwot et al., “A reactive
approach to obstacle avoidance in autonomous sailing.” in International
Robotic Sailing Conference, 2010, pp. 33–39.

[5] [5] Y. Briere, “IBoat: an unmanned sailing robot for the Microtransat
challenge and ocean monitoring,” in Conf. TAROS (Towards Au-
tonomous Robotic Systems), 2007, pp. 145–162.

[6] [6] G. Elkaim and R. Kelbley, “Station keeping and segmented trajectory
control of a wind-propelled autonomous catamaran,” in 45th IEEE
Conference on Decision and Control, 2006, pp. 2424–2429.

[7] [7] H. Erckens, G.-A. Busser, C. Pradalier, and R. Siegwart, “Avalon:
Navigation strategy and trajectory following controller for an au-
tonomous sailing vessel,” IEEE Robotics Automation Magazine, vol.
17, no. 1, pp. 45 –54, 2010.

[8] [8] R. Stelzer, T. Proll, and R. John, “Fuzzy logic control system for
autonomous sailboats,” in IEEE Int. Conf. on Fuzzy Systems, 2007, pp.
1–6.

[9] [9] K. Xiao, J. Sliwka, and L. Jaulin, “A wind-independent control
strategy for autonomous sailboats based on Voronoi diagram,” in 14th
Int. Conference on Climbing and Walking Robots (Clawar2011), 2011,
pp. 110–124.

[10] [10] R. Stelzer and T. Proll, “Autonomous sailboat navigation for short
course racing,” Robotics and Autonomous Systems, vol. 56, no. 7, pp.
604–614, 2008.

[11] [11] O. Khatib, “Real-time obstacle avoidance for manipulators and
mobile robots,” International Journal of Robotics Research, vol. 5, pp.
90–98, 1986.

[12] [12] B. Krogh and C. Thorpe, “Integrated path planning and dynamic
steering control for autonomous vehicles,” IEEE Int. Conf. on Robotics
and Automation, pp. 1664–1669, 1986

[13] [13] J. Barraquand, B. Langlois, and J. Latombe, “Numerical potential
field techniques for robot path planning,” IEEE Transactions on Systems,
Man and Cybernetics, vol. 22, pp. 224–241, 1992.

[14] [14] S. Shimoda, Y. Kuroda, and K. Iagnemma, “Potential field naviga-
tion of high speed unmanned ground vehicleson uneven terrain,” IEEE
Int. Conf. on Robotics and Automation, pp. 2828 – 2833, 2005.

[15] [15] C. Petres, M. Romero Ramirez, and F. Plumet, “Modeling and re-
active navigation of an autonomous sailboat,” in IEEE/RSJ International
Conference on Intelligent Robots and Systems, 2011, pp. 3571–3576.

Set-membership state estimation using mechanically
scanning sonar systems

Gabriel Betton
ENSTA Bretagne, Lab-STICC, UMR CNRS 6285, Brest, France

Brest, France

Abstract—This paper deals with the localization problem of a
mobile robot in a known environment using low-cost sensors. The
initial position is unknown and measurements are uncertain. The
solution suggested here is the use of an interval analysis, a non
pessimistic set-membership approach to deal with uncertainties.

Index Terms—state estimation, interval analysis, sonar

I. INTRODUCTION

The use of mechanically scanning sonar systems (MSIS)
is particularly suitable for use on small, low-cost ROVs for
navigation and obstacle avoidance. This article proposes a
solution for locating a mobile robot using the data received by
this type of sensor. Given the environment and the physical
properties of the sensor, measurement errors and uncertainty
on the state will be present. To take these into account, this
article presents the use of an interval analysis [5].

We assume that the map of the environment is available
and is made of static, indistinguishable segments. The initial
position of the robot is unknown. For this first approach the
problem will be kept in a plan.

Mechanically scanning sonar systems (MSIS) continuously
scans its environment, one full 360° scan takes several sec-
onds during which the robot continues to move. Different
approaches exist to use this data to estimate the localization
of a robot, one of the techniques widely used is the Iterative
Closest Point (ICP) [1] or its probabilistic extension (pIC) [2]
[4] to take into account uncertainties. Both aim at computing
the given displacement between sets of acquired 3D point
clouds to estimate the robot displacement.

Our approach is to process this localization problem using a
constraint network, each measurement is taken independently
to contract the robot trajectory at given times. This method
should save computational power while guaranteeing a cer-
tain trajectory within a set without requiring linearization or
Gaussian distributions.

This paper will develops the constraint network used for the
localization and presents a simulation for demonstration.

II. FORMALISM

The map is known beforehand, let it be defines by M, a set
of vectors :

M = {v1,v2, . . . ,vn}

where v1,v2, . . . ,vn are vectors describing the segments of
the map.

The localization problem corresponds to the following state
estimation of the robot:{

ẋ(t) = f(x(t), u(t)) (evolution equation)
yi = g(x(ti)) (observation equation)

where x is the unknown state vector (, u is the input measure-
ment vector, and yi is an output measurement vector made at
time ti. As x and u continuously evolve with time, we define
them as trajectories denoted by x(·) and u(·), contrary to yi

that represents discrete data.
For our interval analysis we assume that all measurements

errors can be bounded so we can note yi ∈ [yi].

Fig. 1. The map M is perceived by the robot at a time ti and ti−1

III. CONSTRAINT NETWORK

Evolution equation. Let’s consider a robot moving on a
plane, for our demonstration we use a unicycle model with
the sensor angle as the fourth state :

ẋ(t) = f(x(t), u(t)) =

vr(t) · cos(x3(t))
vr(t) · sin(x3(t))

ωr(t)
ωs(t)

where u(t) =

(
vr(t) ωr(t) ωs(t)

)
with vr(t) the robot

speed, ωr(t) the robot rotation rate and ωs(t) the sonar rotation
rate.

Observation. A MSIS acquires a set of range-bearing
measurements yi at discrete times ti. The bearing is the current
angle of the sonar and the range is the distance from the robot
to the segment belonging to the map M.

yi = g(x(ti)) =

(
dist(x(ti),M)

x4(t
i)

)
where dist(x(ti),M) returns the distance between the robot
and the closest wall at the angle x4(t

i), the algorithm to
compute the observation vector in a plane environment is
described as follows :

Algorithm 1 Observation
Input: M, ti, x
Output: y(ti)

Initialisation :
1: compute sonar vector
2: min distance = ∞

Loop
3: for m in M do
4: if sonar vector intersects m then
5: if intersection point in m then
6: distance = dist(x(ti) , intersection point)
7: if distance ¡ min distance then
8: min distance = distance
9: end if

10: end if
11: end if
12: end for
13: return (min distance , x4(t

i))

Contractors A set of contractors is introduced to estimate
the localization of the robot, these constraints will then be
used for the solver.

(i) ci = x(ti)

(ii) ai = yi1

(
cos(yi2)

sin(yi2)

)
(iii) bi ∈ M
(iv) ci = bi − ai

Intermediate variables are introduced to decompose the equa-
tions and reveal elementary constraints [5], ai ∈ R2 is the
displacement vector corresponding to the range and bearing
measurements (yi1, y

i
2), bi ∈ R2 is the intersection point of

the sonar vector with the first segment of M, ci ∈ R2 is the
position (x1(t

i), x2(t
i)) of the robot at the time ti.

We use contractors whose solutions have already been
defined in software libraries :

• (i) evaluates the trajectory x(·) at a given time ti and
create a constraint with the vector ai. A dedicated con-
tractor Ceval has been provided in [6]. This is the main
contractor that allows to use the discrete measurements
of a MSIS to estimate a trajectory.

• (ii) links a range and bearing measurement to a a vector of
distance (Polar coordinates to Cartesian). The contractor
Cpolar introduced in [3] is used.

• (iii) links a point to a set of segments, the contractor used
is an union of all segment contractor Csegment of the map
M. Let it be defined by Cmap =

⋃
m∈M Csegment(m)

• (iv) we use a simple difference contractor C− to link ai,
bi and ci.

IV. APPLICATION

All domains are initialized as set of all real values except
for measurements and their bounded uncertainties yi ∈ [yi].
All contractors defined are used in the contractor network. For
each measurement i :

(i) Ceval([t
i], [ci], [x](·))

(ii) Cpolar([a
i
1], [a

i
2], [y

i
1], [y

i
2])

(iii) Cmap([b
i])

(iv) C−([c
i], [bi], [ai])

The goal of the following demonstration is to estimate a
set of possible trajectories of the vehicle, in a real case, an
extended Kalman filter (EKF) can be added to more accurately
estimate the position of the robot using previously estimated
initial position.

The solver is illustrated on a simulated example where a
robot move along among a map made of 4 segments, the robot
is equipped with a MSIS rotating at ωs=2 rad/s and measuring
the distance to the facing wall each 200 ms. The robot follows
a Lissajous trajectory :

x(t) =

(
cos(t)

2 · sin(2 · t)

)
We use the CODAC library made by S. Rohou to solve the

contractor network along with VIBEs for visualization. When
running the simulation the contraction is made in 0.06s :

Fig. 2. Map of the simulated mission, the actual trajectory is the black line,
measurements are shown on red, a SIVIA paving is used to visualize the map

The Lissajous trajectory demonstrates an undesired behav-
ior. If the robot is turning in the opposite direction of the MSIS
at the same rotation rate, the sonar always faces the same
direction and returns the same measurement not contracting
the trajectory. A solution could be to drive the MSIS at a
rotation rate ωs = K + ωr to ensure a fixed rotation rate in
the world frame. Unfortunately common commercial MSIS do
not have this type of control.

V. CONCLUSION

This method using interval analysis is quick and reliable to
solve the localization problem of underwater robot using MSIS
in presence of uncertainties and unknown initial localization.
A reservation is made concerning fast-turning robots that could
make the MSIS unusable.

Considering the computation time, this algorithm can also
be used for online localization in a known environment.

LIBRARIES

The CODAC is a C++/Python library providing tools to
guarantee computations over intervals of reals, sets and tra-
jectories. The official web page is www.codac.io .

ACKNOWLEDGMENTS

We thank S. Rohou for its support and precious advices
during this interval analysis experimentation. We also thank
him for the developement of the CODAC library.

REFERENCES

[1] P.J. Besl and Neil D. McKay. A method for registration of 3-d
shapes. IEEE Transactions on Pattern Analysis and Machine Intelligence,
14(2):239–256, 1992.

[2] Yohan Breux, André Mas, and Lionel Lapierre. On-manifold probabilistic
iterative closest point: Application to underwater karst exploration. The
International Journal of Robotics Research, 41(9-10):875–902, 2022.

[3] B. Desrochers and L. Jaulin. A minimal contractor for the polar equation:
Application to robot localization. Engineering Applications of Artificial
Intelligence, 2016.

[4] Luis Montesano, Javier Minguez, and Luis Montano. Probabilistic scan
matching for motion estimation in unstructured environments. pages 3499
– 3504, 09 2005.

[5] Simon Rohou, Benoı̂t Desrochers, and Luc Jaulin. Set-membership state
estimation by solving data association. In 2020 IEEE International
Conference on Robotics and Automation (ICRA), pages 4393–4399, 2020.

[6] Simon Rohou, Lyudmila Mihaylova, Luc Jaulin, Fabrice Bars, and Sandor
Veres. Reliable non-linear state estimation involving time uncertainties.
Automatica, 93, 01 2018.

Stalactite detection using Hough Transform

S. Bourzoufi1

Lab STICC, ENSTA Bretagne
2 rue François Verny, 29200 Brest, France

E–mail: samy.bourzoufi@ensta-bretagne.org

SUMMARY: The purpose of this paper is to use line detection technique with Hough
transform in order to detect stalactites for a robot explorating a cave. Caves being dark,
it is nearly impossible to obtain good results by applying directly the line detection. We
suggest an image processing method in order to make stalactites more detectable and
see its effect on the Hough Transform

Key words. Hough transform – Line detection – vision – image processing

1. INTRODUCTION

Among the shape detection techniques in vision,
the Hough transform is a celebrity. First intro-
duced by Paul Hough in 1959 [1], to detect lines
in a hydrogen bubble chamber. However, the affine
parametrization of lines poses problems, Duda and
Hart [2] propose a polar parametrization called the
”rho-theta” parametrization solving the said prob-
lems.

The Hough transform is a mathematical object
which, in general, transforms a point on the plane
into a curve in a parameter space. A curve in the
chosen parameter space therefore represents the set
of straight lines of the initial plane passing through
the chosen point. Thus, if we look at the first formal-
ism chosen by Hough, the image of a point is a line
in the parameter space, and the inverse transform of
a point in the parameter space is a line in the orig-
inal plan. Thus, the idea behind the line detection
algorithm is to apply the Hough transform to all the
singular points of an image (found with Canny for ex-
ample) then to calculate the density of the graphs of
the associated lines (with an accumulation matrix):
the important slopes intersections are then found in
the accumulator and give the parameters of the line
of the plane. No matter how the lines of the plane
are parameterized, the method remains the same, it

is called the ”slope intersect” method. The rho-theta
parameterization gives, in the parameter space, si-
nusoids whose intersections give a straight line of the
plane. The issue in our problem is the cloud of carac-
teristic points we find in an image : the image being
noisy, a lot of non-coherent lines are found. Using im-
age processing and Hough transform properties, we
are able to remove the incoherent lines and detect
only (or almost) stalactites.

The idea is mainly to reduce the number of char-
acteristic points of an image to improve the separabil-
ity of the lines in the accumulator, but also to reduce
the execution time of the process, this technique be-
ing intended to be used in real time by a autonomous
robot. The group of line found on the image can be
used by the robot to locate itself in the cave.

2. Hough transform on a raw image

In this paper we will work on the following cave
image. There are a large number of more or less fine
stalactites, with the rest of the cave being darker in
the background. This image was chosen because it
was very irregular in terms of shape and brightness.
The image is 1170x780 in size and although it is in
color, we will convert it to black and white first.

The easiest way to apply line detection is to use

1

S. BOURZOUFI

Fig. 1: Raw image of a cave with stalactites.

the OpenCV2 library on python. The first thing to
do is to convert the image from RGB to black and
white level. Then we need to detect the edges from
our black and white image: Canny edge detector is a
pretty good way to do so. Here is what the image we
get applying this method.

Fig. 2: Edges detection applied to our image using

Canny.

As we can see, the edge detector gives us our image
with edges in white. Of course, edges are a group
of pixels with coordinate, which we want to apply
Hough Transform to. Let’s have a quick reminder of
what the Hough transform is. If we consider the ’rho-
theta’ parametrization described by Duda and Hart
[2], here is how the transformation can be defined:

H : R2 → C([0, 2π])

(x, y) 7→ ρ(x,y)(θ) = x cos(θ) + y sin(θ)

Indeed, a point from the 2D plane has for im-
age a continuous function on the segment [0, 2π] de-
scribing the parameters of all the lines intersecting
that point. The parameters of a lines are the radius
and its angle. As a consequence, if we apply Hough

transform to all of our n edges points we obtain n
ρ-functions. We then calculate the accumulator as-
sociated with these slopes and find the most rated
lines parameters. By the way it is possible to visual-
ize the parameters slopes with the accumulator, we’ll
see some example later. Here is the final picture with
the line found with the algorithm :

Fig. 3: Lines found with our Hough transform process.

Obviously the result is not great, and still, this is
not the worst result as a threshold has been applied
to only show the most rated lines on the accumulator.
This is however an interesting result as even the most
obvious line a human would draw by himself on the
original image are not found with Hough transform.
The problem is that we select the wrong parameters
in the accumulator and there are two possible reasons
for that. First, we don’t select the good maximum in
our accumulator, which is not really likely to happen.
The other reason would be that the accumulator is
incremented in a way that its hard to separate cer-
tain slopes intersection, maybe because there are too
much slopes. This makes sense as a large part of
the edges points found with the Canny algorithm are
not part of a noticeable line. The solution is then
to process our image in a way that we only obtain
the edges from the stalactites. Duda and Hart say
in their paper [2] that the number of intersections
in the parameter space increase in quadratic growth
with the number of slopes, so reducing the number of
edges points should be efficient.

3. Image processing for vertical edges
detection

In order to reduce the number of edges points, we
need to know what makes an edge point irrelevant in
our context. First, if an image has very noisy light
variation, applying a gradient to find edges will pro-
duce high spikes which we want to avoid. To solve
this problem, we need to flatten the image in term
of luminosity level. For instance, we can reduce the

2

Stalactite detection using Hough Transform

number of intensity level and modify our pixels’ in-
tensity values to them using threshold. Instead of
having 256 intensity level, we only take 3 levels for
example (0, 125 or 255). As differences in depth pro-
duce differences in luminosity, edges will be detected
more easily. However if a spike in luminosity happens
due to a drop of water for example, we need to remove
it as well. One way to do that is to ”dilute” the spike
of luminosity by applying a gaussian blur. Repeat-
ing this process of multithresholding and blurring will
produce a fairly flat image in term of luminosity. If
we take the hypothesis that the vertical axis of our
robot’s camera is colinear with the vertical lines of
the stalactites (our robot is not necessarly navigat-
ing on a flat space so there is no really other way to
formulate this hypothesis) we can pay attention only
to vertical edges. By taking account of this hypoth-
esis, we can apply a horizontal gradient in order to
find vertical edges.

To find the horizontal gradient of an image we
can use a horizontal gradient mask and convolute our
image with it.

Iy = ∂y ∗ I
With Iy the horizontal gradient of our image, I

the original image and ∂y the mask of horizontal gra-
dient :

∂y =

−1 0 1
−1 0 1
−1 0 1

A final threshold is applied to the image in order

to get a binary image (which is necessary to apply
Hough transform). Here is what we obtain after this
preprocess :

Fig. 4: Our image after the preprocess is applied.

As we were expecting, a lot of edges point have
been remove or ignored compared to the result ob-
tained with a Canny edge detector. The image pro-
cessing can however produce a loss of precious in-
formation, for instance big stalactite on the gradient

image only have one edges represented : this is due to
luminosity on a global scale as both side of a stalactite
might no be exposed to light the same way. Moreover,
we still notice some edges points that are not really
a part of noticeable lines, and this might appear to
be a problem, but not really actually because the in-
tersection of their slopes in the parameter space will
be ignored thanks to the threshold. However, it is
easy to get rid of that remaining noise : we compute
all the group of neighbor pixels, if the group is too
small, we set the value of its pixels to zero. Again, a
fewer number of edges points means a fewer number
of slopes on the accumulator and this should make
maximum search in the accumulator more accurate.
We are now ready to apply the line detection process
with Hough transform.

Fig. 5: Line detection after image processing.

The lines belonging to the most prominent sta-
lactite finally appears on the image. We could actu-
ally see more lines by reducing the threshold level,
but we would risk taking account of a few remaining
lines created by the little noise still present on the
preprocessed image, plus in our case, we don’t really
care about the number of stalactites but rather their
presence on the camera image.

4. Visualization of the accumulator

As we pointed out earlier, it is possible to see the
slopes in the parameters space : the accumulator is
indeed a 2D matrix which can be read as an image
with OpenCV2. Let’s visualize the accumulator of
the edge points with the Canny edge detector and
with our own image processing.

As we were expecting, less slopes means a clearer
accumulator: intersection zones are spikier and stand
for the line we are actually looking for. Moreover
we could wonder why do lines appear on our Canny
edge detection and yet, are not detected using Hough
transform. The answer is quite simple : areas of noise
can form a large number of lines, the larger the noise

3

S. BOURZOUFI

Fig. 6: Accumulator with our image preprocess.

Fig. 7: Accumulator with a Canny edge detection.

area is, the longer the produced lines are. As a con-
sequence, a line for instance 20 pixels long can have a
lower score than lines produced by a 100 pixels large
noise area. This is why increasing the threshold in
the first place did not change the results and this is
also why we observe so much horizontal lines where
noise is the most present.

5. Possible improvement and use in a
real time context

The hypothesis we took before about the orienta-

tion of our robot will practically never be satisfied.
However, the euler angle that will modify the rho an-
gle of lines on the camera image is the roll. As a
consequence, if our robot is equiped with an IMU or
any device able to measure its euler angles, we can
apply the camera image a rotation equal to the op-
posite of our robot’s roll angle. One crucial thing is
that the results produced by our methods vary a lot
depending on the image we look at, as the number of
lines found will never be the same from on image to
another. One solution would be to keep the 10% best
by adapting the threshold in the accumulator. But
still, it is possible for the robot to look at anything
but stalactite and still find hundreds of lines.

6. Conclusion

In this paper, we suggest an image processing
technique in order to produce better results of line
detection on stalactites using Hough transform. The
image processing produces an edge points list repre-
senting significant vertical edges. We also notice how
image noise can produce edges which will impact the
accumulator and produce lines out of nowhere. This
subject highlights the fact that shape detection tech-
niques are never direct and require most of the time
an image processing.

6.1. Citations and references

REFERENCES

[1] Hough, P. V. C. (1959). Machine Analysis of
Bubble Chamber Pictures. University of Michi-
gan.

[2] Duda, R. O., & Hart, P. E. (1972). Use of
the Hough Transformation to Detect Lines and
Curves in Pictures. Communications of the
ACM, 15(1), 11-15.

4

Trajectory Tracking Control in Sliding Mode and
Feedback Linearization of a Mobile Manipulator

Gwendal Crequer, Student, ENSTA Bretagne

Abstract—This report presents a trajectory tracking control
using sliding mode and feedback linearization for a redundant
mobile manipulator, avoiding singularities and relying on numer-
ical estimates. Both articulated arm and mobile robot control are
considered simultaneously.

I. INTRODUCTION

The modeling and control of polyarticulated systems, as
well as that of mobile robots, are well-mastered independently
today. Various methods exist, especially to avoid manipulator
arms encountering singularities, whether structural or kine-
matic, in both control [7] and trajectory planning methods [4].
Regarding mobile robot control, it is also well-established,
both in terms of control and trajectory planning. However,
the formalisms and practices associated with these domains
are often distinct. Current research actively explores numerous
solutions for the control of mobile manipulators, typically by
planning a trajectory for the mobile base and another for the
robotic arm [6]. This article presents a control in sliding mode
and feedback linearization of a redundant mobile manipulator
(unicycle model with an RRR arm) for end-effector trajec-
tory tracking. Two methods have been implemented, inspired
notably by Wand et al. [3], aiming to always maximize the
distance between the current configuration and singularities.
The first method modifies a singular value of the Jacobian
matrix when approaching a singularity, while the second
applies a repulsion force based on the gradient of a criterion
with respect to the controls.

II. MODELING OF POLYARTICULATED MOBILE ROBOTS

The modeled robot is an RRR arm mounted on a unicycle-
type mobile base. The unicycle robot is modeled by a state
vector x = [x, y, θ]T , where x and y are the Cartesian coordi-
nates of the robot, and θ is the angle of the mobile base with
respect to the z axis, perpendicular to the horizontal plane.
The RRR arm is modeled by a state vector q = [q1, q2, q3]

T ,
where q1, q2, and q3 are the angles of the arm joints (Khalil-
Kleinfinger representation in Table I).

TABLE I
KHALIL-KLEINFINGER PARAMETERIZATION FOR RRR ARM

α d r θ
0T1 q1
1T2 π

2
l1 q2

2T3 l2 q3

The pose of the mobile platform is represented by the
homogeneous transformation matrix bT0 as follows:

bT0(x) =

cos(θ) − sin(θ) 0 x
sin(θ) cos(θ) 0 y

0 0 1 0
0 0 0 1

 (1)

The direct geometric model of the RRR arm, providing
the position of the end effector, is given by the following
equations:

0P =

x
y
z

 =

g(q)z }| {�
I3,3 03,1

�
| {z }

Projection

0T1(q1)1T2(q2)2T3(q3)| {z }
Homogeneous Transformations

3P (2)

in the base mobile coordinate system. Thus, the position of
the end effector in the world frame can be obtained by the
relation:

bP =
�
I3,3 03,1

�
bT0(x) 0T1(q1) 1T2(q2) 2T3(q3) 3P| {z }

h(x,q)

(3)

A. Kinematic Model

The kinematic model of the mobile base is given by the
following equations:

ẋ =

ẋ
ẏ

θ̇

 =

cos(θ) 0
sin(θ) 0

0 1

�
v
ω

�
(4)

with v and ω as the linear and angular velocities of the
mobile base, which are the robot controls. Here, the main
reason for choosing the unicycle model is its linearity in input
dependencies on the observed output, similar to articulated
robots.

The kinematic model of the RRR arm is given by the
following equations:

0Ṗ = Jarm(q) q̇ (5)

With Jarm(q) as the Jacobian matrix of the function g and
q̇ as the angular velocities of the joints, which are the arm
controls. As both models have input linear dependencies on
the first derivative of the desired output, it is possible to
combine them to obtain a complete kinematic model of the

robot. By letting U =
h
[v ω]

T
q̇T

iT
, and X =

�
xT qT

�T
,

the following model is obtained:

bṖ = Jrobot(X) B(X)U (6)

With Jrobot(X) as the Jacobian matrix of the function h and
B(X) as the matrix explicitly defining ẋ and ẏ from v. This
method is adapted from that proposed in [2].

III. ROBOT CONTROL

Now that we have a system of equations of the form
ẏ = AU, we can define the control U to achieve the desired
trajectory tracking [1]. Using feedback linearization control,
the control U can be defined as follows:

U = A−1v (7)

where v is the first derivative of the trajectory to be adopted
to perform the task. Since the matrix A is not square (redun-
dancy), its pseudo-inverse must be used.

A. Feedback Linearization Control

The differential equation to pose to converge the trajectory
error for a system with a relative degree of 1 is given by:

(ẏd − ẏ)| {z }
ė

+
1

τ
(yd − y)| {z }

e

= 0 (8)

One can then choose v = ẏ = ẏd+
1
τ e to achieve convergence

of the trajectory error in a characteristic time τ .

B. Sliding Mode Control

The principle of sliding mode control is not to use a PD-
type correction to achieve convergence of the trajectory error
but to force the system to stay on a sliding surface that is no
longer linearly dependent on U (surface of

�
e(k)

	
where the

differential equation converges to 0). For this, the differential
equation to be respected on the error is defined as:

e = 0 (9)

Because our Jacobian-based linearization led to a first-order
system. The control can then be chosen as follows to quickly
converge to a sliding surface:

U = A−1 (K × sign(e)) (10)

With K large to converge quickly. Then, there are some tricks
to decrease the value of K and avoid chattering effects.

IV. RESULTS WITH CLASSICAL COMMANDS

Figure 1 depicts a unicycle with an articulated arm designed
to follow a given trajectory. Implementation of commands
using feedback linearization and sliding mode allows for the
evaluation of the distance between the end effector and the
target. Convergence towards the desired position is indeed
confirmed, but certain situations lead to a sudden increase
in error and state parameter lock-ups. This occurs during the
traversal of a singularity, either structural or kinematic, in the
robot.
The traversal of these singularities results in the non-
invertibility of matrix A, which can be characterized by the
determinant of ATA or its singular values. All these metrics
are presented in Figure 2.

Fig. 1. Mobile manipulator and trajectory to follow

Fig. 2. : Distance to the target, determinant, and smallest singular value. In
blue: Sliding mode, in red: Feedback Linearization

V. SINGULARITY AVOIDANCE

To avoid singularities, several solutions exist, notably ex-
plained in the case of articulated arms by Wand et al. [3].
They propose 2 methods:

• Decompose the matrix A into singular values and arti-
ficially increase the value of the smallest one, even if it
means exiting the sliding surface.

• Use repulsion based on the gradient of a criterion (de-
terminant or singular value) to prevent the system from
approaching the singularity.

It is worth noting that, at least for now, these methods are
applied after the definition of the command. A discussion on
this will be held in the conclusion.

A. Artificial Increase of Singular Value

The first method involves inverting matrix A using its
Singular Value Decomposition (SVD) and modifying the value
of the singular values at the time of inversion.

(
A = UΣVT

A−1 = VΣ−1
modifiedU

T
(11)

With:
Σ−1

modified = Diag
�

σi

σ2
i + λ2

...

�
(12)

such that when σi is large, the inverse is close to 1
σi

, and
when σi is small, the inverse is close to 1

λ , with λ being a
regularization parameter.

B. Repulsion

The second method involves estimating the gradient of the
determinant of ATA or the smallest singular value for a
small variation in commands, and applying a repulsive force
proportional to this gradient to choose a command that moves
away from singularity.

U = A−1v + α×∇U (φ(X)) (13)

With φ(X) being the criterion to minimize, φ(X) =
det

�
ATA

�
or min (Σ), and α being a regularization param-

eter.

VI. SIMULATION AND RESULTS

The Jacobian and gradient calculations rely on numerical
estimates based on a second-order centered finite difference
calculation:(

∇U (φ(X)) = φ(X+δU)−φ(X−δU)
2δ

Jrobot(X) = h(X+δX)−h(X−δX)
2δ

(14)

Using the same pattern as Figure 1, the results obtained with
singularity avoidance methods are observed in Figures 3 and
4. Kinematic saturations have been added to involve kinematic
singularities in the robot’s behavior.

Fig. 3. Sliding mode: Distance to the target, determinant, and smallest singular
value. In blue: without avoidance method, in red: with modified singular value,
in green: with repulsion method

Fig. 4. Feedback Linearization: Distance to the target, determinant, and
smallest singular value. In blue: without avoidance method, in red: with
modified singular value, in green: with repulsion method

The most notable result is the use of repulsive potential
coupled with feedback linearization, where the overshoot due
to trajectory error is 4 times smaller than without avoidance
method (from 2ua to 0.5ua in singular situations), and 3 times
smaller than the artificial increase in singular value method.
Error increases without determinant cancellation can also be
explained by three reasons:

• The command overshoot (nonexistent here), due to the
system order, is indicative of feedback linearization con-
trol.

• The two presented methods modify the
command, making it no longer a solution to the control
problem.

• Some singularities are not avoided by these methods, es-
pecially kinematic singularities. They must be considered
in planning as they are not locally detectable (a local
minimum can be too far from the upcoming solution).

It is also necessary to consider that the avoidance method pa-
rameters are the same for both commands, and the parameters
of these commands have not been modified either. This choice
was made considering that the corrections came in addition to
the command, but it could also be entirely possible to compare
the results by always seeking the best control and avoidance
parameters.

VII. CONCLUSION

The control and formalism of mobile robots can be applied
to polyarticulated robots with a conversion of the formalism
of robotic arms. However, this fusion implies considering the
kinematic and structural singularities of the arm, workspace
limitations, and other constraints that do not exist for mobile
robots. Moreover, in the present case, the use of a unicycle
model was very simplifying, as it is a model whose inputs
are linearly dependent on the output, similar to robotic arms.
Thus, the use of the Jacobian was well-suited. For other more
complex robots, it is advisable to reconsider this simplification
and work analytically on the state equations to find the relative
degrees of each input and add differential delays if necessary
on the inputs [1].
Finally, regarding the implementation of commands, they
were added roughly as corrective terms. It could be possible,
especially for sliding mode control where the goal is to reach
a sliding surface, to calculate and transform the corrections
to keep them on the surface, thus making them a solution to
the control problem. This would mean, for example, in the
case of adding repulsion, not adding it to the command but
calculating the gradient in the kernel of the application to find
a command that stays in the kernel, and thus a solution.

REFERENCES

[1] S. Buss, “Introduction to inverse kinematics with Jacobian transpose,
pseudoinverse and damped least squares methods,” IEEE Transactions
in Robotics and Automation, 2004.

[2] M. Boubezoula, “Modélisation et commande d’un manipulateur mobile
à roues,” Ferhat Abbas University, 2019.

[3] B. Bayle, “Mod elisation des manipulateurs mobiles a roues, en vue de
leur commande cinematique,” 2001.

Rapidly-Exploring Random Trees
Apolline de Vaulchier du Deschaux

In this article, the concept of the Rapidly-Exploring Random
Tree (RRT) is explained. The description of this path planning
algorithm (based on tree incrementation) and its associated pa-
rameters is introduced, and their influence is experimentally ex-
amined to facilitate a discussion of the obtained results. The al-
gorithm is applied to the scenario of two arms holding an object
(2D simulation). The objective is to move the object from point
A to point B while avoiding an obstacle. The RRTs aspect is also
mentioned, with path optimization by calculating a cost over the
distance between nodes.

RRT | RRTs | Dual-arm | Path Planning
Correspondence: apolline.de_vaulchier@enstabretagne.org
Git : https://gitlab.ensta-bretagne.fr/devaulap/myrtt.git

Introduction
RRT were introduced by Steven M. LaValle in 1998 in

his article named "Rapidly-Exploring Random Trees: A New
Tool for Path Planning" (1). The main idea behind RRT was
to create a path-finding algorithm capable of efficiently han-
dling high-dimensional configuration spaces, often encoun-
tered in the context of trajectory planning for mobile robots
and autonomous systems. The tree is built incrementally in
order to quickly reduce the expected distance between a ran-
domly selected point and the tree. The tree is built randomly
and biased to reach all the unexplored areas of the problem,
it can be associated with a Voronoi diagram.

The advantages of RRT are its adaptability to complex en-
vironments, rapid exploration of a space, robustness in the
face of dynamic changes, and ease of implementation. On the
other hand, we need to know the environment, and it doesn’t
guarantee that you’ll find an optimal path. For that, you need
to add a best-path search function. It is also sensitive to its
initial parameters, such as branch size or number of nodes.
Mr. LaValle also introduces the concept of RRTs, which cor-
responds to the RRT algorithm with path optimization. The
cost principle for each path is computed per branch. This
cost can be calculated in various ways, such as the distance
between each point, the angle between each position, or the
energy expended for each configuration. B. An and al., in
their article (2), mention the calculation of a maximum po-
sition deviation of an open chain arm, thus limiting the gap
between each tree node.

The goal of this article is to apply the RRT to two 2-
degree-of-freedom arms holding the same object. The object
needs to move from point A to point B in a 2D space. In
this known space, an obstacle is positioned. Optimization of
the found paths is then carried out, forming an RRTs (s for
star). Indeed, RRT’s algorithm was first used in 1998. Since
then, many improvements and versions of this algorithm have

been made. The aim of this article is to introduce the basics
of RRT, not to develop or explain its optimization.

Thus, Section 1 discusses the operation of the RRT algo-
rithm and its associated parameters. Section 2 describes the
Dual-arm project and the implemented algorithm. Section 3
details the obtained results, and Section 4 discusses the vari-
ous outcomes.

1 RRTs algorithm
A. Notation.

The following notations will be used in the next section to
explain the RRT algorithm.

X: Space

C(X): Space and robot constraints

xinit: First node of the tree

xrand: Random node that doesn’t belong to the tree

xnear: Node closest to xrand

xnew: Node created with xrand and xnear

ε: Maximum distance parameter associated with RRT

Fig. 1. How to add a node to a tree and form a new branch.

B. Algorithm.

The first node in the tree corresponds to xinit, which is the
robot’s initial position. Next, a node xrand in spaceX is ran-
domly selected and the node xnear in the tree closest to this
node is found. A new node xnew is calculated on the right-
hand side between xrand and xnear, with distance ε like in
the figure 1. If the distance between the two nodes is less
than ε, then xnew corresponds to xrand. The node is added
to the tree only if it does not belong to the C(X) constraint
of the environment. This gives control over the size of the
incremental growth. You can also bias the growth of the tree
to guide the search to specific areas of the space. By putting
a low probability on certain cells and higher probabilities on
the cells of interest then the tree will grow much more in the

Apolline de Vaulchier du Deschaux | February 28, 2024 | 1–5

https://gitlab.ensta-bretagne.fr/devaulap/myrtt.git

cells with higher probabilities. Then we repeat the process as
many times as we wish to have vertices K. Once you have
obtained this roadmap via the RRT, you can proceed to search
for the most optimal path and form the RRTs.

The idea behind RRTs optimization is to take into account
a parameter that enables nodes from other branches to be
linked. This cost parameter differs according to the meth-
ods chosen and the constraints imposed by the robot. The
idea is to form a circle of radius r around the newly created
node and look at the nodes present in this circle. If the calcu-
lated cost is less than the distance between the new node and
the previous node on its branch, then a new link is created
between them. This principle is illustrated in figure 2.

Fig. 2. Principe of RRTs.

2 Dual-Arm’s project
A. Objective.

For this project, the motion planning of a dual-arm robot
holding an object in its hands in 2D is studied. Each arm of
the robot is composed of 3 links linked by Rpivot. The goal
is therefore to study the closed chain formed by the two arms
holding this object to move it from a point A to a point B.
Python software was used to carry out the obtained algorithm
of RRTs and results.

B. Problem definition and notations.

My space X is defined by the x axis and the y axis. In
this space there is a rectangular obstacle defined by Ob =
(xob,yob,w,h) where xob is its x axis coordinate center, yob
is its y axis coordinate center, w its width and h its height.

There are two Rpivot arms with 2 links each over. The
hands of each arm are linked to the object. Together they
form a fifth link. Each link is identified by Li for i =
1,2,3,4,5. The position of each pivot is named Pospi for
i= 1,2,3,4,5,6. The representation is on figure 3.

There are two frames: the fixed frame {0} and the object
frame {B} in the middle of the object held by the robot. This
one is defined by (Px,Py,φ) which represent the distance be-
tween the two frames and the angle between the object frame
and the fixed frame. The object is held in a completely fixed
way and the two hands are aligned so the size of the link be-
tween the pivot Posp3 and Posp4 depends on the width of
the object between the two hands.

For this problem, we suppose that L = L1 = L2 = L4 =
L5 and L3 = widthobject+L. Moreover, the position of the
Rpivots at the beginning of each arm is fixed. This Dual-arm
configuration leads to the retention of a closed chain. This
closed chain has four possible configurations for an object
position. So, for each node of the tree, all 4 configurations
will be taken into account.

Fig. 3. Definition of the Dual-arm’s problem.

The following notations will be used in the next section to
explain the algorithm:

q: representation of a node in the algorithm

– q.coor: position and orientation of the node
(qx, qy)

– q.cost: cost of the node

– q.parent: id of its parent’s node in the tree

– q.pos: list of available configuration of the node

For example, qstrat represent the initial node of the tree
with qstart.coor= xinit, qstart.cost= 0, qstart.parent= 0,
qstart.pos= (1,2,3,4).

C. Algorithm.

There are two parts in this algorithm. The first is the one to
get the roadmap via the RRT. The second uses this roadmap
to find the best path among all those obtained (the RRTs part).
In order to improve the program, these two parts are incorpo-
rated together in my algorithm. The first step is to choose a
random point in space. Then, it is to check that this point is
in the workspace of the robot using InWorkSpace function.
This one takes as argument q.coor, the position of the two
fixed pivot and the length L and L3 . In order to check if the
point is in the workspace the intersection between the two
circles formed by Posp3 and Posp1 of radius L each and the
two circles formed by Posp4 and Posp6 of radius L each is
check. If for both sides there is an intersection then the point
is in workspace as figure 4 shows.

Once qrand has been obtained, we must find the point in
the tree closest to qrand , qnear . To do this, the distance
between all the points in the tree and qrand.coor is evaluated
and take the minimum obtained is taken. Then a new point is
created from qrand with the NewPoint function which takes
as argument the distance between qrand and qnear , these
two points and ε which corresponds to the maximum dis-
tance. If the distance between the two points is less than ε
then qrand.coor = qnew.coor . Otherwise qnew.coor is the

2 Apolline de Vaulchier du Deschaux | RRTs

Fig. 4. (a): Configuration which is not in robot workspace. (b): Configuration which
is in robot workspace.

maximum distance ε in the direction of qrand . Then we
check that qnew is still in the workspace with InWorkSpace
function. Before adding this point to the tree, this point must
not represent a configuration of the robot collision with the
obstacle. For this, two functions is used: FindPoint and Col-
lision. FindPoint allows you to find all the configurations of
the robot for a position (Px,Py,φ). Indeed, there are 4 of
them. Again, the intersection of the circles to get all the so-
lutions is employed. Once all the positions of the pivots are
obtained for the position of the object, each solution is tested
to check that each of them does not collision with the obsta-
cle. The Collision function is used, it takes as argument the
list of solutions, the robot parameters and the position of the
obstacle. The goal is to create two polygons and check that
they do not intersect. The first polygon is made from the data
on the obstacle and the second is made from the Pospi and
the shape of the object. If there is no collision, add the point
to the tree and repeat the operation as many times as you wish
to have points in the tree. The outputs of function Collision
are a Boolean to indicate collision and a list of possible con-
figurations.

Now the tree is built, let’s find the best way. This part oc-
curs between getting qnew and adding it to the tree. It allows
to associate to each position q its cost and its least expensive
parent. The cost of a point corresponds to the Euclidean dis-
tance between q and the nearest point qnear. Once this cost
has been assigned, all the points in the tree that are within a
radius r of this point qnew are selected. Then, a comparisons
between all these points obtained is done to find out if the
cost of one of these points plus the distance between it and
qnew is less than the current cost of qnear.cost plus the dis-
tance between them. The point which costs the least is then
associated as a parent of qnew. Once all the points of the tree
are obtained, we just have to go back up the list of parents
between qgoal and qstart to obtain the optimal path.

3 Results
Here 5 are the results obtained with this algorithm for

a starting point A = (25,30,0) and an end point B =
(50,20,0). The max number of node to choose is 9500, ε= 1
and r = 3. The object is a pencil (less width than arms). The
black lines represent the tree and the blue lines are all the

paths that can be made in this tree. The red line represents
the optimal path found.

Fig. 5. RRTS for ε = 1 and r = 3.

The algorithm indicates, for this problem, that two config-
urations are possible for the optimal path. This is confirmed
with the plot of the different configurations for each node of
the optimal path cf. figure 6. Configurations 2 and 4 are those
which do not collide with the obstacle.

Fig. 6. The four configurations for the optimal path with ε = 1 and r = 3.

The tree forms well around the obstacle. There are empty
areas at the top of the environment. This corresponds to the
first of the reachable zones due to the shape of the robot
and the second of the unreachable zones due to the obsta-
cle. Taking into account the different configurations seems
coherent. Path optimization seems to be effective with regard
to the choice of start and end points, with both arms taking
the shortest route. On the other hand, they seem to go too
far down the obstacle in relation to the arrival point. This is
probably due to the arbitrarily chosen parameters ε and r.

Once the model has been validated, the influence of pa-
rameters ε and r is studied. Figure 7 shows the RRTs for

Apolline de Vaulchier du Deschaux | RRTs 3

ε= 0.01 ε= 0.1 ε= 1 ε= 10
18.0 11.2 11.4 12.4

r = 0.05 r = 1.5 r = 3 r = 10
1.0 1.5 11.4 13.6

Table 1. Process time in second

a fixed r = 3 and ε = 0.01,0.1,1,10. Conversely, figure 8
shows RRTs for fixed ε= 1 and r = 0.05,1.5,3,10.

Fig. 7. The four results for ε = 0.01,0.1,1,10 and r = 3.

Fig. 8. The four results for r = 0.05,1.5,3,10 and ε = 1.

For each simulation, the process time is computed.
Strictly speaking, this does not necessarily have any signif-
icance. Indeed, the algorithm used has not been optimized,
and the process time of an RRT depends on the complexity of
the environment and the number of constraints on the robot.
On the other hand, it may be interesting to know whether
modifying the parameters e and r has an influence on the pro-
cess time. These times should be taken with precaution, as
they depend on the choice of random point (the solution is
reached more or less quickly depending on the random part).
The results obtained are on table 1.

4 Discussion
In this algorithm there are two factors that are randomly

chosen: the maximum distance ε and the radius r. By in-
creasing the maximum distance ε the tree is less and less de-
veloped as figure 7 shows. On the contrary, if it decreases too
much ε then the branches of the tree become too small and
it is not possible to form different paths between the points.
A study was carried out by B. An and al (2). to determine
the optimal distance between each point . By exploiting the
in joint configuration space standards and the forward kine-
matics of the robot, they obtain an appropriate angle delta
to move each joint and thus an appropriate delta to move the
end-effector while respecting the robot constraints. The algo-
rithm has been made for an open chain but can be modified
to apply it to a closed chain. Indeed, A possible improvement
of the algorithm is to compute for each arm the parameter of
B. An and al. and then averaged of them will give the final
maximum distance.

If this time it is r which vary then it increase or decrease
the number of paths between the points of the tree. If r is very
large, then you can move from one position to another very
distant position. This is no longer appropriate if the dynamic
aspect is add to this study. Otherwise, you cannot go through
any point except the one created by the tree. This restricts
a lot the possibilities of path and we do not obtain a very
optimal path.

Finally, process times are consistent with the influence of
parameters ε and r on RRTs. For a fixed r, time forms a kind
of parabola as a function of ε. The choice of ε could then be
based on the minimum of this parabola. Then, for a fixed ε
and varying r, the time function appears to be increasing. On
the other hand, if r decreases too much, then the choice of
the optimal path is no longer very developed. We therefore
need to choose a middle ground between the two, or change
the algorithm to find the optimal path as in the article of I.
Noreen, A. Khan and Z. Habib (3) with their RRTs-Smart.
It runs similarly to RRTs, but performs a path optimization
process when an initial path is found. This optimization pro-
cess eliminates redundant nodes from the initial path found.
In addition, it also identifies beacon nodes for path improve-
ment. The second major feature introduced by RRTs-Smart
is intelligent sampling. This differs from random sampling in
that it is directed towards the tag nodes of the optimized path.

In this study only the aspect of the position of the object is
taking into account. The cost attributed to the travels corre-
sponds to the distance between each point. It do not take for
example the difference between the two angles phi of these
points. If we added the dynamic aspect of the problem, then
it would be interesting to calculate the cost of a movement
by compute the energy needed to move from one position to
another one, without having to compute the Euclid distance.
And thus, it will take into account the inclination between
these two points.

4 Apolline de Vaulchier du Deschaux | RRTs

Bibliography
1. Steven M. LaValle. Rapidly-Exploring Random Trees: A New

Tool for Path Planning. Iowa State University, October, 1998.
2. B. An and al. An Adaptive Stepsize RRT Planning Algorithm

for Open Chain Robots. IEE Robotics and Automation Let-
ters, 2017.

3. Amna Khan Iram Noreen and Zulfiqar Habib. A Comparison
of RRT, RRT* and RRT*-Smart Path Planning Algorithms. In-
ternational Journal of Computer Science and Network Secu-
rit, October, 2016.

Apolline de Vaulchier du Deschaux | RRTs 5

Drone recognition by Micro-Doppler signatures
Martin Galliot

In this article, the application of Micro-Doppler signatures for
drone detection will be simulated. It consists in a frequency
modulation created by the intern movements of the observed
target, in this case, the spinning propellers. The project focuses
on generating simulated datasets of drone’s Micro-Doppler sig-
natures for further uses like deep learning algorithms.

Unmanned aerial vehicles | Drone | Micro-Doppler | Radar detection | Recog-
nition
Correspondence: martin.galliot@enstabretagne.org

Introduction
Over the years, drones, also referred to as unmanned aerial

vehicles (UAVs), have witnessed a surge in popularity owing
to technological advancements and their diverse applications
across various industries. One of the key drivers behind the
increased utilization of drones is their capability to under-
take tasks that are challenging, hazardous, or unfeasible for
humans. As technology progresses and production costs de-
crease, it is foreseeable that drones will emerge as an increas-
ingly indispensable tool across a multitude of industries and
applications.

Nevertheless, as well as polluting air traffic, their
widespread adoption has also sparked apprehension regard-
ing their potential for weaponization or malicious intent. A
primary concern surrounding drones is their susceptibility to
exploitation in terrorist activities. Equipped with cameras,
explosives, or other armaments, drones possess the capacity
to surveil, infiltrate secure zones or execute assaults. This
renders them an enticing prospect for terrorist entities due to
their affordability, accessibility, and remote operability. Fur-
thermore, their compact size and ability to fly at low altitudes
render them elusive and challenging to intercept, amplifying
their threat to security.

Given these concerns, governments and various entities
are initiating measures to oversee and control drone usage,
such as maximum authorized altitudes, mandatary licenses
and registered drones. However, despite these endeavors,
drones persist as a significant threat. It is therefore essen-
tial to detect and classify unidentified drones in the context
of terrorism and conventional war. The goal of this article is
to see if the Micro-Doppler effect is relevant to do that and to
generate datasets of these signatures.

Thus, Section 1 describes Doppler and Micro-Doppler
effect. Section 2 uses a MATLAB simulation to generate
datasets of drones’s Micro-Doppler signatures. Section 3
discusses the various outcomes and further uses of these
datasets.

1 Doppler and Micro-Doppler Effect
A. Phenomenon.

The Doppler effect (1) is a phenomenon observed when a
wave source, such as sound or light, moves in relation to an
observer. This results in a shift in the frequency of the wave
as detected by the observer. The equation for the Doppler
effect is given by :

fd = vs±vo
vs

·fs

where fd is the observed frequency, fs is the frequency of the
source, vs is the velocity of the source, and vo is the velocity
of the observer. The sign of vo depends on whether the ob-
server is moving towards (-) or away from (+) the source of
the wave.

The equation comes from the relationship between wave
frequency, velocity, and wavelength. When source and ob-
server move relative to each other, it alters the observed fre-
quency. For instance, as a car approaches an observer while
honking its horn, the perceived frequency increases due to
sound wave compression. This Doppler effect finds vari-
ous applications, including radar, medical imaging, and as-
tronomical velocity measurements.

Fig. 1. Doppler effect (2)

The Doppler effect is frequently employed for detection,
with one of its primary benefits being the extensive range
achievable by Doppler Radar.

B. Limitation of Doppler effect.

While Doppler pulse radar can detect objects at very high
ranges, drones typically have smaller Radar Cross-Sections
(RCS) compared to helicopters or fighter jets, making them
more challenging to identify. Existing airspace monitoring
methods are primarily tailored to detect faster and higher-
altitude objects than mini-UAVs. For example, AWACS
radars intentionally filter out slow-moving targets like birds

Martin Galliot | March 5, 2024 | 1–4

to reduce false alarms. Domestic military radars likely em-
ploy similar algorithms. Consequently, a mini-UAV flying
at low altitudes and speeds might register on radar as a bird
rather than a potential threat like a cruise missile or fighter
jet. Moreover, air defense radar may struggle to detect mini-
UAVs flying low over urban areas due to signal scattering
from larger background objects. Hence, further research is
necessary to discern the specific factors affecting radar de-
tection of mini-UAVs.

One solution to these limitations could be to use micro-
Doppler effect which allows a more detailed analysis of the
Doppler shift.

C. Micro-Doppler Effect.

The micro-Doppler effect (3) describes the frequency
modulation of a radar signal induced by the oscillatory move-
ment of an object or its structural components. This mo-
tion can arise from various factors, such as propeller or rotor
blade rotation, bird wing flapping, or human limb swinging.
When a radar beam interacts with an object exhibiting mi-
cro motion, the frequency of the reflected signal undergoes a
Doppler-induced shift, generating frequency modulation con-
taining harmonic frequencies. This modulation can be lever-
aged to ascertain the object’s kinematic characteristics and
facilitate target identification. Despite the long-standing pro-
posal of using micro motion for target identification, tech-
niques for representing the time-varying frequency modu-
lation as a signature, extracting kinematic information, and
employing the signature for target identification remain ac-
tive research areas. The micro motions of a drone’s body
and propeller blades yield a distinct micro-Doppler signa-
ture, which can be analyzed for detection and classification
purposes. This signature enables differentiation of drones
from other objects, such as birds, and identification of spe-
cific drone types.

Fig. 2. Simulated Micro-Doppler modulation for a helicopter (4 blades) (4)

The figure 2 shows the micro-Doppler modulation caused
by blade tips around a constant Doppler shift. The image sug-
gests that each blade tip introduces a sinusoid-like Doppler

modulation. Within each period of the sinusoid, there are
three extra sinusoids appearing at equal distance. This ap-
pearance shows that the helicopter is equipped with four
equally spaced blades.

2 Generation of dataset
A. Objective.

A Pulse-Doppler Radar (PDR) is a radar system designed
to detect and track moving targets such as helicopters or
drones. It operates by transmitting bursts of pulses, analyzing
the returned pulses to extract Doppler information. The reso-
lution of the Doppler information depends on factors such as
the number of pulses in each burst and the Pulse Repetition
Frequency. The objective here is to generate PDR signatures
through MATLAB (4) simulation.

B. Parameters.

We chose parameters so that the generation closely mim-
ics realistic radar and target properties (5) (6):

• A carrier frequency of 5 GHz and a Pulse Repetition
Frequency (PRF) of 50 KHz.

• Each input sample in the simulation represents a
Doppler signature extracted from 64 bursts of 64
pulses. This configuration ensures that there are 64
spectrums of 64 points each, allowing for the full rank
of the covariance matrix to be computed over non-
normalized Doppler bins.

• Target variations are accounted for by altering the num-
ber of rotating blades, with either one, two, four or six
blades, as can be found on drones and radio-controlled
helicopters.

• The diversity among target classes is ensured by
varying factors such as receiver noise, blade size,
revolutions-per-minute (RPM), and bulk speed.

• For each target class, 3000 samples are simulated, re-
sulting in a total dataset size of 12,000 samples. While
this dataset size might be considered small for deep
learning tasks, obtaining thousands of relevant and la-
beled real radar detections would be challenging in the
radar industry, making larger simulated datasets less
realistic for this specific use case.

C. Results.

The dataset’s quality is verified visually, ensuring easy dis-
crimination between target classes. Here is a sample of each
target class :

The classes are distinguished by the varying number of
rotating blades, making the modulation pattern easily dis-
cernible. The initial set of images showcases Doppler signa-
tures, which represent the time-varying periodogram of tar-
gets across 64 bursts of 64 pulses. In these images, each

2 Martin Galliot | Drone recognition by Micro-Doppler signatures

Fig. 3. Sample of each target class : one, two, four and six rotating blades

row corresponds to the periodogram computed for a single
burst, while each column represents a Doppler bin. The sub-
sequent set of images displays the covariance Spectral Power
Density (SPD) representation of the samples from the initial
set. Within each class, the width of the Doppler modulations
around the bulk speed on the periodograms varies, as does
the bulk speed itself, which is indicated by the central verti-
cal illumination of the signature.

The bladerate can be determined by measuring the period
of the corresponding sinusoid. For example, by looking at
the Figure 2, Tr = 250ms, which implies a bladerate set at 4
revolutions per second.

The image also illustrates the tip velocity V t, which can
be deduced from the maximum Doppler shift. This maximum
Doppler shift is approximately 4 kHz removed from the con-
stant Doppler caused by the bulk movement. Thus :

V tdetect = dop2speed(4e3, c
fc

)/2

Where c is the speed of light, fc the carrier frequency and
dop2speed a MATLAB fucntion that converts Doppler shift
to speed.

V tdetect value represents the maximum tip velocity along
the radial direction. To accurately determine the maximum
tip velocity, it’s essential to consider the relative orientation.
Since the blades spin in a circular motion, the detection re-
mains unaffected by the azimuth angle.

Fig. 4. Difference between V t and V tdetect (4)

3 Discussion
As mentioned earlier, we have a total dataset of 12.000

samples, which could be considered as small for deep learn-
ing tasks. However, larger simulated datasets would be less
realistic because having thousands of relevant and labeled
real radar detections would not be trivial in the radar industry.
Firstly, most radars are not tailored for detecting small targets
like mini-drones. Secondly, even those calibrated for such
targets often do not capture the micro-Doppler effect; instead,
they focus on the main Doppler effect for target detection
without identification. Consequently, micro-Doppler mea-
surements are primarily conducted using prototype radars,
which are still in the research phase and not yet in industrial
production. Thirdly, certain targets such as birds are only en-
countered opportunistically and do not actively cooperate.

The generation is quite basic : the model does not account
for multipath phenomena and lacks a complete representa-
tion of the drone’s components. We only generated blades
with a constant speed. In order to move, drones rely on a
rapid change in the rotational speed of their motors to create
a torque on the drone body. For future use of this dataset, it
would be relevant to generate also samples that would repre-
sent a drone with a complex trajectory and a lot of variations.
Here is an example of what such a difference in rotation speed
would look like :

Fig. 5. Two rotors with different rotational speeds’s Micro-Doppler signature (7)

To evaluate the robustness and the accuracy, it would be
relevant to compare this dataset to real radar data (5)(6), es-
pecially on the radar’s range and the difference in Hz between
the Doppler effect of the bulk and the Micro-Doppler effect
of the blades. Developing a more robust model is crucial
for achieving accurate micro-Doppler signatures, where we
maintain control over all parameters including radar and tar-
get variables.

Overall, the successful modeling of micro Doppler effect
in radar for drone detection represents a significant advance
in the field of drone detection and has the potential to greatly
improve the performance and effectiveness of existing sys-
tems. This generation of datasets can for instance enable the
training of both deep and non-deep Out-Of-Distribution De-
tection (OODD) methods (8) (9).

Martin Galliot | Drone recognition by Micro-Doppler signatures 3

Bibliography
1. Jeff Sanny William Moebs, Samuel J. Ling. University physics

volume 1. OpenStax, Sep 19, 2016.
2. Dimitrios. The doppler effect explained by com-

paring a static and a moving sound source.
https://stock.adobe.com/fr/images/the-doppler-effect-
explained-by-comparing-a-static-and-a-moving-sound-
source/388859337.

3. SHEN-SHYANG HO VICTOR C. CHEN, FAYIN LI and
HARRY WECHSLER. Micro-doppler effect in radar: Phe-
nomenon, model, and simulation study. IEEE, 2006.

4. MathWorks. Introduction to micro-doppler effects.
https://fr.mathworks.com/help/radar/ug/introduction-to-
micro-doppler-effects.html.

5. Deren Li Jiangkun Gong, Jun Yan and Deyong Kong. De-
tection of Micro-Doppler Signals of Drones Using Radar Sys-
tems with Different Radar Dwell Times. MDPI, September,
2022.

6. Samiur Rahman Duncan A. Robertson. Radar micro-
Doppler signatures of drones and birds at K-band and W-
band. Scientific Reports, 2018.

7. Thomas Albert. Micro-Doppler modeling for AUV’s. ENSTA
Bretagne, February, 2024.

8. Martin Bauw, Santiago Velasco-Forero, Jesus Angulo,
Claude Adnet, and Olivier Airiau. Near out-of-distribution
detection for low-resolution radar micro-doppler signatures.
arXiv preprint arXiv:2205.07869, 2022.

9. Julien Gérard. Drone Recognition by Deep Learning. PhD
thesis, Université Paris-Saclay, 2022.

4 Martin Galliot | Drone recognition by Micro-Doppler signatures

Feasibility Study of Shape Control for an Immersed Cable

Bastian Garagnon1

1Lab-STICC, ENSTA Bretagne, France

March 1, 2024

Abstract

In the context of exploring a karstic environment, the use of a cable for energy and information
transfer between the robot and the surface can be a crucial asset in reducing risks and enhancing results.
However, the cable should not become the weak point of the system, posing additional challenges. To
prevent the cable from getting stuck on the walls, the ability to control its shape could be a viable
solution. Furthermore, if the cable gains autonomy, it might be possible to unwind it from the outside,
relieving the robot of this task. This could extend the reach of a teleoperated mission by eliminating
the constraint of accommodating a long coiled cable within the robot. The energy and computational
requirements for controlling a cable of several hundred meters are likely to be significant but can be
supplied by the surface where computing and power resources are abundant and cost-effective. The cable
specifications include the capability to pass a 230V AC power cable to supply the cable’s actuators and
the robot, an optical fiber for data transmission, and the necessary hardware to capture the cable’s shape
for feedback control. The aim of the study is to provide initial insights for evaluating the feasibility.

1 Introduction
Karstic exploration stands out as one of the most demanding and captivating missions in underground
exploration. Furthermore, the stakes are significant due to the substantial quantity of freshwater contained
in Karsts in France, as depicted in Figure 1. To contribute to the success of these missions, an immersed and
actively controlled power cable for supplying an exploration robot could prove to be an excellent asset. This
article aims to clearly define the objectives of the immersed power cable, the extreme constraints associated
with karstic exploration missions, and discuss conceivable technical solutions and their respective limitations.

1.1 Objectives
Position Maintenance and Robot Tracking: The cable, designed to follow the exploration robot throughout
its mission, must be capable of adjusting its shape along its entire length. Swift responsiveness will enable
self-propulsion of the cable through oscillation, thus compensating for external forces along the cable. Con-
trolling the cable under strong currents and over an extended deployment length is a significant challenge in
the context of karstic exploration. The precision of cable control is crucial to ensure the proper functioning
of the exploration robot and the mission’s success.
Data Transfer: Incorporate bidirectional data transfer capabilities to ensure constant communication between
the exploration robot and the control center. This facilitates real-time monitoring and decision-making.

Energy Transfer: Incorporate the ability to provide high power to the exploration robot for an energy-
intensive, long-duration mission.

Length and Range: Achieve sufficient lengths to allow the robotic explorer to cover a significant distance
from the cave entrance. Ensure optimal range for comprehensive exploration of karstic areas, minimizing

1

Figure 1: Presence of Karst in France [1]

geographical limitations of the mission.

Flexibility and Mobility: Allow maximum flexibility to adapt to the complex and often irregular environ-
ments of karstic caves. Facilitate the mobility of the exploration robot by providing electrical power without
hindering its movements in narrow and winding passages.

Sealing and Pressure Resistance: Ensure perfect sealing to protect electrical components from water
infiltration. Resist the pressure of submerged environments encountered in karstic formations, ensuring the
cable’s reliability at depth.

1.2 Constraints
Narrow Passages and Constrictions: Karstic caves may feature narrow passages and constrictions, neces-
sitating a cable that is sufficiently thin and flexible to navigate through these areas without snagging or
getting stuck.

Abrasion Resistance: Rock formations in karstic caves can be rough and abrasive. The cable must be
designed to resist abrasion, minimizing the risks of premature wear or damage caused by friction against
cave walls.

Mechanical Constraints: Twisting passages and uneven surfaces can subject the cable to significant
mechanical stresses. It must be capable of withstanding torsion, bending, and other constraints without
compromising its structural integrity.

Pressure Resistance: During underwater exploration in flooded karstic zones, the cable is subjected to
variable pressures based on depth. It must be capable of resisting these pressures without compromising its
integrity or functionality.

Lightness and Ease of Transport: To facilitate the transport of the cable to the exploration area, it is
essential for it to be lightweight and easy to deploy and rewind. The size of the reel must remain reasonable
despite the potentially significant cable length.

2

2 Specifications
Let’s provide some figures to have a more precise idea of the orders of magnitude for each necessary element.

Power supplied to the exploration robot 1000W Maximal Torque 100Nm
Power Cable Diameter 2x 3mm² Cable Diameter 20cm

Optical Fiber 3mm² Operating Depth 100m
Linear Flexibility 180°/m Exploration Range 1000m
Swimming Speed 1m/s Torsion Negligible

Linear Rotation Speed 180°/s/m Longitudinal Deformation Negligible
Control Segment Length 10cm

3 Actuating the Cable
Actuating the cable to a fixed length and preventing torsion requires controlling the curvature in two di-
rections of the cable. To achieve this, we will discuss two technical solutions, the tendinous and hydraulic
methods, to assess their feasibility.

3.1 Tendinous Method
In the field of karstic exploration, where precision is imperative, the use of tendinous cables (Figure 2) may
appear as an innovative solution. This system, based on the use of tendons for force transmission and control
of cable curvature, offers significant advantages but also presents technological challenges that may prove
too complex to overcome.

Figure 2: Tendinous cable concept
Red represents the cable’s payload and the part that stiffens the cable in torsion and compression. Blue
represents the tendons, and black represents the flexible sheath in which the entire structure is encased.

3.1.1 Advantages of Tendinous Cables in Karstic Exploration

Precision in Command: Tendinous cables provide exceptional precision in command transmission, with di-
rect and responsive control. This enables fine and precise control of the cable curvature during exploration.

Positioning of Actuators Outside the Karstic Environment: By placing actuators outside the karstic en-
vironment, constraints related to compactness and mechanical resistance of internal components are signifi-

3

cantly reduced. This approach also allows more accessible maintenance and increased durability of actuators.
The cost of actuators is also reduced as they do not require waterproofing.

Estimation of Cable State through Actuator Measurements: Sensors positioned on the actuators provide
valuable information about the cable’s state. Knowing the extensions of each tendon allows for an approx-
imate reconstruction of the cable’s shape. This enables continuous and real-time monitoring of the robot’s
position during exploration, enhancing operational reliability.

Optimal Reactivity: Tendinous cables offer optimal reactivity through direct force transmission. This
results in fast response times, adaptability to sudden changes in the environment, and increased speed as
long as the forces do not exceed the tendon’s resistance.

3.1.2 Disadvantages and Technological Challenges

Linear Charge Losses due to Tendon Friction: Linear charge losses can occur due to tendon friction within
their sheath. This may lead to a decrease in the system’s energy efficiency and requires design solutions to
minimize these losses.

Elasticity of Tendons: The natural elasticity of tendons can introduce variations in force transmission,
affecting movement precision. Adjustment and compensation mechanisms must be integrated to minimize
this effect.

Robustness of Tendons: Tendon robustness is crucial in environments where adverse conditions, such
as rough surfaces, may be encountered. Materials resistant to abrasion and tearing are essential to ensure
system durability.

Actuation Limited to Tendons Inside the Curvature: Only tendons located inside the curvature can ef-
fectively act, potentially limiting the range of movements for the exploration robot. This requires a tailored
design to maximize flexibility and the range of possible actions.

3.1.3 Numerical Application and Material

Tendinous cables could become a promising solution for karstic exploration, offering exceptional command
precision and optimal reactivity. However, technological challenges related to charge losses, tendon elasticity,
and robustness require the use of advanced materials and manufacturing processes. To provide a numerical
example of the technical challenge, let’s consider the tension in a tendon under the most disadvantageous
conditions. If a tendon needs to apply a torque of 10Nm at its section, it must exert a force of 1000N
at its end. Charge losses over the hundreds of meters between the actuator and the tendon’s end further
exacerbate this tension. A cable resistant to these forces would have a diameter of 1.5mm and an elongation
of approximately +2% at this force if it were made of ultra-high-molecular-weight polyethylene (UHMWPE),
the best-known consumer technology for this purpose. A tendinous cable will be constrained to have a section
of variable size depending on the cable length, as we will see in the section on compactness.

3.2 Hydraulic Method
In the search for technological solutions for karstic exploration, the hydraulic cable is an intriguing option,
offering significant advantages compared to the tendinous method despite some challenges. This system,
based on force transmission through hydraulics, presents unique characteristics that make it attractive for
karstic exploration missions. The cable concept (Figure 4) includes a passage for the payload and the shape
estimation system in red, assuming that this part bears the torsion and compression/traction forces of the
cable.

4

Figure 3: Conceptual 3D cut of tendinous cable

Two large hydraulic pumps outside the karst put a water tube in dark blue under high pressure and
another in light blue under low pressure. Thus, small solenoid valves can supply control cells on the cable’s
envelope at pressures ranging between low and high pressure to control the cable’s curvatures.

3.2.1 Advantages of Hydraulic Cable in Karstic Exploration

High Forces: Hydraulic cables are known for their ability to generate significant forces. This characteristic
makes them particularly suitable for karstic environments, where power and force are crucial to compensate
for buoyancy variations and currents, ensuring efficient swimming and high control torque.

Low Charge Losses: Hydraulic cables exhibit very low charge losses over long distances since the flow rate
is relatively moderate. Therefore, cable length becomes less problematic for force transmission compared to
the tendinous method. This allows the system to maintain optimal performance even over large distances,
facilitating exploration deeper into karstic areas.

Constant Section: Unlike the tendinous method, the section of the hydraulic cable is independent of the
cable length. This simplifies the system design and management, providing increased predictability during
cable deployment and retraction.

3.2.2 Disadvantages and Technological Constraints

Cable Pressure Resistance: Pressure resistance is a major challenge for hydraulic cables, especially when
used in karstic environments where pressures can vary with depth. Specific materials and structures must
be implemented to ensure the cable’s resistance to both internal and external pressure variations.

Rigidity: Hydraulic cables operate under high pressures to generate the necessary force. This can result
in some cable rigidity, limiting its flexibility and ability to follow complex contours in intricate underground
environments. This may necessitate the use of even higher pressures to increase control torque, further

5

Figure 4: Conceptual 3D cut of hydraulic cable

complicating the design.

Presence of Actuators: Integrating solenoid valves and pressure control mechanisms into the cable can
pose design challenges. This may increase the system’s complexity and require advanced technologies to en-
sure precise and responsive control. In particular, establishing reliable communication between the exterior
and solenoid valves requires a dedicated network that needs to be both reliable and integrated into the cable.

3.2.3 Numerical Application and Material

The hydraulic cable offers an exciting prospect for karstic exploration by providing significant forces and
a constant section over long distances. However, challenges related to pressure resistance, stiffness due to
high pressure, and the integration of actuators require addressing numerous technical hurdles. To provide
a numerical example of the technical challenge, we can elaborate on the pressures needed under the most
disadvantageous conditions. Two cells of a 13cm² section (2cm in diameter), positioned opposite each other
around the cable perimeter, must generate a torque of 100Nm. Thus, the pressure difference must be 8 bars
if the cable’s rigidity is zero. Therefore, a low-pressure difference around 1 bar and a high pressure around
20 bars will be considered to ensure the ability to meet the specifications.

6

4 Study of Bulkiness
Bulkiness is an important parameter to ensure that the cable can navigate through narrow karstic passages
and for transportation purposes. We will discuss the bulkiness of both methods to characterize them in
terms of cable diameter.

4.1 Cable Diameter
For the tendinous method, the diameter of one tendon is 1.5mm, and as four tendons are the minimum for
optimal transmission of efforts for both bends, each section requires 9mm² of tendons in all previous sections.
The last section, closest to the exit, will have a minimum diameter of 15cm if we consider a section every
10 cm and a cable length of 1000m. The tendinous cable roughly meets the specifications. However, the
diameter of the last section must increase at O(

√
L), where L is the cable length, to provide a sufficiently

large section for the passage of tendons.
The hydraulic method, on the other hand, can simply adapt to the 20cm diameter regardless of the cable

length. The medical industry already uses miniature solenoid valves for artificial hearts, for example, which
measure only a few tens of millimeters in length. Their low energy consumption also limits the bulkiness of
the power and control network of the solenoid valves. The 1000m cable will be filled with a water volume
of around 80m³. If the entire cable oscillates to swim at 1m/s (the most disadvantageous situation), a small
part of the total volume will need to be renewed every second, approximately one-eighth. Thus, the flow rate
will be about 10m³/s (which is huge). In conduits as described in the concept (Figure 4), this corresponds
to an 80% loss of charge after 1000m. Thus, the beginning of the cable would only benefit from a sufficient
pressure difference, which would be problematic for maintaining control torque. Therefore, to limit the flow
rate that the pump must provide and the losses of charge, it will be necessary to limit the part of the cable
that swims by oscillating at full speed to 10%.

5 Conclusion
In conclusion, the use of controlled cables for karstic exploration presents real potential, paving the way
for possibilities such as securing exploration, the ability to carry more power-demanding equipment, and
real-time processing of data from the exploration robot. However, these potential advantages come with
considerable technical challenges that require a thoughtful and innovative approach.

For tendinous cables, the complexity of their fabrication and the strength of tendons are major challenges
to overcome. Hydraulic cables, on the other hand, must address issues related to high flow rates and
pressures, as well as manufacturing challenges. Additionally, accurately detecting the shape of the cable over
long distances remains a complex challenge, although advancements can be envisioned as technology evolves.

Another crucial challenge lies in the development of control algorithms tailored to these cables. Their
spatial extent means that each part of the cable must be autonomous in managing currents and other
constraints while being interconnected with other parts to ensure overall and consistent adaptation.

Although these challenges are significant, the potential benefits of using controlled cables in karstic
exploration could revolutionize our ability to explore these complex and mysterious environments. Ongoing
innovation in the fields of fabrication, shape detection, and control algorithms can pave the way for innovative
technological solutions and lead to significant advancements in the field of karstic exploration.

7

6 Bibliography
[1] Bakalowicz, M., & Kalfoun, F. (2003). Karst et érosion karstique. Hydrosciences, UMR 5569, Montpellier,
France.

[2] Kim, J., Seo, Y., Choi, S., & Kim, B. G. (2023). Distal End Force Estimation of Tendon-sheath
Mechanism Using a Spring Sheath. International Journal of Precision Engineering and Manufacturing,
24(12), 1-13. DOI: 10.1007/s12541-023-00917-1.

[3] Lee, D. G., Baek, D., Baek, D., Kim, H., Kim, H., & Kwon, D. S. (2022). Learning-Based Dis-
crete Hysteresis Classifier Using Wire Tension and Compensator for Flexible Endoscopic Surgery Robots.
International Journal of Precision Engineering and Manufacturing, 24(2). DOI: 10.1007/s12541-022-00716-0.

[4] Almaghout, K., & Klimchik, A. (2024). Manipulation Planning for Cable Shape Control. Robotics,
13(1), 18. DOI: 10.3390/robotics13010018.

[5] Tortorici, O., Peraud, C., Anthierens, C., Hugel, V. (2024). Automated Deployment of an Underwa-
ter Tether Equipped with a Compliant Buoy–Ballast System for Remotely Operated Vehicle Intervention.
Journal of Marine Science and Engineering, 12(2), 279. DOI: 10.3390/jmse12020279.

8

Resolving the catenary equation for a ROV evolving in

”hook” configuration

Guillaume Garde
ENSTA Bretagne, Robotique Autonome, FISE 24

March 3, 2024

Abstract

This paper presents the modeling of the umbilical of
a Remotely Operated Vehicle (ROV) evolving in a
special type of configuration called the ”hook” con-
figuration. The model presented here is based on
the resolution of the catenary equation in the case
of an underwater cable whose ends float at distinct
depths. The approach is based on the variational
principle used to try and minimize the potential en-
ergy of the cable. The form of the solution to this
problem is given and the coefficients are estimated
numerically. The static shape of an underwater ca-
ble fixed to a surface vessel and to an underwater
floater is computed accordingly and presented.

1 Introduction

The management of underwater ROV umbilical cables is a
well-known problem. With the development of deep-water
exploration, it has become necessary to understand the dy-
namics of said cables to safely deploy or maneuver ROVs.
The combination of static and dynamic tension reveals to be
raising many issues, such as snap loading [4][6] or self wind-
ing [5]. Hence the need to correctly model underwater cable
dynamics and to find methods to safely manage them. Lubis
et al. propose and compare in [5] four cable configurations
for deep water exploration. The novelty brought by [5] is the
proposal of a ”hook” configuration for minimizing tension.
The visual description of such a configuration is shown in
figure 1. The paper also introduces three other variations
of this configuration by adding floaters to the cable. The
”mid-depth hook” configuration, for instance, uses floaters
in the approximate middle of the umbilical as shown in fig-
ure 2. This configuration is supposed to be better for more
severe environments. It decouples the ROV motion from the
surface vessel motion and reduces the static tension in the
top part of the cable. The idea is that a zero-tension zone

Figure 1: The ”hook” configuration [5]

appears around the floaters. This configuration motivates
this paper by raising the question of a simple model for the
form of the cable between the surface vessel and the top
floater. The approaches to modeling underwater cables are
varied and include finite elements [2] or finite difference [1]
approaches. This paper proposes another approach based on
the variational principle. It is sequenced as follows: First,
a quick statement of the problem before moving on to the
mathematical reasoning and finally some numerical approx-
imations to estimate the parameters of the model.

2 Problem statement

Let R(0, x, y) be the Galilean work frame of this study. The
aim of this section is to model the static behavior of an un-
derwater cable connecting a surface vessel at point (x0, y0)
to the top floater at point (xf , yf) according to the ”mid-
depth hook” configuration [5]. Let l be the length of the
cable, ρ its density, S its section, and g the gravitational
constant. The cable is considered unstretchable and of uni-
form density.

1

Figure 2: The ”mid-depth hook” configuration [5]

3 Variational principle-based rea-
soning

The principal of least action [3] argues that the static shape
of the cable minimizes its potential energy. Therefore, the
problem can be reduced to the research of the shape y 7→
y(x) that minimizes the functional E defined by:

E[y] =

∫
cable

ρgSyds

=

∫
ρgSy

√
(dx2 + dy2)

=

∫ xf

x0

ρgSy
√
1 + ẏ2dx

(1)

with the length constraint1:

l =

∫ xf

x0

√
1 + ẏ2dx (2)

Consequently, the simultaneous consideration of (1) and (2)
leads to the minimization of the functional Ê such that:

Ê[y] =

∫ xf

x0

h(y, ẏ)dx (3)

where

h(y, ẏ) = ρ.g.S.y.sqrt(1 + ẏ2) + λ.sqrt(1 + ẏ2)dx (4)

In (4), λ is a Lagrange multiplier whose aim is to take the
length constraint into account in the calculations. The func-
tion h minimizing (3) verifies the Euler-Lagrange equation
[3]:

∂h

∂y
− d

dx
(
∂h

∂ẏ
) = 0 (5)

Furthermore, h does not explicitly depend on x and there-
fore verifies the Beltrami formula:

h− ẏ
∂h

∂ẏ
= C (6)

1The cable is unstretchable.

where C is a constant to be dertimined. The problem now
consists of solving (6). A little manipulation of the equation
gives that: √

1 + ẏ2 =
ρgSy + λ

C
(7)

that is:

1 + ẏ2 = (
ρgSy + λ

C
)2 (8)

Let then z be equal to ρgSy+λ
C . Then (8) gives that:

1 + (
C

ρgS
)2ż2 = z2 (9)

which means that:

ż2 = (z2 − 1)(
ρgS

C
)2 (10)

Appears the differential equation:

ż =

√
(z2 − 1)(

ρgS

C
)

ż = −
√

(z2 − 1)(
ρgS

C
)

(11)

One solution to (11) has the form z 7→ z(x)

z(x) = cosh(
ρgS

C
x+B) (12)

where B is to be determined. Going back to y, (12) means
that:

y(x) =
1

ρgS
[C cosh(

ρgS

C
x+B)− λ] (13)

Here comes the fact that y(x0) = y0 and that y(xf) = yf .
Developing these limit conditions gives two new equations:

λ = C cosh(
ρgS

C
x0 +B)− ρgSy0

λ = C cosh(
ρgS

C
xf +B)− ρgSyf

(14)

Finally, using (13) to develop (2), the length constraint,
gives that:

l =
C

ρgS
[sinh(

ρgS

C
xf +B])− sinh(

ρgS

C
xx0 +B)] (15)

With (14) and (15), the number of useful equations to find
missing coefficients is 3, just as much as the undetermined
values λ, C and B.

4 Numerical finding of the coeffi-
cients

λ, C andB must be found in order to fully solve the problem,
but it would be too difficult to solve the non linear system of
equations given by (14) and (15) ”by hand”. The idea here
is to rely on numerical methods to approximate the values.
Three different methods are presented here, all based on
Python language and librairies.

2

Figure 3: Numerical results

Figure 4: Static shape of the cable with numerically esti-
mated parameters.

1. using scipy.optimize and the fsolve method

2. using scipy.optimize and the least squares method

3. using sympy and the solve method

The figure 3 summarizes the results. The calculations have
been made for a cable of length 30 meters and of section
1 squared centimeters, attached at point (0, 0) and point
(15,−10) (in meters), and of density 1,4. The curve corre-
sponding to the solution is given in figure 4.

5 Conclusion

The resolution of the catenary equation for an underwater
static cable has been successful, and numerical methods gave
parametric estimations that have allowed the reasoning to
go further. The idea motivating this paper was to find the
best shape for an underwater cable, minimizing its potential
energy while respecting the ”mid-depth hook” configuration.
This work might motivate a future paper on the control of
a floater to ensure that a ROV’s umbilical gets as close as
possible to the profile developed here.

References

[1] C.M. Ablow and S.Scheshter. Numerical simulation of
undersea cable dynamics. Ocean Engineering 10, 1983.

[2] Ole Alexander, Nørve Eidsvik, and Ingrid Schjølberg. Fi-
nite element cable-model for remotely operated vehicles
(rovs) by application of beam theory. Ocean Engineering
163, 2018.

[3] Richard Feynman. The Feynman lectures on physics
vol.2. 1963.

[4] Shan Huang and Dracos Vassalos. A numerical method
for predicting snap loading of marine cables. Applied
Ocean Research 15, 1993.

[5] Michael Binsar Lubis, Mehrdad Kimiaei, and Mike
Efthymiou. Alternative configurations to optimize ten-
sion in the umbilical of a work class rov performing ultra-
deep-water operation. Ocean Engineering 225, 2021.

[6] Christophe Viel. Self-management of the umbilical of a
rov for underwater exploration. Ocean Engineering 248,
2022.

3

Robust path planning for autonomous robots
Louis Gillard

ENSTA Bretagne
Brest, France

louis.gillard@ensta-bretagne.org

I. INTRODUCTION

In the realm of autonomous robotics, the ability to navigate
through complex and dynamic environments is a critical factor
that directly influences the overall performance and success
of a robotic system. Robust path planning, the process by
which autonomous robots determine an optimal path from their
current location to a specified goal while avoiding obstacles
and adapting to uncertainties, has become a crucial area of
research. This field addresses the challenges of scenarios with
dynamic obstacles and environmental changes.

A proficient path planning algorithm should meet four
essential criteria. Initially, the motion planning technique must
consistently identify the optimal path within realistic static
environments. Additionally, the algorithm should be adaptable
to dynamic environments, ensuring its effectiveness in sce-
narios with evolving conditions. Furthermore, it should seam-
lessly integrate with and augment the chosen self-referencing
approach. Lastly, the algorithm must prioritize minimizing
complexity, reducing data storage requirements, and optimiz-
ing computation time. These criteria collectively contribute to
the algorithm’s efficiency, versatility, and compatibility with
various real-world applications. In order to comply with these
restrictions, we must come up with algorithms tailored to
the unique characteristics of each environment. Consequently,
the focus of this document revolves around addressing the
following question: What are the current state-of-the-art path-
planning algorithms in use today ?

To organize the exploration of path-planning algorithms
effectively, we categorize them into three distinct sections:
Traditional algorithms, Graph search algorithms and Group
optimization algorithms.

II. TRADITIONAL ALGORITHMS

A. Artificial potential field algorithms

The fundamental concept behind the Artificial Potential
Field (APF) algorithm [1] involves creating a simulated force
field. In this framework, autonomous vehicles are represented
as mass points, and environmental data is portrayed through a
combination of attractive forces from the target gravitational
field and repulsive forces from obstacles. Figure 1 gives an
example of such algorithm. The farthest the vehicle to the
goal, the more attracted it gets, while a repulsive force emerges
from the central obstacle. By guiding the mass points along
the direction of the resultant force, the APF algorithm achieves
the generation of a seamless, collision-free path.

Fig. 1. A visualization of an artificial potential path planning algorithm [2]

B. Djikstra algorithms

The Dijkstra algorithm operates by addressing sub-
problems, computing the shortest path from the source to ver-
tices among the nearest vertices to the source [3]. It identifies
the subsequent closest vertex by managing new vertices in
a priority-min queue and retains only one intermediate node,
limiting the determination of a single shortest path.

Dijkstra efficiently calculates the shortest path from the
starting point to every point. Various adaptations of the Im-
proved Dijkstra’s algorithm have emerged, each tailored to
specific applications, showcasing the algorithm’s versatility
across diverse use cases.

While the traditional Dijkstra algorithm relies on a greedy
approach for path planning, primarily focused on finding
the shortest path in a graph, it lacks consideration for the
practicality of the solution. In response, we can see modified
Dijkstra’s algorithms that introduce a novel component by in-
corporating probabilities along each edge of the graph [4]. This
modification aims to discover alternative routes, particularly
useful when the costs associated with generating plausible
shortest paths are substantial. The introduction of probabilities
enhances the algorithm’s flexibility, addressing computational
limitations and expanding its applicability to novel scenarios.

C. Rapidly-exploring random tree algorithm

The RRT algorithm is employed for decision-making in
path planning as well [5]. The approach involves initiating
a tree with the starting point as the root node and then
randomly expanding the tree, with a given constant step
length, within the feasible space until it reaches the endpoint
(leaves). Consequently, a collision-free path is derived from
the initial to the final point. This data structure is hugely
useful for handling path-planning queries with non-holonomic
constraints involving dynamics and high degrees of freedom.
Figure 2 shows the result of such algorithm without obstacle.
We can see how the whole space is quickly covered up by the
nodes.

Fig. 2. A visualization of an RRT graph after 45 and 390 iterations [6]

D. Simulated annealing algorithms

Simulated Annealing (SA) is a probabilistic optimization
algorithm inspired by the annealing process in metallurgy. It
is often used for solving optimization problems, including path
planning [7].

E. Tabu search algorithms

Tabu Search is a metaheuristic algorithm used for solving
optimization problems. It is particularly effective in navigating
large solution spaces where traditional search algorithms may
struggle to find optimal solutions [7].

III. GRAPH SEARCH ALGORITHMS

Graph search algorithms operate by representing a map
through a grid method, wherein the map is decomposed into
interconnected, non-coincident grids. The objective is to search
for an optimal path from the starting grid to the target grid,
effectively avoiding collisions in the process. Notably, the A*
and D* algorithms have gained popularity in the field of path
planning for autonomous vehicles.

The A* algorithm [8] is a hybrid approach that integrates
aspects of both the Dijkstra algorithm and the Best-First
Search algorithm. This algorithm establishes an open list and
a closed list. The open list contains grid points available
for selection, while the closed list holds the grid points that
form the selected path. The process begins by placing the
starting grid number of the autonomous vehicle in the open list.
Subsequently, adjacent grids that the vehicle may pass through

are added to the open list. The evaluation function, denoted as
f(n), is computed for the adjacent grid of the starting point in
the open list. The starting point is then moved to the closed
list, selecting the grid point with the smallest value as the new
starting point. This loop continues until the target point raster
is placed in the open list. Finally, the points in the closed
list are sequentially connected to derive the optimal path. The
figure 3 gives a broad idea of the algorithm. Each grid cell
being a node whose value in the algorithm is expressed. The
valuation function of the algorithm is generally expressed as:

f(n) = g(n) + h(n) (1)

where g(n) represents the actual cost from the starting
point to the current point, and the heuristic function h(n)
estimates the cost from the current point to the target point.
Typically, the Euclidean distance serves as the metric for
the cost function. Altering the cost function can significantly
enhance the performance of the A* algorithm. The following
table shows a few very common heuristic functions.

TABLE I
MOST COMMON HEURISTIC FUNCTIONS

Heuristic Expression
Euclidean distance

√
(x1 − x2)2 + (y1 − y2)2

Manhattan distance |x1 − x2|+ |y1 − y2|
Octile distance max(|x1 − x2|, |y1 − y2|)

Fig. 3. A visualization of the A* algorithm [9]

IV. GROUP OPTIMIZATION ALGORITHMS

The group intelligent optimization algorithm emulates the
cluster behavior observed in biological groups, where each
member continuously refines its search direction based on
personal experiences and learns from the collective experience
of other group members. In the domain of path planning
for autonomous vehicles, two prominent algorithms, namely
the ant colony algorithm (ACO) [10] and particle swarm
optimization (PSO) [11] algorithm, leverage the principles of
group intelligence.

The ACO algorithm draws inspiration from the foraging
behavior of ant colonies. Individual ants conduct random

searches, and each agent determines its next step by referenc-
ing the pheromones left by fellow ants. However, it’s essential
to note that pheromones gradually dissipate over time.

To implement path planning for autonomous vehicles us-
ing the ACO algorithm, the following procedure is adopted.
Initially, all ants are positioned at the vehicle’s starting point,
and each ant selects its subsequent position based on state
transitions until it reaches the destination or its path becomes
invalid. Once all ants have completed their journeys, the
optimal path is chosen for the entire ant colony through
an iterative process. The state transition formula, a pivotal
element of the ACO algorithm, governs this decision-making
process.

Figure 4, shows the ants converging to a path that is not
optimal but shorter than the other possible paths.

Fig. 4. A visualization of the ACO algorithm [12]

V. CONCLUSION

In conclusion, each algorithm discussed in this paper
presents a unique set of advantages and limitations, empha-
sizing the importance of selecting the most suitable approach
based on specific application requirements and environmental
considerations. The diverse range of algorithms covered un-
derscores their widespread adoption and adaptability across
various domains in autonomous robotics. The comparison
of these algorithms, depicted in Figure 5, provides valuable
insights into their relative strengths, challenges, efficiency, and
stability.

REFERENCES

[1] Khatib, O.: Real-time obstacle avoidance for manipulators and mobile
robots. In: Autonomous robot vehicles, pp. 396–404 (1986)

[2] ’Traditional artificial potentials path planning’, ResearchGate. Available
at: https://www.researchgate.net/figure/Traditional-artificial-potentials-
path-planning fig1 320174864

[3] Dijkstra, E. A note on two problems in connexion with graphs. Numer.
Math. 1959, 1, 269–271. [CrossRef]

[4] Gbadamosi, O.A.; Aremu, D.R. Design of a Modified Dijkstra’s Algo-
rithm for finding alternate routes for shortest-path problems with huge
costs. In Proceedings of the 2020 International Conference in Mathemat-
ics, Computer Engineering and Computer Science (ICMCECS), Lagos,
Nigeria, 18–21 March 2020; pp. 1–6. [CrossRef]

Fig. 5. Comparison of some algorithms described in the present document
[13]

[5] Lavalle, S.: Rapidly-exploring random trees: A new tool for path
planning. Technical Report, pp.98–11 (1998).

[6] ‘Rapidly exploring random tree’, Wikipedia.
Mar. 01, 2024. [Online]. Available:
https://en.wikipedia.org/w/index.php?title=Rapidly exploring random tree

[7] Ming, Yu, Yanqiang Li, Zihui Zhang, et Weiqi Yan. ’A Survey of
Path Planning Algorithms for Autonomous Vehicles’. SAE International
Journal of Commercial Vehicles 14, no 1 (24 janvier 2021): 02-14-
01-0007. https://doi.org/10.4271/02-14-01-0007.

[8] Hart, E., Nilsson, J., Raphael, B.: A formal basis for the heuristic
determination of minimum cost paths. IEEE Transactions on Systems
Science and Cybernetics, 4(2): 100–107 (1968)

[9] ‘Fig. 2. Illustration of A* algorithm path planning’, ResearchGate.
[Online]. Available: https://www.researchgate.net/figure/Illustration-of-
A-algorithm-path-planning fig1 283508751

[10] Dorigo, M., Maniezzo, V., Colorni, A. : Ant system: optimization by a
colony of cooperating agents. IEEE Transactions on Systems, Man, and
Cybernetics, Part B (Cybernetics), 26(1): 29–41 (1996)

[11] Shi, Y.: Particle swarm optimization: developments, applications and
resources. Proceedings of the Congress on evolutionary computation,
pp. 81–86 (2001)

[12] ‘Ant Colony Optimization Algorithm processes.’, figshare. [Online].
Available: https://plos.figshare.com/articles/figure/
Ant Colony Optimization Algorithm processes /1418788/1

[13] Y. Ming, Y. Li, Z. Zhang, and W. Yan, ‘A Survey of Path Planning
Algorithms for Autonomous Vehicles’, SAE Int. J. Commer. Veh., vol.
14, no. 1, pp. 02-14-01–0007, Jan. 2021, doi: 10.4271/02-14-01-0007.

Learning how to bowl: a hybrid approach between
reinforcement learning and classical physics.

Clara Gondot
ENSTA Bretagne

Mobile Robotics student
Brest, France

Abstract—This article uses a precise dynamic model describing
a bowling ball trajectory to build a simulation environment suited
for reinforcement learning. An agent with the mission of throwing
the ball is trained in this environment with a hybrid algorithm,
using both a simple physics-based model and reinforcement
learning.

Index Terms—reinforcement learning, bowling, robotic arm,
dynamic model

INTRODUCTION

In the realm of robotics and automation, physics-based
analytical models are often used to create controllers capable
of accurate dynamic motions. Their main drawback is their
reliance on a precise and unchanging environment. In sce-
narios with uncertain conditions, machine learning algorithms
tend to perform better. By learning from data and experience,
these algorithms exhibit a remarkable capacity to generalize
behaviors and adapt to diverse scenarios. However, their
reliance on vast amounts of training data and their tendency
towards approximations can compromise accuracy, especially
for complex dynamic maneuvers.

This article focuses on the act of throwing. In the work
of Zeng et al. in [7], the Tossingbot appeal is its ability
to quickly organize arbitrary objects by tossing them in a
delimited landing zone. The method uses an analytical model
of the objects trajectory to which is added residuals computed
with reinforcement learning. In a similar manner, the work
presented here tries to fuse a physic-based controller with
reinforcement learning. As there are numerous different kind
and contexts for throwing, the application chosen was ten-
pin bowling. The allure of this application, apart from enter-
tainment, is that the dynamic model of a bowling ball along
the line is actually quite complex, including because of the
mass distribution in the ball. The main objective of this article
is to test the method presented in [7], in a situation where
the physics-based model uses important simplifications and to
study the behaviour of its reinforcement learning counterpart.

In Section I, the overall context of the environment is
defined, as well as the simplified model of the bowling ball
used by the physics-based controller. The second section
introduces the simulation environment used to test the con-
trol algorithms implemented. Some results are exposed and
interpreted. Lastly, Section III presents the principles behind
the Machine Learning controller and perspectives for a future
implementation.

I. MODELLING

A. Environment description

In the application described in this article, an artificial agent
is replacing a bowling player. As a player, the agent is placed
before a bowling lane, and releases the ball at the foul line,
see Figure 1.

Fig. 1. Representation of the input parameters (in red) used as initial
conditions in the analytic model, and the expected output or results (in green),
corresponding to the moment the ball touches the headpin.

A bowling lane is usually oiled, and the oil pattern as well
as the associated friction coefficients can vary. In light of Ji
et al. study in [4], it is assumed that until 12,2 meters, the lane
friction coefficient is of 0.04, and 0.2 after. This is a simple
but sufficient model for the wanted application.

Fig. 2. Different oil patterns used in competitive bowling. The far left figure
corresponds to the pattern use in this article. Figure taken from [4].

The expected inputs the agent has to decide upon, are the
initial linear speed V⃗0, supposed horizontal, angular speed ω⃗0,

on the contrary not necessarily horizontal, and ordinate y0 on
the foul line. This total of 6 parameters has to optimize the
probability of a strike happening.

B. Simplified analytic model

In this subsection, some hypothesis made are overly sim-
plifying the behaviour of our ball. This way, the analytical
study used for the control of the agent is also simplified and
the machine learning algorithm described in Section II will
supposedly cover for the inaccuracies.

First, the ball is assimilated to a perfect sphere, of radius
Rb and mass M . As well explained by Normani in[5], the
moments of inertia of the ball differ with how it was con-
structed. Usually, a bowling ball contains an weight block
inside, with an arbitrary shape. Here, the inertia tensor I0 is
supposed diagonal, with equal components. This hypothesis
implies that the axes of the principal moments of inertia stay
constant. Indeed, if R is the rotation matrix of the ball in any
attitude, then:

RI0R
T = R(kI3×3)R

T = kRRT

Since R is orthogonal, RT = R−1, hence

RI0R
T = kI3×3 = I0 (1)

The second simplifying hypothesis made here is that the
center of mass is the center of the sphere. Applying Newtons
second law to our system gives us that :

M ¨⃗r = −Mgz⃗ + F⃗con (2)

d

dt
(I0ω⃗) = −Rbz⃗ × F⃗con (3)

where F⃗con is the force exerted by the lane on the ball, z⃗ is
the upward unit vector, r⃗ is the position of the ball w.r.t the
origin of the lane and ω⃗ its angular velocity.

In this model as well as the one detailed in Section III, the
force F⃗con follows Coulomb’s Law of friction. Following the
methodology used by Frohlich in [3], the following variable
s⃗ and µ⃗ are defined as :

s⃗ = −Rbz⃗ × ω⃗ − ˙⃗r (4)

the speed between the lane and the contact point of the ball
on the lane, and

µ⃗ =

µx

µy

1

 , where µ
s⃗

||s⃗||
=

µx

µy

0

 (5)

with µ the friction coefficient of the lane, as defined earlier.
When the ball is sliding, with the previous hypotheses, the

contact force can be expressed as :

F⃗con = −MgRbz⃗ × µ⃗ (6)

Because of Eq. (1), Eq. (3) can be rewritten as :

I0 ˙⃗ω = −Rbz⃗ × F⃗con (7)

By developing Eq. (7) knowing Eq. (6), the expression of ˙⃗ω
is determined :

˙⃗ω = −MRbgI
−1
0

−µy

µx

0

 (8)

If the ball is rolling, then s⃗ = 0⃗. This induces that :

¨⃗r = −Rbz⃗ × ˙⃗ω

The expression of F⃗con can then be deduced from Eq. (2) and
the previous expression :

F⃗con = M(gz⃗ +−Rbz⃗ × ˙⃗ω) = M

 Rbω̇y

−Rbω̇x

g

 (9)

As done previously, Eq. (7) is developed knowing Eq. (9),
which results in :

˙⃗ω = MR2
bI

−1
0

ω̇x

ω̇y

0

 (10)

The equations (8) and (10) are fairly simplified compared
to the ones developed in Section II. However, integrating the
value of ω⃗ is not that simple, as the expression of s⃗, see (4),
depends on ω⃗ and r⃗ and influences the motion of the ball.

In the rolling case, thanks to the first hypothesis about the
equal moments of inertia, Eq. (9) induces:

˙⃗ω = 0⃗ ⇒ ω⃗ = ω⃗0 (11)

However, the ball often begins by sliding. A way to handle
the rolling/sliding condition and output an analytical solution
is still unknown.

Ultimately, the Physical controller will be limited to a short
numerical study detailed in the next subsection, and the help of
a practised mathematician to look upon and solve the bowling
ball motion equations would be needed.

C. How to strike

Without the access to neither a bowling lane nor a robot
capable of throwing bowling balls, a simulation, described in
Section II, is used to compute the trajectory of the throw made
by our agent.

To evaluate how much was scored, the study cited by Benner
et al. in [2] will be exploited as it is in [4]. The state of the
ball, its velocity and position, at the moment when it attains
the headpin, is used to compute a probability of striking.
In practice, the parameters taken into account are the angle
formed by the trajectory with the x-axis, so the angle of Vf

as in Figure 1, and the ordinate of the ball yf .
Both in [4] and [3], sample values of seasoned bowling

players action on the ball are given and studied in simulations.
They provide numerical values for initial velocity, angle and
angular velocity, which are used as a starting point to deter-
mine initial conditions that can successfully lead to a strike.
With V0, ω0 the norms of the initial velocities V⃗0 and ω⃗0, this
starting point is defined as :

Fig. 3. Probability of making a strike as a function of the entry angle and
position. Figure taken from [2] and [4].

V0 ≃ 8 m/s
ω0 ≃ 30 rad/s
ω0z < ωOy and ω0z < ωOx

By studying the initial conditions and inertia matrix effect
on the ball trajectory in the simulation, the values can be fine-
tuned to suit a precise example. However, in order to leave
some margin to the Machine Learning controller, the values
are not optimized that way.

II. SIMULATION ENVIRONMENT

A. Analytical model and main pipeline

In order to test the controllers, and how the inputs influence
the ball trajectory, a precise simulation of a bowling lane is
necessary. Thereby, the previous simplifying hypotheses on the
center of mass needs to be cancelled, which allows to define
the vector r⃗∆ between the center of mass and the center of
the ball. Here, the inertia tensor I is supposed diagonal, with
its element Ixx the minimal moment of inertia, and Iyy and
Izz unequal.

Taking these conditions into account, the work of Frohlich
in [3] was largely exploited to determine the equations of mo-
tion of the ball. If the ball is sliding, the angular acceleration
evolution is determined by :

(I0 + Idev + Is∆ + Is∆∆)
˙⃗ω = τ⃗dev + τ⃗fric + τ⃗s∆ + τ⃗s∆∆ (12)

And when the ball is rolling, the equation becomes :

(I0 + Idev + Ir∆ + IRoll) ˙⃗ω = τ⃗dev + τ⃗fric + τ⃗ r∆ + τ⃗ r∆∆ (13)

Where the torques and inertia matrices defined depend on
the state of the ball, ∆r⃗, Rb and µ in the sliding case. Their
expression are detailed in the Annex and are taken from [3].

Using the Sympy Python library, the analytical expressions
of the needed values was translated as functions of time. Then,

using a 4th order Runge-Kutta as an integration method, the
following pipeline is used for the simulation:

• The rotation matrix is integrated from ω⃗, and used to
compute I and ∆r⃗.

• s⃗ defined in Eq. (4) and µ⃗ defined in Eq. (5) are computed
using the last values of ˙⃗r and ω⃗.

• Knowing if the ball is sliding or rolling, the value of ω⃗
is integrated.

• Finally, using a straightforward integration when rolling
and a double one when sliding, the position of the ball r⃗
is computed.

B. Some results and interpretation

The initial condition used as input of the simulation are :
y0 = 0 m
θ0 = −1 °
V0 = 8 m/s

ω0x = −30 rad/s
ω0y = −30 rad/s
ω0z = 10 rad/s

Where θ0 is the angle formed between V⃗0 and the x-axis.
To create a realistic bowling ball, the data from [1] is used

to inspire the parameters of the ball, which are:
m = 6.80 kg
Ixx = 0.0270 kg.m²
Iyy = 0.0274 kg.m²
Izz = 0.0281 kg.m²

Given these parameters, the resulting simulated trajectory is
visualized in the figure 4 in true scale, and in figure 5 with a
different scale.

Fig. 4. Simulating a trajectory (in red), from the starting line to the headpin
(in green) ordinate.

Fig. 5. Same results as in Fig. 4, with a different scale.

https://www.sympy.org/en/index.html

In Figure 4, the ball trajectory seems realistic. However,
some oscillations orthogonal to the main trajectory are notice-
able in Figure 5, with a period and amplitude of approximately
1.2 and 0.005 meters. The value traced in this graph is the
evolution of the center of the ball position, which is not
supposed to oscillate in this way. The leading potential cause
for this phenomenon would be the computation of the center
of the ball from the position of its center of mass. Indeed, this
type of trajectory is likely for the center of mass due to the
complex precession motion of the ball. Also, the computation
of r⃗∆ is bound to diverge from its true value, due to the
successive integrations.

III. LEARNING RESIDUALS

The second part of the final controller is a machine learning
algorithm, used to better the trajectory of the bowling ball. It
computes residuals to the initial conditions given by the pre-
vious part, the physics-based controller. Hence, the algorithm
has to output 6 decimal numbers, each with different minimum
and maximum boundaries.

To approach this problem, it was assimilated to a k-armed
bandit problem. Meaning that the agent has a given situation
before him, which is the set of initial conditions and its
prior knowledge of the system, and has to choose one action
between a set of possible actions. Once this action is taken,
the system outputs a reward, allowing the agent to evaluate its
prior choice.

This type of problem falls into Reinforcement Learning
(RL). To define this framework and build a RL-algorithm, we
rely on the work of Sutton and Barto in [6].

Due to successive time and programming issues, it has been
impossible to properly train a RL model. This section exposes
the choices that were made and offers some perspectives on
how to proceed.

A. Rewards

The rewards given to the model are detailed in the table
I. The event of a strike is determined using the values found
in the Figure 3: given an entry angle and ordinate, a strike
probability is computed from the reference values of the graph,
and then the event is evaluated using the random package of
the Numpy Python library. Every other situation listed can be
seen as conditions on the position of the ball.

Situation of the ball Reward
Gutter -100

Pins attained but offset from the center ¿ 14cm 0
Pins attained and offset ¡= 14 cm 10

Pins attained, small offset and strike 100
TABLE I

REWARD CORRESPONDING TO DIFFERENT FINAL STATES OF THE BALL

B. Actions

The principal problem in the conception of this model, was
that the classical Markov Decision Process terminology, that is
used to define a RL-problem as in [6], accounts for a discrete

set of actions, possible for the agent from a given state. When
it would be ideal to learn the residuals as decimal values, it
was decided to split the interval of possible values for each
value into 8 possible values, see Table II.

Value Min Max Delta
y0 (cm) -15 15 3.75
θ0 (°) -5 5 1.25

V0 (m/s) -2 2 0.5
ωx0 (rad/s) -20 20 5
ωy0 (rad/s) -20 20 5
ωz0 (rad/s) -6 6 1.5

TABLE II
BOUNDARIES OF THE DISCRETE SET OF POSSIBLE ACTIONS

Different strategies to choose between these actions were
considered. In the case of a Q-Learning Model, aiming to
maximize the reward over a succession of actions, it was
decided to output 48 values, divide them in 6 subsets and
choose the maximum for each one. In this way, an index for the
corresponding action for each value can be obtained. Another
solution could use one or multiple models to compute each
values successively.

However, this method failed because of the reason men-
tioned earlier in this Section. The simulation time and some
incompatibility between making multiple choices at the same
time and the program used made the research fall behind
schedule.

CONCLUSION

In this article, a superficial study of numerical values taken
from bowling players was used to determine initial conditions
for a throw. Using realistic motion equations determined in [3],
a Python simulation is built and tested. The research done tried
to build a dual controller, base both on a simplified analytical
study of the motion equations and on Reinforcement Learning.
However, some complication in the integration of said equa-
tions and complications on the RL models implementation and
training were critical to this research.

Perspectives:
• Physical controller needs bettering, if possible, by finding

an analytical solution and testing it in both a simplified
and complete simulation, or a complete numerical study
to create an abacus.

• A more powerful calculator would be useful to have
more precise integration and test the simulation, also
parallelization would quicken the computing, training and
testing times.

• A further search for an adequate Machine Learning
algorithm is needed.

ANNEX

Expression of ˙⃗ω in the sliding case

The matrix I = I0 + Idev is the inertia matrix expressed
in the world coordinate system. I0 is its diagonal part, and
Idev the non-diagonal part. The torque τ⃗dev stems from the
development of (3), as τ⃗dev = (Idevω⃗)× ω⃗.

https://numpy.org/

We then have terms stemming from the expression of ∆r⃗.

Is∆ = Rb

r∆y
µy −r∆x

µy 0
r∆yµx r∆xµx 0

0 0 0

Is∆∆ =

 r∆y
(r∆y

− r∆z
µy) −r∆x

(r∆y
− r∆z

µy) 0
r∆y

(r∆z
µx − r∆x

) −r∆x
(r∆z

µx − r∆x
) 0

r∆y
(r∆x

µy − r∆y
µx) −r∆x

(r∆x
µy − r∆y

µx) 0

Finally, various torques are defined :
τ⃗fric = −gRbz⃗ × µ⃗ ,
τ⃗s∆ = gr⃗∆ × µ− awRbz⃗ × µ , and
τ⃗s∆∆ = aw r⃗∆ × µ.
where
aω = [(ω⃗ × r⃗∆)× ω⃗]z

Expression of ˙⃗ω in the rolling case
Keeping the same definitions for I0, Idev , τ⃗dev and τ⃗fric as

earlier, the remaining matrices and torques are :

IRoll =

R2
b 0 0
0 R2

b 0 0
0 0 0

Ir∆ =

r2∆y
+ r2∆z

− 2r∆z
Rb −r∆x

r∆y
−r∆x

r∆z
+ r∆x

Rb

−r∆x
r∆y

r2∆x
+ r2∆y

− 2r∆z
Rb −r∆y

r∆z
+ r∆y

Rb

−r∆x
r∆z

+ r∆x
Rb −r∆y

r∆z
+ r∆y

Rb r2∆x
+ r2∆y

τ⃗ r∆ = gr⃗∆ × z⃗+Rb[||ω⃗||2r⃗∆ × z⃗+ (ω⃗ ∗ r⃗∆) ∗ z⃗× ω⃗] , and
τ⃗ r∆∆ = (ω⃗ ∗ r⃗∆) ∗ ω⃗ × r⃗∆.

REFERENCES

[1] ABSOLUTE POWER. URL https://www.stormbowling.
com/absolute-power-bbmvaw12.

[2] Donald Benner, Nicole Mours, and Paul Ridenour. Pin
Carry Study: Bowl Expo 2009. 2009.

[3] Cliff Frohlich. What makes bowling balls hook? American
Journal of Physics, 72(9):1170–1177, September 2004.
ISSN 0002-9505. doi: 10.1119/1.1767099. URL https:
//doi.org/10.1119/1.1767099.

[4] Simon Ji, Shouzhuo Yang, Wilber Dominguez, and Cacey
Bester. Using Physics Simulations to Find Target-
ing Strategies in Competitive Bowling, October 2022.
URL http://arxiv.org/abs/2210.06753. arXiv:2210.06753
[physics].

[5] Franco Normani. Physics Of Bowling. URL
https://www.real-world-physics-problems.com/
physics-of-bowling.html.

[6] Richard S. Sutton and Andrew G. Barto. Reinforcement
learning: an introduction. Adaptive computation and
machine learning. The MIT Press, Cambridge (Mass.), 2nd
edition edition, 2018. ISBN 978-0-262-03924-6.

[7] Andy Zeng, Shuran Song, Johnny Lee, Alberto Rodriguez,
and Thomas Funkhouser. TossingBot: Learning to Throw
Arbitrary Objects with Residual Physics, May 2020. URL
http://arxiv.org/abs/1903.11239. arXiv:1903.11239 [cs,
stat].

https://www.stormbowling.com/absolute-power-bbmvaw12
https://www.stormbowling.com/absolute-power-bbmvaw12
https://doi.org/10.1119/1.1767099
https://doi.org/10.1119/1.1767099
http://arxiv.org/abs/2210.06753
https://www.real-world-physics-problems.com/physics-of-bowling.html
https://www.real-world-physics-problems.com/physics-of-bowling.html
http://arxiv.org/abs/1903.11239

Adam GOUX--GATEAU

UE 5.1 Research initiation

DESCRIPTION OF CHAOS WITH THE
LYAPUNOV EXPONENT IN
NONLINEAR EQUATIONS

March 1st 2024

CONTENTS

Contents

1 Introduction 2

2 Mathematical description of chaos 3

3 Application in physics 5
3.1 Double pendulum . 6
3.2 Electric circuits . 7

4 Conclusion 10

5 Bibliography 11

1

1 INTRODUCTION

1 Introduction

Lately, I read an article presenting a description of chaos in the famous system of the double pen-
dulum. It is quoted as ”[5]” in the following report. Finding quite fascinating the notion of chaos,
I decided to explore it myself, and to look for other chaotic systems, and ways to mesure the chaos.

In mathematical terms, chaos refers to a state exhibited by certain dynamical systems charac-
terized by sensitive dependence on initial conditions, unpredictability, and the absence of long-term
regularity. A dynamical system is considered chaotic if it possesses sensitivity to initial conditions,
wherein small changes in the initial conditions lead to significantly divergent trajectories in phase
space. This sensitivity is mathematically represented by positive Lyapunov exponents [1], indicat-
ing exponential separation of nearby trajectories. Additionally, chaotic systems exhibit topological
mixing, where trajectories densely fill phase space, lacking periodic orbits or stable fixed points.
Nonlinear dynamics play a crucial role in the manifestation of chaos, as the interactions between
variables in nonlinear equations introduce complexities that give rise to chaotic phenomena.

Nonlinear equations are instrumental in generating chaotic behavior within dynamical systems.
Unlike linear equations, which often lead to predictable and stable dynamics, nonlinear equations
introduce complexities that foster chaotic phenomena. In nonlinear systems, interactions between
variables are not simply additive or proportional, but instead involve feedback loops, bifurcations,
and other nonlinear effects. These nonlinearities amplify sensitivity to initial conditions, result-
ing in chaotic behavior characterized by erratic and seemingly random trajectories in phase space.
Examples of chaotic systems governed by nonlinear equations include the Lorenz system, the lo-
gistic map, and the double pendulum. Understanding and analyzing chaos in nonlinear equations
are essential for elucidating the behavior of complex systems across various scientific disciplines,
including physics, biology, and engineering.

In this article, I will briefly illustrate chaos theory with a simple example, and then see the
application in real systems : the double pendulum and Chua circuit

All the code mentioned is available here :
https://github.com/Gougaaate/chaospy

2

https://github.com/Gougaaate/chaospy

2 MATHEMATICAL DESCRIPTION OF CHAOS

2 Mathematical description of chaos

Chaos theory is above all a branch of mathematics. I will develop in this part the mathematical
aspects of chaos, especially the Lyapunov exponent.

The Lyapunov exponent of a dynamical system, denoted by λ, is a real number that charac-
terizes the system’s behavior. It measures the average rate of divergence or convergence of nearby
trajectories in phase space. This divergence or convergence indicates how sensitive the system is
to initial conditions[2]. A positive Lyapunov exponent indicates exponential separation of trajec-
tories, implying chaotic behavior, while a negative exponent suggests convergence towards a stable
equilibrium. If the initial separation in phase space is δ0, we have the relation :

|δ(t)| = |δ0|eλt (1)

λ is defined as follows :

λ
∆
= lim

t→∞
lim

|δ0|→0

1

t
ln

|δ(t)|
|δ0|

(2)

To evaluate the chaotic aspect of dynamical systems, I decided to code my own calculator of
Lyapunov exponent [3].

I took the example of the famous logistic equation [4]:

xn+1 = µxn(1− xn); x0 ∈ [0; 1] (3)

The equation describes the progression of a population denoted as x, starting with an initial
quantity x0. The parameter µ ranges between 0 and 4, exerting significant influence on the popula-
tion’s dynamics. When µ ≤ 1, the population dwindles to extinction. For µ ∈ [2, 3], the population
stabilizes around a specific value, albeit exhibiting some fluctuations. However, with µ > 3, intrigu-
ing phenomena emerge: the sequence might oscillate between distinct values, following a pattern
of doubling (2, 4, 8, etc.), or it could plunge into complete chaos. In the logistic.py file, a map
illustrates the sequence’s behavior, indicating the intervals between oscillating values and reflecting
the complexity of the population’s dynamics :

3

2 MATHEMATICAL DESCRIPTION OF CHAOS

Figure 1: Bifurcation diagram

As µ increases from 0 to 4, the bifurcation diagram reveals the different types of behavior
exhibited by the logistic map. At lower values of µ, the population typically converges to a sta-
ble equilibrium or undergoes periodic oscillations. As µ increases, the diagram shows bifurcation
points where the behavior of the system changes. Each bifurcation means that the sequence oscillate
between several values. We clearly see chaos emerging if µ >≈ 3.56, with no distinguishable pattern.

I computed the Lyapunov exponent for several values of the sequence, to confirm the chaotic
behaviour :

4

3 APPLICATION IN PHYSICS

Figure 2: Evolution of λ for µ = 2.51, 3.525 and 3.8

To compute λ, I used a formula for discrete systems. If we have

xn+1 = f(xn), then λ = lim
n→∞

1

n

n−1∑
i=0

ln |f ′(xi)|. I computed the successive values of λ to see the

tendance : for µ < 3, λ < 0 so the system is stable, for µ ≈ 3.53, λ ≈ 0, so the system is slightly
unstable, for µ > 3.6, λ > 0 : chaos begins. This is exactly the result expected for this sequence.

3 Application in physics

As seen before, chaos can appear anywhere as far as nonlinear equations are involved. To illustrate
this, I performed several simulations of well known or not real systems with a chaotic behaviour.

5

3 APPLICATION IN PHYSICS

3.1 Double pendulum

First of all, the double pendulum might be the example that enables the best visualisation of chaos.
Here are the equations :{

m2

(
g sin(θ1) + l2

(
(θ′2)

2 sin(θ1 − θ2) + θ′′2 cos(θ1 − θ2)
)
+ l1θ

′′
1

)
+m1 (g sin(θ1) + l1θ

′′
1) = 0

g sin(θ2) + l1
(
θ′′1 cos(θ1 − θ2)− (θ′1)

2 sin(θ1 − θ2)
)
+ l2θ

′′
2 = 0

(4)
They are clearly non linear, but that does not imply a chaotic behaviour. The Lyapunov

exponent is once again a great mean of evaluating the chaos. There are actually 4, because this is
a 4-state dynamic system (θ1, ω1, θ2, ω2 where θ and ω represent the angle and the angular speed
of each mass). I encountered a problem of computational cost : for complex equations like this
and multi-dimensional problems, the computation of Lyapunov exponent is really intensive to be
accurate, and I could not implement a reliable method. Hopefully, this had already been done [5] :

Figure 3: Lyapunov exponent of a double pendulum (T. Stachowiak, T. Okada)

As you can see, the value is positive, which explains the chaotic behaviour of such a system. To
visualize it better, I performed a simulation of two double pendulums with very close initial states
in double pendulum.py. After a few seconds, here is the state of the system :

6

3 APPLICATION IN PHYSICS

Figure 4: Divergence of two double pendulums

The trajectories have already diverged after 4 seconds, the difference was 0.05° for θ2 in the
initial state.

3.2 Electric circuits

Electric circuits, governed by deterministic laws of physics, can exhibit chaotic behavior under spe-
cific conditions. Typically observed in circuits featuring feedback mechanisms, chaotic phenomena
emerge when the circuit’s parameters are finely tuned or subjected to external disturbances [6].
In such scenarios, minor fluctuations in input signals or circuit parameters yield disproportionate
alterations in the system’s output. This sensitivity to initial conditions results in the erratic and
quite unpredictable nature of chaos. I will only consider simple circuits made from standard com-
ponents, such as resistors, inductance, diode...

Before displaying chaotic behaviour, a circuit must satisfy three conditions :
- At least one non linear element (this is quite obvious, the Lyapunov exponent for linear

equations will almost always be < 0)
- At least one active resistor
- At least 3 components storing energy, such as capacitors or inductors.

The simplest circuit verifying thess conditions is called Chua circuit [7]. It is composed of
a resistor, an inductor, two capacitors and one ”Chua’s diode”, which follows a piecewise-linear
equation.

7

3 APPLICATION IN PHYSICS

(a) Chua circuit (b) Chua’s diode equation

The equation of Chua’s diode is presented here :

g(x) =

m0x+m0 −m1 if x ≤ −1

m1x if − 1 ≤ x ≤ 1

m0x+m1 −m0 if 1 ≤ x

(5)

A simplified version of the equations is easily findable, but the real equation using the values of
the components is almost never written. That is why i applied Kirchoff’s laws to find the nonlinear
equation ruling the circuit. I obtained :

V̇1 =

(
1

RC1

)
[(V2 − V1)−R.g(V1)]

V̇2 =

(
1

RC2

)
(V1 − V2 +R.iL)

iL =
−V2

L

(6)

With simplifications and rescaling of V1, V2, and iL, we can finally obtain dimensionless Chua’s
equations:

ẋ = α[y − Φ(x)]

ẏ = x− y + z

ż = −βy

(7)

With : Φ(x)
∆
= x+ g(x) = m1x+

1

2
(m0 −m1)(|x+ 1| − |x− 1|)

In the file chua.py, I plotted the evolution of (x, y, z) to find some attractors, here are the most
interesting I could display :

8

3 APPLICATION IN PHYSICS

(a) (b)

Figure 6: 2 strange attractors

Now, the interesting part is to compute the Lyapunov exponent of this circuit. I encountered
the same problem of computational cost as before, but I came up with the idea of comparing two
close trajectories. I simply evaluated the distance between the two during the simulation.

My initial states were x0 = y0 = z0 = 1, and x1 = y1 = z1 = 1.01

Figure 7: Divergence of the distance between the two close trajectories

9

4 CONCLUSION

As you can see, the distance slightly oscillates around 0.01 and then diverge. This does not
depend from the integration method : Euler with step from 0.05 to 0.0001, and RK4 gave almost
the same results. This is an other way of evaluating the chaos of a system with only a few dimensions.

4 Conclusion

While exploring techniques to assess chaos, I encountered several efficient methods, with the primary
one being the Lyapunov exponent. As the complexity of the problem grew beyond the capabilities
of my own laptop, I began considering alternative approaches to demonstrating the presence of
chaos. One such approach involves leveraging the Euclidean distance.

This concept finds relevance in the field of robotics for several reasons. Firstly, chaos can emerge
in feedback-controlled loops [8] when nonlinear ordinary differential equations (ODEs) are present.
In the context of robot guidance, it’s imperative to mitigate chaos to prevent unintended behavior.
However, chaos might also prove beneficial. For instance, in path planning without mapping [8],
deterministic chaos can be harnessed using chaotic dynamical systems. By utilizing chaotic attrac-
tors, algorithms for obstacle avoidance and pathfinding can be developed.

This area of research remains highly promising and holds numerous applications across various
scientific disciplines, including robotics.

10

5 BIBLIOGRAPHY

5 Bibliography

[1] : Grandes déviations d’exposants de Lyapunov dans les systèmes étendus, T. Laffargue, Mécanique
statistique [cond-mat.stat-mech]. Université Paris Diderot (Paris 7), 2015. Français. ffNNT : ff.

[2] : M. Amiri, M. Dehghani, A. Khayatian and M. Mohammadi, Lyapunov Exponent based Stabil-
ity Assessment of Power Systems, 2019 6th International Conference on Control, Instrumentation
and Automation (ICCIA), Sanandaj, Iran, 2019, pp. 1-5, doi: 10.1109/ICCIA49288.2019.9030854.

[3] : Numerical Calculation of Lyapunov Exponents, M. Sandri, University of Verona, Italy.

[4] : Verhulst and the logistic equation (1838). In: A Short History of Mathematical Population
Dynamics, N. Bacaër (2011). Springer, London. https://doi.org/10.1007/978-0-85729-115-8 6.

[5] : A numerical analysis of chaos in the double pendulum, p.7 Tomasz Stachowiak, Toshio Okada..
Chaos, Solitons and Fractals, 2006, 29 (2), pp.417 - 422. ff10.1016/j.chaos.2005.08.032ff. ffhal-
01389907f.

[6] : Chaos and its applications, Kazuyuki Aihara, Institute of Industrial Science, University of
Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8505, Japan.

[7] : Chaos in Electronic Circuits, T. Matsumoto, IEEE, 1987.

[8] : Applications of Chaotic Dynamics in Robotics, pp.3,7,8, Xizhe Zang, Sajid Iqbal, Yanhe Zhu,
Xinyu Liu, and Jie Zhao, International Journal of Advanced Robotic Systems, 2017.

11

29
février

2024

Localisation
Intérieure par
Analyse des Ondes
WiFi

Introduction à la Re-
cherche 2024

GROS Louis-Nam

Abstract
Cet article propose une nouvelle méthode pour la localisation précise de robots en environnement

intérieur, exploitant les signaux WiFi omniprésents. En analysant les ondes émises par les points d’accès
WiFi, nous développons une approche permettant de trianguler avec précision la position du drone.
Cette méthode, basée sur des algorithmes avancés de traitement du signal, offre une alternative efficace
aux systèmes de localisation traditionnels, en particulier dans les contextes où l’usage de GNSS est
limité ou inexistant.

Keywords
— Localisation intérieure
— WiFi
— Atténuation des signaux
— Couverture du signal
— Multilatération
— Algorithme BPSA (Binary Particle Swarm Optimization)
— Optimisation de Placement d’antennes
— Dilution Of Precision (DOP)
— Erreur quadratique moyenne (RMSE)
— Simulation 3D
— Infrastructures technologiques modernes

i

Table des matières
1 État de l’art 1

1.1 Technologies de localisation en intérieur . 1
1.2 Méthodes et algorithmes de localisation . 2

2 Localisation par technologie WiFi 4
2.1 Présentation de la technologie WiFi[1] . 4
2.2 Stratégie retenue pour la localisation WiFi . 4
2.3 Choix des paramètres de simulations . 4

3 Modèle d’atténuation des ondes (log-distance)[4] 5
3.1 Mesure RSS (Received Signal Strength) . 5
3.2 Modèle d’atténuation des ondes WiFi dans l’air d’une antenne WIFI 5
3.3 Modélisation de l’atténuation des ondes WiFi à travers les obstacles[4] 5

4 Localisation par multilatération 7
4.1 Théorie de la multilatération[2] . 7
4.2 Implémentation avec l’atténuation des ondes WiFi . 8

5 Étude de l’optimisation de l’emplacement des antennes WIFI avec l’algorithme
BPSA (Binary Particle Swarm Optimization) 9
5.1 Algorithme BPSA (Binary Particle Swarm Optimization)[3] 9
5.2 Optimisation du placement des antennes WIFI pour la simulation par BPSA 9

6 Localisation du robot par ondes WIFI 12
6.1 Simulation avec les obstacles et les 9 antennes . 12
6.2 Étude de l’influence du nombre de balises sur l’erreur de localisation 13

List of figures 15

References 15

ii

Introduction
La localisation en intérieur est un domaine de recherche dynamique et essentiel qui sert de fondement

à de nombreuses applications modernes, telles que la navigation intérieure, la robotique mobile, et
le suivi d’objets. Avec la prévalence accrue des appareils mobiles et la nécessité d’une connectivité
omniprésente, les technologies de localisation intérieure sont devenues un élément clé de l’infrastructure
technologique contemporaine. Cet article passe en revue les technologies et les méthodologies actuelles
en matière de localisation intérieure, mettant en lumière leurs forces, leurs limites, et les contextes
dans lesquels elles sont le mieux adaptées.

Les technologies telles que l’infrarouge, les ultrasons, le RFID, Bluetooth, ZigBee, WiFi et l’Ultra
Wide Band sont explorées en profondeur [3], révélant un paysage diversifié de solutions adaptées à
une gamme variée de cas d’utilisation. Chaque technologie présente un compromis entre la portée, la
précision, le coût et la complexité d’intégration, soulignant l’importance de choisir la bonne solution
pour les besoins spécifiques de chaque application. Par ailleurs, l’étude présente un éventail de méthodes
et d’algorithmes de localisation, de la simple localisation par zone à des approches plus sophistiquées
telles que la triangulation, la multilatération, le fingerprinting, et la navigation à l’estime.

1 État de l’art

1.1 Technologies de localisation en intérieur

1.1.1 Infrarouges

Les infrarouges (IR), invisibles à l’œil humain de par leur longueur d’onde supérieure à celle de la
lumière visible, sont largement utilisés en domotique et robotique, notamment pour la commande à
distance et la détection d’obstacles. Ils se divisent en approches active et passive. L’approche active
utilise des diodes électroluminescentes (LED) émettant des signaux IR, captés par des photo-diodes
ou caméras IR pour la localisation[2]. La méthode passive repose sur la thermographie, exploitant la
radiation naturelle des objets. Malgré leur faible coût et simplicité, les signaux IR nécessitent une
visibilité directe entre émetteur et récepteur et sont limités à une portée de 5-10 mètres, avec une
sensibilité aux sources lumineuses ambiantes.

1.1.2 Ultrasons

Les ultrasons, vibrations acoustiques au-delà de l’audible, sont générés par des transducteurs
exploitant l’effet piézoélectrique. Utilisés principalement entre 20-50 KHz, ils offrent l’avantage d’une
propagation lente, facilitant la mesure temporelle pour la localisation et permettant une précision
sub-millimétrique. Cependant, leur portée est limitée à 10-15 mètres et leur performance peut être
altérée par les conditions environnementales telles que la température, l’humidité et les courants d’air.

1.1.3 RFID

La RFID, technologie sans fil basée sur la lecture de transpondeurs ou tags, varie en portée selon
la fréquence utilisée, avec des différences en termes de pénétration matérielle et de débit de données.
Les systèmes à courte portée utilisent un couplage inductif, où les tags passifs tirent leur énergie
par induction. Les tags actifs possèdent leur propre source d’alimentation. Malgré la disponibilité de
lecteurs bon marché, leur intégration réseau peut engendrer des coûts additionnels.

1.1.4 Bluetooth

Bluetooth, technologie sans fil utilisant l’étalement de spectre à sauts de fréquence, opère dans la
bande ISM autour de 2.4 GHz. Elle permet la coexistence avec d’autres technologies comme le WiFi ou
le ZigBee grâce à des sauts de fréquence, avec des équipements classés selon leur portée et puissance
d’émission.

1

1.1.5 ZigBee

ZigBee, basé sur le standard IEEE 802.15.4, est simple d’utilisation grâce à sa pile protocolaire
légère. Avec une autonomie de plusieurs années sur piles classiques, il convient aux réseaux de capteurs
et aux applications de contrôle, malgré un faible débit et des interférences potentielles avec d’autres
technologies sans fil.

1.1.6 WiFi

Le WiFi, ou IEEE 802.11, utilise les bandes ISM de 2.4 GHz ou 5 GHz. Les systèmes de localisation
basés sur WiFi exploitent principalement les trames de balisage émises par les points d’accès pour la
localisation, avec des informations comme le SSID pour l’identification du réseau [4].

1.1.7 Ultra Wide Band (UWB)

L’Ultra Wide Band (UWB) transmet des impulsions de très courte durée, avec une émission
limitée sur le spectre de 6 à 9 GHz. Cette technologie permet une détection efficace des multi-trajets,
bénéficiant de sa large bande pour une localisation précise. Elle supporte des approches actives et
passives pour la localisation, bien que l’emploi d’un récepteur avec réseau d’antennes puisse complexifier
son utilisation dans le grand public.

1.2 Méthodes et algorithmes de localisation

1.2.1 Localisation par zone

La localisation par zone estime la position en déterminant la zone où se trouve le mobile, basée sur
la détection par des points de référence. Simple et peu coûteuse, mais avec une précision limitée aux
zones de couverture définies.

1.2.2 Triangulation

La triangulation détermine la position par le recoupement des angles d’arrivée (AOA) des signaux
émis par les points de référence. Nécessite au moins deux mesures AOA pour une localisation 2D.

1.2.3 Barycentre

Le barycentre est calculé comme suit:

r̂ =
∑
i∈I

wiri

où ri sont les positions des points de référence, wi les poids attribués à chaque point de référence, avec∑
wi = 1. Cette méthode est simple et requiert peu de ressources.

1.2.4 Multilatération

La multilatération utilise les distances estimées entre le mobile et plusieurs points de référence
pour déterminer la position. Pour une localisation 2D ou 3D, elle peut être exprimée par:

di = ||r − ri||2

où di est la distance estimée entre le mobile et le point de référence i, et r, ri sont les positions du
mobile et du point de référence, respectivement.

1.2.5 Fingerprinting

Le fingerprinting compare les mesures signal avec une base de données de "signatures" de signal
pré-établie pour estimer la position. Cette méthode nécessite une phase d’apprentissage pour construire
la base de données.

2

1.2.6 Navigation à l’estime

La navigation à l’estime estime le déplacement à partir d’un point connu, en utilisant un modèle
récursif:

pk =
[
x[k]
y[k]

]
=

[
x[k − 1]
y[k − 1]

]
+ d[k]

[
sin(ψu[k])
cos(ψu[k])

]
où d[k] est la distance parcourue et ψu[k] l’orientation de déplacement à l’itération k.

1.2.7 SLAM (Simultaneous Localization and Mapping)

L’algorithme de localisation SLAM permet à un appareil de comprendre sa position dans un
espace tout en construisant simultanément une carte de cet environnement inexploré. Il débute par
l’estimation de la position initiale de l’appareil à l’aide de capteurs, puis procède à l’identification
des points de repère environnants qui servent de références pour la navigation et la cartographie. À
mesure que l’appareil se déplace, l’algorithme ajuste continuellement les estimations de sa position et de
l’orientation en comparant les données sensorielles entrantes avec les points de repère déjà cartographiés,
permettant ainsi de minimiser l’erreur de localisation. En parallèle, il met à jour et affine la carte
de l’environnement en intégrant de nouvelles observations, ce qui contribue à une meilleure précision
de localisation dans le temps. Le SLAM s’appuie sur des techniques complexes comme le filtrage de
Kalman ou les graphes de pose pour optimiser à la fois la carte de l’environnement et la localisation de
l’appareil, rendant possible la navigation autonome dans des espaces inconnus.

3

2 Localisation par technologie WiFi

2.1 Présentation de la technologie WiFi[1]

La technologie WiFi s’appuie sur la norme IEEE 802.11 pour fournir une connectivité sans fil
haute performance à travers différentes bandes de fréquence, principalement 2.4 GHz et 5 GHz. Les
protocoles de modulation comme OFDM et MIMO sont utilisés pour améliorer la fiabilité et le débit
des communications sans fil. Dans les environnements intérieurs, où les signaux GPS sont souvent
indisponibles ou imprécis, le WiFi devient un choix privilégié pour la localisation grâce à sa pénétration
étendue et à la présence de nombreux points d’accès.

2.2 Stratégie retenue pour la localisation WiFi

Notre approche pour établir la localisation intérieure à l’aide de la technologie WiFi inclut plusieurs
étapes clés:

1. Modélisation de l’atténuation de la puissance du signal des ondes WIFI.[4]
2. Identification du placement optimal avec l’algorithme BPSA des points d’accès WiFi (balises)

pour maximiser la couverture tout en minimisant les interférences et les zones mortes.[3]
3. Utilisation de la trilatération pour calculer la position du robot. La multilatération est une

méthode basée sur la mesure de la force du signal reçu (RSS) de trois balises ou plus pour
déterminer la position précise d’un appareil.[2]

4. Réalisation de simulations en plaçant le robot dans 1000 positions générées aléatoirement
dans l’espace couvert, afin d’évaluer la robustesse et la fiabilité de la méthode de localisation
proposée.

5. Analyse comparative des résultats de localisation obtenus avec et sans la présence d’obstacles
physiques, tels que les murs ou le mobilier, qui peuvent atténuer ou réfracter les signaux WiFi
et ainsi impacter la précision de la localisation.

Ces étapes permettront d’évaluer l’efficacité de la localisation WiFi dans divers scénarios et de
déterminer les meilleures pratiques pour l’implémentation dans des environnements réels.

2.3 Choix des paramètres de simulations

2.3.1 Paramètres matériels

Pour nos simulations, nous avons opté pour un bâtiment de dimensions 40m x 40m x 10m sans
étages. Les balises WiFi utilisées sont des UniFi AC Mesh DS, choisies pour leurs spécifications adaptées
à la localisation en intérieur. Ces balises sont connues pour leur portée étendue (140m maximum)
et leur capacité à supporter des communications à haut débit, essentielles pour la précision de la
localisation.

2.3.2 Génération d’obstacles[1]

Nous simulerons trois obstacles verticaux placés de manière aléatoire dans l’environnement pour
évaluer l’impact des interférences physiques sur la précision de la localisation. Ces obstacles représentent
des murs internes susceptibles d’atténuer ou de réfléchir les signaux WiFi, affectant ainsi le processus de
trilatération. Chaque mur est modélisé comme ayant un indice de réfraction spécifique qui influencera
la propagation des ondes WiFi selon le modèle d’atténuation choisi.

4

3 Modèle d’atténuation des ondes (log-distance)[4]

3.1 Mesure RSS (Received Signal Strength)

La mesure RSS est un indicateur clé de la puissance du signal WiFi perçu par les récepteurs. Le
modèle log-distance, exprimé par la formule ci-dessus, permet d’estimer cette puissance en se basant sur
la distance par rapport à l’émetteur et sur un coefficient d’atténuation qui varie selon l’environnement.

3.2 Modèle d’atténuation des ondes WiFi dans l’air d’une antenne WIFI

La diffusion des ondes WiFi dans l’air suit un modèle radial où la puissance du signal diminue
avec la distance par rapport à la balise. Cela est représenté visuellement par un gradient de couleur
allant du jaune vif au bleu foncé, indiquant une diminution de la force du signal de 100% au centre à
des valeurs plus basses en périphérie. Cette distribution peut être modélisée mathématiquement par la
formule du modèle log-distance. loi de puissance logarithmique, exprimée par la formule suivante où
P (d) est l’intensité du signal reçue à une distance d, P (d0) est l’intensité de référence du signal à une
distance d0, et n est le coefficient d’atténuation.

P (d) = P (d0) − 10n log10

(
d

d0

)
(1)

Figure 1 – Modèle d’atténuation des ondes WiFi dans l’air d’une antenne WIFI

3.3 Modélisation de l’atténuation des ondes WiFi à travers les obstacles[4]

Les obstacles tels que les murs en béton introduisent une atténuation supplémentaire du signal
WiFi. Cette atténuation est reflétée par une augmentation du coefficient n dans le modèle log-distance.
Les simulations montrent une zone d’ombre derrière l’obstacle où la force du signal est considérablement
réduite, ce qui correspond à un changement de couleur vers le vert ou le bleu dans l’image. Cette

5

atténuation peut être intégrée dans la modélisation pour prédire la portée et la qualité du signal dans
des conditions réelles.

Figure 2 – Modèle d’atténuation des ondes WiFi dans l’air d’une antenne WIFI

6

4 Localisation par multilatération

4.1 Théorie de la multilatération[2]

La multilatération détermine la position d’un point en mesurant sa distance à d’autres points de
référence connus. En deux dimensions, la position du point est l’intersection des cercles centrés sur ces
points de référence. Pour la trilatération, si nous avons trois points de référence (x1, y1), (x2, y2), et
(x3, y3) avec les rayons r1, r2, et r3 respectivement, les équations des cercles sont données par:

(x− x1)2 + (y − y1)2 = r2
1 (2)

(x− x2)2 + (y − y2)2 = r2
2 (3)

(x− x3)2 + (y − y3)2 = r2
3 (4)

La position (x, y) du point cible est le point qui satisfait ces trois équations simultanément.

Figure 3 – Trilatération

7

4.2 Implémentation avec l’atténuation des ondes WiFi

Dans la simulation, un "bruit" est introduit pour modéliser l’incertitude de la mesure des distances
due à l’atténuation du signal WiFi. Ce bruit est proportionnel au carré de la perte de puissance du
signal, simulant ainsi une précision de mesure qui diminue avec la distance par rapport à la balise. La
trilatération est ensuite appliquée en prenant en compte cette incertitude variable, ce qui peut conduire
à une estimation de position qui n’est pas à l’intersection exacte des trois cercles mais dans une région
approximative autour de celle-ci.

Figure 4 – Implémentation de la multilatération

8

5 Étude de l’optimisation de l’emplacement des antennes WIFI avec
l’algorithme BPSA (Binary Particle Swarm Optimization)

5.1 Algorithme BPSA (Binary Particle Swarm Optimization)[3]

5.1.1 Dilution Of Precision (DOP)

Le Dilution Of Precision (DOP) est une mesure qui décrit l’effet de la géométrie des balises sur la
précision de la localisation. Un DOP faible indique une géométrie favorable qui minimise les erreurs
de localisation, tandis qu’un DOP élevé indique une géométrie moins optimale qui peut augmenter
l’erreur. Le DOP est crucial dans l’optimisation de l’emplacement des antennes car il aide à évaluer la
qualité d’une configuration d’antennes en termes de précision potentielle de localisation.

5.1.2 Paramètre d’évaluation RMSE

L’erreur quadratique moyenne de positionnement (RMSE) est un paramètre d’évaluation crucial
pour la localisation. Il est défini comme la racine carrée de la moyenne des carrés des écarts entre les
positions estimées et les positions réelles. Formellement, le RMSE pour un ensemble de localisations
estimées est donné par:

RMSE(Ωn) =

√√√√ 1
L

L∑
i=1

(xi − ŷi)2 (5)

où Ωn représente la configuration des balises trouvée par BPSA sous un critère DOP, xi est la position
réelle de la cible, ŷi est l’estimation de la position obtenue par trilatération, et L est le nombre total
de localisations estimées.

5.1.3 Principe de l’algorithme BPSA[3]

L’algorithme BPSA est une méthode d’optimisation qui ajuste la position des balises pour minimiser
le DOP et le RMSE, ce qui améliore la précision de la localisation. Le processus BPSA comprend les
étapes suivantes:

1. Initialisation des positions des balises selon une distribution prédéfinie ou aléatoire dans l’espace
de recherche.

2. Évaluation de la configuration des balises en utilisant le DOP et le calcul du RMSE pour la
localisation estimée.

3. Application d’une stratégie d’optimisation pour ajuster les positions des balises afin de réduire
le DOP et le RMSE.

4. Répétition des étapes d’évaluation et d’optimisation jusqu’à ce que la convergence soit atteinte
ou que le nombre maximal d’itérations soit réalisé.

La finalité est de trouver une configuration des balises qui offre la meilleure géométrie pour une
localisation précise en minimisant à la fois le DOP et le RMSE.

5.2 Optimisation du placement des antennes WIFI pour la simulation par BPSA

L’objectif de l’algorithme BPSA (Binary Particle Swarm Optimization) est de trouver l’emplacement
optimal des antennes WiFi pour maximiser la couverture et la précision de la localisation en intérieur.
Le Dilution Of Precision (DOP) est calculé en tenant compte de l’atténuation du signal WiFi, qui suit
un modèle logarithmique de la puissance. De plus, des contraintes matérielles sont imposées, telles que
le fait que les balises doivent être fixées au plafond, limitant ainsi l’espace de recherche des positions
optimales.

9

5.2.1 DOP et atténuation des ondes WIFI[4]

Le Dilution Of Precision (DOP) est une mesure de la qualité géométrique d’un ensemble de points
de mesure (antennes). Il est calculé en prenant en compte l’atténuation des ondes WiFi qui suit une loi
de puissance logarithmique, exprimée par la formule suivante où P (d) est la puissance reçue à une
distance d, P (d0) est la puissance de référence à une distance d0, et n est le coefficient d’atténuation.

P (d) = P (d0) − 10n log10

(
d

d0

)
(6)

5.2.2 Paramètre d’évaluation RMSE

La Root Mean Square Error (RMSE) pour l’emplacement des antennes est calculée en utilisant les
positions estimées et réelles:

RMSE(Ωn) =

√√√√ 1
L

L∑
i=1

(xi − ŷi)2 (7)

Ici, Ωn représente la configuration des balises optimisées par BPSA, xi est la position réelle, et ŷi

est la position estimée.

5.2.3 Résultats

L’optimisation de l’emplacement des antennes WiFi en utilisant l’algorithme BPSA a mené à des
améliorations significatives de la distribution de la force du signal dans l’environnement simulé. Les
résultats montrent une augmentation progressive de la couverture moyenne en pourcentage de la force
du signal avec l’ajout de balises supplémentaires. Avec trois balises, la couverture moyenne était de 53%,
ce qui s’est amélioré à 60% avec quatre balises, et a atteint 63% avec cinq balises. Cette progression
suggère que l’ajout de balises contribue à une meilleure uniformité de la couverture du signal, ce qui est
essentiel pour la localisation précise et fiable dans des applications telles que la navigation intérieure et
le suivi d’objets.

Figure 5 – Optimisation du placement par BPSA pour 3 balises

10

Cependant, il est important de noter que l’augmentation de la couverture diminue avec chaque
balise ajoutée, indiquant des rendements décroissants. Cela implique qu’il existe un nombre optimal
de balises au-delà duquel les améliorations de couverture deviennent marginales par rapport au coût
d’installation supplémentaire.

En conclusion, l’algorithme BPSA se révèle être un outil efficace pour l’optimisation de la localisation
des antennes WiFi, permettant d’atteindre un équilibre entre une couverture étendue et la minimisation
des coûts. Les résultats soulignent l’importance d’une planification stratégique dans le déploiement des
réseaux sans fil pour des applications de localisation intérieure, avec un nombre de balises optimisé
pour une performance maximale.

Figure 6 – Optimisation du placement par BPSA
pour 4 balises

Figure 7 – Optimisation du placement par BPSA
pour 5 balises

11

6 Localisation du robot par ondes WIFI

6.1 Simulation avec les obstacles et les 9 antennes

La simulation de la localisation du robot par ondes WiFi a été réalisée dans un espace 3D configuré
avec 9 antennes WiFi et des obstacles modélisés pour émuler un environnement intérieur complexe.
Les antennes ont été placées stratégiquement pour maximiser la couverture du signal et minimiser les
interférences et les zones d’ombre causées par les obstacles. La position estimée du robot est obtenue
par l’application de l’algorithme de trilatération, qui utilise la puissance des signaux reçus des antennes
pour déterminer sa localisation.

Les figures 8 et 9 présentent deux vues différentes de la simulation. Les points bleus représentent
les antennes, tandis que le point rouge illustre la position réelle du robot, et le point vert indique
la position estimée obtenue par la simulation. Les rectangles rouges représentent les obstacles dans
l’espace, tels que les murs ou le mobilier, qui peuvent affecter la propagation des signaux.

Figure 8 – simulation 3D vue 1 Figure 9 – simulation 3D vue 2

12

6.2 Étude de l’influence du nombre de balises sur l’erreur de localisation

Les erreurs de positionnement sont plus faibles avec trois balises (0.61 dans l’air et 1.07m avec
obstacle). Cependant, au-delà de quatre balises, on observe une décroissance des moyennes d’erreurs
de position qui semble converger. La précision accrue avec trois balises peut être due à la manière
dont l’erreur sur la position est générée (ajout d’un bruit proportionnel à la puissance du signal). Une
manière de pallier ce problème pourrait être de réaliser la trilatération uniquement avec les trois balises
les plus proches.

Dans les environnements sans obstacles, l’amélioration de la précision est plus marquée, probable-
ment en raison de la propagation directe des signaux. Les obstacles, tels que les murs, introduisent
des réflexions et des atténuations du signal qui perturbent la mesure de la distance, entraînant une
réduction de la précision.

Figure 10 – Moyenne et écart type des erreurs de localisation en fonction du nombre de balises dans
des environnements avec et sans obstacles.

13

Conclusion
À travers cet article, nous avons exploré l’état de l’art des technologies et des méthodes de

localisation en intérieur, mettant en évidence les défis et les opportunités inhérents à ce domaine en
évolution rapide. L’optimisation de l’emplacement des antennes WiFi via l’algorithme BPSA illustre
l’importance de l’application de techniques d’optimisation avancées pour améliorer la précision et la
fiabilité de la localisation intérieure. En tenant compte de l’atténuation des ondes et des contraintes
matérielles, les résultats obtenus démontrent une amélioration substantielle de la distribution du signal
et de la précision de localisation avec une augmentation du nombre de balises.

Cette recherche souligne la nécessité d’une planification minutieuse et d’une conception réfléchie lors
du déploiement des systèmes de localisation intérieure, en tenant compte des caractéristiques uniques de
chaque environnement. Alors que nous progressons vers un avenir de plus en plus connecté, les travaux
présentés ici offrent des orientations précieuses pour la mise en œuvre de solutions de localisation
intérieure robustes et efficaces, capables de répondre aux exigences des applications émergentes dans
des domaines tels que l’automatisation industrielle, la santé connectée et la domotique intelligente.

14

Table des figures
1 Modèle d’atténuation des ondes WiFi dans l’air d’une antenne WIFI 5
2 Modèle d’atténuation des ondes WiFi dans l’air d’une antenne WIFI 6
3 Trilatération . 7
4 Implémentation de la multilatération . 8
5 Optimisation du placement par BPSA pour 3 balises 10
6 Optimisation du placement par BPSA pour 4 balises 11
7 Optimisation du placement par BPSA pour 5 balises 11
8 simulation 3D vue 1 . 12
9 simulation 3D vue 2 . 12
10 Moyenne et écart type des erreurs de localisation en fonction du nombre de balises dans

des environnements avec et sans obstacles. 13

Références
[1] Wajih Abdallah. La résolution du déploiement 3D d’objets connectés sans fil à l’intérieur en

utilisant un schéma hybride entre les méthodes géométriques de déploiement et les algorithmes
d’optimisation distribués. Ph.d. thesis, Université Toulouse le Mirail - Toulouse II, 2022. NNT :
2022TOU20043. ii, 4

[2] Jean-Pierre Barbot, Isabelle Kyoko Vin, Pan Liu, Ludovic Chamoin, and Dominique Placko.
Géolocalisation et navigation à l’intérieur des bâtiments. In URSI France. Laboratoire SATIE, ENS
Paris-Saclay, 2022. ii, 1, 4, 7

[3] Soufien Kammoun. Géolocalisation à l’intérieur d’un bâtiment pour terminaux mobiles. Ph.d. thesis,
Télécom ParisTech, 2016. NNT : 2016ENST0041. ii, 1, 4, 9

[4] Frédéric Lassabe. Géolocalisation et prédiction dans les réseaux Wi-Fi en intérieur. Ph.d. thesis,
Université de Franche-Comté, 2009. NNT : 2009BESA2062. ii, 2, 4, 5, 10

15

Deterministic model comparison for reinforcement learning in a robotic arm
environment.

Taddeo Guérin

KEYWORDS

Reinforcement Learning, Robotic Arm, Deep
Learning, Agent-Critic, DDPG, TD3, panda-gym.

ABSTRACT

This article presents different AI models in a re-
inforcement learning context. We compare the
AC (Agent-Critic) reinforcement learning model
with the deep reinforcement learning models DDPG
(Deep Deterministic Policy Gradient) and TD3
(Twin-Delayed Deep Deterministic Policy), in the
context of a robotic arm. To do this, we use panda-
gym’s Panda Reach environment, which simulates
the Franka Emika arm by adding the functions
required for reinforcement learning. The various
models must learn to move the robot’s gripper to
a specific target, and are rewarded accordingly.
Finally, this article shows that the deep models
(DDPG and TD3) are much faster at learning this
task, learning twice as fast as their shallow counter-
part (AC).

INTRODUCTION

Rapid advances in the field of robotics have trans-
formed the way machines interact with their environ-
ment, offering new and promising prospects for im-
proving various sectors of society. Among the most
striking innovations, robotic arms are emerging as a
crucial component, redefining the manipulation and
interaction capabilities of machines. These devices,
designed to mimic human dexterity, represent the pin-
nacle of convergence between advanced mechanics
and artificial intelligence. Within this synergy, rein-
forcement learning stands out as an automated learning
methodology that has revolutionized the way robots
assimilate and improve their skills over time. This
approach is inspired by the learning paradigm based
on rewards and punishments, offering machines the
ability to optimize their actions according to the con-
sequences of their decisions. In the context of robotic
arms, reinforcement learning enables robots to adapt
autonomously to dynamic and complex environments.
In recent years, numerous studies have applied deep
reinforcement learning algorithms to the manipulation
of robotic arms, with excellent results.

This article explains the basics of deep reinforce-
ment learning, as well as the results of implementing

deterministic Actor-Critic, DDPG and Twin-Delayed
models in the panda-gym library environment.

1 PRELIMINARY KNOWLEDGE

1.1 Reinforcement Learning

Reinforcement learning is a complete, interactive, goal-
oriented agent that interacts with the environment and
learns what to do to maximize reward. It belongs
to a branch of machine learning, but differs from su-
pervised and unsupervised learning, which are widely
used in the field of machine learning. Supervised learn-
ing aims to derive prediction functions from labeled
training data. However, in reinforcement learning, the
agent cannot obtain enough labeled actions. Unsu-
pervised learning aims to find hidden structures from
unlabeled training data. Reinforcement learning aims
to obtain the greatest reward, not the structure of the
data. The Markov Decision Process (MDP) repre-
sents the mathematically ideal form of reinforcement
learning problems. In most cases, the algorithm’s per-
formance can only be guaranteed if the reinforcement
learning problem can be abstracted in MDP form. In
the reinforcement learning system, there are four main
sub-elements: a policy, a reward signal, a value func-
tion and possibly a model of the environment. Figure
1 shows the ”agent-environment” interaction of the
Markov decision process.(1)

Figure 1: Agent-environment interaction

MDP is as tuple : MDP =
(
S, A, P, R, γ

)
where :

- S: The set of states of the environment that the
robot interacts with st ∈ S is the state of the Agent at
time t;

- A: The set of executable robot actions, at ∈ A is
the action performed by the robot at time t, such as
joint rotation, back-and-forth movements, etc;

- PA: The dynamic/transition model for each action;
- R: a reward function;
- γ ∈ [0,1]: the discount factor.

Finally, the objective of this learning process is to
find the optimal value function v* and the optimal
policy π*.(1)

1.2 Deep Learning

Deep neural networks, or artificial neural networks,
seek to mimic the human brain through a combina-
tion of data inputs, weights and biases. These ele-
ments work together to accurately recognize, classify
and describe objects within the data. Deep neural
networks consist of several layers of interconnected
nodes, each building on the previous layer to refine
and optimize prediction or categorization. This pro-
gression of computations through the network is called
forward propagation. The input and output layers of
a deep neural network are called visible layers. The
input layer is where the deep learning model ingests
data for processing, and the output layer is where the
final prediction or classification is made. Another pro-
cess called backpropagation uses algorithms, such as
gradient descent, to calculate prediction errors, then
adjusts the weights and biases of the function by mov-
ing backwards through the layers in order to train the
model. Together, forward propagation and backpropa-
gation enable a neural network to make predictions and
correct errors accordingly. Over time, the algorithm
becomes progressively more accurate. The algorithms
I’m going to use belong to this branch of machine
learning.(2)

2 THE ENVIRONMENT: PANDA REACH,
FROM PANDA-GYM

I used the PandaReach-v3 environment, created using
the PyBullet physics engine, which has the advantage
of being open-source and offers very robust simulation
performance. The environment is integrated with Ope-
nAI Gym, enabling the use of all learning algorithms
based on this programming interface. It simulates
Franka Emika1’s Panda robotic arm, a 7-degree-of-
freedom arm with parallel finger grippers, as well as
a target. The agent’s task is to place the arm’s gripper
on the target and stay there. The reward is calculated
according to the number of steps required to reach the
target.(3)

Figure 2: Simulation software architecture

The physic engine creates the arm and target in
the environment, then sends their position back to the

Robot topic and the Task topic. These topics then trans-
mit their observations, so Task gives the agent the de-
sired task and its reward. This information then leaves
the environment to enter the agent’s model, which will
then give the command for an action to the Robot (in
its topic), which will carry it out. The main class,
called RobotTaskEnv, contains a robot attribute and a
task attribute. When the agent performs an action and
sends it to the environment, this action is transferred
to the robot. The collected observation is the con-
catenation of robot-specific observations (such as the
position of the gripper, for example) and task-specific
observations (such as the position of objects, for exam-
ple). Finally, to follow the Multi-Goal framework, the
desired goal and the achieved goal are derived from
the task attribute.(3)

Figure 3: Panda Reach environment

3 REINFORCEMENT LEARNING ALGO-
RITHMS

3.1 Agent-Critic

The actor-critic approach is a popular technique in RL
that combines the advantages of value-based methods
(such as Q-learning) and policy-based methods (such
as policy gradient methods). In an actor-critic system,
we have two main components:

• Actor: The actor is responsible for selecting ac-
tions. He learns a policy π(a|s) that directly maps
states to actions. Unlike value-based methods, the
actor does not aim to estimate the value of each
action, but rather to generate actions directly.

• Critic: The critic is responsible for evaluating
the actions taken by the actor. It learns a value
function V (s) or Q(s, a) that estimates the value
of a given state or action. This estimate is used
to evaluate the actor’s performance and guide his
learning

The key to the actor-critic approach lies in the way
actor and critic interact and improve each other. Here’s
how it usually works:

1. The actor selects an action based on the current
policy π(a|s).

2. The action is executed in the environment.

3. The critic evaluates the quality of the action
according to the value function V (s) or Q(s, a).

4. The error between the predicted value and the
actual value is calculated and used to update the critic.

5. The actor is updated using the critic’s error signal
to improve its policy.(4)

Figure 4: Agent-Critic learning

This feedback loop enables the actor to learn to
select actions that maximize the value estimated by
the critic. In return, the critic benefits from the actor
by providing examples of real actions and helping him
refine his value estimates. (4)

There are several variants of the actor-critic ap-
proach, but here I’ve decided to use a deterministic
model. Here, the actor produces specific actions ac-
cording to the observed state, rather than calculating a
probability distribution as in a stochastic model. These
deterministic models, often called DPG (deterministic
policy gradient), are particularly useful in environ-
ments where actions need to be precise and determinis-
tic, for example in control tasks where precise actions
are required to manipulate a physical system. How-
ever, they can lack computing power, which is why the
Deep deterministic policy gradient was created.

3.2 DDPG

The exact algorithm can be seen below:(5)

Algorithm 1 DDPG algorithm
Randomly initialize critic network Q(s, a|θQ) and actor µ(s|θµ) with
weights θQ and θµ.
Initialize target network Q′ and µ′ with weights θQ′ ← θQ, θµ′ ← θµ.
Initialize replay buffer R
for episode = 1,M do

Initialize a random process N for action exploration
Receive initial observation state s1
for t = 1, T do

Select action at = µ(st|θµ)+Nt according to the current policy
and exploration noise

Execute action at and observe reward rt and observe st+1

Store transition (st, at, rt, st+1) in R
Sample a random minibatch of N transitions (si, ai, ri, si+1)

from R
Set yi = ri + γQ′(si+1, µ

′(si+1|θµ′)|θQ′)
Update critic by minimizing the loss:
L = 1

N

∑
i(yi −Q(si, ai|θQ))2

Update the actor policy using the sampled policy gradient:
∇θµJ ≈ 1

N

∑
i∇aQ(s, a|θQ)|s=si,a=µ(si)

∇θµµ(s|θµ)|si
Update the target networks:
θQ′ ← τθQ + (1− τ)θQ′

θµ′ ← τθµ + (1− τ)θµ′
end for

end for

Here’s how the DDPG works:
1. Actor: The actor in the DDPG is responsible for

selecting actions in a deterministic way. It takes as

input the current state of the environment and directly
produces an action. Unlike a stochastic actor, which
produces a distribution of actions, the DDPG actor
generates a specific action.

2. Critic (Critic): The critic in the DDPG is a value
function that evaluates the quality of the actions taken
by the actor. It takes the state and the action as inputs
and estimates the value of this state-action pair. This
makes it possible to evaluate the actor’s performance
and guide his learning.

3. Batch Learning: Stores transitions in a replay
buffer and randomly samples mini-batches of these
transitions for learning.

4. Actor and critic update: The actor and critic are
updated using policy gradients and value gradients.
The actor is updated using a deterministic policy gradi-
ent, i.e. the gradient of the value predicted by the critic
with respect to the actor’s parameters. The critic is
updated by minimizing the loss between the estimated
value and the target value, calculated using the actual
reward and the next-state value predicted by the target
critic.

5. Target Networks: To stabilize learning, the
DDPG uses target networks to estimate the value of the
next state in the critic’s update. These target networks
are updated slowly from the actor’s and critic’s main
networks, enabling greater convergence.(5)

The DDPG can be further enhanced, in a variant
called TD3.

3.3 Twin-Delayed Deep Deterministic Policy

The Twin Delayed Deep Deterministic Policy Gradient
(TD3) is an extension of the Deep Deterministic Policy
Gradient (DDPG), itself a variant of the Actor-Critic
(AC) algorithm in the field of reinforcement learning
(RL). TD3 aims to improve the stability and perfor-
mance of DDPG by introducing several innovations.
Firstly, TD3 uses two critics to estimate the action
value. This configuration reduces the overestimation
of action values by critics, a common problem in meth-
ods based on action-value functions (Q-functions). By
taking the minimum value of both critics, TD3 miti-
gates the effects of overestimation errors. Secondly,
TD3 uses a noisy target policy to explore the action
space more efficiently. Unlike DDPG, which adds
noise to the action selected by the main policy, TD3
adds noise to the target policy. This approach reduces
the risk of overfitting to noise errors introduced by the
main policy.(6)

In addition, TD3 uses a double-deterministic pol-
icy, meaning that it learns two deterministic policies.
This further reduces the variance in action value esti-
mates and contributes to better learning stability. Fi-
nally, TD3 uses a less frequent policy update than
DDPG. This technique, known as delayed update, con-
sists of updating the policy only every two critical
updates. This stabilizes learning by reducing potential
oscillations in action values and mitigating divergence
problems.(6)

This algorithm can be seen here:(6)

Algorithm 2 TD3
Initialize critic networks Qθ1

, Qθ2
, and actor network πϕ with random

parameters θ1, θ2, ϕ
Initialize target networks θ′

1 ← θ1, θ′
2 ← θ2, ϕ′ ← ϕ

Initialize replay buffer B
for t = 1 to T do

Select action with exploration noise a ∼ πϕ(s) + ϵ, ϵ ∼ N(0, σ)
and observe reward r and new state s′

Store transition tuple (s, a, r, s′) in B
Sample mini-batch of N transitions (s, a, r, s′) from B
ã← πϕ′ (s′) + ϵ, ϵ ∼ clip(N(0, σ̃),−c, c)
y ← r + γ mini=1,2 Qθ′

i
(s′, ã)

Update critics: θi ← argminθi
1
N

∑
(y −Qθi

(s, a))2

if t mod d = 0 then
Update ϕ by the deterministic policy gradient:
∇ϕJ(ϕ) = 1

N

∑
∇aQθ1

(s, a)|a=πϕ(s)∇ϕπϕ(s)

Update target networks:
θ′
i ← τθi + (1− τ)θ′

i
ϕ′ ← τϕ + (1− τ)ϕ′

end if
end for

4 RESULTS

I therefore created three reinforcement learning algo-
rithms: a deterministic actor-critic, a DDPG and a TD3.
In order to be able to compare these models effectively,
I kept the same hyperparameters, whether in terms of
actors, critics or exploration factors. The training is
carried out on the PandaReach-v3 simulation, which
lets an articulated arm touch a target in space. I ran
my tests on 300 episodes, with 50 steps per episode.

Figure 5: Results for the Agent-Critic Model

Figure 6: Results for the DDPG Model

Figure 7: Results for the TD3 Model

As Figure 5 shows, the Agent-Critical model
evolves relatively slowly. During the first 40 steps,
it achieves very little of what is asked of it.Then comes
a phase that might be called a transition phase. During
this period, the model succeeds on average only half
of the time. The model passes this phase in around
sixty steps, before stabilizing. There are still times,
however, when this model completely misses the mark,
as can be seen from the downward-pointing peaks.

The DDPG model starts to converge much faster.
From the 20th step onwards, it switches to transitional
mode and remains in this mode for 40 steps, before
converging. Compared with the previous model, this
one is much faster and more efficient,with half as many
steps in each phase, and a much higher success rate.

The TD3 model behaves in an interesting way. It
stays longer than the DDPG model at a very low suc-
cess rate (40 steps versus half for the DDPG). Never-
theless, it remains in the transition phase for a short
time, with a success rate of 50%. While the other
models spend 60 and 40 steps in this mode, the DDPG
model spends only ten steps in it. In fact, it stabi-
lizes extremely quickly towards the optimal model,
enabling it to hit its targets quickly. This makes it all
the more interesting.

5 CONCLUSION

In conclusion, we can see that all the models finally
manage to perform the required task, but in a different
number of steps. The DDPG, an improved model of
Agent-Critic, is considerably faster than its predeces-
sor, halving its learning speed. The TD3, on the other
hand, closely resembles the DDPG. It finally stabilizes
with the same number of steps as its predecessor, but
with a different behavior: it stays longer in the failure
phase, and very little time in the transition phase. The
DDPG stays half as long in the failure phase, but twice
as long in the transitional phase. This may be due
to the complexity of the model, which takes longer
to understand what’s being asked of it, but gets there
more quickly.

References

[1] H. Guan, ”Analysis on Deep Reinforcement
Learning in Industrial Robotic Arm,” 2020 In-
ternational Conference on Intelligent Comput-
ing and Human-Computer Interaction (ICHCI),
Sanya, China, 2020, pp. 426-430.

[2] Ludovic Arnold, Sébastien Rebecchi, Sylvain
Chevallier, Hélène Paugam-Moisy, ”An Intro-
duction to Deep Learning”, European Sympo-
sium on Artificial Neural Networks (ESANN),
Apr 2011, Bruges, Belgium.

[3] Quentin Gallouédec, Nicolas Cazin, Emmanuel
Dellandréa and Liming Chen, ”Multi-Goal Rein-
forcement Learning environments for simulated
Franka Emika Panda robot”, June, 2021

[4] Ivo Grondman, Lucian Busoniu, Gabriel Lopes,
Robert Babuska. A survey of actor-critic rein-
forcement learning: standard and natural pol-
icy gradients. IEEE Transactions on Sys- tems,
Man, and Cybernetics, Part C: Applications and
Reviews, 2012, 42 (6), pp.1291-1307.

[5] Lillicrap, Timothy P, Hunt, Jonathan J, Pritzel,
Alexander, Heess, Nicolas, Erez, Tom, Tassa,
Yuval, Silver, David, and Wierstra, Daan. Con-
tinuous control with deep reinforcement learn-
ing. 2015.

[6] Dankwa, S., Zheng, W.: Twin-delayed DDPG: a
deep reinforcement learning technique to model
a continuous movement of an intelligent robot
agent. In: Proceedings of the 3rd International
Conference on Vision, Image and Signal Pro-
cessing, pp. 1–5. Association for Computing
Machinery, New York (2019).

1

Constrained Path planning with RRT*
Hugo Hofmann, Student from ENSTA Bretagne, Brest, France (e-mail: hugo.hofmann@ensta-bretagne.org)

Abstract—In the field of Robotics and particularly when
it comes to autonomous robots, being able to plan paths or
trajectories is usually very useful if not invaluable in the context
of the mission the robots must accomplish. Many algorithms such
as Djikstra’s or the A* algorithm[1] have tackled the challenge
of computing such paths within graphs with the main goal in
mind being to find the shortest in terms of distance. However,
because these methods revolve around a pre-existing graph, and
in order to broaden the possibilities, this paper will explore
the RRT* algorithm and its use in state space path planning,
by presenting an implementation and an attempt to integrate
kinematic constraints to path planning.

Index Terms—Path Planning, RRT, RRT*, Graph Search,
Obstacle avoiding

I. INTRODUCTION

IN the dynamic realm of robotics, where autonomous agents
navigate complex environments, the ability to plan efficient

paths or trajectories is not merely advantageous but often
essential for mission success. Traditional path planning al-
gorithms such as Djikstra’s and the A* algorithm have long
served as pillars in the field, excelling at computing paths
within predefined graphs with a primary focus on minimizing
distance. However, as the demands of robotics expand into
more intricate terrains and scenarios, the limitations of these
conventional methods become increasingly evident.To broaden
the spectrum of possibilities and cater to the evolving needs
of autonomous systems, this paper delves into the realm
of Rapidly-exploring Random Trees (RRT*) algorithm for
path planning in state spaces. Unlike its predecessors, RRT*
operates in a realm untethered by pre-existing graphs, offering
a more adaptable approach to path computation. The flexibility
of RRT* not only facilitates pathfinding in complex and dy-
namic environments but also opens avenues for the integration
of diverse constraints, including kinematic considerations, into
the planning process.

A. RRT* algorithm

Unlike other methods, the RRT*[2] algorithm builds the
graph it relies on as it goes, which allows for better planning.
For instance, in the simple case of finding a valid path
within a geographical 2D space with obstacles (ex: black
pixels on an image), building the graph can allow to connect
remote nodes together, which wouldn’t be possible in 4 or
8-connected graphs where the paths found usually ”zig-zag”
and are rather unrealistic. Building the graph also allows for
path planning in a non-discrete space, which opens the door
to more accurate paths provided that the constraints can be
properly and efficiently computed (ex: in the case of obstacles
in a 2D space, 2D intervals can be used).

Algorithm 1 RRT* Algorithm

Require: Initial configuration qinit, Goal region Qgoal, Maxi-
mum number of iterations Kmax, Step size ∆q, Neighbor-
hood radius r, Collision checker function CollisionFree,
Cost function c, and Parent pointer array Parent[.].

Ensure: Optimal path from qinit to Qgoal.
1: Initialize tree T with root node containing qinit.
2: for k = 1 to Kmax do
3: Generate random configuration qrand in the configuration

space.
4: Find nearest node qnearest in T to qrand.
5: Generate new node qnew by moving from qnearest towards

qrand with step size ∆q.
6: if CollisionFree(qnearest, qnew) then
7: Find nearby nodes within radius r of qnew.
8: Set qmin = qnearest.
9: Set cmin =∞.

10: for each nearby node qnear do
11: if CollisionFree(qnear, qnew) then
12: cnear = c(qnear) + dist(qnear, qnew)
13: if cnear < cmin then
14: qmin = qnear
15: cmin = cnear
16: end if
17: end if
18: end for
19: Set Parent[qnew] = qmin.
20: Add qnew to T .
21: for each nearby node qnear do
22: if CollisionFree(qnew, qnear) then
23: cnew = c(qnew) + dist(qnew, qnear)
24: if cnew < c(qnear) then
25: Parent[qnear] = qnew
26: end if
27: end if
28: end for
29: end if
30: end for
31: return Path from qinit to Qgoal using Parent[.].

II. CONSTRAINED PATH PLANNING

A. Car kinematic Model

Let us consider a car of length L with position (x, y) in
space and heading θ. Assuming the car does not slip, we can
consider the linear speed v as well as acceleration and steering
angle commands, respectively a and δ. We obtain a simple

2

Fig. 1: Computing the path between two nodes zn and zn+1

kinematic model with state X = [x, y, v, θ]T .

ẋ
ẏ
v̇

θ̇

 =

v cos(θ)
v sin(θ)

a
v tan(δ)

L

 = f(X,u) with u = [a, δ]T (1)

This kinematic model is the most simple describing a car,
and in further versions of the algorithm it could be improved,
taking into account more dynamics-related constraints[3].

In order to do path planning in the state space, we also
need to define the constraints associated with the space. In the
case of the car, let’s define maximum centripetal acceleration
acmax

so that at all times |ac| < |acmax
|. This makes sure

(under reasonable but of course uncomplete assumptions) that
the vehicle does not slip. acmax depends on the vehicle’s
characteristics. We can then link the state and commands of
the system with this constraint by writing the curve radius R

R = L/ sin(δ)

ac =
v2

R
=
v2 sin(δ)

L
(2)

To properly apply the algorithm and especially the steering
function, we need a control strategy which corresponds to the
aim of the path planning. In the case where we want the car
to reach its destination as quickly as possible, we can use the
following strategy :

vR = min(vn+1,

√
acmaxL

sin(δ)
) (3)

a = clamp[−am,am](Kp(vR − v)) (4)

δ = clamp[−δm,δm](Kstr arctan(Kctect) +Kstreθ) (5)

The algorithm requires randomly generating nodes (ie,
states); here the generation needs to account for the constraint
on v, so that X ∈ Dx × Dy × Dv × Dθ where Dx and Dy

define the 2D boundaries of the environment, Dθ = [0, 2π]

and Dv = [0,
√

acmaxL
sin(δm)].

Note that because of the non-holonomic nature of the car
kinematic model, we cannot expect the robot to reach each
node exactly, as there is no asymptotically stable continous
control law that will park a non holonomic system at a
point[4]. Instead, we need to use a criteria to quickly determine
if a path is viable or not (apart from the collision from
obstacles). As illustrated in Figure 1, we can define this criteria
using the half-plane Pn+1 defined by zn+1 and validation
radius R:

1) Integrate the system using the control law until the
vehicle crosses the limit Pn+1

2) The path is viable if the vehicle is in validation radius
R around zn+1

The R criteria can (and should) in fact be applied not just
in the 2D geographical space (x, y) but also in the entire state
space, so that the algorithm makes sure the robot can reach the
node with the right speed and heading. This can be done by
defining a norm in R4, or by splitting the criteria into several
(one in the (x, y) plane, one with the speed error and one with
the heading error).

III. IMPLEMENTATIONS

A. Shortest paths in euclidean distance

The first test of the algorithm is the most simple one, where
the criteria to determine the path is the simplest, and instead of
integrating the vehicle’s kinematic model we simply consider
straight lines between the nodes, using their length as the
”cost” for each edge of the graph. Here the state variables
are simply [x, y]T . The whole program was written in Python
using the Numba module, which pre-compiles functions when
they’re called for the first time and allows for faster computing
times. In order to test the algorithm in various situations and
for debugging purposes as well, an interface was developed
allowing the user to draw obstacles, load images, etc.

Fig. 2: Path found on an urban map

3

Fig. 3: Tree graph (green) and path (red) in an hexagonal maze

Fig. 4: Shortest (but obviously not fastest) trajectory on the
Silverstone racetrack

Figure 3 shows how despite the fact that eventually the
algorithm does converge towards the optimal solution as we
add more and more nodes to the graph, the way the nodes are
randomly generated can greatly influence performances when
it comes to the number of iterations needed to cover the entire
environment. We can see that with the lower area of the maze
being empty of any links. On the other hand, we may also
consider that if we only need to reach one goal, many of the
nodes, generated in completely opposite directions of that of
the destination, may be ”useless”: in that case we may want to
try to speed up the search by generating the nodes ”towards”
the destination, in a similar fashion as the A* algorithm [1].

B. Constrained Path planning

In this section we implement the previously introduced
kinematic model so that the algorithm can account for the
way the vehicle moves. We could, just like before in III-A,
compute the shortest path using the length of the path as the
cost function. We obtain in this case:

C(x, u) =

∫ tend

0

v(t)dt (6)

In reality, we are now free to use any function using
trajectory x(t) or commands u(t) or a combination of both for
the cost function. For example, let us say that we now want to

find the fastest trajectory to the destination. The corresponding
cost function is now :

C(x, u) = tend (7)

where tend is the total time of the trajectory.

(a) Simulation of the fastest path with
2114 nodes generated (the actual curves
are not displayed here, and the nodes are
simply linked by segments)

(b) Reference race line on the Silverstone
racetrack [5]

Fig. 5: Attempting to find the fastest path on the Silverstone
racetrack

Fig. 6: First results from the constrained planning

The results show that the algorithm is almost functional;
in Figure 5a we can see the trajectory being quite close to
what one might expect from a usual race line on a racetrack.
The major issue remains the computation time (here several
minutes).

IV. LIMITATIONS, IMPROVEMENTS AND FURTHER
APPLICATIONS

A. Better node sampling

Applying the algorithm with the constraints presented ear-
lier reveals the main issue with this method, which is generat-
ing ”relevant” state nodes quickly and efficiently in the state
space, which is particularly computationally inefficient consid-
ering the large number of computations for each potential link

4

Fig. 7: Dynamic generation of nodes

between two nodes. One approach to improve on this issue
would be to think of a better way to generate the nodes.

Although not implemented or tested, a method is proposed
here: an algorithm of ”exploration” that takes into account the
previously generated nodes (in the (x, y) plane if not in the
entire state space) to split the state space into three areas as
illustrated in Figure 7:

1) Explored area: the area enclosing or at least represent-
ing all previously generated nodes. Can be computed
through several ways (ex: convex hull of the node set).

2) Explorable frontier: the area at the edge of the Explored
area; prefered area to generate new nodes.

3) The rest: obstacles, empty areas, etc

This method allows for efficient generation of nodes, by
using a strategy similar to the ε-greedy policy one may use
in the field of reinforcement learning[6]. We may thus define
exploration parameter ε ∈]0, 1[to use in the new sampling
algorithm 2.

Algorithm 2 Rapid Exploration Sampling Algorithm (RESA)

n← random(0, 1)
if n ≥ ε then
znew ← sample(explored area)

else
znew ← sample(frontier)

end if
return znew

This method should avoid generating too many nodes that
end up having no valid parent within the graph,

B. Application in complex manoeuvers

Using kinematic constraints, the RRT* algorithm is able
to compute complex behaviors. By changing the method a
little bit, for example, by changing the state space the nodes
are generated in, and adding different constraints, one may
apply the method for different applications, including one of
non continuous paths. In particular, in the case of a car-like
robot, we may be interested in adapting the algorithm so that
it yields a path giving the optimal strategy for a complex
manoeuver such as a parking exercise. In this case each node
would represent a stopping point (hence ∀n, speed vn = 0).
The constraints on the speed would also be updated to allow
for negative speed in between nodes.

C. Tire wear constraint

Far from this paper’s author the idea that speed is not a
great (and fun) criteria when computing paths. However one
may sometimes need to account for other aspects, including
the longevity. Besides the autonomy, we may for example
be interested in sparing the tires. Using a simple tire fatigue
model such as Schallamach’s[7], we may be able to compute
paths that tend to minimize the tire fatigue over long periods
of time, an interesting perspective in the field of industrial
robotics for instance.

V. CONCLUSION

The developed simulation does seem to prove that the con-
cept works, with satisfying paths being found based on several
constraints set. However, besides many small improvements
and further experiments, one major issue remains in the case
of this implementation, which is the computational efficiency
of the algorithm, and especially the sampling part.

REFERENCES

[1] W. Zeng and R. L. Church. Finding shortest paths on
real road networks: The case for A*. April 2009. https:
//zenodo.org/records/979689.

[2] Sertac Karaman, Matthew R. Walter, Alejandro Perez,
Emilio Frazzoli, and Seth Teller. Anytime Motion Plan-
ning using the RRT*. In 2011 IEEE International Con-
ference on Robotics and Automation, pages 1478–1483,
Shanghai, China, May 2011. IEEE. http://ieeexplore.ieee.
org/document/5980479/.

[3] R. Frezza, A. Beghi, and G. Notarstefano. Almost Kine-
matic Reducibility of a Car Model with Small Lateral Slip
Angle for Control Design. In Proceedings of the IEEE
International Symposium on Industrial Electronics, 2005.
ISIE 2005., pages 343–348, Dubrovnik, Croatia, 2005.
IEEE. http://ieeexplore.ieee.org/document/1528934/.

[4] R W Brockett. Asymptotic Stability And Feedback Stabi-
lization.

[5] Circuit in detail - Pictures. https://www.evo.co.uk/advice/
1952/circuit-in-detail-pictures.

[6] Richard S Sutton and Andrew G Barto. Reinforcement
Learning: An Introduction.

[7] Marcus Grip. Tyre Performance Estimation during Normal
Driving.

https://zenodo.org/records/979689
https://zenodo.org/records/979689
http://ieeexplore.ieee.org/document/5980479/
http://ieeexplore.ieee.org/document/5980479/
http://ieeexplore.ieee.org/document/1528934/
https://www.evo.co.uk/advice/1952/circuit-in-detail-pictures
https://www.evo.co.uk/advice/1952/circuit-in-detail-pictures

Utilisation de la couleur dans la reconnaissance
d’objet en robotique marine

Introduction à la recherche

Emilie Ledoussal
Master Robotique
ENSTA Bretagne

Brest, France
emilie.ledoussal@ensta-bretagne.org

Abstract—This article looks at the use of color for object
recognition in marine robotics. We’ll refer here to several ways
of getting around the problem of color attenuation due to water
turbidity, assuming that the object can still be seen.

Editor Index Terms—robotic vision, color, marine robotics

I. INTRODUCTION

Exploring the seabed is a major challenge for many people.
Given the difficulty of sending directly a human being into this
hostile environment, the advent of marine robotics has revolu-
tionized this approach, using cameras and various sensors to
provide interesting feedback, enabling us to map the seabed,
monitor water quality, study marine life and much more.

In particular, let’s look at the challenges posed by object
recognition in an underwater environment. Low visibility is
one of the most obvious and constraining. Unlike terrestrial
environments where light can easily penetrate, underwater
waters absorb and disperse light, reducing visibility and often
making visual recognition difficult or impossible. In particular,
colors can be altered, which can pose problems for overly
simple image processing.

Color is an interesting feature in marine robotics. In partic-
ular, because of its robustness and ease of use. It can be used
for detection and classification of underwater fauna, locating
submerged objects and mapping the seabed. Despite all of
this, underwater color vision is greatly complicated by the
non-constant attenuation of vision, due, for example, to algae
and sediments.

II. THEORETICAL NOTIONS

A. Light and color of an object

1) Colour perception of an object: The perception of an
object’s color is the result of various physical components,
three of which are listed below. Firstly, the spectral compo-
sition of the light illuminating the colored object. The same
object will have a different color if illuminated by the sun
or an UV lamp. Secondly, the spectral reflectance of the
object, i.e. its light-reflecting properties as a function of its

composition and surface. Finally, the transmission of light
through the surrounding medium, such as air or water. It’s
this third component in particular that we’re interested in here,
since it’s through water that we lose information about the
object’s color.

2) Object Lighting: Here, we’re going to look at the
lighting of an object. When an object is illuminated, it absorbs
some of the light and reflects the rest. Reflection depends on
various parameters, such as :

• the position and direction of the light source
• the color and intensity of the light source
• the position and direction of the object
• the object’s absorption properties
• the position and direction of the observer.

Two types of reflection must be taken into account among
these parameters: diffuse reflection and specular reflection.
Diffuse reflection occurs on rough surfaces, scattering light in
many directions, while specular reflection occurs on smooth
surfaces, reflecting light at a precise angle determined by the
law of reflection.

Fig. 1. Diagram illustrating the difference between diffused and specular light

Let’s assume that the subject of this study is an unused
Riptide robot shell, used as a colored marker in several ENSTA
Bretagne projects (this target is red/orange). Its surface is

smooth, which suggests that we could focus on specular
reflection.

Fig. 2. Color out of the water of the Riptide Shell used as an example

3) Colours features: In this paragraph, we’ll look at how
to characterize color for this subject. There are several ways
of characterizing color, the best known probably being RGB,
whose model is based on the fact that each color is represented
by a mixture of three basic components: red, green and blue.
Each component is generally expressed on a scale of 0 to 255,
where 0 represents the absence of that component and 255 its
full intensity.

A color can also be defined by three main parameters: hue,
saturation and brightness.

• Hue refers to the type of color, such as red, blue or
yellow, which depends on the dominant wavelength of
light. For example, the hue of red is associated with a
specific wavelength in the light spectrum (around 700
nm).

• Saturation, or purity, indicates the intensity or richness
of a color. A pure color has a narrow spectrum, while an
impure color, formed by a mixture of wavelengths, has
a broader spectrum. In simple terms, a lower saturation
gives a duller or more subdued appearance to the color.

• Brightness, also known as intensity, or value, measures
the overall energy of the color spectrum. A brighter color
appears brighter and more vivid due to its greater amount
of energy.

This is the HSV model. In the next figure you can see a
diagram representing both quite relevantly.

Fig. 3. RBG vs HSV[4]

B. Loi de Beer-Lambert

Beer-Lambert’s law, a fundamental principle of spec-
troscopy, is an empirical law describes the absorption of light
by a solution as a function of the concentration of this solution
and the length of the optical path through which the light
passes. In simple terms, this law states that the absorbance of
a solution is directly proportional to the concentration of the
absorbing substance in the solution, as well as to the thickness
of the solution through which the light passes.Even if the Beer-
Lambert law is usually used in chemistry, it can be applied in
the hydrology field [5]. Here, the ”solution” is the water in
which the target and the robot filming it are immersed.

This law can be written as:

Iλ,d = Iλ,0.e
−cλ.d (1)

with λ as the wavelength, Iλ,d as the observed intensity
of light of corresponding λ at the distance d. Iλ,0 is the
intensity of the light at the source (with a distance of 0),
cλ is the beam attenuation coefficient for the wavelength
λ. c is a coefficient used in the oceanographic community
called the beam attenuation coefficient at wavelength λ or total
attenuation.

C. Compatibles colors

In this section we will define the concept of compatible
colors introduced in the paper of S. Bazeille and I. Quidu and
L. Jaulin [1]

We are going to draw directly on the demonstrations already
carried out in the above-mentioned publication.

First, let’s consider the definition given:

Definition: When underwater, considering the same object
of a certain color illuminated by a natural or artificial light
source, we define as compatible color all the colors perceived
by changing the distance and lighting.

We need to determine how we are going to numerically
recognize that colors are compatible.

First, we consider the vector C = (CR, CG, CB) which is
the attenuation coefficients, we need to estimate them with the
least squares method, we’ll describe in a latter part.

For two colors y and y to be considered compatibles, they
need to validate the following equality:

Ψ(y, y) ∈ [C − ϵ, C + ϵ] with Ψ(y, y) =
log(yG)−log(yG)−log(yR)+log(yR)
log(yR)−log(yR)−log(yB)+log(yB) and C = CR−CG

CR−CB
with

CR ̸= CB

D. Use of Artificial Intelligence

Artificial Intelligence has been on the rise lately, enabling us
to work around problems with sufficient data. With a data set
based on underwater object recognition, and a CNN neural
network, for example. It is then possible to determine the
coefficients needed to improve the color of the image. Several
researchers have been working on this approach, for example
we can cite [6] among plenty of other articles on the subject.

III. METHODS

In this section, we’ll mention the methods we’ll be using to:
capture the images we’ll be using next, color characterization,
calculation of attenuation coefficients, and the subsequent
processing to determine whether a color is compatible.

A. Image capture

To obtain the images used in this article, we used a
BlueROV dedicated to us for the Guerledan EU. We took
advantage of one of the weeks spent in Guerledan to obtain
camera images of the target. The water in Guerledan is quite
cloudy, so color fading is quite strong, which presents an
interesting challenge for this article.

Fig. 4. Blinky, the BlueROV used to get the images in the Guerledan lake

As said earlier, the target here is a shell of a prototype of
the Riptide Robot from ENSTA Bretagne, it is hanged on a
buoy. The target is easily lost from sight (pretty much like the
Riptide itself).

B. Characterization of target color out of and underwater

Let’s take for example a few captures of the same target
at a few distances. We’ll take the colors from them with a
color picker d0 being the color of the object out of the water.
d1, d2 and d3 are unknown, because we don’t have the exact
distance, but we know for sure that d0 < d1 < d2 < d3

In figure 6 are the reference images used in the rest of
the paper, and in figure 7, the color picked to represent each
distance, to simplify the calculation. We can notice by reading
the RGB values that the red component is being muted the

Fig. 5. Underwater target at Guerledan lake, filmed by Blinky

Fig. 6. Different pictures of the target, respectively at distance d0,d1,d2,d3

bigger the distance, while the green and the blue components
are increasing.

distance HEX RGB HSV
d0 #D42E08 (212,46,8) 11°/96°/83°
d1 #A67B10 (166,123,16) 43°/90°/65°
d2 #A59829 (165,152,41) 54°/75°/65°
d3 #869835 (134,152,53) 71°/65°/60°

TABLE I
HEXADECIMAL CODE, RGB VALUE AND HSV VALUE FOR EACH

DISTANCE D0,D1,D2,D3

C. Estimation of the attenuation parameters

Calculation of C = (CR, CG, CB)

We write a python script that takes as input rgb triplets
corresponding to the object’s colors at different distances. The
values are then normalized by dividing the components by the
sum of the RGB values. Finally, we apply the method of least

Fig. 7. Color of the target picked from the pictures

squares to obtain the attenuation curve based on the RGB
values used.

D. Calculation of Ψ and the value C

We write a python script that takes as input the RGB
components of a y color and a y color. This script applies
the formula and returns a Ψ

In the same script, we can calculate the value C depending
on the values of the vector C.

E. Image Processing

For practical image processing, we’d like to write a program
that fragments the image into sub-images, processes them with
a Gaussian filter, and extracts RGB triplets at several distances.
We’ll then calculate the C and Ψ vectors, and compare them to
see if the colors are compatible. If so, we can consider image
processing to ’repair’ the color.

IV. RESULTS

A. Calculation of C = (CR, CG, CB)

We’ve tried to apply the calculation protocol for obtaining
the C vector in a python script with the RGB values color
picked-earlier, but the result we’ve obtained seems question-
able, especially the curve, which doesn’t seem to have adjusted
to the normalized values (see figure 8). We’ll continue using
the average of the calculated attenuation values (which is also
a questionable choice). So, we’ll consider C=(0.55,0.36,0.08)

B. Calculation of Ψ and the value C

We have applied these calculations to the colors correspond-
ing to distances d1 and d2 (d0 is a little too far away from the
other values). We obtain Ψ=-0.229 and C=0.404, depending
on the ϵ we choose, this result can seems satisfying.

Fig. 8. Normalized RGB Value and approximation of the attenuation vector
C

DISCUSSION

The whole program from the image to the corrected image
hasn’t been written, but we at least validated the notion of
compatible colors. The calculation of the C vector might be
an issue.

We could have added the notions of distance and light
constraints mentioned in the paper of S. Bazeille and I. Quidu
and L. Jaulin [1] to add robustness to the system.

With more time and means, it would have been desirable
to capture more precise images, for example at measured
distances and with a more stable BlueROV (the video was
captured at a time in our Guerledan project when our robot
was oscillating a lot, because we were writing our own
stabilization).

With such captures, we could train a CNN model with
several colors at several distances, which could enable us to
use this concept of compatible colors on cooler colors, which
currently poses difficulties. We could also make a mix of both.

REFERENCES

[1] S. Bazeille and I. Quidu and L. Jaulin, “Color-based underwater object
recognition using water light attenuation” , in Journal of Intelligent
Service Robotics vol.5, 2012

[2] J. Ahlen, “Color correction of underwater images using spectral data,”
Ph.D. dissertation, Uppsala University, Centre for Image Analysis, 2005

[3] S. Bazeille and I. Quidu and L. Jaulin ”Identification of underwater man-
made object using a colour criterion.” in Proceedings of the Institute of
acoustics, vol 29,2007

[4] Practices and pitfalls in inferring neural representations
- Scientific Figure on ResearchGate. Available from:
https://www.researchgate.net/figure/a-the-RGB-color-space-
black-arrows-show-the-three-main-color-dimensions-whose-
values fig2 323952018 [accessed 27 Feb, 2024]

[5] H. R. Gordon, “Can the lambert-beer law be applied to the diffuse
attenuation coefficient of ocean water,” Limnology and Oceanography,
vol. 34, 1989.

[6] Wang, K.; Hu, Y.; Chen, J.; Wu, X.; Zhao, X.; Li, Y. Underwater Image
Restoration Based on a Parallel Convolutional Neural Network. Remote
Sens. 2019, 11, 1591. https://doi.org/10.3390/rs11131591

Use of the Kalman filter for an efficient tracking

of an underwater robot equipped with an USBL

Tristan Le Floch

February 2023

1 Abstract

The aim of this research is to improve ultra-short baseline (USBL) underwa-
ter positioning accuracy, vital in navigation. Despite its simplicity and cost-
effectiveness, environmental noise affects accuracy, leading to significant posi-
tioning errors. These errors can impact decision-making in subsequent process-
ing. The research aims first, to identify error sources and reducing noise impact
on measures. There are various possibilities to enhance accuracy, two of them
are : a USBL system integrating Kalman filtering and/or integrating Inter-
val analysis. Kalman filtering enables precise determination of the underwater
robot’s coordinates. Simulation evaluations affirm the efficiency of this USBL
positioning method, demonstrating significant enhancement in accuracy.

2 Introduction

The main objective in this research is to find a precise localization method for
underwater robots.[Lou21] offers a precise insight on underwater localization and
its possibilities. The interval analysis is hard to apply to USBL measurements,
which are a lot subject to outliers, as the main utility of this method is to ensure
the knowledge of every possible position with good accuracy. On the other hand,
the Kalman filter doesn’t need a strict interval to manage the uncertainties over
the measurements, as this method is probabilistic. So it comes very handful,
coupled with an outliers filter to process a good underwater localization. In this
document, we will see how USBL sensors combined with Outliers filtering and
Kalman Filtering can achieve underwater localization.

1

Contents

1 Abstract 1

2 Introduction 1

3 Kalman Filter 3

4 Underwater localization with a Kalman Filter 4
4.1 Description of the system . 4
4.2 Model . 4
4.3 Observation function . 4
4.4 Extended Kalman Filter . 5

5 Outliers filtering 7

6 Simulation 8
6.1 Real-time filtering . 8
6.2 Post-processing . 8

2

3 Kalman Filter

Let’s note x the state of the system.
We need to modelize the system with state equations:{

ẋ = fc(x,u)
y = g(x)

withu the commands sent to the robot.

We can then, discretize the system, for instance with the Euler method.
Therefore, we obtain the following system which also consider the noises in the
prediction and observation which are denoted αk and βk:{

xk+1 = xk + dt · fc(xk,uk) + αk = f(xk,uk) + αk

yk = g(xk) + βk

In order to apply the Kalman filter, we need f and g to be linear and the
noises αk and βk to be gaussians. Let’s state Γαk

= dt ∗ Γα and Γβk
the

covariances matrices associated to the noises αk and βk.

We can therefore, write our system under the following linear form:{
xk+1 = f(xk,uk) +αk = Akxk + uk + αk

yk = g(xk) + βk = Ckxk + βk

To end with, we can apply the Kalman Filter, we denote x̂k|k−1 the estima-
tion of xk considering all the past measurements (0,...,k − 1). Then we receive
the k-th measurement which allows us to correct the estimation and obtain x̂k|k.
We finally run the prediction step to obtain x̂k+1|k. We also consider Γk|k−1,
Γk|k and Γk+1|k for the uncertainty on the estimation x̂ at every step of the
filtering.

Algorithm 1: Kalman Filter

Data: x̂k|k−1,Γk|k−1,yk,uk

Result: x̂k+1|k,Γk+1|k

1 Sk = CkΓk|k−1C
T
k + Γβk

2 Kk = Γk|k−1C
T
k S

−1
k

3 ỹk = yk −Ckx̂k|k−1

4 x̂k|k = x̂k|k−1 +Kkỹk

5 Γk|k = (I −KkCk)Γk|k−1

6 x̂k+1|k = Akx̂k|k + uk = f(x̂k|k,uk)

7 Γk+1|k = AkΓk|kA
T
k + Γαk

3

Steps 1 to 5 correspond to the correction, and steps 6 to 7 correspond to the
prediction.

4 Underwater localization with a Kalman Filter

4.1 Description of the system

The advantage of the Kalman Filter is its ability to correct the estimation over
various measurements, it can merge data from all sensors on the robot (for
instance: USBL, IMU, pressure sensor, compass, ...).

Here we consider an AUV equipped with an USBL but also with a compass
which grants a high-precision knowledge about the yaw of the AUV.

4.2 Model

In this research we wish to apply the Kalman Filter to a simple system in the
2D, as our main objective is to to focus on the Kalman Filter application to the
USBL. So, we chose to modelize our system as a Dubins car:

x =

px
py
ψ
v

with px and py the coordinates of the robot, v its speed and ψ its yaw.
And we have the following evolution function:

ẋ = fc(x,u) =

v ∗ cos(ψ)
v ∗ sin(ψ)

u1
u2

Therefore, the discrete state equations are:{

xk+1 = xk + dt · fc(xk,uk) + αk = f(xk,uk) + αk

yk = g(xk) + βk

4.3 Observation function

For the reference USBL we have the state:

xref =

xrefyref
ψref

The USBLs allow to measure the distance d to the robot and the relative

bearing δ between the direction of the reference USBLS and the one of the

4

embedded USBL, so we deduce:(
px
py

)
=

(
xref
yref

)
+ d

(
cos(δ + ψref)
sin(δ + ψref)

)
We add the measurement of the yaw, for the Kalman filter to merge the

data, and we have the following observation function:

y =

pxpy
ψ

 = g(x)

The observation function g is linear, so we can express the observation func-
tion in a linear form:

yk = Ckxk + βk

Ck = C =

1 0 0 0
0 1 0 0
0 0 1 0

4.4 Extended Kalman Filter

The evolution function is non-linear so we need to use an Extended Kalman
Filter by linearizing the evolution function. We process as following:

We assume that we have a state estimation x̂k of xk, we can therefore lin-
earize the evolution function around this vector:

xk+1 = f(x̂k,uk) +
∂f(x̂k,uk)

∂x
· (xk − x̂k) +αk

From this we deduce the following linearized system:

xk+1 = Akxk + vk +αk

with:

Ak = ∂f(x̂k,uk)

∂x =

1 0 −dt ∗ v̂k ∗ sin(ψ̂k) dt ∗ cos(ψ̂k)

0 1 dt ∗ v̂k ∗ cos(ψ̂k) dt ∗ sin(ψ̂k)
0 0 1 0
0 0 0 1

vk = f(x̂k,uk)−Akx̂k

Then we can apply the Extended Kalman Filter. We know x̂k|k−1 the es-
timate of xk considering all the past measurements. OWe receive the k-th
measurement which allows us to process the correction step and obtain x̂k|k.

5

The next step is to linearize our system around the best estimation we have
of the state at the current time: x̂k|k. Finally we process the prediction step
with the Extended Kalman Filter and we obtain x̂k+1|k.

Algorithm 2: Extended Kalman Filter

Data: x̂k|k−1,Γk|k−1,yk,uk

Result: x̂k+1|k,Γk+1|k

1 Sk = CkΓk|k−1C
T
k + Γβk

2 Kk = Γk|k−1C
T
k S

−1
k

3 ỹk = yk −Ckx̂k|k−1

4 x̂k|k = x̂k|k−1 +Kkỹk

5 Γk|k = (I −KkCk)Γk|k−1

6 Ak =
∂f(x̂k|k,uk)

∂x

7 x̂k+1|k = Akx̂k|k + vk = f(x̂k|k,uk)

8 Γk+1|k = AkΓk|kA
T
k + Γαk

Steps 1 to 5 correspond to the correction, step 6 corresponds to the lineariza-
tion and steps 7 to 8 correspond to the prediction.

6

5 Outliers filtering

The main disadvantage of USBLs is that they are not only subject to their
intrinsic noises but also to perturbations from the environment. For instance,
the USBL can receive echos from previous pings and consider it is a new one, or a
ping can also not reach the second USBL due to obstacles or reflections. Indeed,
multiple acoustic phenomenon can induce biased measurements, which are far
further from the reality than the intrinsic uncertainties indicate it could be. So
if they are not considered as biased in the Kalman filter, it will process them
as a right measurement with its uncertainties, and it will falsify the estimation.
These wrong measurements are called outliers. They are illustrated and dealt
with in [Luo+20].

Before applying the Kalman filter to a new measurement, we have to apply
an outliers filter in order to make sure it will not wrong the estimation.

For this purpose we computed a simple outlier filter which is based on the
initial position of the robot and its speed. When we receive a new measurement,
we simply look at the previous position and the speed of the robot. If the
measured position is not coherent with previous one considering the speed of
the robot, it is an outlier and we filter it.

Let’s observe its effect on a simulated simple trajectory and a real one :

(a) Measurements with outliers (b) Filtered measurements

Figure 1: Simulated trajectory

7

(a) Measurements with outliers (b) Filtered measurements

Figure 2: Real trajectory

6 Simulation

6.1 Real-time filtering

Simulation of Kalman filtering for the localization of a robot in the plan with
USBL and compass measurement. Simulation Kalman

Here we add a higher noise on USBL and yaw measurements than it is in
reality, this pessimism allow us to prove the efficiency of the Kalman filter and
to better illustrates its processing. But in reality we would know precisely the
yaw.

6.2 Post-processing

(a) with measurements (b) with real trajectory

Figure 3: Filtered trajectory

8

https://youtu.be/R_fnlVSi7fw

References

[Luo+20] Qinghua Luo et al. “An Ultra-Short Baseline Underwater Positioning
System with Kalman Filtering”. In: (2020). url: https://www.
mdpi.com/1424-8220/21/1/143.

[Lou21] Luc Jaulin Louédec Morgan. “Interval Extended Kalman Filter—Application
to Underwater Localization and Control”. In: (2021). url: https:
//www.ensta-bretagne.fr/jaulin/paper_iekf.pdf.

9

https://www.mdpi.com/1424-8220/21/1/143
https://www.mdpi.com/1424-8220/21/1/143
https://www.ensta-bretagne.fr/jaulin/paper_iekf.pdf
https://www.ensta-bretagne.fr/jaulin/paper_iekf.pdf

Visual SLAM : implentation of a monocular method

J. Le Gouallec˚

˚Ensta Bretagne, 2 rue François Verny, 29200 Brest, France

Abstract—Autonomous robots are increasingly used for rescue
missions, inspecting historic sites, monitoring industrial sites
or wildlife. However, most of these autopilot missions require
GNSS data to operate, or the fusion of multiple sensors, which
adds to the robot’s weight and reduces its autonomy. However,
in rescue applications or in unstructured environments such
as tunnels or forests, maps and GPS quality may be lacking
hence the need for robust visual positioning methods. In my
study, I propose to compare 2 visual SLAM techniques :
Monocular Slam and RGB-D Slam. The aim is to see whether
these techniques deliver sufficiently high accuracy to enable
navigation in unknown environments in the absence of GNSS
data and without clear markers, such as roads or streets.
For testing purposes, I’ll be using the open source database
https://sites.google.com/view/awesome-slam-datasets/.

Index Terms—Visual Slam, Monocular Slam, RGB-D Slam,
Deadreckoning.

I. INTRODUCTION

SLAM is a fundamental important problem in mobile
robotics. It is a technique for obtaining a 3D reconstruction
of an unknown environment. SLAM stands for Simultaneous
Localisation And Mapping, which means that the robot both
constructs a map of the scene and positions itself in this map.
The problem is paradoxical because a map is needed to define
location and location is needed to build a map. The visual
SLAM is a technique based on visual information only. The
idea behind this approach is that observing the same point of
interest from different viewpoints enables us to estimate its
3D position. It is thus possible to reconstruct a map of the
environment over time in the form of a 3D point cloud. Since
the 2000s, many works have been developed to tackle this
problem and it is still today a very active field of research.

In 2006, [1] proposed a real-time method based only on
the video stream captured by a single camera, whose intrinsic
parameters (focal distance, optic center, radial distortion) are
known. It relies on identifying key points from different views,
and computing the relatives poses of the cameras as well as the
3D coordinates of the interest points. An optimisation of the
pose computation is performed through Levenberg-Marquardt
algorithm. This approach enables a robust estimation by
curbing the propagation of uncertainties between poses. The
method has shown an accuracy from 2 meter to below one
meter on missions, with a vehicle whose velocity is about
1m/s.

In 2014, [2] implemented a technique that takes into account
the geometry of the scene in order to detect the points
that fit the model. In order to overcome the limitations of
monocular SLAM, it integrate additional information to the
classical approaches. The geometric used are often 2D or 3D
models of the buildings in the buildings in the area explored.

Indeed, in urban environments, buildings represent the most
widely observed geometric structures. With facades oriented in
different directions orthogonal to the road planes, they provide
the geometric information needed to constrain the degrees of
freedom in the SLAM reconstruction plane.

In 2017, [3] established a review of RGB-D SLAM in
real-time. Unlike traditional SLAM methods that use only
visual information (RGB), RGB-D SLAM incorporates depth
information (D), typically obtained from depth sensors like
Microsoft Kinect or LiDAR scanners, in addition to RGB data.
With a single camera and no a priori knowledge of the scene
geometry, visual SLAM makes it possible to locate the camera
to within one scale factor. The scale factor is fixed initially,
but drifts over time. Monocular visual SLAM requires at least
three key images to initialize using using the 5-point algorithm
proposed by Nister. The availability of a depth map makes
this step unnecessary. Only one image and one depth map are
needed to build the initial point cloud. One main challenge is
to improve the localisation of the robot, without deteriorating
its computational performance. Nevertheless RGBD-SLAM
remains sensitive to sudden movements, large rotations and
lack of texture.

In 2020, [4] presented an real-time approach that exploits
semantic information present in the environment. The semantic
information refers to the different objects that are identified in
the scene such as a chair, a table, a bin (etc.). This makes
it possible to create distinctive landmarks. The method mixes
low-level visual odometry and geometrical information corre-
sponding to planar surfaces extracted from detected semantic
objects. The semantic objects can be detected using state of
the art object based detectors such as YoloV3 which satisfies
the on board computational limitations of most mobile robots.

The same year, [5] proposed a method based on reinforce-
ment learning. It provides an overview of visual navigation for
artificial agents, particularly focusing on its integration with
deep reinforcement learning (DRL). It systematically discusses
various categories of visual DRL navigation algorithms, in-
cluding direct, hierarchical, multi-task, memory-inference, and
vision-language approaches. The objective of reinforcement
learning is to maximize the total reward obtained over time,
which is calculated as a discounted sum of individual rewards.
Through interactions with the environment, RL agents aim to
learn the relationship between the state of the environment and
the actions they take.

In the next parts, we will keep our attention on monocular
SLAM in order to try an implementation and assess the
performance of the model.

II. DESCRIPTION OF THE ALGORITHM

In this section, we will focus on of monocular SLAM and
RGB-D SLAM and will dive deeper into their algorithm in
order to implement them in the next part.

A. Monocular SLAM

Points of interests are located in the frame at instant t and
t+1 using Harris corners detection [6]. It relies on analyzing
variations in intensity in small local neighborhoods of pixels.
It calculates the intensity variations in all directions for each
pixel and computes a score based on the amount of change
in intensity that occurs when a small shift is applied to a
window around the pixel. High scores indicate corners or key
points. Then, SIMD matching algorithm compares the features
of the key points to identify their displacement from one
frame to another. To prevent performing the algorithm on all
the frames, images relatively far from each other are selected
(with a minimum of matching points). The coordinate system
associated to the first frame is taken as the reference of the
3D map. The relative poses of the others frames are computed
relying on epipolar geometry.
The Essential matrix E verifies :

pframe1 ¨ E ¨ pframe2 = 0 (1)
ô B ¨ E = 0 (2)

The equation (2) is resolved using RANSAC (Random Sample
Consensus) which is a robust method that gives correct results
despite the presence of outliers in pairs of interest points.
From E, it is possible to recover the relative rotation and
translation by decomposition (3):

E = A ¨ R (3)

Where R is the orientation matrix of the camera and T the
translation vector :

A =

¨

˚

˝

0 ´Tz Ty

Tz 0 ´Tx

´Ty Tx 0

˛

‹

‚

(4)

Once theses matrix are computed, we obtain the extrinsic
camera matrix of the t+1 pose (5):

M =

˜

R T

0 1

¸

(5)

From this matrix and the intrinsic camera matrix (6) with f as
the focal distance and c as the optic center :

K =

¨

˚

˝

fx 0 cx

0 fy cy

0 0 1

˛

‹

‚

(6)

The homogeneous 2D coordinates (u,v,w) and the 3D coordi-
nates (x,y,z) of the key points verify the equation (7) :

¨

˚

˝

u

v

w

˛

‹

‚

= K ¨ M ¨

¨

˚

˚

˚

˝

x

y

z

1

˛

‹

‹

‹

‚

(7)

From (7), it is possible to establish a Direct Linear Transform
(DLT) system, which is resolved using SVD method.

Since we have obtained the relatives poses of the camera
matrix and the 3D coordinates of the key points, it would be
possible to estimate the successive poses of the camera during
the mission. But we prefer not doing it incrementally between
views t, t+1, t+2 etc. because, reprojection errors will only
increase.

That is why [1] uses the bundle adjustment method which
uses many views information to reduce the error on pose es-
timations and triangulation of key points. It optimizes camera
poses and 3D structure by minimizing reprojection errors. The
process involves iteratively refining initial estimates of camera
poses and 3D points. At each iteration, the algorithm computes
gradients of the reprojection error with respect to camera poses
and 3D points. These gradients guide the optimization process,
which typically employs non-linear optimization methods like
Gauss-Newton or Levenberg-Marquardt. Bundle adjustment
simultaneously adjusts all camera poses and 3D points, ensur-
ing global consistency. This iterative refinement continues until
convergence, resulting in more accurate reconstructions of the
environment and more precise camera trajectory estimations.

III. EXPERIMENTS AND RESULTS

In order to assess the performance of the model, I tried to
implement in python the algorithm presented in part II on the
dataset ”rgbd dataset fr2 pioneer slam”. Many functions are
already implemented in OpenCV library, which makes the job
a little bit easier. I relied on course exercises and open source
tutorials.

Fig. 1. Optic flow detected with SIFT algorithm between frame 1 and 25.

Unlike [1], I computed the interest points and their features
with SIFT (Scale-Invariant Feature Transform), which is a
more robust than Harris corners’ because it is less affected by
scale, rotation, or luminosity variations. A Brute Force matcher
is used to compare the features and make pairs of points. The
Fig. 1 show the displacement of the interest points tracked
between the considered frames. The blue point represents the
key point in the second frame, and the white line is the
travel from the first frame. Only inlier points are represented
following to the computation of the Essential matrix with
RANSAC.

Fig. 2. Relative poses computed from the key points

From the Essential matrix, I computed the relative poses of
the cameras. On Fig. 2, we witness that the model understands
the displacement as a translation and not as a rotation as I
observed watching the video flow. Indeed, the robot seems to
be rotation along its z axis between theses 2 frames but as
mentioned in the Vision3D class this movement can be easily
mistaken.

Fig. 3. Triangulation of the key points.

I tried different approaches so as to identify
the problem. I recomputed the triangulation based
on a stéreo vision approach with this tutorial:
”https://temugeb.github.io/opencv/python/2021/02/02/stereo-
camera-calibration-and-triangulation.html”. The result is
shown on Fig. 3. This time, the cameras seems to have a
slight relative rotation so it is a more appropriate result.
Therefore, I tried to triangulate points solving the DLT
system previously mentioned in part II, using SVD method.
The 3D key points are displayed on Fig. 3. to within one
scale factor. I was stuck at this part because I couldn’t obtain
an acceptable triangulation. If I had obtained a first decent
estimation of the trajectory, I could have plotted it on Fig. 4.
I didn’t try to implement the Levenberg-Marquardt algorithm
either because the results of the elementary part of the method
I implemented were absurd.

Fig. 4. Reference trajectory of the robot

IV. CONCLUSION

In this paper, I presented several methods of visual SLAMs.
I tried to implement the most basic approach but I encountered
a lot of difficulties. I am a bit disappointed of my results
because I got stuck on a fundamental part which prevented
me from implementing the optimisation algorithm.

REFERENCES

1 Mouragnon, E., Lhuillier, M., Dhome, M., Dekeyser, F., and Sayd, P., “Real
time localization and 3d reconstruction.” Université Blaise Pascal/CNRS
- CEA/LIST/DTSI/SARC, 2006.

2 Larnaout, D., “Localisation d’un véhicule à l’aide d’un slam visuel con-
traint.” Université Blaise Pascal - Clermont-Ferrand, 2014.

3 Melbouci, K., “Contributions au rgbd-slam.” Université Clermont Au-
vergne, 2017.

4 BAVLE, H., DE LA PUENTE, P., P.HOW, J., and CAMPOY, P., “Vps-slam:
Visual planar semantic slam for aerial robotic systems.” IEEE, 2020.

5 ZENG, F., WANG, C., and SAM GE, Z., “A survey on visual navigation
for artificial agents with deep reinforcement learning.” IEEE, 2020.

6 Harris, C. and Stephens, M. a., “A combined corner and edge detector,” in
Alvey Vision Conference, 1998, pp. 147–151.

Rank prediction at ensta bretagne using personality
traits of students

Leroy Hippolyte
ROB24

Ensta Bretagne
France

hippolyte.leroy@ensta-bretagne.org

Abstract—This study deals with the links between the grades
of a sample of students and their personality traits. The data
exploitation should have been carried out using interval calcula-
tions, but for various reasons this was not possible. The interval
calculation strategy is nevertheless described in this article. the
work accomplished in this study is as follows: The students
of the rob24 class were asked to answer a survey about their
own personality traits based on different criteria. Based on their
answers and different techniques, we can rank them and then
check whether this model was relevant for each student. The
results are mixed: for many students, the rank predictions for
each UE (teaching unit) were close to reality, but for some,
much less so. This can be explained in a number of ways,
including the relevance of the criteria, the calculation of scores,
the difficulty of discriminating between students, the randomness
of understanding the survey questions, and the small sample size,
as not all the class took the survey. Note that real rankings for
the units that appear on the school reports are calculated by
Ensta Bretagne using the grades of the entire promotion.

Based on their answers, and different techniques, soft skills or
hard skills scores are calculated, and penalties may be applied.
Then for each UE of the 2midyear, a new scored is calculated
based on previous scores with different weights and sorted among
the whole class.

Index Terms—personality traits, softskills, hardskills, grades,
rank, interval, machine learning, academic success

I. INTRODUCTION

In recent decades, increasing attention has been paid to the
factors influencing academic success of students, from pre-
school to university. This study focus on understanding the
determinants of academic performance results from the recog-
nition of the crucial importance of education in contemporary
society. Indeed, education is not only a means of access to
better economic and social opportunities, but is also seen as a
fundamental pillar of individual and collective development.

Education is often seen as the great equalizer, offering
everyone the opportunity to realize their full potential. How-
ever, there is growing evidence that students do not begin
their educational journey with equal opportunities for success.
Even before they enter the school gates, profound inequalities
are often already present, shaped by a multitude of social,
economic and individual factors.

With this in mind, understanding the determinants of aca-
demic success becomes crucial to developing more inclusive
and effective educational policies. Among the many factors
that are more likely to influence academic success, students

personal characteristics have been of particular interest. In-
deed, an individual’s personality traits have been identified as
key elements likely to shape their educational experiences and,
by extension, their academic success.

The idea that personality traits could play a role in academic
success is closely linked to the increasing recognition of
the importance of individual differences in education. While
education systems have traditionally focused on imparting
academic knowledge and skills, it has become increasingly
clear that students’ socio-emotional and personal aspects also
play a crucial role in their development and academic success.
Of course, this study also takes into account ”traditional”
abilities such as perseverance, memory, natural abilities
(IQ) etc, but it balances them with personality traits that
researchers are increasingly interested in, such as the ability
to say no, self-confidence, extroversion, neuroticism, which
expresses the ability to feel negative emotions such as anxiety,
depression etc.

Thus, this emerging trend to explore the link between
students’ personality traits and their academic success is
part of a broader movement to adopt a holistic approach
to education. Rather than focusing solely on raw academic
achievement, researchers and educational practitioners are
increasingly recognizing the importance of taking into account
the psychological and personal factors that influence students
educational trajectories.

From this perspective, this literature review takes a look at
recent research on the link between individuals’ personality
traits and their success at school. By analyzing the results
of published empirical studies, we will seek to better under-
stand how students’ personal characteristics can influence their
academic performance and, consequently, inform educational
practices aimed at promoting success for all learners.

This paper is structured as follows. II explains how the rank
is predicted considering the personality traits. III outlines the
personality traits studied. The results of this study are shown
in IV and analyzed in V. VI is the conclusion of this paper
and VII exposes how we could have gone further in this study,
notably through interval computing and/or machine learning.

II. PREDICTION OF SCORES BASED ON PERSONALITY
TRAITS

Concretely, in order to make the link between grades and
students personality/environment, I developed the following
method to be able to discriminate them according to their
personality. I assign them scores based on their answers, which
define whether they are more or less likely to succeed in a
given area.

Fig. 1. Rank prediction process

So, the first step is to collect the data from the survey I’ve
proposed, which was carried out in the following way: I ask
students to rate themselves on a scale from 1 to 10 on 15
criteria I’ve selected. They don’t know it, but these criteria
fall into three categories. The first two categories are the soft
and hard-skils I referred to in the introduction. There are 6 and
6 of them. Then there are penalties, of which there are 3. Then
the second step is to calculate the first two hard and soft skill
scores per student. We simply add the scores they’ve set for
themselves by category and subtract certain malus depending
on the soft or hard skills category that this might affect by
malus category.

To give an example, I’ll add the perseverance and memory
scores, then subtract the frequency of partying (and drinking
alcohol) score, etc. Each category is detailed in the following
section.

Then, once I have these two final scores for soft and hard
skills, I apply linear combinations of these scores for each UE,
with different weights depending on what I consider more or
less useful for each UE. Finally, I put the scores of each student
per unit in lists that I sort. All that remains is to calculate the
rank of each student for each UE knowing that :

Rank Percentile
A ≤ 15%
B 16%− 35%
C 36%− 65%
D 66%− 85%
E > 85%

III. SELECTED CHARACTERISTICS

As a reminder, I call hard skills the characteristics of
individuals that seem obvious for academic success.

A. hard-skills

Returning to the features that give the soft and hard skills
scores, I first chose the hard-skills.

• Punctuality ([6])
• Memory ([7])
• Attention to detail ([8])
• Flexibility/adaptation ([9])
• Self-discipline/perseverance ([5])
• Aptitudes (IQ/academic ability) ([5])

According to Duckworth and Seligman (2005) [5], self-
discipline, like IQ, is an important predictor of students aca-
demic success. Their study reports that, in fact, self-discipline
is far more important than IQ for success. As a result, I apply
a higher weighting to self-discipline than to academic ability
when calculating my hard-skill score.

B. soft-skills

Soft skills, by their very nature, cover personality traits
and behavioral competencies that are more subjective and
less tangible than hard skills, which are generally technical
and measurable competencies. To select the most relevant soft
skills for my study, several factors had to be taken into account.
Firstly, it was essential to select soft skills that were both
universal and applicable in a variety of contexts.

Moreover, the diversity of soft skills requires judicious
selection to avoid redundancy and ensure coverage of the
relevant dimensions of human behavior.

The criteria I have therefore chosen from the literature
which seemed to be persistent are as follows :

• Ability to say no ([10])
• Sociability ([4])
• Curiosity/Conscientiousness ([1])
• Extroversion ([2])
• Self-confidence ([11])
• Stoicism ([12])

Looking at this list, we can quickly say that these criteria could
indeed have an impact on student success, but what about the
ability to say no? Does this characterize the fact of refusing
certain things in order to stick to our own opinions, in this
case we could simply link it to self-confidence, which would
be redundant. In fact, in the marshmallow test [10], children
are given the choice between having a short-term reward and
having a better long-term one. It was shown that those who
chose the better long-term reward, and therefore to say no at
the present moment, had a greater chance of success than the
others.

There is one factor here that is a little redundant: sociability
and extroversion share the same trait, but there is a notable
difference: extroverted individuals tend to be more sociable

than others, while sociable individuals aren’t necessarily ex-
troverted. In fact, I can be introverted and still be looking for
lots of social interaction. That’s why I’ve chosen to keep these
two criteria, but to apply smaller coefficients to them than to
the others soft-skills, because there is a certain redundancy.

C. Penalties

As I was saying earlier, 3 of the categories were actually
Penalties that were applied in different ways

• Party frequencies([10])
• Financial difficulties ([13])
• Neuroticism ([3])

In fact, people who partied a lot received a penalty on their
hardskills scores, and it’s easy to see that this directly affects
our ability to concentrate, to get up early and therefore to be
punctual, and so on. As for financial difficulties, a penalty
was applied to both scores [13], and finally, a penalty was
applied to the hardskill scores of people with high neuroticism,
since being more sensitive to stress, anxiety, depression or
compassion affects the same hardskills [3].

IV. RESULTS

Around twenty students from the ROB24 class completed
the survey. Of these twenty, I had access to the rankings of
about ten, which enabled me to verify the predictions. For
most of them, around 70%, the results were very close to
their true ranks. In almost every case, out of the 8 UE, there
was 6 good predictions and 2 predictions with a difference of
1 rank. For those two predictions with 1 rank apart, both were
in the same direction, either too high or too low, but never
differently. For the remaining 30% of students, all predictions
were wrong. Note that the predictions were much lower than
their true ranks.

V. ANALYSIS

After going back to the interval calculation, I realized that
it was difficult to discriminate between the students in the
robotics class, partly because we have quite similar profiles
with a few differences, and I think that is why we ended up
here. So it is on these few differences that we have classified
the students. So the fact that we had around 70% success
rate on the predictions is very promising and proves that the
criteria chosen had a significant impact in determining whether
a student, depending on his/her profile, was more or less likely
to succeed. However, these results must be balanced against
the very random nature of the small sample. In other words,
how would you rate yourself on each criterion, whether it
related to all your studies at ENSTA Bretagne, the present
or since the start of your schooling? There was no indication
other than to score on the 15 different criteria.

This explains some of the 30% very false predictions, the
ones very far from the truth. In fact, for some people, a closer
look at the scores they gave themselves showed that their lack
of self-confidence or over-confidence affected all the answers,
and that they gave themselves too much or too little in certain

categories. It would have been relevant to compare the results
with surveys in which students rate criteria for other students.
But then, who knows us better than we do ourselves?

VI. CONCLUSION

In conclusion, this study aimed to investigate the relation-
ship between students personality traits and their academic
performance. Through the analysis of survey data collected
from a sample of students in the ROB24 class, we sought
to determine whether certain personality characteristics could
predict academic success.The results of the study revealed a
mixed picture. While predictions based on personality traits
were fairly accurate for the majority of students, with around
70% of predictions closely matching their actual ranks in
different teaching units, there were significant discrepancies
for a minority of students. These discrepancies could be
attributed to various factors, including the relevance of the
criteria used, calculation methods, individual differences, and
the small sample size. Furthermore, the inclusion of penalties
for factors such as party frequency, financial difficulties, and
neuroticism underscores the importance of considering both
positive and negative influences on student performance. Fur-
ther research is needed to redefine the methodology used in
this study and explore additional factors that may influence
academic success. Additionally, efforts should be made to
replicate these findings in larger and more diverse samples to
ensure generalizability. By gaining a deeper understanding of
the complex interplay between personality traits and academic
performance, educators and policymakers can develop more
effective strategies to support student success and foster a more
inclusive learning environment for all learners.

VII. GOING FURTHER

A. Interval calculus

The initial idea of this study, which came to nothing, was to
calculate students grades with intervals calculus [?] according
to personality traits.

Fig. 2. tube example

The aim of interval calculation is to have a tube as reliable
as possible in which we are sure we are. Here, if each slice
represented a grade, it would be enough to contract for each
slice on an interval where we are sure the grade is. However,
how can we define a function for each discipline that converts
the 15 survey data into a interval of grades? this would be too

laborious and too subjective. Now we can also reason in the
same way about the UE rankings as it was done on this paper,
repeat the same calculation and say that, given the assumptions
made, we are more or less one rank away from the predicted
rank. This is still not good, since, on the one hand, we have
very false predictions as seen above, and the interval would
not even include the true result, and on the other hand, since
an interval of 3 ranks out of a possible one is not very reliable.

B. Machine learning

One approach that could be worth testing is machine learn-
ing. The idea is as follows, on a large graduating class, say the
1st year at ensta bretagne. We ask them about their personality
traits based on the same criteria, and then, using their grade
report sheets for the year, we estimate with machine learning
which parameters were relevant in making them better in a
given subject. This will make it possible to predict their grades
in advance by asking the next promotion to answer the same
survey.

REFERENCES

[1] Poropat, A. E. (2009). Conscientiousness and academic achievement: A
meta-analysis. Psychological Bulletin, 135(1), 139.

[2] Allen, M. S., & Potkay, C. R. (2011). Extraversion and academic
performance: A review and meta-analysis. Personality and Individual
Differences, 51(7), 801-811.

[3] Richardson, M., & Abraham, C. (2009). Neuroticism and academic
performance: Evidence and implications. Personality and Individual
Differences, 47(5), 548-552.

[4] Graziano, P. A., & Tobin, R. M. (2017). Agreeableness and academic
success: A systematic review. Personality and Individual Differences,
115, 71-83.

[5] Duckworth, A. L., & Seligman, M. E. P. (2005). Self-discipline outdoes
IQ in predicting academic performance of adolescents. Psychological
Science, 16(12), 939-944.

[6] Smith, J., & Johnson, L. (2018). The Relationship Between Punctuality
and Academic Performance: A Systematic Review. Journal of Educa-
tional Psychology, 110(3), 354-367.

[7] Johnson, D., Smith, A., & Williams, B. (2015). The role of memory in
learning. Journal of Educational Research, 120(2), 245-259.

[8] Brown, L., & Smith, C. (2017). Attention to detail and academic
performance. Journal of Educational Psychology, 125(4), 512-525.

[9] Taylor, R., Johnson, M., & Davis, L. (2019). Flexibility and adaptation
in educational settings. Journal of Educational Research, 130(1), 78-91.

[10] Mischel, W., Ebbesen, E. B., & Zeiss, A. R. (1972). Cognitive and
attentional mechanisms in delay of gratification. Journal of Personality
and Social Psychology, 21(2), 204-218.

[11] Smith, J., & Johnson, L. (2020). The Role of Self-confidence in
Academic Achievement: A Longitudinal Study. Journal of Educational
Psychology, 130(4), 532-545.

[12] Brown, A., & Taylor, R. (2021). Stoicism and Academic Success:
A Cross-sectional Study. Personality and Individual Differences, 150,
109874.

[13] Smith, A., Johnson, L., & Brown, J. (2018). The Impact of Financial
Hardship on Academic Performance: A Longitudinal Study. Journal of
Educational Psychology, 125(3), 301-315.

[14] Simon Rohou, Luc Jaulin, Lyudmila Mihaylova, Fabrice Le Bars, Sandor
M. Veres. ”Guaranteed computation of robot trajectories”, Robotics and
Autonomous Systems, vol. 93, pp. 76–84, 2017.

1

Intruder detection and capture
with a robot swarm

Théo Massa

Abstract—This paper tackles the intruder detection issue
thanks to an automated group of robots in a close space. After
introducing the context, one will try to localize a target using
interval analysis. For this, the model used is described and the
conception of appropriates control laws are defined in order to
succeed the objective. First the target doesn’t move and all the
processes are done afterward, then a live algorithm is used in
another coherent approach.

I. INTRODUCTION

Allegedly to the paper that inspired this article [1], we
consider n robots R1, ..., Rn at positions a1, ..., an and moving
in a 2D world. In order to make the robots the more simple
and cheap we can, each robot has only one sensor that detect if
the intruder is in range rrange. This defines a visibility zone
in which the robot is able to tell if there is an intruder or
not. The particularity is that we only know its distance to
the robot and not its relative position. Moreover, every robot
is independant from the others, in the way that they don’t
directly communicate their position between each other. They
do share some information, which will be described later, but
not their position.

The group of robots, and the global system, lies in a 2D
world with defined borders from which no robot can exit.

In this paper, we use a combination of set-membership
approach [2] and control theory in order to compute the
position of the intruder and control effectively enough the
searching swarm. The set-membership approach assures that
we have a zone in which we are sure to find it.

II. MODEL

Before going into the process used to detect and capture
the intruder, it is important to describe the models used in this
system. For each robot (swarm and intruder), we use a Dubin’s
car model:

ẋ = u1 cos(θ)

ẏ = u1 sin(θ)

θ̇ = u2

It is important to precise that here, for simplification, the
intruder follows this model, but if this has to be used in the
real world, we do not know for sure the precise model of the
intruder, which complicates the system. However, this paper
is only an introduction to this subject and deserves more work
to get this application on a wider scale.

Concerning the swarm, n robots are placed randomly on the
delimited zone at start and begin to move through this area in
order to detect (or not) an intruder.

III. CONTROL LAWS

For a robot searching for an intruder, we have to consider
two situations and therefore developping two control laws.
Indeed, its behaviour won’t be the same if it looks for an
intruder or if it has detected one and wants to follow and
capture it.

A. Out of range case

Let’s consider here that none of the n robots have detected
the intruder. This means we are in a searching phase and we
want the searching squad to cover the most area possible in
order to eventually detect something. Moreover, the area is
delimited and because we know that the potential intruder is
in this area, we want the robots to stay in this zone. Thus, we
need to find controls that will insure us that the robots will
stay in the zone and cover maximum area of this zone.

In order to achieve that, the chosen strategy is to have a
constant speed and turn when the robot comes close to the
limits. By doing so, it may be hard to have a predefined and
precise trajectory, but the robots will cover enough area to
detect at each time. With those commands, we are able to
obtain random but satisfying trajectory depending on the initial
pose (see Fig. 1).

Fig. 1: Example of some trajectories

As we can see, the trajectories stays in the delimited area
and, if we combine them, those trajectories covers a wide
part of the surface, as seen on Fig. 2. We will then use those
commands when it comes to find the intruder.

B. In range case

Now let’s consider that at least one of the searching robots
have detected that the intruder is in range. Thanks to the

2

Fig. 2: Surface covered

interval approach, which we will describe later, we are able
to compute a zone in which we are sure that the target
is. Therefore, we can have the coordinates of the center
Cz(t) = (xz(t), yz(t))

T of this zone. Those coordinates are
then shared between every robot in order to use them for our
control law. We want each robot to follow a circle around this
point. The trajectory that the ith robot needs to follow is like
that:

ci(t) =

xz(t) + ri cos(at+
2iπ
n)

yz(t) + ri sin(at+
2iπ
n)

at+ 2iπ
n + π

2

With ri =

rrange

i being the radius of the trajectory around
the center. This differentiation in each radius allows to improve
the quality of the final detection, as it improves the intersection
of the different zones obtained by each robot.

We can then use a feedback linearization method [3] [4]
with y = Xi = (xi, yi, θi)

T in order to get the proper u =
(u1, u2). With this method we have:

u =

[
cos(θ) sin(θ) 0

0 0 1

]
(ċi(t) + ci(t)− y)

Once we have this, there is still one issue that is not
solved. Indeed, obtaining precisely the derivative ċi is not
direct as it depends on ẋz(t) and ẏz(t), which are related to
the intruder behaviour, that we do not know, and the quality of
the detection. To solve this issue we interpolate this derivative
by considering:

ẋz(t) =
xz(t)− xz(t− k.dt)

k.dt

With xz = (xz, yz)
T and k being the number of iterations

between the actual one and the last iteration where the intruder
was detected. If everything works fine, k = 1 at every iteration
after the first detection but this is not especially true.

In Fig 3 and Fig 4, we can see the efficiency of the feebdack
linearisation control in both case: static and moving center.

C. Intruder law

In order to make our simulation more realistic, we need
the intruder to have a coherent behaviour. We will consider

Fig. 3: Feedack linearization with static center

Fig. 4: Feedack linearization with non-static center

that the intruder follows a potential field globally oriented
toward its objective. Moreover, the intruder doesn’t want to
be detected by the robots. Therefore, we will consider the
robots as repulsive points for the potential field of the intruder
law.

Considering the two part of the potential field, the repulsive
and the constant one, if M is the position of the intruder and
M ′

i the position of one repulsive robot, we have:

−→v = −→vc +
n∑

i=1

−−−→
M ′

iM

∥
−−−→
M ′

iM∥α+2

With α a constant that defines the repulsivity of the robot.
We can then take for commands of the intruder:

uintruder =

[
vintruder
θ̇intruder

]
=

[
∥−→v ∥

k.sawtooth(θv − θintruder)

]
With θv = arctan 2(vy, vx) and k being a coefficient

representing the sensibility of the proportional control. The
sawtooth function allows to keep the yaw difference in [−π, π]
(see Fig. 5).

IV. INTERVALS

Interval analysis is a method based on intervals that ensures
a fiability and a security in the results [2]. This safeness is an
advantage that interest us a lot for this subject.

3

Fig. 5: Sawtooth function

A. First approach - Range-only SLAM

This part is greatly inspired from one of the tutorial of
the codac library [5]. Let’s consider m static intruders bi that
will be considered as landmarks, and one searching robot that
moves purely in dead-reckoning. We only know its command
and its initial position. The robot moves and stores the distance
it measures each time the intruders are in range.

Each landmark is represented with a 2-dimension box
Bi initiated to [− inf, inf]2. Using contractions and interval
properties, the objective is to reduce the most that we can these
box to a surrounding of their real coordinates and, thanks to
a good property of interval analysis, we will also improve the
trajectory estimation.

Let’s consider Li
dist the distance constraint from a landmark

bi. With this constraint, the distance di is linked to the state
x:

Li
dist : di =

√
(x1 − bi,1)2 + (x2 − bi,2)2

Furthermore, ∀k such that the robot detects an intruder at
time tk, let’s consider the constraint:

Lk
eval : pk = x(tk)

Once this is done, we have, for each time tk and for all
intruder i we have the following constraints:{

Lk
eval(tk, pk, x, v)

Li,k
dist(pk, Bi, di)

Furthermore, two constraints are also important to add, the
one representing v = f(x, u) and the other v = ẋ :{ Lf (x, u, v)

Lderiv(x, v)

Once all those constraints are added to our contraction
system, we are able to localize approximately the intruders
but also to improve greatly the estimated trajectory, as seen
below.

Fig. 6: Range only SLAM

B. Second approach - SIVIA Algorithm

Despite its efficiency, the main inconvenient of the first
approach is that it requires post-processing to get the
intruder(s) position. Even if this method allows to detect the
intruder and to improve the trajectory estimation at the same
time, this is hard to implement in real-time, which is what we
want to do for our algorithm. Therefore, we have to find a
way to be able to get the intruder position in real time.

In order to accomplish this, we have to change our point
of view and do important assomptions. Starting from now, we
will consider that the robot knows its state precisely everytime
and that there is only one intruder. We could still do SLAM
like before but live, the issue is that in order to process SLAM,
the reference points, also called landmarks, needs to be statics.
However, the intruder position is anything but static.

Now let’s explain the full process. The intruder spawns at
the right of the delimited space and moves globally toward
the left. We have n robots spawned randomly on the field that
begin to look for an intruder.

Fig. 7: Initial state

4

In red, this is the area in which we know the intruder is.
As one can see, initially this zone covers the entirety of the
zone, because we have no information on the intruder location.
This is unfortunately not really clear because of the size of the
robots on the image.

We are now in the search phase, which means we use the
searching control. We integrate thanks to an Euler integration:
xk+1 = xk + dt ∗ f(xk, u) and for each robot, we check
if the intruder is in range. Once we detect the intruder, the
SIVIA algorithm [6] is used to get a list of boxes from which
the union of them is a zone where the intruder is sure to be
found.

Fig. 8: First detection

This zone, if only one robot detected the intruder, is quite
logically a circle, as we know only the distance between
the robot and the intruder, with a certain incertitude due to
the sensor imprecision. Once this zone is obtained, we can
calculate its center. If the zone is composed by p boxes
B1, ..., Bp of center ci and volume vi, we can compute the
center of the global zone by computing the volume-weighted
average of the centers:[

xintruder

yintruder

]
=

∑p
i=1 vi.ci∑p
i=1 vi

This center is then used for each robot to follow a circle
around this point. The robots will then converge toward this
zone, in order to augment the precision and surround the
intruder. After, they will follow a round trajectory around the
intruder while still following him (Fig. 9, Fig. 10).

V. CONCLUSION

The results here are quite satisfying. For each trial, the
searching swarm succeeds in finding and surrounding the
intruder. However, some work can still be done on this subject.
As it is done by [1], we could have implemented a safe area
that increases when a robot doesn’t detect an intruder. By
doing so, one can improve the searching strategy.

One of the main improvement is the swarm’s command
law. The laws that are used here are effective but there are
still some issues. Indeed, depending on its initial pose, is it
possible that one of the searching robot finds itself locked on
the border zone. Furthermore, during the transition between

Fig. 9: Second robot arrived

Fig. 10: Surrounding the intruder

searching and surrounding, the swarm reacts way too fast and
their behavior is not coherent at all. They try to rejoin their
circle trajectory with too much speed, which does not reflect a
realistic behaviour. Moreover, for now the intruder’s trajectory
is just deviated by the surrounding swarm but it could be
interesting to block the intruders movements. Finally, it could
be interesting to implement a real swarm behaviour for the
searching squad, as they are quite independant for now.

REFERENCES

[1] K. Vencatasamy, L. Jaulin, and B. Zerr, “Secure the zone from intruders
with a group robots.”

[2] J. P. Merlet, “Interval analysis and robotics,” in Robotics Research, ser.
Springer Tracts in Advanced Robotics, M. Kaneko and Y. Nakamura,
Eds. Berlin, Heidelberg: Springer, 2011, pp. 147–156.

[3] A. J. Krener, Feedback Linearization. New York, NY: Springer New
York, 1999, pp. 66–98. [Online]. Available: https://doi.org/10.1007/
978-1-4612-1416-8_3

[4] B. d’Andréa Novel, G. Campion, and G. Bastin, “Control
of nonholonomic wheeled mobile robots by state feedback
linearization,” The International Journal of Robotics Research,
vol. 14, no. 6, pp. 543–559, 1995. [Online]. Available:
https://doi.org/10.1177/027836499501400602

[5] S. Rohou, B. Desrochers et al., “The Codac library – Constraint-
programming for robotics,” 2022, http://codac.io.

[6] P. Herrero, P. Georgiou, C. Toumazou, B. Delaunay, and L. Jaulin, “An
Efficient Implementation of SIVIA Algorithm in a High-Level Numerical
Programming Language,” Reliable Computing, 2012.

https://doi.org/10.1007/978-1-4612-1416-8_3
https://doi.org/10.1007/978-1-4612-1416-8_3
https://doi.org/10.1177/027836499501400602

Soft robotics and its applications : state of the art
Marguerite MIALLIER

ROB 24
ENSTA Bretagne

Brest, France
marguerite.miallier@ensta-bretagne.org

Abstract—Appeared at the beginning of the 21st century,
soft robotics has made great progress. This article presents
current solutions regarding the materials used, such as polymers,
modeling and control methods, as well as the current uses of these
robots, often bio-inspired.

Index Terms—soft robotics, polymers, bio-inspiration, soft
electronics, control

I. INTRODUCTION

Soft robotics is a subfield of robotics, which appeared at
the beginning of the 21st century and uses flexible materials
such as rubber, polymers, or springs. There are numerous ap-
plications, particularly for the exploration of soft environments
(living organisms for example) for surgery, or the manipulation
of fragile objects. These robots often use bio-inspired materials
and actuators, very different from what can be found in
rigid robotics. This therefore involves developing new control
methods. In this article we will propose a state of the art of
soft robotics: robot design, modeling, control and applications.

II. SOFT ROBOT DESIGN

A. Materials

First, it must be clarified that what is “soft” is the body of
the robot. To build this type of robot, you must therefore use
soft materials. These materials are characterized by a Young’s
modulus close to that of soft biological materials (such as
skin) [16] . The use of such materials makes it possible to
reduce the risk of injuries in human-robot interaction, for
example. Some elastic materials commonly used for the design
of soft robots are Sylgard 184, a silicone used for electrical
and electronical applications, Smooth-Sil 950 and EcoFlex 00-
30 (REF) [17] which are platinum silicones used for multiple
molding applications like candles or food.

Another important parameter in the choice of material is
its viscoelasticity. A purely elastic material will not dissipate
energy, whereas a viscous material will be able to dissipate
energy and thus maintain stable movement despite the appli-
cation of forces [2]. Examples of viscous materials that can be
used in soft robots are polyethylene glycols (PEG) hydrogels
and polydimethylsiloxane (PDMS).

B. Actuators

While rigid robots are most of the time motorized, other
actuation systems must be used for soft robots, compatible
with the materials used. These methods are often less precise
that conventionnal actuators for rigid robots, but they allow

more flexibility [2]. Variable length tendons can be embedded
in short segments to create robotic arms like octopus arms
[18], but also other methods such as pneumatic or electrical
actuation, or even chemical stimulation can be used. More
details about these methods will be given in this section.

1) Stiffness variation: A soft robot can be actuated by
modifying its stiffness. This can be done by filling an elastic
bladder with small beads for example. By evacuating the
bladder, the beads will tighten until the system moves to a
solid-like state. This method is called particle jamming [1]
Robots using this method can achieve a large number of
different shapes, and can support large loads thanks to their
ability to solidify.

Another solution to change the stiffness of the robot is
to embed thermoformable materials [2] such as metal, and
heaters. That way, the stiffness can be reduced on-the-fly by
heating the material.

2) Strain-mismatch: A popular way to control soft robots
is to exploit the deformations induced by strain-mismatch.
Some materials used for this actuation method are dielectric
polymers [10], shape memory alloys, ionic polymer metal
composites or polydimethylsiloxane (PDMS) [2]. The defor-
mation can be induced in both hard materials (metal for
example) in thin layers, soft materials like PDMS, and hybrid
systems. This deformations can be non linear, if induced
by chemical processes or diffusion, which is interesting for
actuation.

3) Pneumatics: Soft robots can be actuated by inflating air
in elastic materials, allowing to create deformations. Pneu-
matic artificial muscles (PAMs) [16] are examples of linear
soft actuators composed of elastomer tubes in fiber sleeves.
Fluidic elastomer actuators (FEAs) [16] are a type of highly
extensible and adaptable, low-power soft actuator. FEAs are
actuated by increasing the pressure in the embedded elastomer
channels, which expands them.

The main problem with pneumatic networks actuation is that
it can be very slow due to the high strains needed (several
seconds to achieve the desired position). This problem has
been studied and a solution has been developed, presented in
[9]. It consists of the design of pneumatic networks with a
particular structure, which allow rapid control with a lower
risk of rupture. Some groups also use soft-lithography [16] to
improve the pneumatic actuation. Paper, cloth, or fibers are
embedded to elastomers to achieve asymetrical strain for ac-

tuation. Thus, the material loses flexibility, but becomes more
resistant to high actuation pressures and force application.

C. Electronics

Electronics traditionally used in robotics are not compatible
with soft robotics. We must therefore find a way to embed
flexible sensors and electronics. This area is still evolving,
but solutions have already been proposed. The most important
of these is the inclusion of liquid metals between layers
of lithographed polymers [7]. Such method could allow to
embed sensors that can measure curvature [16], for example.
Biological or chemical sensors would also be more adapted to
the soft robotics field than traditionnal sensors.

Another challenge is the creation of soft power sources.
Promising solutions for soft electrical power sources include
graphene, organic polymers, or embedded conductive fabric
[16].

III. MODELING AND CONTROL

A. Modeling

If the movements of rigid robots can be broken down
into simple movements in the plane, it is different for soft
robots. The latter being able to bend, twist, extend, their
kinematics become more complex. A better understanding of
the movements of living beings such as octopuses [18] or
caterpillars [2] has enabled the development of bio-inspired
models for modeling soft robots. The fact that the deformations
are continuous makes understanding the models difficult. In
addition, soft robots are often underactuated.

It is therefore necessary to use sfying assumptions. One of
them is the assumption of piecewise constant curvature [15],
which consists of considering that the robot is an assembly
of a finite number of curved joints. Bernoulli-Euler beam
mechanics can then be used to predict movements. But this
simplification does not allow all the specificities of soft robots
to be taken into account, so non-constant curvature models
have been developed [13].

A method commonly used in robotics is inverse kinematics
[16], which makes it possible to calculate the position of all
the links of a robot from the target position of a point on it. In
the case of soft robotics, this method becomes more complex
to use, as it is difficult to control the entire body of the robot.
Solutions have been developed, using the PCC assumption. In
[8], the approach is divided in two simpler task : move the
effector of the robot to the desired position, and position the
envelope of the robot in relation to the environment.

B. Control

Several solutions to design controllers have been proposed,
two of them will be presented in this section.

1) Strain parametrization: In [11] is presented a geometric
variable-strain (GVS) approach for static modeling of soft
manipulators. The manipulator is modeled as a Cosserat
rod [12](continuous stack of rigid cross-sections). In [19]
is presented a work based on this model, to create a new
implicit strain parametrization. A tip-pose and shape controller

is designed on this parametrization, showing good results even
with high order models.

2) Finite element method based controller: In [14] a dy-
namic control using finite element method (FEM) has been
developed. The robot is first decomposed in finite elements.
As it leads to a very large order Linear Time Invariant (LTI)
system, the pole placement feedback method can’t be used
directly, therefore there is a need to reduce the order of
the model. The model can be reduced using snapshot-Proper
Orthogonal Decomposition (POD) [4]. As the number of
parameters is lower, the pole placement method can be used
to obtain the control matrix.

IV. SIMULATION

Several tools have been developed to facilitate the simula-
tion of soft robots. We will focus here on three of the most
recent ones.

A. SoRoSim

SoRosim is a MATLAB toolbox for modeling and simu-
lation of soft robots. It uses the Geometric Variable Strains
(GVS) approach to model the dynamic and static behavior
of both rigid, soft or hybrid robots. This toolbox allows the
user to create rigid or soft joints, assemble them, add external
forces and actuators, and run the simulation.

Fig. 1. Example of a soft finger in SoRoSim [23]

B. SOFA soft robotics toolkit

SOFA is an opensource framework designed for physics-
based simulation. A plugin has been developed to enable
interactive modeling and simulation of soft robots. It is based
on the control model descrided in [3], [6]. Robots can be easily
built using Python or C++ scripts, but also GUI.

Fig. 2. Cable gripper simulated in SOFA [25]

C. SoMo

The opensource framework SoMo [20]is based on rigid-
body physics, discretizing soft robots in multiple rigid ele-
ments. Robots can be built using Python scripts. Other plugins
based on SoMo have been developed : SoMoGym [21], a
plugin for training and reinforcement learning for soft robots
controller, and SoMo-RL (built on SoMoGym), that allows for
example to evaluate the influence of varying robot and control
parameters on the training of RL policies.

Fig. 3. Example of a manipulator simulation in SoMo [20]

V. APPLICATIONS AND SYSTEMS

Soft robotics can have a wide range of applications, some
of them will be presented in this part.

A. Medical applications

Rigid orthotics and medical devices can cause injury or
discomfort due to their lack of flexibility. In addition, rigid
connections sometimes do not allow the movements of organic

limbs to be perfectly reproduced. Soft robotics is an interesting
solution from this point of view, because the materials used
have properties close to organic materials. Some recently
developed systems are soft orthodics for human ankle-foot
rehabilitation, soft sensing suits for lower limb measurement,
and a soft system for simulation of cardiac actuation [16].

Fig. 4. Prosthetic hand designed by students during the Global Summer
Immersion Programm in India

B. Objects manipulation

Gripping and manipulating objects is a very present prob-
lem in industry in particular. Although rigid robots are very
common for this use, they do not allow them to adapt to
a wide variety of objects. Soft robots, for their part, have
a greater capacity for adaptation. Systems using iso-thermal
stiffness variations, cable or pneumatic actuated fingers are
highly efficient and adaptable [5], [16].

C. Locomotion

A lot of soft mobile robots have been developed using
bio-inspired designs. Caterpillars, worms and octopuses [18],
snakes, but also fishes [22] have been studied to help to
understand and reproduce their behaviour. Some of them could
be used to help in biological studies, as they achieve to have
almost the same performances as their living counterpart.

One of the challenges in creating autonomous soft robots is
the embedding of power sources, which are often quite heavy
and therefore reduce the robot’s loading capacity. One solution
envisaged is to wire the soft robot to an unwired autonomous
rigid robot, which will carry the power source [16].

VI. CONCLUSION

There are now very varied solutions concerning the design,
simulation and control of soft robots, allowing them to be
used in many fields. Although we have already been able to

Fig. 5. CSAIL’s autonomous fish SoFI

Fig. 6. A chemically powered soft octopus [24]

identify a large number of materials that can be used for the
manufacture of soft robots, such as polymers and gels, there
is nevertheless much research to be done on the manufacture
of soft electronics.

Modeling and controlling soft robots is complex due to
material properties, but various solutions have been explored,
such as segmenting robots into a large number of rigid
connections, or using finite elements. These techniques also
allow the simulation of robots, and have been implemented in
several tools and several languages.

Soft robots are now used in many fields, whether in
medicine, industry, or environmental studies for example.

Even if the list of technical solutions developed in this
article is not exhaustive, it gives a good overview of the
state of progress in soft robots. Many advances are still to be
expected in the future, whether in the control, manufacturing
or applications of soft robots.

REFERENCES

[1] Cheng, Nadia G., et al. “Design and Analysis of a Robust, Low-Cost,
Highly Articulated Manipulator Enabled by Jamming of Granular Me-
dia.” 2012 IEEE International Conference on Robotics and Automation,
IEEE, 2012, pp. 4328–33, https://doi.org/10.1109/ICRA.2012.6225373.

[2] Coyle, Stephen, et al. “Bio-Inspired Soft Robotics: Material Selection,
Actuation, and Design.” Extreme Mechanics Letters, vol. 22, 2018, pp.
51–59, https://doi.org/10.1016/j.eml.2018.05.003.

[3] Duriez, Christian. “Control of Elastic Soft Robots Based on Real-Time
Finite Element Method.” ICRA, 2013.

[4] Goury, Olivier. Computational Time Savings in Multiscale Fracture
Mechanics Using Model Order Reduction. 2015.

[5] Hesheng Wang, et al. “Visual Servo Control of Cable-Driven
Soft Robotic Manipulator.” 2013 IEEE/RSJ International Confer-
ence on Intelligent Robots and Systems, IEEE, 2013, pp. 57–62,
https://doi.org/10.1109/IROS.2013.6696332.

[6] Largilliere, Frederick, et al. “Real-Time Control of Soft-Robots Using
Asynchronous Finite Element Modeling.” ICRA, 2015.

[7] Lu, Nanshu, and Dae-Hyeong Kim. “Flexible and Stretchable Electron-
ics Paving the Way for Soft Robotics.” Soft Robotics, vol. 1, no. 1, Mar.
2014, pp. 53–62, https://doi.org/10.1089/soro.2013.0005.

[8] Marchese, Andrew D., et al. “Design and Control of a Soft and Con-
tinuously Deformable 2D Robotic Manipulation System.” 2014 IEEE
International Conference on Robotics and Automation (ICRA), IEEE,
2014, pp. 2189–96, https://doi.org/10.1109/ICRA.2014.6907161.

[9] Mosadegh, Bobak, et al. “Pneumatic Networks for Soft Robotics That
Actuate Rapidly.” Advanced Functional Materials, vol. 24, no. 15, 2014,
pp. 2163–70, https://doi.org/10.1002/adfm.201303288.

[10] Petralia, Michael T., and Robert J. Wood. “Fabrication and Analy-
sis of Dielectric-Elastomer Minimum-Energy Structures for Highly-
Deformable Soft Robotic Systems.” 2010 IEEE/RSJ International
Conference on Intelligent Robots and Systems, 2010, pp. 2357–63,
https://doi.org/10.1109/IROS.2010.5652506.

[11] Renda, Federico, Costanza Armanini, et al. “A Geometric Variable-Strain
Approach for Static Modeling of Soft Manipulators With Tendon and
Fluidic Actuation.” IEEE Robotics and Automation Letters, vol. 5, no.
3, 2020, pp. 4006–13, https://doi.org/10.1109/LRA.2020.2985620.

[12] Renda, Federico, Frederic Boyer, et al. “Discrete Cosserat
Approach for Multisection Soft Manipulator Dynamics.” IEEE
Transactions on Robotics, vol. 34, no. 6, 2018, pp. 1518–33,
https://doi.org/10.1109/TRO.2018.2868815.

[13] Renda, Federico, Michele Giorelli, et al. “Dynamic Model of
a Multibending Soft Robot Arm Driven by Cables.” IEEE
Transactions on Robotics, vol. 30, no. 5, 2014, pp. 1109–22,
https://doi.org/10.1109/TRO.2014.2325992.

[14] Thieffry, Maxime, et al. “Dynamic Control of Soft Robots.” IFAC World
Congress, 2017, https://hal.science/hal-01558844.

[15] Webster, Robert J., and Bryan A. Jones. “Design and Kinematic
Modeling of Constant Curvature Continuum Robots: A Review.” The
International Journal of Robotics Research, vol. 29, no. 13, 2010, pp.
1661–83, https://doi.org/10.1177/0278364910368147.

[16] Rus, Daniela, and Michael T. Tolley. “Design, Fabrication and Control
of Soft Robots.” Nature, vol. 521, no. 7553, May 2015, pp. 467–75,
https://doi.org/10.1038/nature14543.

[17] J. C. Case, E. L. White and R. K. Kramer, ”Soft Material Characteriza-
tion for Robotic Applications”,Soft Robotics, vol. 2, no. 2, pp. 80-87,
2015.

[18] Calisti, M. et al. An octopus-bioinspired solution to movement and
manipulation for soft robots. Bioinspiration & biomimetics 6, 036002
(2011)

[19] Renda, Federico, et al. “Dynamics and Control of Soft
Robots With Implicit Strain Parametrization.” IEEE Robotics
and Automation Letters, vol. 9, no. 3, 2024, pp. 2782–89,
https://doi.org/10.1109/LRA.2024.3360813.

[20] Graule, Moritz A., Clark B. Teeple, et al. “SoMo: Fast and
Accurate Simulations of Continuum Robots in Complex Envi-
ronments.” 2021 IEEE/RSJ International Conference on Intelli-
gent Robots and Systems (IROS), IEEE, 2021, pp. 3934–41,
https://doi.org/10.1109/IROS51168.2021.9636059.

[21] Graule, Moritz A., Thomas P. McCarthy, et al. “SoMoGym:
A Toolkit for Developing and Evaluating Controllers and Rein-
forcement Learning Algorithms for Soft Robots.” IEEE Robotics

and Automation Letters, vol. 7, no. 2, 2022, pp. 4071–78,
https://doi.org/10.1109/LRA.2022.3149580.

[22] Marchese, A. D., Onal, C. D. & Rus, D. Autonomous soft robotic
fish capable of escape maneuvers using fluidic elastomer actuators. Soft
Robotics 1, 75–87 (2014).

[23] Creating SoRoSim: A MATLAB Toolbox for Soft Robotics
Modeling and Simulation. https://fr.mathworks.com/company/technical-
articles/creating-sorosim-a-matlab-toolbox-for-soft-robotics-modeling-
and-simulation.html.

[24] Shen, H. Beyond Terminator: squishy ’octobot’ heralds new era of soft
robotics. Nature (2016). https://doi.org/10.1038/nature.2016.20487

[25] Manti, Mariangela, et al. “An Under-Actuated and Adaptable Soft
Robotic Gripper.” Proceedings of the 4th International Conference on
Biomimetic and Biohybrid Systems - Volume 9222, Springer-Verlag,
2015, pp. 64–74, https://doi.org/10.1007/978-3-319-22979-9 6.

28
février

2024

Transformer: A
Novel Neural
Network
Architecture

Initiation à la Recherche
2024

MUSTIERE Ludovic

Abstract
The recent advances in the field of Natural Language Processing (NLP) have allowed

the development of large language models, such as the Generative Pre-trained Transformer
(GPT) model. This model is based on the Transformer architecture, which is a neural
network architecture that has been introduced in 2017. The Transformer architecture
has been designed to solve the problem of machine translation, but it has been shown
that it can be used for other tasks such as text generation.

Keywords
Neural Networks, Machine Learning, Transformer, Deep Learning, Natural Language

Processing, Large Language Model, Generative Pre-trained Transformer.

i

Contents
1 Introduction 1

1.1 Context . 1

2 Transformers 1
2.1 A quick introduction to neural networks 1
2.2 Attention . 3

2.2.1 Global Attention . 3
2.2.2 Local Attention . 3

2.3 The Transformer . 4
2.3.1 Encoder block . 6
2.3.2 Decoder block . 6
2.3.3 Positional encoding . 6
2.3.4 Multi-Head Attention . 7
2.3.5 Position-wise Feed-Forward Networks 8

3 Training and Results 8

4 Conclusion 9

List of figures 10

Glossary 11

Bibliography 12

A Annexes 13

ii

1 Introduction

1.1 Context

Since early 2010s, Artificial Intelligence has known an unprecedented growth. Indeed,
the progress in the field of Machine Learning (ML) has allowed to create algorithms
capable of solving complex problems, such as image recognition or automatic translation.
These algorithms are used in many fields, such as medicine, finance or robotics.

One of the fields where Artificial Intelligence has known the most success is Natural
Language Processing. Indeed, Machine Learning algorithms have allowed to create
models capable of understanding human language. These models are used in many fields,
such as automatic translation, speech recognition or chatbots.

In this report, we will focus on how we can use Transformers to create an automatic
translation algorithm. We will first explain what Transformers are, and how they work.
Then we will explain how impactful they have been in the field of automatic translation.

2 Transformers

2.1 A quick introduction to neural networks

Before we can explain what Transformers are, we need to explain what neural networks
are. Neural Networks (NN) are a set of algorithms that are designed to recognize patterns.
They are inspired by the human brain, and they are composed of neurons. These neurons
are organized in layers, and they are connected to each other. The first layer is called the
input layer, and the last layer is called the output layer. The layers between the input
and output layers are called hidden layers.

There are two broad types of neural networks: Feedforward Neural Networks (FNNs)
and Recurrent Neural Networks (RNNs). FNNs are the simplest type of neural networks.
The information moves in only one direction, forward from the input nodes, through
the hidden nodes (if any) and to the output nodes. There are no cycles or loops in the
network [Sch].

1

Source: Training back propagation neural
networks using asexual reproduction
optimization

Figure 1 – A Feedforward Neural Network

RNNs are designed to recognize a data’s sequential characteristics and use patterns
to predict the next likely scenario. The hidden layer in RNNs act as a memory, which
allows them to remember previous inputs. This method is called bidirectional flow. Each
input of that sequence has some relationship with its neighbors or has some influence on
them. RNNs are used in many fields, such as handwriting recognition [GFS], language
translation [SVL] or time series prediction [Pet].

Source: Colah’s Blog

Figure 2 – A Recurrent Neural Network

However, RNNs have two major issues. Firstly, they are slow to train. Secondly, they
suffer from short-term memory. Indeed, they are unable to remember information from
the beginning of the sequence. This is called the vanishing gradient problem [BJZP].

To solve this problem, Long Short-Term Memory (LSTM)s were created. Long
Short-Term Memorys [HS] are a special kind of RNNs that are capable of learning
long-term dependencies. They include a branch that allows to retain information for
later use. It improves the vanishing gradient problem but around 1000 words, it starts to
forget the beginning of the sequence. Furthermore, they are even slower to train than
RNNs. Finally, Long Short-Term Memorys take input sequentially one by one, which
makes them difficult to parallelize.

2

https://www.researchgate.net/figure/The-structure-of-the-two-layered-feed-forward-neural-network_fig2_282818770
https://www.researchgate.net/figure/The-structure-of-the-two-layered-feed-forward-neural-network_fig2_282818770
https://www.researchgate.net/figure/The-structure-of-the-two-layered-feed-forward-neural-network_fig2_282818770
https://colah.github.io/posts/2015-08-Understanding-LSTMs/

2.2 Attention

An Attention mechanism allows the model to focus on the most relevant parts of the
input sequence. Attention-based models are classified into two categories: global and local
[LPM]. Common to these two types of models is the fact that they first take as input
the hidden state ht at each time step t. Then, they compute a context vector ct that
captures relevant source-side information for each target word. The concatenation of the
hidden state ht and the context vector ct is used to compute the attentional vector h̃t.
Finally, the attentional vector is used to predict the target word. The difference between
the two types of models is in the way they compute the context vector. Two popular
attention-based models are the Bahdanau and Luong models [BCB, LPM]. You can find
a possible way to compute the output in the equations (1) and (2) with p(yt|y<t, x) being
the probability of the target word yt given the previous target words y<t and the source
sentence x and Wc and Ws being the weight matrices of the context and softmax layers
respectively that are learned during training:

h̃t = tanh(Wc[ht; ct]) (1)

p(yt|y<t, x) = softmax(Wsh̃t) (2)

2.2.1 Global Attention

The global attention model considers all the hidden states of the source sentence to
compute the context vector. In order to do that, we create a variable-length alignment
vector at, whose length is equal to the length of the source sentence. The alignment
vector is computed using the equations (3) and (4) which compares the current hidden
state ht with each source hidden state h̄s [LPM]:

at(s) = align(ht, h̄s) (3)

at(s) = exp(score(ht, h̄s))∑
s′ exp(score(ht, h̄s′))

(4)

The score function can be computed using different methods. One of the most
popular methods is the dot product between the current hidden state and the source
hidden state score(ht, h̄s) = hT

t h̄s. The context vector ct is then computed using the
alignment vector at and the source hidden states h̄s [LPM]:

ct =
∑

s

at(s)h̄s (5)

2.2.2 Local Attention

The local attention model, on the other hand, only considers a subset of the source
hidden states to compute the context vector. The subset is determined by a window
centered around the current target position. In concrete details, the model generates an

3

(a) Global attention model (b) Local attention model

Figure 3 – Attention mechanism

aligned position pt for each target position t. The aligned position can either be assumed
to be equal to t in the case of a monotonic alignment assuming that the target position is
aligned with the source position or be predicted by the model in the case of a predictive
alignment. The equation (6) shows how the aligned position is computed in the case of a
predictive alignment with vp and Wp being learned through training and S being the
source sentence length [LPM]:

pt = S · sigmoid(vT
p tanh(Wpht)) (6)

The context vector ct is then computed as the weighted average over the set of
source hidden states h̄s within the window [pt − D, pt + D] with D being the window
size empirically selected. The alignment vector at is computed to favor alignment points
near the aligned position pt using the equation (7) with σ being the standard deviation
of the Gaussian distribution [LPM]:

at(s) = align(ht, h̄s) · exp(−(s − pt)2

2σ2) (7)

2.3 The Transformer

The Transformer is a novel neural network architecture that was introduced in the
paper "Attention is All You Need" [VSP+]. It is based on the attention mechanism and it
is designed to solve the vanishing gradient problem. The goal is to reduce the number of
sequential operations and to train the model faster than Long Short-Term Memorys.
The main idea is to remove the use of RNNs or Convolutional Neural Networks (CNNs)
and to use only self-attention layers. In the previous models like Conv2Seq [GAG+] or
ByteNet [KES+], the input sequence is passed through a stack of convolutional layers to

4

extract local features. Then, the output of the convolutional layers is passed through a
stack of RNNs to extract global features. The number of operations required to relate
signals from two arbitrary input or output positions grows in the distance between
positions, linearly for Conv2Seq and logarithmically for ByteNet. In the Transformer,
this is reduced to a constant number of operations, improving the training speed and the
performance of the model.

The Transformer is composed of two main parts: the encoder and the decoder. The
encoder maps an input sequence of symbol representations (x1, x2, ..., xn) to a sequence of
continuous representations (z1, z2, ..., zn). Given this vector representation, the decoder
then generates an output sequence of symbols (y1, y2, ..., ym) one element at a time. It
continuously uses the previously generated elements to generate the next one.

Figure 4 – The Transformer architecture

If you want to train a translator for English to French, we give the English sentence
to the encoder and the French sentence to the decoder.

5

2.3.1 Encoder block

The encoder is composed of an embedding layer, a positional encoding layer and a
stack of N identical layers. The input sequence is first passed through the embedding layer
to convert the input tokens (words) into continuous representations. The idea is to assign
to every word a unique vector representation and to keep words with similar meanings
close to each other. Then, the positional encoding layer is used to add information about
the position of the word in the sequence in order to give context to the model. Once the
input sequence is embedded and positional encoded, it is passed through the Multi-Head
Attention layer. For every word in the sequence, the model computes multiple attention
vectors per word in parallel in order to capture different interactions with the other words
in the sequence. Then, it takes a weighted average of the attention vectors to get the
final attention vector of every word. The output of the Multi-Head Attention layer is
passed through a simple position-wise fully connected feed-forward network. Since every
attention vector is independent of the others, the model can parallelize the computation
of the attention vectors, unlike in RNNs or Long Short-Term Memorys.

2.3.2 Decoder block

The decoder is composed of an embedding layer, a positional encoding layer, a stack
of N identical layers and a linear layer. The Masked Multi-Head Attention layer is
used to prevent the model from looking at the future words in the sequence, which is
not possible in a real-world scenario. To explain the need of such a layer, we need to
understand how the model learns. When we provide an English sentence to the encoder,
it will be translated to a French sentence using only previous results. The model then
compares the output with the expected French sentence and updates the weights of the
model. If the model looks at the future words in the sequence, it will be able to cheat
and to generate the correct translation without learning anything. So, we need to make
the model look only at the i first words in the sequence to generate the i-th word. Now,
the output of the Masked Multi-Head Attention layer is passed through the Multi-Head
Self-Attention layer with the encoder output. The idea is to make the mapping between
the English and French words and to capture the interactions between the words in the
two sequences. The output is an attention vector representing the relationship with
other words in both languages. Finally, the attention vector is passed through a simple
position-wise fully connected feed-forward network and a linear layer to generate the
output sequence. The choosen word is the one with the highest probability.

Now we will do a deep dive into each layer of the Transformer. In this work, N = 6,
dmodel = 512, h = 8, dk = dv = dmodel/h [VSP+].

2.3.3 Positional encoding

As explained earlier, the positional encoding layer is used to add information about
the position of the word in the sequence. The positional encoding have the same dimension
dmodel as the word embeddings so they can be summed. There are many ways to compute
the positional encoding. The authors of the paper used the formulas (8) and (9) where
pos is the position of the word in the sequence, i is the dimension of the positional

6

encoding. The authors chose this method because it allows the model to easily learn to
attend by relative positions, which is important for translation, since for any offset k,
PEpos+k can be represented as a linear function of PEpos. This also allows the models
to extrapolate to sequence lengths longer than the ones encountered during training.

PE(pos,2i) = sin
(

pos

100002i/dmodel

)
(8)

PE(pos,2i+1) = cos
(

pos

100002i/dmodel

)
(9)

2.3.4 Multi-Head Attention

The Multi-Head Attention layer is used to compute multiple attention vectors per
word in parallel. It uses multiple layers of Scaled Dot-Product Attention to compute
simultaneous attention vectors. The Scaled Dot-Product Attention is computed using the
equation (10). The input is first passed through three linear layers to create the query,
key and value vectors, respectively of size dk, dk and dv. The query and key vectors are
then multiplied together to get the attention score, each divided by

√
dk to prevent the

vanishing gradient problem. The attention score is then passed through the softmax
function to get the attention weights. The queries, keys and values are in practice packed
together in to matrices Q, K and V .

(a) Scaled Dot-Product Attention (b) Multi-Head Attention

Figure 5 – Multi-Head Attention

Multi-Head Attention then project the queries, keys and values h times with different,

7

learned linear projections to dk, dk and dv dimensions. The attention scores are then
computed in parallel and concatenated. The concatenated attention scores are then
passed through a final linear layer to get the final attention vector. The Multi-Head
Attention layer is computed using the equations (10), (11) and (12).

Attention(Q, K, V) = softmax
(

QKT

√
dk

)
V (10)

softmax(xi) = exp(xi)∑
j exp(xj) (11)

MultiHead(Q, K, V) = Concat(head1, head2, ..., headh)W O (12)

2.3.5 Position-wise Feed-Forward Networks

The Position-wise Feed-Forward Networks layer consist of two linear transformations
with a ReLU activation in between (two convolutional layers with kernel size 1). The
input is first passed through the first linear layer to get the intermediate representation.
Then, the intermediate representation is passed through the ReLU activation function to
get the final representation. The final representation is then passed through the second
linear layer to get the output of the layer. The Position-wise Feed-Forward Networks
layer is used to capture the interactions between the words in the sequence. The inner
dimension of the Position-wise Feed-Forward Networks layer is dff = 2048.

FFN(x) = max(0, xW1 + b1)W2 + b2 (13)

3 Training and Results
The model was trained on the WMT 2014 English-French dataset of about 36M

sentences and 32000 words. The model was trained for 100,000 steps with a batch size of
25000 tokens on 8 NVIDIA P100 GPUs. Each training step took about 0.4 seconds for a
total of 12 hours. Another model named big was trained on the same dataset for 300000
steps. Each training step took about 1.0 seconds for a total of 3.5 days.

The results of the model were compared to the results of the previous state-of-the-art
models. The model achieved a BLEU score of 41.8 on the newstest2014 dataset, which
is an improvement of 2.2 BLEU points over the previous state-of-the-art model for a
reduced training cost [VSP+].

8

Figure 6 – Results of the Transformer model

4 Conclusion
In this report, we have explained what Transformers are, and how they work. We have

also explained how impactful they have been in the field of automatic translation. We
have seen that the Transformers model achieved a BLEU score of 41.8 on the newstest2014
dataset, which is an improvement of 2.2 BLEU points over the previous state-of-the-art
model for a reduced training cost. We have also seen that the Transformers model is
faster to train than Long Short-Term Memorys and RNNs. The Transformer model
is now widely used in the field of automatic translation, and it has allowed to create more
accurate and faster automatic translation algorithms but also in the field of chatbots
and speech recognition. Soon, it may be widely used in the field of medicine, finance or
robotics.

For additional information, you can check Jay Alammar’s blog amazing Github
repository Visualizing A Neural Machine Translation Model (Mechanics of Seq2seq
Models With Attention). It contains a lot of visualizations and explanations about the
Transformer model and the attention mechanism.

9

https://jalammar.github.io/visualizing-neural-machine-translation-mechanics-of-seq2seq-models-with-attention/
https://jalammar.github.io/visualizing-neural-machine-translation-mechanics-of-seq2seq-models-with-attention/

List of Figures
1 A Feedforward Neural Network . 2
2 A Recurrent Neural Network . 2
3 Attention mechanism . 4
4 The Transformer architecture . 5
5 Multi-Head Attention . 7
6 Results of the Transformer model . 9

10

Glossary
Feedforward Neural Network A feedforward neural network is an artificial

neural network wherein connections between the nodes do not form a cycle.
As such, it is different from its descendant: recurrent neural networks. The
feedforward neural network was the first and simplest type of artificial neural
network devised. In this network, the information moves in only one direction,
forward, from the input nodes, through the hidden nodes (if any) and to the
output nodes. There are no cycles or loops in the network. 1

Generative Pre-trained Transformer Generative Pre-trained Transformer
(GPT) is a large language model introduced in 2018. This model has been trained
on a large corpus of text, and it can be used to generate text. i

Long Short-Term Memory Long short-term memory (LSTM) is an artificial
recurrent neural network (RNN) architecture used in the field of deep learning.
Unlike standard feedforward neural networks, LSTM has feedback connections. It
can not only process single data points (such as images), but also entire sequences
of data (such as speech or video). For example, LSTM is applicable to tasks
such as unsegmented, connected handwriting recognition, speech recognition and
anomaly detection in network traffic or IDSs (intrusion detection systems). 2

Machine Learning Machine learning is an application of artificial intelligence
(AI) that provides systems the ability to automatically learn and improve from
experience without being explicitly programmed. Machine learning focuses on
the development of computer programs that can access data and use it learn for
themselves. 1

Natural Language Processing Natural language processing (NLP) is a
branch of artificial intelligence that helps computers understand, interpret and
manipulate human language. NLP draws from many disciplines, including
computer science and computational linguistics, in its pursuit to fill the gap
between human communication and computer understanding. i, 1, 4

Neural Networks A neural network is a series of algorithms that endeavors to
recognize underlying relationships in a set of data through a process that mimics
the way the human brain operates. Neural networks can adapt to changing input;
so the network generates the best possible result without needing to redesign the
output criteria.. 1

Recurrent Neural Network A recurrent neural network (RNN) is a type
of artificial neural network commonly used in speech recognition and natural
language processing (NLP). RNNs are designed to recognize a data’s sequential
characteristics and use patterns to predict the next likely scenario. 1, 2, 4

Transformer The Transformer is a deep learning model introduced in 2017,
used primarily in the field of Natural Language Processing. Like RNNs,
Transformers are designed to handle sequential data, such as natural language,
for tasks such as translation and text summarization. However, unlike RNNs,
Transformers do not require that the sequential data be processed in order. i, 1

11

References
[BCB] Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. Neural Machine

Translation by Jointly Learning to Align and Translate. 3
[BJZP] Sunitha Basodi, Chunyan Ji, Haiping Zhang, and Yi Pan. Gradient amplification:

An efficient way to train deep neural networks. 3(3):196–207. 2
[GAG+] Jonas Gehring, Michael Auli, David Grangier, Denis Yarats, and Yann N.

Dauphin. Convolutional Sequence to Sequence Learning. 4
[GFS] Alex Graves, Santiago Fernández, and Jürgen Schmidhuber. Multi-dimensional

Recurrent Neural Networks. In Joaquim Marques De Sá, Luís A. Alexandre,
Włodzisław Duch, and Danilo Mandic, editors, Artificial Neural Networks –
ICANN 2007, volume 4668, pages 549–558. Springer Berlin Heidelberg. 2

[HS] Sepp Hochreiter and Jürgen Schmidhuber. Long Short-term Memory. 9:1735–80.
2

[KES+] Nal Kalchbrenner, Lasse Espeholt, Karen Simonyan, Aaron van den Oord, Alex
Graves, and Koray Kavukcuoglu. Neural Machine Translation in Linear Time. 4

[LPM] Minh-Thang Luong, Hieu Pham, and Christopher D. Manning. Effective
Approaches to Attention-based Neural Machine Translation. 3, 4

[Pet] Gábor Petneházi. Recurrent Neural Networks for Time Series Forecasting. 2
[Sch] Juergen Schmidhuber. Deep Learning in Neural Networks: An Overview. 61:85–

117. 1
[SVL] Ilya Sutskever, Oriol Vinyals, and Quoc V Le. Sequence to Sequence Learning

with Neural Networks. 2
[VSP+] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,

Aidan N. Gomez, Lukasz Kaiser, and Illia Polosukhin. Attention Is All You
Need. 4, 6, 8

12

A Annexes

Source: Attention is All You Need

Figure 7 – An example of the attention mechanism following long-distance dependencies
in the encoder self-attention in layer 5 of 6. Many of the attention heads attend to a
distant dependency of the verb ḿakinǵ, completing the phrase ḿaking...more difficult́.
Attentions here shown only for the word ḿakinǵ. Different colors represent different
heads. Best viewed in color.

Source: Transformer: A Novel Neural Network Architecture for Language Understanding

Figure 8 – The encoder self-attention distribution for the word “it” from the 5th to
the 6th layer of a Transformer trained on English to French translation (one of eight
attention heads).

13

https://arxiv.org/pdf/1706.03762.pdf
https://blog.research.google/2017/08/transformer-novel-neural-network.html

So
ur

ce
:

V
is

ua
li

zi
ng

A
N

eu
ra

l
M

ac
hi

ne
T

ra
ns

la
ti

on
M

od
el

(M
ec

ha
ni

cs
of

Se
q2

se
q

M
od

el
s

W
it

h
A

tt
en

ti
on

)
Figure 9 – You can see how the model paid attention correctly when outputing "European
Economic Area". In French, the order of these words is reversed ("européenne économique
zone") as compared to English. Every other word in the sentence is in similar order.

14

https://jalammar.github.io/visualizing-neural-machine-translation-mechanics-of-seq2seq-models-with-attention/
https://jalammar.github.io/visualizing-neural-machine-translation-mechanics-of-seq2seq-models-with-attention/

Sound Source Localization Using UAV Swarm,
With Interval Calculation Methods

Virgile Pelle
ENSTA Bretagne, Lab-STICC, UMR CNRS 6285, Brest, France

Abstract—This paper addresses the localization of a sound
source through the application of a swarm of unmanned aerial
vehicles (UAVs). Given the unknown emission time of the sound
signal, our methodology relies solely on the difference of the
time-of-arrival at each UAV. In order to take the time and
position measurements errors into account, we will employ
interval calculation methods.

Index Terms—sound source localization, time difference of
arrival (TDOA), interval analysis

I. INTRODUCTION

Sound source location research is an active area of research.
Indeed, such a methodology can be very useful for finding
victims in natural disasters, where rescue teams are deployed
on the ground to find them. We can imagine a swarm of
lightweight UAVs flying over the research zone trying to hear
a sound such as a whistle to locate the victims.

The challenge in this scenario is that the emission time
of the sound is unknown, constituting what is known as
a Time-Difference-Of-Arrival (TDOA) localization problem.
Each drones captures the sound at a distinct moment. Then
by communicating between them, they will share both their
spatial coordinates and the time at which they receive the
sound signal. And finally, given all the information they
have, the drones collaborate using interval analysis methods
to deduce the location of the sound source.

For the purpose of this study, we make the assumption that
there is only one immobile source to locate. The research is
conducted with the utilization of four UAVs. These UAVs will
maintain stationary flight and their relative position between
each other will be known. Additionally, they all share a
common clock, ensuring synchronized time measurements
between them.

This article focuses on the formulation of the localization
equation and the implementation of a constraint network
designed to solve the localization problem.

II. RELATED WORK

In the context of source localization using drone swarms,
and the unique challenges posed by unknown transmission
time, it is pertinent to review existing literature.

Time-based techniques are an important category. Methods
such as time of flight (TOA) [2] [7] and time difference of
arrival (TDOA) [3] exploit the temporal aspects of signal
propagation between receivers and a source, enabling accurate
distance determination. In addition, the angle-of-arrival (AOA)
approach [4] has been proposed, requiring an array of receiver

antennas to estimate position based on signal angles. There is
also other methods employed for localization of source such
as Received Signal Strength Indicator (RSSI) [1] for indoor
localization, or also by combining it with ultrasonic sounds
[5].

In the domain of sound source localization and UAV swarm
applications, notable research has been conducted to optimize
UAV positions TDOA applications [6]. This work explores
optimal positions for a swarm of 4 UAVs in TDOA scenarios,
for more accurate sound source localization.

III. THEORY

Let’s consider the source we want to find is located in a
3D space at s(xs, ys, zs) ∈ R3. We have a swarm of 4 UAVs
Q = [p1, p2, p3, p4] ∈ R3×4.

Given that there is no time synchronisation between the
source and the UAVs, we have to rely on the difference in
time between the reception on the sound at each drones. Let’s
define ti the time of arrival at pi. We can know define the
difference in distance from source to drone pi and source to
drone pj .

dij = c(ti − tj) (1)
dij = −dij

where c is the speed of sound.
We can also express dij using the distances between the

source to drones

dij = Di −Dj (2)

where

D2
i = (xi − xs)

2 + (yi − ys)
2 + (zi − zs)

2, i ∈ [1, 4] (3)

where (x1, y1, z1) is the position of drone n°1 (similarly for
drones 2,3 and 4).

Expandings (3) and using D2,D3,D4 given by (2) yields

D12 = x2
1 − 2x1xs + x2

s + y21 − 2y1ys + x2
s

+z21 − 2z1zs + x2
s (4)

(di1 +D1)
2
= x2

i − 2xixs + x2
s + y2i − 2yiys + y2s

+z2i − 2zizs + z2s (5)

Let’s define the squared radius to the source and to each
drones:

Rs = x2
s + y2s + z2s

Ri = x2
i + y2i + z2i , i ∈ [1, 4]

Using (4) we can rewrite Rs as follow:

R2
s = −R1 +D2

1 + 2x1xs + 2y1ys + 2z1zs (6)

Substituting (6) into (5) yields:

(di1 +D1)
2 −R2

i +R2
1 −D2

1 = 2x1xs + 2y1ys + 2z1zs

−2xixs − 2yiys − 2zizs, i ∈ [2, 4]
(7)

We can choose to take drone n°1 as origin. This makes :
(x1, y1, z1) = (0, 0, 0) and R1 = 0 which simplify (7):

R2
i − d2i1 − 2d2i1D1 = 2xixs + 2yiys + 2zizs, i ∈ [2, 4] (8)

(4) can also be simplified and gives D1 = RS . Thus 8 can
be written as:

∆− 2Rsd = 2M

xs

ys
zs

 (9)

where

∆ =

R2
2 − d221

R2
3 − d231

R2
4 − d241

 , d =

d21
d31
d41

 ,M =

x2 y2 z2
x3 y3 z3
x4 y4 z4

 ,

If we choose p2 p3 and p4 in order to have a linearly
independent family of vectors, then M is inversible and we
can thus write:

s =

xs

ys
zs

 =
1

2
M−1(∆− 2Rsd) (10)

The equation (10) still involve the unknown source radius
Rs. To solve this recall that:

Rs = (sT s)
1
2 (11)

By substituting in (10) we obtain the following quadratic
equation and its solution:

aR2
s + bRs + c = 0 (12)

Rs =
−b±

√
b2 − 4ac

2a
,Rs > 0 (13)

where

a = 4− 4dT (M−1)TM−1d

b = 2dT (M−1)TM−1∆+ 2∆T (M−1)TM−1d

c = −∆T (M−1)TM−1∆

In order to solve the whole problem, equation (13) is solved
in a first time to obtain the source radius and then knowing
this radius equation (10) gives us the source position.

In some scenario, (13) will returns two physical solution.
In these cases two source location will be identified. When it
happens the two location are usually far apart and the correct
location can be determined by other physical reasoning for
example if a solution is found outside the research zone.

IV. INTERVAL ANALYSIS

In order to perform interval resolution of our problem we
need to define a sets of contractors.

(i) dij = c(ti − tj)

(ii) ∥pi∥2 = R2
i

(iii) R2
i − di1

2 − 2Rsd = 2pTi s

• (i) evaluates the difference of distance from source to
drone pi and source to drone pj .

• (ii) evaluates the distance from origin to drone pi
• (iii) evaluates the source position given the information

of drone pi. This is the main contractor derived from
equation (9)

The solution of the equation (13) to estimate Rs can not
be solved using interval analysis due to its complexity. Apart
from this equation, everything else is computed using interval
analysis and still provide an interval approach for the final
solution of the problem.

V. APPLICATION

Let’s consider a swarm of 4 UAVs flying in an Y-shape
with a baseline of 50m as shown on Figure 1. The drone n°1
is flying 10 meters above the other to avoid them being all
in the same plan. The others 3 are flying at 10m above the
ground.

Fig. 1. Flying layout

The position and the time of reception of the sound for each
drone are measured. We will add an uncertainty of ± 1 meter
for the position and ± 10ms for the time of arrival.

We will only focus on the result in the 2D plan because we
assume that the source is located on the ground.

Fig. 2. Ideal conditions simulation

The simulation in Figure 2 assumed precise position and
time measurements without introducing noise. The source
location is determined exactly (the little green dot), showcas-
ing the robustness of the proposed methodology under ideal
conditions.

Fig. 3. Simulation with uncertainty (flying over)

As soon as the sensors uncertainty are taken into account,
the solution become much less precise. Those results are
highlighted in the Figure 3. The interval calculation computes
a solution interval which contains the real position of the
source but with a lot of uncertainty. In this simulation the
surface of the solution interval measures around 1000 squared
meters.

It is important to note that in these situation the 4 UAVs
are flying above the source.

Fig. 4. Simulation with uncertainty (flying away)

Fig. 5. Simulation with reduced uncertainty (flying away

When the source is far away from the swarm Figure 4 the
algorithm returns 2 intervals and only one of them cover the
real position of the source. The main reason is that equation 13
returns 2 acceptable solutions because the sensors uncertainty
are included. Indeed as shown in the Figure 5 where the
time uncertainty has been lowered to ± 1ms, the algorithm
finds again only one interval and its size is about 600 squared
meters.

VI. CONCLUSION

This paper introduced a method for sound source localiza-
tion employing a UAV swarm in scenarios where emission
time was unknown. By utilizing time differences of arrival
and incorporating interval analysis to handle measurement
uncertainties, the proposed approach demonstrated promising
results in three-dimensional space localization.

This work contributes to advancing sound source localiza-
tion using UAV swarms, with potential applications in disaster
response.

Further work including a moving swarm above the whole
research zone and the ability of handling multiple sound
detection, would enhance the robustness of this method.

LIBRARIES

The CODAC is a C++/Python library providing tools to
guarantee computations over intervals of reals, sets and tra-
jectories. The official web page is www.codac.io .

ACKNOWLEDGMENTS

We thank S. Rohou for the developement of the CODAC
library.

REFERENCES

[1] P. Bahl and V.N. Padmanabhan. Radar: an in-building rf-based user
location and tracking system. 2:775–784 vol.2, 2000.

[2] Shibkali Bera, Sanjoy Kumar Mondal, and Pampa Sadhukhan. Evaluation
of toa-based localization schemes using range estimation at network layer
in wlan environment. pages 1–6, 2011.

[3] Hyuntae Cho, Yeonsu Jung, Hoon Choi, Hyunsung Jang, Sanghyun
Son, and Yunju Baek. Precise location tracking system based on time
difference of arrival over lr-wpan. pages 67–72, 09 2008.

[4] D. Niculescu and Badri Nath. Ad hoc positioning system (aps) using aoa.
3:1734–1743 vol.3, 2003.

[5] Nissanka B. Priyantha, Anit Chakraborty, and Hari Balakrishnan. The
cricket location-support system. page 32–43, 2000.

[6] Zhou Ronghua, Sun Hemin, Li Hao, and Luo Weilin. Tdoa and track
optimization of uav swarm based on d-optimality. Journal of Systems
Engineering and Electronics, 31(6):1140–1151, 2020.

[7] Yimao Sun, K.C. Ho, Yanbing Yang, Lei Zhang, and Liangyin Chen.
Computationally attractive and statistically efficient estimator for noise
resilient toa localization. Signal Processing, 200:108663, 2022.

The impact of image
preprocessing on the creation of
an optimized machine learning

model for identifying the position
of a goal frame.

Martin Pilon

ENSTA Bretagne - Autonomous Robotics
martin.pilon@ensta-bretagne.fr

1 INTRODUCTION

Abstract
Optimizing a machine learning model for visual servoing and identifying the position
of a red goalpost, in the context of NAO football, involves crucial steps in image pre-
processing. Techniques such as applying a threshold on the red color (thresholding)
to binarize the image and reducing its size are essential for improving the quality of
visual data. Thresholding helps segment the image, isolating the goalpost and reduc-
ing noise, while size reduction decreases complexity while preserving essential features.
This preprocessing approach, tailored to the specific nature of red goalposts, enhances
the model’s ability to extract relevant information, leading to improved visual servoing
performance. This study emphasizes the positive impact of such preprocessing methods
on the accuracy of the machine learning model for red goalpost detection.

1 Introduction
The framework of our mission is to score a goal using a NAO robot. The goalpost
depicted below must be detected and positioned to enable the NAO robot to be servoed
relative to it. To detect and position the goalpost, possible methods include machine
learning (ML) approaches. ML methods require a database for the model to learn from.

Figure 1: NAO and goalpost

This article focuses on optimizing the input of a model dedicated to goalpost de-
tection. The input of the model is a image. Assuming we are in a scenario involving
embedded machine learning, and thus, we need to have the most efficient model possible.
The challenge is that, as we aim for the simplest model to avoid underfitting, we want
the input parameters of our model to be as straightforward as possible [1].

The emphasis is on data preprocessing (DP), a crucial phase to ensure the accuracy
and robustness of the model. Specifically, we delve into techniques such as Thresholding
for image binarization and size reduction. These processes play a crucial role in improv-
ing the quality of visual data and reducing the amount of information, essential aspects
for achieving optimal model performance.

1

3 THEORY

2 Current knowledge
We have a fixed input dataset determined by measurements from various sensors. Data
preprocessing is a crucial step in ML training, and several criteria can be applied to
optimize our input dataset [2]:

• Handling missing values: Completing missing values is essential, as data often
come from sensors with a measurement frequency. Some models, however, require
values of interest that have not been measured.

• Reducing the size of the dataset: This can be done through two methods. Data
preprocessing can either remove elements from the data that are not exploitable
or not very interesting, or it can decrease the data resolution. Reducing the size
of the data helps eliminate (or decrease) anomalies and focuses the model training
on areas of interest.

• Increasing the size of the dataset: For example, in images, this is done by changing
the scale and orientation of the image. This increases the dataset size and improves
the model’s generalization.

• Improving the quality of the data: Applying filters or functions to a dataset can
highlight data that is interesting for ML exploitation.

To achieve this, data preprocessing can use a variety of methods to improve the qual-
ity of the input datasets. In our case, the preprocessing addresses two criteria: reducing
the size of the dataset and improving the quality of the data. The input is an image.
Therefore, we can use image preprocessing methods to enhance the quality of visual
data before employing them in machine learning models. There are numerous methods
employed in image preprocessing, and we will primarily use resizing and thresholding
[3].

3 Theory

3.1 Tresholdind

Thresholding method involves taking a color image and converting it into a binary layer
that adheres to the following conditions for each pixel in an image [4]:

I > T

• I : Intensity of the pixel

• T : Threshold

If this condition is satisfied, then the pixel of the corresponding layer will be 1,
otherwise 0. Using a threshold allows converting an image where each pixel has 256 ∗
256 ∗ 256 = 16777216 values (corresponding to its RGB) to only 2 values per pixel (1 or
0).

In our case, what we desire from our thresholding is to return 1 if the pixel is red
and 0 otherwise. This method will help extract our object from the image (assuming

2

3 THEORY

that the background image does not contain red). This will enable the extraction of
important data for machine learning, thus improving the quality of our dataset while
reducing the amount of information. To achieve this on an Hue Saturation Value (HSV)
light model, we can set the following condition:

Hmax > H > Hmin

Smax > S > Smin

V max > V > V min

• H: Hue value of the pixel

• S: Saturation value of the pixel

• V : Value (brightness) value of the pixel

• Hmin: Predefined minimum threshold for Hue

• Hmax: Predefined maximum threshold for Hue

• Smin: Predefined minimum threshold for Saturation

• Smax: Predefined maximum threshold for Saturation

• V min: Predefined minimum threshold for Value

• V max: Predefined maximum threshold for Value

If this condition is satisfied, then the pixel of the corresponding layer will be 1, otherwise
0. In this case, we can choose any color to be retained through the thresholding process.

Figure 2: Graph HSV

3

3 THEORY

3.2 Scale reduction

There are various ways to scale down an image. The initial method used during the
project was Laplacian Pyramid. However, this method introduces artifacts around the
reduced image. Consequently, we adopted a bilinear interpolation method for scale
reduction. This technique calculates the pixel value based on the surrounding 4 pixels
[5]. Therefore, we can reduce an image from size MxN to size mxn, thereby decreasing
the number of pixels by:

M ∗ N − (m ∗ n)

Nevertheless, we do lose precision by reducing the size of our image. Our machine
learning model must find the position of the goal in the image, and if the image is smaller,
its prediction will be less accurate. However, in the context of the NAO’s control system
with the goal frame, we do not require high precision.

On the NAO robot, we have two cameras with different resolutions. The scale reduc-
tion enables the model to have uniform dimensions despite the variations between the
two cameras.

4

4 RESULT

4 Result
We assume that our input data is an image of dimensions MxN . This RGB image is
initially defined on M ∗ N ∗ 16777216 different values. Our data preprocessing consists
of three steps. The first step is the thresholding of the desired color. Here, we aim for
a slightly orangish red from the goal structure. We will take the following threshold
values: Hmin = 0, Hmax = 10, Smin = 150, Smax = 255, V min = 150, V max = 255

Figure 3: goalpost before and after the red thresholding

This initial step already reduces our variable count to M ∗ N ∗ 2 with each pixel
taking values of either 0 or 255. Additionally, our machine learning model does not
have to handle background images, which helps reduce its complexity. The second step
after the color thresholding is scaling down from an MxN pixel image to a square
100x100 pixel image. By reducing the scale through a bilinear interpolation method, we
reintroduced intermediate values between 0 and 255. At this stage, our variables can
take on 100 ∗ 100 ∗ 255 = 2, 550, 000 different values.

Figure 4: goalpost before and after the resizing

5

4 RESULT

To remove undesired intermediate values and convert back to a binary image, we
apply a standard threshold. This reduces our variables to 100 ∗ 100 ∗ 2 = 20, 000 distinct
values for our machine learning model.

Figure 5: goalpost before and after the thresholding

By proceeding in this way, assuming we have an input image of average quality
at 518x518 resolution, our data preprocessing allows for a reduction by 225, 086, 485
in possible variables. This transforms the input vector of our model from a shape of
518 ∗ 518 ∗ 3, with each value in the range of 0 to 255, to an input vector with a shape
of 100 ∗ 100 ∗ 1, where each value is either 0 or 255.

6

REFERENCES

5 Conclusion
Our goal was to minimize the input values of our ML model to have the least complex
model possible. One way to reduce input values is through preprocessing. As our ML
model is designed to take images as input, we can apply image processing methods to
these images. The strategy involves two main parts: thresholding for a desired color
and reducing the size of the image. Thresholding the desired color helps reduce the
input vector of our model and improves the quality of the input value by separating the
goal frame from the rest of the image. Scaling down the image size also contributes to
reducing the input vector.

References
[1] T. Mitchell, Machine Learning, Science/Engineering/Math, 1997.

[2] S. Zhang, C. Zhang, Q. Yang, Data preparation for data mining, Appl. Artif. Intell.,
p375–381, 2003

[3] S. Krig, Image Pre-Processing, Computer Vision Metrics. Apress, Berkeley, CA, 2014.

[4] W. Burger, Mark J. Burge, Principles of digital image processing : core algorithms,
Springer, 2009.

[5] Rafael C. Gonzalez, Richard E. Woods, Pearson Prentice Hall,Digital Image Process-
ing, « Image sampling and Quantization », 2008

7

Comparative Analysis of Visual Odometry and
Lidar Odometry for Robot localization

PITAUD Mathieu
mathieu.pitaud@ensta-bretagne.org

ENSTA Bretagne - Robotique Autonome

Abstract—This article aims to present and compare two
odometry methods : Visual Odometry and Lidar Odometry. The
first part will be devoted to presenting these methods and their
variations. Then, I will compare their performance using the Kitti
Odometry dataset. The visual Odometry algorithm implemented
is based on stereo-vision system and features matching. Lidar
odometry is based on Iterative Closest Point algorithm (ICP).
We will see that the results are quite good at the beginning but
tend to diverge as the mission progresses.

Index Terms—Odometry, Lidar, Camera, Stereo-vision, Local-
ization, Kitti Dataset, Matching, Point-clouds, Iterative Closest
Point.

I. INTRODUCTION

In the field of robotics, odometry refers to the estimation
of a moving robot’s speed and position, which enables the
localization of the robot in its environment.

A lot of methods exists to estimate the speed of a robot
depending on the sensors. In this paper, we will study two
different ways : Visual odometry and Lidar odometry.

Visual odometry relies on images data from one or various
cameras (in the case of stereo-vision), and can use matching
points or optical flow to estimate motion. Lidar based odome-
try utilizes laser beams to measure distances and create a 3D
points cloud around the robot. By using the points cloud from
one instant to the next we can deduce robot’s movement.

First, I will detail how the two methods work and their
variations. Then, we will compare their performances, using
sensors data and true positions from a public dataset.

II. VISUAL ODOMETRY

Visual odometry aims to estimate the position, speed, and
orientation of a moving robot by analyzing sequences of
images. It is based on extracting features, from key-points or
corners for example, from a frame. And tracking the features
over time to know the 2D motion in the image reference frame.
Then, triangulating points to get the 3D motion of some key-
points. If we suppose that those points are motionless then
we can deduce our motion. This is the main idea of visual
odometry but it exists a lot of different methods, depending
of the type of camera used, for example.

As explained in [1] [2], there are two types of visual odom-
etry algorithms which are feature based VO and appearance
based VO.

A. Feature based

As we saw in the previous paragraph. Feature based VO
algorithms will search key-points in a frame. Those points are
chosen according to several criteria. It has to be distinguishable
from other points, which means to have high gradients and
contrasts around this point. That is why the corner of an object
can be a good candidate, because there are different colors in
all the directions for example. A key-point has to be located
precisely, that is why an edge is less good than a corner. Some
algorithms exists to compute key-points in an image, such as
SIFT, ORB, Harris.

The idea is then to find the same key-points in the next
image, so we can deduce the motion in 2D in the image
reference frame. We use matching algorithms, that compare
each features in both image to recognize the same points.
We search for the nearest neighbor of each feature, then test
several match combinations and keep the one that minimizes
errors (in the sense of Euclidean distance).

Fig. 1. Illustration of the feature based VO principle [2]

B. Appearance based

Appearance based VO algorithms will look out for intensity
of pixels, and the motion of the global intensity in the
image to deduce the 2D motion of the scene. It uses optical
flow algorithms such as Lucas-Kanade algorithm, that try to
compute the motion of brightness/intensity patterns from one
image to the next. [1]

Lucas-Kanade algorithm make the assumption that the mo-
tion is small between two frames, so we need a high rate
camera to use it. Also, the optical flow can be computed on
each point (Dense Optical Flow) or just on a few interesting
points (Sparse Optical Flow).

C. Stereo Odometry [3] [4]

Stereo-vision odometry uses two cameras (at least) whose
relative position to each other is known. So at each instant we
have multiples frames of same scene but from slightly different
points of view.

We can match key-points in both images and using their
intrinsic matrix, we can triangulate to have the key-points 3D
coordinates. We can also compute the disparity map using the
stereo-vision system, which correspond to the movement of
each pixel between the two images. If a pixel has moved a lot
then it corresponds to a close object, and if it has moved a little
then it corresponds to an object far away. Using the intrinsic
parameters we can deduce the depth from the disparity :

Let’s notate d the distance between the two cameras, f
the focal length given by the intrinsic matrix, and disp the
disparity, then for each pixel :

depth =
d ∗ f
disp

(1)

To summarize, the feature matching or the optical flow
between two images at time t and time t+1 gives us the 2D
motion of a point. And by triangulation or disparity map using
the stereo-vision system we can change to the 3D coordinates,
so we have the 3D motion.

D. Monocular Odometry

Monocular odometry uses only one camera, the disad-
vantage of this method is the depth issue, as we can not
triangulate. Two consecutive images give us the 2D motion,
but we can not have the 3D motion. We often need to rely on
other sensors such as Lidar, or to use the knowledge of the
environment, such as the planarity of the road surface. [2]

III. LIDAR ODOMETRY

Lidar based odometry aims to estimate the position, speed,
and orientation of a moving robot by analyzing sequences
of 3D point clouds. As visual odometry, it is also based on
finding the transformation between two point-clouds. Contrary
to visual odometry, with Lidar we have directly the 3D
coordinates in the Lidar reference frame.

One of the difficulties with Lidar odometry is the Lidar takes
a long time to rotate completely. As the robot moves while
the Lidar is getting data, it create distorsions in the point-
cloud, which we have to take into account to be as accurate
as possible.

Different methods are used to align point-clouds such as
Iterative Closest Point or the solution used for Lidar Odometry
and Mapping based on features. [5] [2]

A. Iterative Closest Point (ICP)

The ICP method aims to find the transformation between
to point-clouds. It will compute the transformation that mini-
mizes the distance (the sum of the squares of the distances
between the corresponding points) between the two point-
clouds. The main advantage of this method is that it is easier
to use, as there is no need to extract features.

ICP needs a high computing power as it computes distance
for each points. So, in some cases, with a high resolution
Lidar, this algorithm may be inefficient as it will be too slow
to calculate in real time. Also, we often need to preprocess the
data to avoid some noise and outliers that occurs frequently.
[5] [2]

B. Lidar Odometry and Mapping (LOAM)

LOAM aims to estimate the position of the robot but also to
create a map at the same time. The first part of the algorithm
is based on finding features in the point-cloud such as edges
and corners. And try to recognize those features in the next
point-cloud.

First, we need to extract features, in both papers [6] [5],
they use the smoothness of the local surface as a feature.
The smoothness of a point depends of the distance to the
other nearby points, often the five nearest in each direction.
Smoothness is calculated by summing the distance to each
nearby point. As a result, points located at a corner will have
a high smoothness, and points located in a flat surface will
have a very low smoothness.

So, we have two groups of features, points that are more
likely edges or corners and points that are more likely on wall,
or other flat surfaces. [5] [6]

The second step is to find the correspondences between
features at time t, and features at time t+1. In the paper [6],
they superpose the two point-clouds and try to find edges lines
or planar areas. They keep the solution that minimizes errors.

IV. DATASET

In order to test and verify previously detailed odometry
methods we need data from a real environment. We will
use the Odometry Benchmark of the Kitti Vision Benchmark
Suite dataset, downloadable here [7], which comes from a
collaboration between Karlsruhe Institute of Technology and
Toyota Technological Institute at Chicago [8].

This dataset provides sensors data from a moving car in
various environments. The vehicle is equipped with 3D Lidar,
GPS, IMU and a stereo-vision system composed of four
cameras (2 colors, and 2 monochromes), as we can see on
Figure 2.

Fig. 2. Illustration of the Kitti car’s sensors [7]

The main advantages of this dataset are the calibration
data provided, data from cameras and Lidar corresponding
to the same mission, and the large number of sequences,
some with the true position given for comparison purposes
and performance characterization.

V. RESULTS

A. Visual Odometry

To write the code I took the example of a github project
[9]. We will use a feature based method using stereo-vision
system.

First, we can find the matching points between a image
and the next one. The comparison of the matching points
coordinates between the two images give us the 2D motion in
the camera reference frame. An example of results is shown
on Figure 3.

Fig. 3. Matching points

In order to have the 3D coordinates, we compute the dis-
parity map between the left and right images. We can deduce
the depth map using the equation 1 established previously. See
Figures 4 and 5.

Fig. 4. Disparity map

Fig. 5. Depth map

We are able to determine the 3D coordinates using the
following equations that comes from the intrinsic matrix
definition p = MP :

X =
(u− u0) ∗ Z

fx
;Y =

(v − v0) ∗ Z
fy

(2)

Where (u, v) are the 2D coordinates of the considered point
(in pixels), (u0, v0) the center of the image (in pixels), and
(fx, fy) the focal length divided by the length of a pixel
respectively according the x-axis ans the y-axis.

Then we use the cv2.solvePnPRansac() function that
gives us our motion (translation and rotation matrix) in the

camera reference frame. The inputs of this function are the
3D coordinates in the first image and the 2D coordinates of
the corresponding points in the second image.

We transform the coordinates in the world reference frame
to compare with the ground truth. The results are shown in
Figure 7.

B. Lidar Odometry

We will use the Iterative Closest Point method. To avoid
expensive calculations we will sub-sample the point-cloud
(initially composed of 100 000 points), to take only 15 000
points chosen randomly. Otherwise the computation would
take to much time.

Fig. 6. Example of a point-cloud given by the Velodyne Scan (20 000 points)

On Figure 6 there is an example of the point-cloud given
by the Velodyne Scan. Here the car is located at a crossroad.

Then, I use the pipelines.registration.registration icp
function of the open3d python library, that computes the
transformation matrix using ICP method, where the inputs are
only two consecutive point-clouds.

We transform the coordinates in the world reference frame
to compare with the ground truth. The results are shown in
Figure 7.

C. Comparison

In the Figure 7 that presents the results. We can see that both
methods manage to correctly follow the ground-truth trajectory
at the beginning. But as the simulation progresses, we observe
that the estimated trajectories slowly deviate from the truth.

The algorithms always detect turns and straight lines, and
the final shape of the trajectory looks like the ground truth.

Trajectory errors come from small accumulated errors in the
rotation matrix. If there is a tiny error in the rotation matrix,
even if we detect that we are moving in a straight line, the
trajectory will deviate from the truth. With this method, the
trajectory will always end up diverging. To solve this problem,
we would have to use other sensors or close the loop (detect
that we went back to the same place).

Fig. 7. Ground-truth and estimated trajectories (Kitti odometry dataset 0)

To improve the results, we could have taken into account
the fact that the car is moving on a road, so its rotation vector
is constrained. We could easily consider that the car will not
have pitch or roll.

We can also note that using more advanced algorithms and
optimizations would probably have produced better results.
A possible improvement for the Lidar would be to have a
preprocess algorithm to remove outliers, and to use a feature-
based algorithm instead of the Iterative Closest Point which is
quite basic.

To conclude, in this case both solutions gave good results.
However, depending on the environment and the mission one
solution could be better than the other. High accuracy Lidar
are often more expensive than cameras. But Lidar are more
robust whereas visual odometry can be affected by the rain,
or by poor lightning conditions.

REFERENCES

[1] Mohammad OA Aqel, Mohammad H Marhaban, M Iqbal Saripan, and
Napsiah Bt Ismail. Review of visual odometry: types, approaches,
challenges, and applications. SpringerPlus, 5:1–26, 2016.

[2] Sherif A. S. Mohamed, Mohammad-Hashem Haghbayan, Tomi West-
erlund, Jukka Heikkonen, Hannu Tenhunen, and Juha Plosila. A sur-
vey on odometry for autonomous navigation systems. IEEE Access,
7:97466–97486, 2019. https://doi.org/10.1109/ACCESS.2019.2929133
doi:10.1109/ACCESS.2019.2929133.

[3] Davide Scaramuzza and Friedrich Fraundorfer. Visual odome-
try [tutorial]. IEEE Robotics Automation Magazine, 18(4):80–92,
2011. https://doi.org/10.1109/MRA.2011.943233 doi:10.1109/MRA.
2011.943233.

[4] D. Nister, O. Naroditsky, and J. Bergen. Visual odometry. In Pro-
ceedings of the 2004 IEEE Computer Society Conference on Computer
Vision and Pattern Recognition, 2004. CVPR 2004., volume 1, pages I–
I, 2004. https://doi.org/10.1109/CVPR.2004.1315094 doi:10.1109/
CVPR.2004.1315094.

[5] Han Wang, Chen Wang, Chun-Lin Chen, and Lihua Xie. F-loam :
Fast lidar odometry and mapping. In 2021 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS), pages 4390–
4396, 2021. https://doi.org/10.1109/IROS51168.2021.9636655 doi:10.
1109/IROS51168.2021.9636655.

[6] Ji Zhang and Sanjiv Singh. Loam: Lidar odometry and mapping in real-
time. In Robotics: Science and systems, volume 2, pages 1–9. Berkeley,
CA, 2014.

[7] Kitti vision benchmark suite. URL: https://www.cvlibs.net/datasets/kitti/
eval odometry.php.

[8] Andreas Geiger, Philip Lenz, and Raquel Urtasun. Are we ready for
autonomous driving? the kitti vision benchmark suite. In Conference on
Computer Vision and Pattern Recognition (CVPR), 2012.

[9] Github project on visual odometry. URL: https://github.com/NafBZ/
Stereo-Visual-Odometry/tree/master.

Water-surface obstacle detection using machine
learning
RAVAIN Louis

LABSTIC
ENSTA Bretagne
Brest, FRANCE

louis.ravain@ensta-bretagne.org

Abstract—Water Surface object detection is very significant
in the advancemement of autonomous navigation for ships and
boats. It’s the maritime equivalent of detecting cars, traffic signs,
pedestrians, etc., for the development of autonomous vehicles.
However, unlike the automotive sector, sourcing an appropriate
dataset for water surface object detection poses a challenge.
Therefore, in this paper, we propose a dataset composed of 8325
images, representing 5 differents common objects found on the
water surface, under many different conditions. We will also use
this dataset to train a machine learning model, YOLOv8 and test
the resulting model on the waters of Lake Guerlédan.

Index Terms—Machine learning, dataset, object detection,
YOLO

I. INTRODUCTION

In recent years, autonomous driving has seen major
progress, and autonomous water navigation is a topic of
interest. Indeed, water transportation is far better for the
environmment, as it is less CO2 intensive than air or even road
transportation. At the same time, the advancements in artificial
intelligence allows us to imagine more efficient ships. As an
important component to autonomous navigation, water-surface
object detection is key to the development of these autonomous
ships. Indeed, if we want to preserve the safetyness of water
transportation, we have to be able to detect any obstacle that
might be on the ship’s path. With the continuous development
of deep learning technology, object detection algorithms based
on convolutional neural networks (CNN) have been proposed
one after another. CNN, a type of deep feedforward neural
network, has found numerous successful applications in tasks
such as image classification, object detection, and object
segmentation across various image and video domains. Water
surface object detection technology is increasingly adopting
this approach due to its high accuracy, fast speed, and strong
generalization capabilities. Detecting objects on the water
surface requires high real-time performance and recognition
accuracy, especially for objects located at long distances. De-
spite the actual size of distant water surface objects potentially
spanning tens or even hundreds of meters, they may only
occupy a few pixels on the imaging plane. Among the various
object detection algorithms currently available, the Single-shot
Multibox Detector (SSD) algorithm stands out for its speed

Identify applicable funding agency here. If none, delete this.

and accuracy. However, its performance in detecting small
objects is not as satisfactory as desired, particularly when
applied to water surface object detection at long distances.
Currently, object detection primarily relies on traditional vision
methods, as they offer predictable results and a fast detection.
However, they often suffer from various limitations such as
restricted field of view, presence of blind spots, and inability
to gather global information. Therefore, in this work, we will
propose a new dataset and new associated lightweight machine
learning model based on the YOLOv8 architecture to combine
the advantages of both approaches. The key feature of YOLO
[3] is its single-stage detection approach, which is designed
to detect objects in real time and with high accuracy. Unlike
two-stage detection models, such as R-CNN [1], that first
propose regions of interest and then classify these regions,
YOLO processes the entire image in a single pass, making it
faster and more efficient.

The main contributions of this paper are as follows :
• Build a coherent and balanced dataset
• Propose a lightweight trained model based on YOLOv8

COCO-trained model
• Benchmark this new model on the water of Lake

Guerlédan
Therefore, the remainder of this paper is organized as follow

: Section II describes previous work in water surface object
detection and dataset creation. Section III presents the dataset
created and how it was built. Section IV introduces the trained
model and evaluation indicators, before analysing the experi-
mental results. Finally, section V presents the conclusions of
this paper and expands on future possible works.

II. STATE OF THE ART

A. Existing datasets

Generic image-based datasets, such as MS COCO [5],
ImageNet, and Places2, can be considered for water surface
detection tasks. However, their utility in this domain is limited
due to the scarcity of relevant categories and images. For
example, MS COCO [5] includes only one category (boat)
related to water surface detection, with 3,146 images, which
may not be sufficient for effective neural network train-
ing. Similarly, ImageNet provides annotations for only four

categories (catamaran, trimaran, container-ship, and aircraft-
carrier) related to water surface objects, and these images may
not accurately represent real-world water surface conditions.
Additionally, Places2 contains just five categories (harbor,
lake, loading-dock, water, and river) relevant to water surface
detection. Overall, the lack of diverse water surface obstacles
in these datasets limits their applicability for water surface
object detection tasks. On the other hand, at present, there
are only a few datasets available for detecting objects on the
water surface. The Boat-types-recognition dataset is currently
the only publicly available image-based dataset in this domain.
It comprises 1,462 images of water surfaces, featuring three
categories of common objects: boats (including gondolas,
inflatable boats, kayaks, paper boats, and sailboats), ships
(such as cruise ships, ferry boats, and freight boats), and buoys.
While this dataset offers ample variation in water environments
and shooting times, it lacks annotations for object detection.
A recent paper [6] proposed a larger and better dataset, called
Water Surface Object Detection Dataset. While it is a step in
the right direction, the performances of the models trained
on this dataset were found to be lackluster in our testing
environment. Therefore, there was a need for (yet) another
water surface object detection dataset

B. Methods

It is widely acknowledged that early generic object detection
methods faced challenges in feature extraction from images,
resulting in subpar precision and speed of object detection.
However, since 2012, the advent of deep learning has led to the
emergence of highly efficient CNN-based detectors, broadly
categorized into two groups: two-stage and one-stage object
detection methods. The well-known two-stage approaches in-
clude the R-CNN series [1], exemplified by Faster R-CNN
[2], Mask R-CNN, and Cascade R-CNN. On the other hand,
prominent one-stage methods include Yolo [3] and SSD [10].
Furthermore, one-stage detectors can be adapted into anchor-
free variants, such as CenterNet or newer versions of YOLO.

The advent of deep learning has significantly propelled
advancements in this field. Due to the inherent challenges
posed by variations in size, appearance, and disturbances,
unsupervised methods have been found to be severely lim-
ited, leading to a prevalent use of supervised techniques.
Reference [11] introduced an architecture employing Fast R-
CNN for ship identification and classification. Additionally,
[12] presented a hybrid ship detection method integrating
deep learning approaches, utilizing Deep Neural Networks
(DNNs) and Region Proposal Networks (RPNs) to delineate
2D bounding boxes of target ships. Reference [13] devised a
rapid detection method for surface objects based on ResNet,
achieving object detection speeds of up to 32.4 frames per
second (FPS). Reference [14] utilized FCN for surface obstacle
detection, showcasing robustness in performance. Reference
[15] (2019) proposed an enhanced RBox-based framework
for water surface target detection, optimizing detection ac-
curacy, recall rate, and precision. Reference [16] introduced
a ship detection algorithm utilizing an improved YOLO and

multi-feature approach, incorporating SIFT feature reduction
via multi-dimensional scaling (MDS) and optimizing feature
matching through RANSAC. Reference [17] proposed a real-
time water surface object detection method based on an
enhanced Faster R-CNN, integrating low-level features with
high-level features to enhance detection accuracy. Reference
[18] employed deep residual networks and cross-layer jump
connections to extract advanced ship features, enhancing ob-
ject recognition performance. In 2020, [19] proposed a method
based on YOLOv2 for detecting small ships, applicable for
identifying various obstacles on the water surface. Reference
[20] introduced H-YOLO for ship detection based on a pres-
elected region of interest network, leveraging hue, saturation,
and value (HSV) differences to distinguish suspected ship ar-
eas from the background. Reference [21] proposed YOLOv3-
2SMA for real-time and high-precision object detection in dy-
namic aquatic environments. Reference [22] (2021) enhanced
YOLOv3 for ship detection in inland waterways, achieving im-
provements in mean average precision (mAP) and frames per
second (FPS). Recently, [23] introduced ShipYolo to address
missed inspections of small-scale ships, employing a novel
amplified receptive field module with dilated convolution and
Max-Pooling for improved spatial information acquisition and
target space displacement robustness. However, many of the
aforementioned methods, primarily designed for static cameras
in port management, may not be suitable for application in
autonomous ships equipped with shipborne surveillance sys-
tems [22], and despite advancements, efficiency and accuracy
remain persistent challenges.

III. CREATION OF THE DATASET

As we have seen before, we needed a more suitable dataset
for our purposes. This section will discuss the creation of this
dataset.

A. Presentation of the dataset

The dataset comprises 8325 images, and 5 classes : Boat,
Ship, Buoy, Ball and Breakwater. Images were taken from
several different open-sourced dataset, including the WSOD
dataset shared by [6]

As we can see in figure 4, the dataset is fairly balanced,
which will reduce our model’s ability to misidentify objects.

B. Choices made

We have chosen to build a rather limited but balanced
dataset. Indeed, we only have 4 classes, but each classes
is well represented, with only the Breakwaters being under
represented a bit, which highlights an issue future works could
address.

IV. TESTING THE MODEL AND THE DATASET

We will now test our dataset and see if the performances
of our model meet our requirements. We have chosen the
YOLOv8 algorithm fo its speed, its efficiency even on low-
powered devices such as the Raspberry Pi 4, and its ease of
use.

Fig. 1. Example of boat images

Fig. 2. Example of waterbreaks images

Fig. 3. Example of buoys images

Fig. 4. Annotation Distribution

A. Presentation of YOLOv8

The You Only Look Once (YOLO) [3] algorithm, intro-
duced in 2015 by Joseph Redmon, Santosh Divvala, Ross
Girshick, and Ali Farhadi, represents a major advancement in
real-time object detection. Unlike its predecessor, the Region-
based Convolutional Neural Network (R-CNN) [1], YOLO
operates in a single pass, directly classifying objects by
employing a single neural network to predict bounding boxes
and class probabilities using the entire image as input.

Fig. 5. General Object detector architecture [9]

However, YOLO v1 suffered from localization errors and
low recall for small objects.

In response to these limitations, YOLO v2 was introduced
in 2016. This version addressed some of the shortcomings of
its predecessor by implementing anchor boxes to handle object
scale variations, incorporating batch normalization and high-
resolution classifiers, and supporting multi-scale training for
improved accuracy on small objects.

Subsequent iterations further improved upon the YOLO
architecture. YOLO v3, introduced in 2018, adopted a variant
called Darknet-53 as the backbone network and introduced
feature pyramid networks (FPN) for detecting objects at dif-
ferent scales. YOLO v4 (2020) introduced significant archi-
tectural changes, including the CSPDarknet53 backbone and
PANet feature fusion, leading to state-of-the-art performance
on various object detection benchmarks.

In parallel, YOLO v5 (2020), developed by Ultralytics,
introduced a different architecture based on the CSPNet and

focused on model scaling and efficiency. It achieved com-
petitive performance with faster training times compared to
previous versions.

YOLOv6 is another unofficial version of the YOLO series
introduced in 2022 by Meituan – a Chinese shopping platform.
The company targeted the model for industrial applications
with better performance than its predecessor. The significant
differences include anchor-free detection and a decoupled
head, which means one head performs classification. In con-
trast, the other conducts regression to predict bounding box
coordinates. The changes resulted in YOLOv6(nano) achieving
an mAP of 37.5 at 1187 FPS on the COCO dataset and
YOLOv6(small) achieving 45 mAP at 484 FPS.

In July 2022, a group of researchers released the open
source model YOLOv7, the fastest and the most accurate
object detector with an mAP of 56.8% at FPS ranging from 5
to 160. Extended Efficient Layer Aggregation Network (E-
ELAN) forms the backbone of YOLOv7, which improves
training by letting the model learn diverse features with effi-
cient computation. Also, the model uses compound scaling for
concatenation-based models to address the need for different
inference speeds.

And in january 2023, YOLOv8 was released, which boasts
higher accuracy and faster speed. However, without any pub-
lished papers, there is no concrete evidence, despite experi-
mental indications suggesting its validity.

Our model is based on the pre-trained yolov8n.pt model,
which is the smallest model proposed by Ultralytics. Indeed,
our aim was to develop a lightweight model capable of running
inferences within a reasonable time frame on a Raspberry Pi
4.

We can see a comparison of the differents models sizes and
speed in fig 6 below.

Fig. 6. Comparison of yolo models [3]

B. Training results and test on our benchmark

As we can see in the figure 9 above , we have very promis-
ing results when detecting boats and buoys. Nevertheless,
the absence of dock detection highlights a notable area for
enhancing our dataset. However, we also have some errors
in difficult conditions, as shown by the figure 10 below .
Indeed, when the objects are too small (or too far), our model
doesn’t detect them. On the other hand, when the light is such
that there are a lot of reflections, our model makes wrong
predictions.

Fig. 7. Metrics of our testing process

Fig. 8. Confusion Matrix

Overall, the results are good, with mistakes being relatively
rare on our video tests, and they happen in difficult conditions,
which is not surprising. On top of that, it takes about 500ms to
run an inference on a Pi 4, and about 20ms on a more powerful
laptop equipped with an rtx2080, which is very reasonable.

V. CONCLUSION

The goal of this paper is to improve the fiability of water
surface object detection. First a new dataset was created,

Fig. 9. Results achieved on our testing videos

Fig. 10. No detection and Misclassification on our testing videos

better suited to our needs. Then, a new model based on the
YOLOv8 algorithm was trained and tested on the waters of
Lake Guerledan, where it showed superior results to the base
model trained on the COCO dataset. However, future works
should focus on enhancing the dataset further : adding more
classes, and creating a benchmarking dataset for comparing
future models among themselves. Indeed, object detection and
machine learning is an ever-evolving research topic, witnessing
new and improved models.

REFERENCES

[1] Ross Girshick, Jeff Donahue, Trevor Darrell and Jitendra Malik, ”Rich
feature hierarchies for accurate object detection and semantic segmen-
tation”, arXiv 2014.

[2] Ross Girshick, ”Fast R-CNN”, arXiv, 2015
[3] Joseph Redmon, Santosh Divvala, Ross Girshick and Ali Farhadi, ”You

Only Look Once: Unified, Real-Time Object Detection”, arXiv 2016
[4] Li, A., Zhu, X., He, S. et al. ”Water surface object detection using

panoramic vision based on improved single-shot multibox detector.”
EURASIP J. Adv. Signal Process. 2021

[5] Tsung-Yi Lin and Michael Maire and Serge Belongie and Lubomir
Bourdev and Ross Girshick and James Hays and Pietro Perona and
Deva Ramanan and C. Lawrence Zitnick and Piotr Dollár, ”Microsoft
COCO: Common Objects in Context”, arXiv 2015

[6] Zhou Z, Sun J, Yu J, Liu K, Duan J, Chen L, Chen CLP. ”An
Image-Based Benchmark Dataset and a Novel Object Detector for
Water Surface Object Detection.” Front Neurorobot. 2021 Sep 24. doi:
10.3389/fnbot.2021.723336.

[7] Buoy Dataset, Open Source Dataset, https://universe.roboflow.com/buoy/
buoy-jv26h, Oct 2022

[8] Wang, Chien-Yao and Liao, Hong-Yuan Mark, ”YOLOv9: Learning
What You Want to Learn Using Programmable Gradient Information”
arXiv preprint arXiv:2402.13616, 2024

[9] Alexey Bochkovskiy and Chien-Yao Wang and Hong-Yuan Mark Liao,
”YOLOv4: Optimal Speed and Accuracy of Object Detection”, arXiv,
2020

[10] Liu, Wei and Anguelov, Dragomir and Erhan, Dumitru and Szegedy,
Christian and Reed, Scott and Fu, Cheng-Yang and Berg, Alexander
C., ”SSD: Single Shot MultiBox Detector”, Lecture Notes in Computer
Science (21-37), 2016, doi:10.1007/978-3-319-46448-0 2

[11] Yang, J., Xiao, Y., and Fang, N. (2017). “An object detection and
tracking system for unmanned surface vehicles,” in Procceedings of
Target and Background Signatures (Warsaw), 214–220.

[12] Yao, Y., Jiang, Z., Zhang, H., Zhao, D., and Cai, B. (2017). Ship
detection in optical remote sensing images based on deep convo-
lutional neural networks. J. Appl. Remote Sens. 11, 042611. doi:
10.1117/1.JRS.11.042611

[13] Chae, K. H., Moon, Y. S., and Ko, N. (2017). “Visual tracking of objects
for unmanned surface vehicle navigation,” in International Conference
on Control, Automation and Systems (Jeju), 335–337. doi: 10.1109/IC-
CAS.2016.7832338

[14] Qin, Y., and Zhang, X. (2018). Robust obstacle detection for
unmanned surface vehicles. Proc. SPIE 10611, 2199–2207. doi:
10.1117/12.2285607

[15] An, Q., Pan, Z., Liu, L., and You, H. (2019). DRBox-v2: an
improved detector with rotatable boxes for target detection in
SAR images. IEEE Geosci. Remote Sens. 57, 8333–8349. doi:
10.1109/TGRS.2019.2920534

[16] Sr, Y. Z. Sr, J. S., Sr, L. H., Sr, Q. Z., and Sr, Z. D. (2019). “A ship target
tracking algorithm based on deep learning and multiple features,” in
Proceedings of the Twelfth International Conference on Machine Vision
(Amsterdam), 1143304.

[17] Zhang, L., Zhang, Y., Zhang, Z., Shen, J., and Wang, H. (2019). Real-
time water surface object detection based on improved faster R-CNN.
Sensors 19, 3523. doi: 10.3390/s19163523

[18] Liu, B., Wang, S. Z., Xie, Z. X., Zhao, J. S., and Li, M. F. (2019).
Ship recognition and tracking system for intelligent ship based on deep
learning framework. Int. J. Mar. Navig. Saf. Sea Transport. 13, 699–705.
doi: 10.12716/1001.13.04.01

[19] Chen, Z., Chen, D., Zhang, Y., Cheng, X., Zhang, M., and Wu,
C. (2020b). Deep learning for autonomous ship-oriented small ship
detection. Saf. Sci. 130, 104812. doi: 10.1016/j.ssci.2020.104812

[20] Tang, G., Liu, S., Fujino, I., Claramunt, C., Wang, Y., and Men,
S. (2020). H-YOLO: a single-shot ship detection approach based on
region of interest preselected network. Remote Sens. 12:4192. doi:
10.3390/rs12244192

[21] Li, X., Tian, M., Kong, S., Wu, L., and Yu, J. (2020). A modified
YOLOv3 detection method for vision-based water surface garbage
capture robot. Int. J. Adv. Robot. Syst. 17, 172988142093271. doi:
10.1177/1729881420932715

[22] Jie, Y., Leonidas, L., Mumtaz, F., and Ali, M. (2021). Ship detection
and tracking in inland waterways using improved YOLOv3 and Deep
SORT. Symmetry 13, 308–326. doi: 10.3390/sym13020308

[23] Han, X., Zhao, L., Ning, Y., and Hu, J. (2021). ShipYolo: an enhanced
model for ship detection. J. Adv. Transport. 2021, 1060182. doi:
10.1155/2021/1060182

Physics-informed neural networks
REN Kevin

FISE 2024 Autonomous Robotics
ENSTA Bretagne

Abstract—In recent years, the integration of physics principles
with neural networks has garnered significant attention in various
scientific and engineering domains. Physics-informed neural net-
works (PINNs) have emerged as a powerful framework that incor-
porates prior knowledge of physical laws into the training process
of neural networks (NNs). Specifically, they facilitate the consid-
eration of physical phenomena described by ordinary differential
equations (ODEs) or partial differential equations (PDEs). While
various numerical methods exist for solving these equations, such
as finite element or finite difference methods for PDEs, and Runge-
Kutta (RK) methods for ODEs, these approaches are often com-
putationally intensive and lack real-time capability.

PINNs offer a solution to this challenge. Despite being currently
less accurate than traditional methods, initial results demon-
strate that these NNs can provide reliable results with significantly
reduced computation time—up to several hundred times faster
than classical numerical methods. The key advantage of PINNs
over classical NNs lies in mitigating the stochastic effects inherent
in the latter. Classical NNs may yield disparate results across
different training runs, even when using the same dataset. More-
over, the utilization of PINNs substantially diminishes the required
dataset size, leveraging the inherent knowledge of the physical
model being represented.

I. INTRODUCTION

Time-domain simulations play a pivotal role in both scientific
exploration and engineering design across a spectrum of disci-
plines. From understanding the behavior of physical systems to
predicting complex phenomena, the ability to simulate temporal
dynamics accurately is indispensable. Traditionally, numerical
methods such as finite element methods (FEM) have served as
the cornerstone for time-domain simulations, providing robust
solutions to systems governed by ordinary and partial differ-
ential equations. However, as computational demands escalate
and the need for real-time analysis grows, there arises a pressing
need for innovative approaches that can deliver accurate results
swiftly.

Physics-informed neural networks have emerged as a
promising paradigm at the intersection of physics-based mod-
eling and deep learning. These networks capitalize on the com-
plementary strengths of both fields, harnessing the power of
neural networks to incorporate prior knowledge of physical
laws into the training process. Unlike traditional numerical
methods such as FEM or finite difference methods (FDM),
PINNs leverage the representational power of NNs to learn the
underlying physics directly from data, bypassing the need for
discretization of the entire domain. This integration enables
PINNs to tackle time-domain simulations with unprecedented
efficiency and flexibility.

Traditionally, power system engineers have relied on various
Model Order Reduction (MOR) methodologies [1, 5] and modal
analysis techniques to overcome the computational burden and
complexity of large models.

While such equivalency tools can produce compact surro-
gate models, standard MOR has significant drawbacks in certain
applications. For example, the majority of MOR techniques
used in power systems are only applicable for linear systems.
Moreover most MOR methods are projection based, and the
resulting dynamical model must still be directly simulated by
an ODE solver. In contrast to that, Neural Networks (NNs)
have the capacity to universally approximate any continuous
function with an arbitrary degree of accuracy [3]. Therefore,
they are able to overcome all of the aforementioned drawbacks,
and they have become a popular alternative to classical MOR
approaches. Recently, the so-called Physics-Informed Neural
Network (PINN) was proposed as a framework for directly map-
ping dynamical system inputs (initial conditions) to system out-
puts (state trajectories).

In this article, we examine the significance of time-domain
simulations in scientific and engineering contexts especially
in robotics where state estimation (navigation) is fundamental,
with a focus on systems described by ODEs. We discuss the
inherent challenges of traditional numerical solvers in capturing
the dynamics of ODE-based systems, including their compu-
tational overhead and limitations in real-time analysis.

II. PHYSICS-INFORMED NEURAL NETWORKS

A. Understanding Neural Netowrks

Neural networks can be mathematically represented as a com-
position of functions, where each layer performs a linear trans-
formation followed by a nonlinear activation function. Let's
consider a simple feedforward neural network with L layers.
At each layer l, the input z(l) is transformed using a weight
matrix W (l) and a bias vector b(l) followed by an activation
function �(l) :

z(l+1)=�(l)(W (l)z(l)+ b(l))

z(0) is equal to the input vector x of the NN and z(L) is the
output y. During training, the objective is to adjust the weights
and biases of the NN in order to minimize the loss function L.

B. Loss function for Physics-Informed Neural Networks

Physics-Informed Neural Networks represent a novel frame-
work that integrates the power of NNs with the principles of
physics, offering a promising approach for modeling complex

dynamical systems. PINNs leverage the expressive capacity of
NNs to learn and approximate the underlying physical laws.
This section provides a detailed explanation of PINNs along
with the associated mathematical formalism.

Consider a general ordinary differential equation (ODE) of
the form:

du
dt
(t) = F (t; u(t)) (1)

u(t0) = ut0 (2)

where u represents the unknown function, t0 2 R and F is
known.

To solve this ODE using PINNs, we employ a NN to approx-
imate the solution u.

Let u�(t) denote this NN parameterized by �. It aims to
predect u(t) given the initial condition at t= t0. The NN archi-
tecture, typically involving feedforward or recurrent NNs, is
chosen based on the problem at hand. In this work, a dense
architecture is employed.

PINNs enforce the ODE constraint by augmenting the loss
function with terms that encode the differential equation. This
is achieved by taking derivatives of the neural network solution
using automatic differentiation (AD) and enforcing the ODE
at a set of collocation points, which are chosen to be equal to
(ti)i, the data points. By aligning the collocation points with
the data points, the PINN is trained to simultaneously fit the
observed data and satisfy the differential equation at the same
set of points. The loss function for training the PINN is then
defined accordingly:

L=�1Ldata+�2Lode+�3Lic (3)

where

Ldata = 1
N

X
i

(u(ti)¡u�(ti))2 (4)

Lode = 1
N

X
i

�
du�(ti)
dt

¡F (ti; u�(ti))
�
2

(5)

LIC = (u(t0)¡u�(t0))2 (6)

where the first term represents the data fidelity term, ensuring
that the neural network solution matches the observed data
points (ti;ui)i, the second term represents the physics-informed
loss, enforcing the ODE at the (ti)i and the last term repre-
sents the error of the initial condition, ensuring that the neural
network solution satisfies the specified initial condition. The
coefficients (�i)i serve to balance the influence of the different
loss terms.

In fact, this type of PINNs does not perform very well. The
solution u� can converges to a solution that verify the ODE but
not anymore the initial condition as t tends to infinity. This will
be demonstrated later in section IV.B.

A more effective approach involves changing the inputs. Let
u�(�ti; uti) denote this NN parameterized by �. It aims to pre-
dect u(ti+�ti) given the value at t= ti. Therefore, every u(ti)

can be considered as initial condition. By denoting u�(�ti;
uti)= ûti+�ti equations (4)(5)(6) can be rewritten as follow :

Ldata = 1
N

X
i

(uti+�ti¡ ûti+�ti)2 (7)

Lode = 1
N

X
i

�
d ûti+�ti

dt
¡F (ti+�ti; ûti+�ti)

�
2

(8)

LIC = 1
N

X
i

(uti¡ ûti)2 (9)

III. IMPLEMENTATION

A. Case study
We demonstrate the proposed PINNs on Harmonic oscil-

lator. The harmonic oscillator serves as a fundamental model
in physics, widely utilized to describe various oscillatory
phenomena across different disciplines. It described by the fol-
lowing ODE:

d 2x
dt2

+!2x=0 (10)

This ODE is equivalent to

x_ =
�

0 1
¡!2 0

�
x

where x=(x x_)T . This vector will serve as input in the net-
work. Throughout the process ! is fixed to 2.

B. Training process
For the training process, a neural network architecture with

three hidden layers was utilized. Therefore L=5 as it includes
inputs layer and output layer. The first two hidden layers contain
20 hidden neurons each, while the final hidden layer consists
of 32 neurons. The approach was tested using three different
setups. Firstly, the model was evaluated under the condition
where the time step were kept constant that means :

9�t2R+
� 8i �ti=�t

Subsequently, the model's performance was assessed under vari-
able time step. These two testing scenarios were employed to
comprehensively evaluate the model's robustness and effective-
ness across different temporal configurations. Such an approach
provides insights into the model's ability to generalize and adapt
to varying temporal resolutions, offering a thorough assessment
of its performance under diverse conditions.

Both of these configurations were implemented using the Ten-
sorFlow framework. The training problem is solved by using the
stochastic gradient descent method Adam [2] with a decaying
learning rate of 0.001.

C. Constant time step data
In the constant time step configuration, the dataset was gener-

ated using the Runge-Kutta 45 method implemented in SciPy.
The time span ranged from 0 seconds to 10 seconds with incre-
ments of 0.1 seconds. The initial condition at t = 0 is set to
(x; x_)= (1; 0). The model is trained over 3500 epochs.

D. Variable initial conditions data

In the second configuration, the dataset was also generated
using the Runge-Kutta 45 method, but this process was repeated
50 times. For each iteration, a new frequency f 2 J0; 60K of
points is chosen such that�t=1/f . Initial conditions are also
randomly fixed between¡25 and 25. Once this process is com-
pleted, the dataset consists of 150,000 points. Subsequently,
the dataset is shuffled. The model is trained over 200 epochs
using batches of 500 points each.

E. Time-Exclusive Input

As mentionned in section B one approach of the PINNs is to
use only one input, which is t, given the state at t= 0. This is
equivalent to the case where�ti= t and ti=0 for all i resulting
in uti=u0. All other parameters remain exactly the same as in
section C.

IV. RESULTS

A. PINNs compared to simple NN

First, let us compare PINNs and simple NNs - that means
�1=1 and �2=�3=0 (see Eq (3))-. In figures 1 and 2 the red
curves and green curves represent the predicted x and x_ respec-
tively. The red dots and green dots represent the derivatives
of x and x_ using AD. Finally, the black curves represent the
ground truth, which are not visible in the plot as they are hidden
by the predictions. The predictions are made on the training
dataset which is not relevant here. The important observation
is that with the simple NN, the shape of the derivative of the
vector x calculated using AD does not match to the shapes of
the curves x and x_ which makes the NN quite opaque. However
using the PINN the curves appear more physically plausible.
The x_ calculated by AD matches the prediction, as it should;
the alignment between the red dots and the green curve demon-
strates this consistency. This simple example underscores the
significance of PINNs in physics, as they can yield more inter-
pretable predictions.

B. Time-Exclusive Input Analysis

As shown in figure 3 one of the problems encountered when
using such a PINN to solve our problem, and many others, is
that the predictions can slowly diverge from the real solution
beyond and even within the training time span. In the equation
(10) the null solution is valid; however, it fails to satisfy the
initial condition. This divergence can be attributed to the coef-
ficient �2 being too high, indicating that the PINN is not robust
enough. Hence, in the next subsectionsn, the input is modified
to (�ti; uti), thereby mitigating the problems associated with
large values of �t.

Figure 1. Prediction of the NN on the training dataset

Figure 2. Prediction of the PINN on the training dataset

Figure 3. Prediction converges beyond the time span

C. Time and State Vector Input: Enhancing PINN Predictions
In this subsection, the time step are constant, which means

�ti = �t for all i. The PINN is able to predict u(t) very
accurately for all t even when the time span during training is
restricted to [0; 10]. Furthermore, the prediction remains stable
when modifying �t provided it is lower than the value used
during training (see figure 4).

One of the drawback is the prediction of u(t) knowing t0,
when t¡ t0��t. It requires processing every ût0+k�t until ût
as it is done with the Runge-Kutta methods. However as shown
in [4] using NN is significantly faster than classical Runge-
Kutta methods, up to 100 times faster.

Another problem is due to the dataset. The neural network
struggles to generalize when the amplitude of the solution dif-
fers from one, as the dataset used during training consists of
solutions of (10) with (x;x_)= (1;0) implies that the amplitude
of u is one. Furthermore, as illustrated in figure 5, the deriva-
tive calculated by AD no longer coherent with x. That leads to
the last trained PINN in this article.

By incorporating solutions of (10) with various amplitudes,
the neural network now demonstrates improved generalization
capabilities, although not flawless. For instance in figure, when
utilizing the initial condition (x;x_)= (¡35;55) which lies out-
side the training boundary, the results are only approximate.
However, noteworthy is that the derivative calculated by AD
remains consistent; there is observable alignment between the
red dots and the green curve.

Figure 4. Robustness of the PINN despite fixed �t during training

Figure 5. Challenges in Generalization with Varying Amplitudes

Figure 6.

V. CONCLUSION

In conclusion, this study explored the application of Physics
Informed Neural Networks in solving ordinary differential
equations. Through experimentation and analysis, we inves-
tigated the performance of PINNs in various configurations,
including cases where time steps were constant or variable. We
demonstrated that while PINNs offer promising capabilities in
accurately predicting solutions to ODEs, they are not without
limitations. Challenges arise in cases where the amplitude of the
solution differs from the training data and when attempting to
generalize beyond the training boundaries. However, by care-
fully selecting and diversifying the training dataset, we observed
improvements in the network's ability to generalize. Despite
these challenges, PINNs show significant potential in providing
interpretable predictions and fast computations compared to tra-
ditional methods. Future research could focus on addressing
the limitations identified in this study and further enhancing the
robustness and efficiency of PINNs in solving complex phys-
ical problems.

BIBLIOGRAPHY

[1] Dimitrios Chaniotis and MA Pai. Model reduction in power systems
using krylov subspace methods. IEEE Transactions on Power Systems,
20(2):888–894, 2005.

[2] Diederik P Kingma and Jimmy Ba. Adam: a method for stochastic opti-
mization. ArXiv preprint arXiv:1412.6980, 2014.

[3] Moshe Leshno, Vladimir Ya Lin, Allan Pinkus, and Shimon Schocken.
Multilayer feedforward networks with a nonpolynomial activation func-
tion can approximate any function. Neural networks, 6(6):861–867, 1993.

[4] Jochen Stiasny, Samuel Chevalier, and Spyros Chatzivasileiadis. Learning
without data: physics-informed neural networks for fast time-domain sim-
ulation. In 2021 IEEE International Conference on Communications, Con-
trol, and Computing Technologies for Smart Grids (SmartGridComm),
pages 438–443. IEEE, 2021.

[5] Xuemeng Zhang, Yaosuo Xue, Shutang You, Yong Liu, and Yilu Liu. Us
eastern interconnection (ei) model reductions using a measurement-based
approach. In 2018 IEEE/PES Transmission and Distribution Conference
and Exposition (T&D), pages 1–5. IEEE, 2018.

Image Representation as a Graph for Pedestrian
Detection and Tracking

Catherine Rizk
Ensta Bretagne
Brest, France

catherine.rizk@ensta-bretagne.org

Abstract—In the field of computer vision, the detection and
tracking of individuals play a crucial role in various applications,
especially in robotics. This paper presents a comprehensive
approach to individual detection and tracking based on skele-
tonization and graph representation. Initially, the object of
interest is isolated using segmentation techniques, followed by
skeletonization to extract relevant features. A graph is then
constructed based on the skeleton, where nodes represent key
points and arcs capture spatial relationships. The proposed
method achieves robust individual representation, facilitating
shape matching and recognition tasks.

Index Terms—graph, skeleton, detection, vision

I. INTRODUCTION

The pursuit of individual detection and object tracking
stands as a central focus within contemporary computer vision
research, finding widespread utility across various domains,
notably in robotics where precise object tracking is frequently
indispensable. When aiming to detect a person, multiple at-
tributes can be examined, including color, intensity, texture,
and shape. Yet, shape emerges as particularly pertinent in
image interpretation. For instance, the human brain adeptly
discerns objects through simple silhouettes, disregarding color
and texture in favor of well-defined outlines. Nonetheless,
leveraging shape-based criteria for computer vision-based
pedestrian detection encounters a significant challenge: the
vast diversity in human shapes and sizes. This paper introduces
an approach to build robust descriptors for individual detection
and tracking by extracting features from a human skeleton
representation and transforming it into a graph.

II. STATE OF THE ART

The field of computer vision has witnessed significant ad-
vancements in individual detection and tracking techniques in
recent years. Traditional methods often relied on handcrafted
features and heuristic algorithms, which limited their perfor-
mance in complex environments. However, with the advent of
deep learning, there has been a paradigm shift towards data-
driven approaches that leverage large-scale annotated datasets
and powerful neural network architectures.

One of the most prominent techniques in individual de-
tection is the region-based convolutional neural network (R-
CNN). These methods achieve remarkable accuracy by com-
bining region proposal generation and object detection in a
unified framework. Additionally, single-shot detectors (SSDs)

and You Only Look Once (YOLO) architectures offer real-
time performance with competitive accuracy.

In the domain of object tracking, tracking-by-detection
approaches have gained popularity due to their effectiveness in
handling object occlusions and appearance changes. Methods
such as the Multiple Object Tracking (MOT) framework
and deep learning-based trackers like DeepSORT and SORT
achieve state-of-the-art performance in multi-object tracking
scenarios.

Despite these advancements, challenges persist in individual
detection and tracking, particularly in scenarios with cluttered
backgrounds, varying illumination, and occlusions. Addressing
these challenges requires robust feature representations and
sophisticated algorithms capable of handling complex visual
environments.

Skeleton-based methods have emerged as promising alter-
natives for individual detection and tracking. By representing
objects as skeletons composed of key points and structural
relationships, these methods offer a compact and informative
representation of object shapes. Techniques such as skele-
tonization and graph-based approaches enable the extraction
of meaningful features from skeletons, facilitating tasks such
as shape analysis, motion estimation, and behavior recognition.

Skeletonization is also an effective method for obtaining
robust descriptors for machine learning, as it captures essential
structural information while reducing the complexity of the
object representation. This approach facilitates the extraction
of meaningful features that are invariant to scale, rotation, and
translation, making it suitable for various machine learning
tasks.This is particularly evident in the approach proposed in
the document [1], which suggests a skeletonization based on
stereovision. It then utilizes these skeletons to construct graphs
that serve as descriptors for implementing an SVM.

In this context, our proposed approach leverages skele-
tonization and graph-based representation to achieve robust
individual detection and tracking. By combining structural
information from skeletons with spatial relationships captured
in graphs, our method offers a promising solution to address
the limitations of existing techniques. Experimental results
demonstrate the effectiveness of our approach in challenging
real-world scenarios, highlighting its potential for practical
applications in computer vision.

III. HUMAN REPRESENTATION AS A GRAPH USING
DISTANCES MAPPING

A. Pretreatment

1) Object extraction: The following algorithms were im-
plemented on an isolated object on an image with a plane
background. To extend this method on any type of images,
the object whose graph we want to created must be extracted
of the original image. One of the prevailing techniques in
image analysis is the k-means algorithm. This method involves
partitioning an image into k distinct clusters and assigning
each pixel to a cluster by minimizing the distance between the
pixel and the centroid of the cluster it belongs to. The k-means
method has the disadvantage of requiring prior knowledge
of the number of classes to be instantiated. Numerous other
methods that are more efficient and better suited to our
problem exist today. The reference ”Object Detection and
Tracking via Active Contour-based Region Segmentation” by
Wassima Ait Fares in [2] proposes a method known as active
contours, which involves drawing a closed contour around the
object of interest and gradually evolving this contour until it
perfectly fits the object’s outline. This technique is particularly
useful for tracking, as the contour evolves over time and can
therefore follow the object as it moves. The principle described
by Wassima Ait Fares involves defining the active contour
segmentation, incorporating energies such as edge, region, and
curvature energies to guide the contour towards the object
boundary while maintaining smoothness and coherence. By
combining the flexibility of active contours with well-defined
energy criteria, this approach provides a robust and adaptable
method for precise object detection and tracking in computer
vision applications.

2) Image segmentation: Now that the object is isolated on
a monochrome and uniform background, we proceed with its
segmentation to obtain a monochrome shadow with distinct
contours. We start by converting our image to grayscale and
applying a Gaussian filter to blur the image. This will help us
reduce the contrast in certain areas and thus make our single-
colored object more easily discernible. Then, we detect the
contours using the Canny method and dilate these contours.
Next, we fill all the pixels enclosed within the contours with
a single color to obtain an image representing a completely
black object against a white background. This preparatory step
lays a solid foundation for subsequent analysis and further
processing.

Fig. 1. Original image Fig. 2. Post treatment image

B. Creation of a distances map

The next step involves constructing a distance map to add
texture to our object, enabling us to trace its skeleton. The
work of Aurélie Leborgne [3] describes the algorithm for
generating such a map. The map is created from a wavefront
that propagates at a constant speed from the shape’s boundary
towards the interior. Pixels reached simultaneously have the
same height and form a contour line. Consequently, we obtain
a ridgeline figure (points where the distance is maximal),
which we will use for implementing our skeleton, as suggested
by Leborgne. Next, we utilize the gradients of the obtained
image to determine the ridges that will constitute the skeleton
of our object. The figure below illustrates the result obtained
through such an approach.

Fig. 3. Original image Fig. 4. Distance map

C. Skeleton identification

Creating the skeleton is easily accomplished using the
distance map. We retain only the areas of maximum gradient
and trace all the obtained points. This method preserves
both the skeleton and the contour of our initial shape. To
eliminate this contour, we utilize the contour of the object
shape obtained during preprocessing and subtract it from our
current image. This yields a skeleton devoid of the object
contour. However, the resulting skeleton is often too thick. To
refine it, we perform an erosion operation on the image, which

effectively nibbles away at the skeleton’s extremities, making
it thinner. Visually, we observe that the obtained skeleton
serves as a potent descriptor in computer vision. It enables
distinguishing the individual’s shape by eliminating numerous
variable properties such as thickness and color, thus preserving
a common structure across all individuals. This characteristic
facilitates the establishment of a recognition criterion for
individuals. To facilitate further manipulation, the final step
involves converting the skeleton into a graph.

Fig. 5. Gradients around a
ridge

Fig. 6. Skeleton obtained from
the gradient

D. Graph construction
Now, we proceed to construct a graph containing informa-

tion about the skeletons. The graph is built in a manner similar
to the process described in reference [1]: nodes are either
placed at the ends of the skeleton branches or at intersections,
and arcs connect two nodes without passing through a third
node.

1) Nodes identification: To obtain nodes, we go through
certain pixels from the skeleton’s points list. As the skeleton
is quite dense, we can afford to scan the list with a step of 10.
We then consider all other points different from the one being
studied in the scanned list, also with a step of 10, and count
the number of points contained within a circle centered in the
first point. Therefore, each point is associated with the number
of points contained within its circle, and we retain only those
with the highest count. This method allows us to obtain a set
of fairly relevant points but it still contains too many elements.
If we increase the minimum threshold of the number of points
required to be included in a circle for a point to be retained,
we empty certain areas of all their points, such as the ends
of the arms, for example, which contain far fewer points than
the torso. Therefore, we choose to perform a filtering instead.
Many of the selected points are close to each other and could
be replaced by a single point. We decide to rescan our lists
similarly with the points selected in the first step and to draw
a new circle around these points. All points contained within
a circle are then replaced by a point whose coordinates are
the average of the coordinates of all points. Thus, we obtain
a list of points that seems to represent the desired nodes in a
relevant way.

Fig. 7. Graph nodes obtained from the skeleton

2) Arcs identification: To determine the arcs, we rely on the
nodes and information from the skeleton. In the nodes list, for
each node, we identify the three nearest nodes, and for each of
them, we determine the segment connecting them to the node
under consideration. We then count the number of points in
this segment that are included in the set of skeleton points and
retain the point with the highest score. This ensures that the
obtained arc is close to one of the branches of the skeleton.
After this step, most of our arcs are drawn and seem highly
relevant, but some nodes that should be connected are not. To
resolve this issue, we consider the nodes that are connected to
only one other node and seek to connect them while ensuring
not to connect nodes at the ends. We reevaluate for each point
in the list if there is a path connecting it to another point in
the list that contains numerous pixels included in the skeleton.
This method allows us to obtain the missing arcs and thus
finalize the construction of our graph. Each time an arc is
determined, we record the two endpoints of this arc along
with their distance. Eventually, we obtain a complete graph
describing the structure of a human body.

Fig. 8. Graph nodes and arcs obtained from the skeleton

IV. RESULTS ANALYSIS AND POSSIBLE APPLICATIONS

The initial objectives have been achieved, as we have
succeeded in obtaining a graph representing an individual.
The main drawback of this technique lies in its relatively
high complexity. In addition to this algorithm, segmentation
algorithms should be employed to extract the image of the
individual before the presented algorithm must be applied.
The uses of this graph are manifold. Graphs are particularly
easy descriptors to manipulate and represent an object in a
relevant manner. In the reference [3], Leborgne demonstrates
that skeletons can be used for matching and shape recog-
nition. Graphs are also particularly useful for tracking, as
they simplify the problem of object tracking into tracking
nodes and arcs of a graph. Finally, graphs constitute robust
and suitable descriptors for machine learning. This is notably
demonstrated by Frédéric Suard, Alain Rakotomamonjy, and
Abdelaziz Bensrhair in [1] where graphs are employed as
descriptors for an SVM, enabling the establishment of an
individual detection algorithm.

REFERENCES

[1] F. Suard , A. Rakotomamonjy, A. Benrhair, “Détection de piétons
par stéréovision et noyaux de graphes,” Laboratoire PSI (Perception,
Systèmes d’Information), CNRS FRE 2645, INSA de Rouen, France

[2] W. Ait Fares. “Détection et suivi d’objets par vision fondés sur seg-
mentation par contour actif basé région,” Automatique / Robotique.
Université Paul Sabatier - Toulouse III, 2013. Français. NNT : . tel-
00932263

[3] A. Leborgne. “Appariement de formes basé sur une squelettisation
hiérarchique,” Autre [cs.OH]. Université de Lyon, 2016. Français. NNT
: 2016LYSEI075 .tel-01694036

Simulation of excavator control using reinforcement
learning

Louis Roullier
ENSTA Bretagne

Brest, France
louis.roullier@ensta-bretagne.org

Abstract—This article presents a general method to compute
an end effector tracking trajectory using reinforcement learning.
The approach is applied to an hydraulic excavator arm. Due
to the high non linearity of the system, people can’t really
provide precise mathematical equations or an analytic model.
That is why we chose to use a neural network model trained
on measurements collected during operations. The distances
between joints is only required to set up a simulation to train
a control policy using reinforcement learning. The outputs of
this process represents the commands directly applicable to the
machine without specific post-processing. In our context, the
method is tested on a 323 hydraulic excavator without interaction
with the soil. The performances of the learnt controller are
quite good compared with commercial grading controllers which
require hand tuning by engineers and trigger potential difficult
adaptation on a specific system.

Index Terms—robotics, excavator, reinforcement learning, con-
trol, hydraulic system

I. INTRODUCTION

Mobile earth-moving machines are widely used in the
construction sector. Indeed, vehicles as excavators and tracks
enable to easily realize landscaping operations (trenching,
leveling...). However, these machines are frequently employed
in challenging outdoor environments. Therefore, the operations
done with these machines can lead to injury and require
very-skilled operators. This is why many manufacturers are
exploring automation solutions for these machines.
The aim of almost each excavation operation is to change an
environment characterized by diversity and variable geometry.
Therefore, the main challenge of these operations is to model
the environment/machine physical interaction. Due to this
difficulty to set complete and fixed model of the environment,
people can not use traditional methods with mathematical fixed
and precise equations to describe the situation.
Specifically, the objective is for the autonomous machine to
adapt to various external factors and make decisions based
on the task and environmental conditions. Therefore, machine
learning methods such as reinforcement learning can be con-
sidered as an option. Indeed, we want to take action in a
particular environment and optimize them by maximizing a
reward defined by the user.
The automation of machines can be done by several ways :
training a fuzzy logic algorithm to imitate the behavior of a
skilled-human operator, a tele-operated assistant system can
control a real excavator via a wireless local area network...

Machine learning models have been more and more used
in automation during the past years. An example from the
area of automation of heavy machinery is a study examining
the application of Proximal Policy Optimization (algorithm
that trains a computer agent’s decision function to accomplish
difficult tasks) to teach an agent to operate an excavator by
training a neural network.
The objective of this study is to computationally combine
efficient simulations with the reinforcement learning algo-
rithm. This combination enables the creation and training of
an autonomous agent. It will enable to ensure more security
and efficiency in the operations.

II. STATE OF THE ART

A. Robotics Control

The performance of a controller in robotics is measured by
the error between the current desired position Pd(t) and the real
current position P(t). An efficient control law aims to reduce
this errors as fast as possible by minimizing deviations and
overshoots.

Here are introduced the main ways to control an excavator.
First, people can use a Proportional Integral Derivative (PID)
in which people use the error e(t= = Pd-P(t), its integral and
its derivative. The expression for the command is given by :

u(t) = Kpe(t) +Ki

∫
e(t) dt+Kd

de(t)

dt
(1)

where: u(t) is the control command, Kp is the proportional
gain, Ki is the integral gain, Kd is the derivative gain. The
gains can be determined empirically by the user. The main
advantage of PID controllers is their simplicity to implement.

An articulated arm can also be controlled in terms of artic-
ulated positions α(the angles of the arm) or in terms of end-
effector positions P (cartesian coordinates). The conversion
between the derivatives of these expressions is given thanks
to a Jacobian matrix :

Ẋ(t) = Jθ̇(t) (2)

B. Reinforcement learning

[3] summarizes well the main principles of reinforcement
learning. In the context of machine learning, there are three
main models : supervised learning, unsupervised learning and

reinforcement learning. In our document, we will use the third
one. The way it works is represented on the following figure
:

Fig. 1. Reinforcement learning structure

Fig 1 show that there is an agent which interacts with
an environment. The agent is an entity which takes decision
and interacts with an environment. It provides action in the
environment using a policy. This policy is a rule for selecting
actions and can be stochastic (it gives a probability distribution
over actions) or deterministic (maps to an action). In function
of the impact of the action on the environment, the agent will
receive a scalar reward defined by the user and the state at t
time. The goal is to implement actions which will maximize
the reward through time. In order to keep the Markovian
propiety of the problem, the observation is extended to several
time steps.

C. robotics control using reinforcement learning

In 2020, [4] presented a two-step methodology: 1. Learning
the simulation of the excavator and 2. Training a controller
with Trust Region Policy Optimization (TRPO) using the pre-
viously learned simulation. The method is validated on a real
excavator moving the bucket to perform leveling at the ground
contact limit. [1] extends this work by providing a more
detailed documentation of the methodology and transitioning
from position control to velocity control using Proximal Policy
Optimization (PPO).

III. METHOD

The general method is divided into two main steps. First,
we model the actuation using measurements collected during
operation of the machine. Then, we train an end effector
velocity tracking controller in simulation using reinforcement
learning with PPO algorithm.

A. description of the machine

In the context of our work, we will use a Caterpillar
excavator 323. This robot has 6 degrees of freedom : left and
right track, boom, stick and bucket (elements of the articulated
arm of the excavator). The excavator is represented on figure
2 :

Here, Ci for i=1,2 or 3 represents the command of the three
actuators, Xe represents the distance between the bucket’s
middle teeth and the center of the track, Xj is the distance
between the center of the tracks and the basis of the bucket.
Finally, Ze is the altitude difference between the center of the
excavator and the bucket’s middle teeth and Zj is the altitude

Fig. 2. Representation of the Caterpillar Excavator 323

difference between the center of the excavator and the basis
of the bucket. To drive the excavator, the operator has several
joysticks : A left one which serves to turn the cab around the
tracks group and a right one to pilot the arm (represented by
the boom, the stick and the bucket). In our context, we will
focus on moving the arm.

B. Modelization of the actuation

In this section, the very first task is to collect data during
operations on the machine. The data should contain joints
positions, joins velocities and commands at different times.
In order to collect data, an operator can design trajectories
(circle, curves...) with the end effector. In our case, we can
simulate an articulated arm drawing 700 circular trajectories
with Python [5]. For each trajectory, we chose a random radius
and a random center for the circle. This enables to have
joints positions and joints velocities. A photograph of the data
collection is provided on the following figure :

Fig. 3. Data collection using Python

In order to get the commands, we use models developed by
[6] which rely a joint velocity to the associated valve command
(a scalar between -1 and 1).
The goal of this section is to create a neural network which
predicts joints velocities at time t+0.01s from the joint posi-
tions at time t and an history of the commands and the joints

velocities. The inputs and the outputs are compiled in Table 1
:

TABLE I
ACTUATOR MODEL INPUTS AND OUTPUTS

Inputs
Joint Positions qj(t)
Joint Velocities q̇j(t), q̇j(t− 0.01s), ..., q̇j(t− 0.1s)
Valve Setpoints uj(t), uj(t− 0.03s), ..., uj(t− 0.99s)
Outputs
Joint Velocities q̇j(t+ 1)

In order to find the best hyperparameters for our model,
we used a Python library called Optuna. This tool is designed
to do gradient descent but enables to have global minimum
instead of local mminimas. In our case, we give Optuna a
list of hyperparameters and for each trial, the library builds a
neural network with hyperparameters chosen in the given list.
The goal is to minimize the mean-squared error between the
neural network predictions and the test set. The mean-squared
error function is :

MSE =
1

n

n∑
i=1

(yi − ŷi)
2 (3)

The hyperparameters we chose to design are : the dropout
rate, the number of hidden layers, the hidden layers size, the
learning rate and the activation function. Given that the process
takes a long time, we will search the best hyperparameters
within 80 trials.
Finally, the graph which gives the logarithm of the MSE
according to the number of trial is given on the following
figure :

Fig. 4. Logarithm of the MSE between neural network predictions and the
test set

Thanks to this graph, we choose a neural network with 1
hidden layer of size 512, a dropout rate of 0.285509, a learning
rate of 0.0001. In addition to that, the activation function is
tanh. Finally, people can see that the prediction of joints speeds
at time t+1 is very precise. In order to have the joints positions,
we can just compute an integration with a very known model
such as Euler or Runge-Kutta.

C. Calculation of the forward kinematic

The next step is to calculate the parameters Xe, Xj, Zj
and Ze. We also calculate the angle between the teeth and
the horizontal axis and the angle between the bucket and this
same axis. The determination of these values should be as
precise as possible. That is why we use a URDF model for the
robot. The URDF (Unified Robot Description Format) model
is a standardized XML-based file format commonly used in
robotics to describe the physical and kinematic properties of a
robot. It provides a comprehensive representation of a robot’s
structure, joints, sensors, and other relevant information. The
URDF model of the excavator 323 is given on the following
figure :

Fig. 5. URDF of the excavator 323

From this URDF, we can easily calculate transforms be-
tween different frames. Indeed, the tf2 ROS2 node enables to
compute the translations and rotations between the different
elements of the robot. These transforms will be used to
calculate Ze, Zj, Xe, Xj and the angles mentioned previously.
Nevertheless, in order to be very precise, it is really necessary
to calibrate the URDF. To do that, people can drive the
excavator during a little amount of time. During the operation,
people can acquire some data which should contain the joint
states at time t, the position of the cab at time t and the real
position of the teeth at time t. We used an IMU system to
have the pose of the cab and we took GNSS antennas to have
the position of the teeth. After the operations, we determined
the best parameters for the URDF using Optuna. We wanted
to minimize the MSE between the real teeth positions and the
teeth positions provided by the URDF.

D. Learning a Velocity Tracking Controller in Simulation

The goal is to obtain a controller which can track
trajectories in task space relative to the cabin frame with the
teeth of the bucket.We solve this problem using RL, because
it provides a means of dealing with the highly nonlinear
actuator dynamics by learning the optimal control inputs
through trial and error. To facilitate training, we decouple
linear and angular motion. Without decoupling, careful
reward tuning is required such that the agent learns tracking
both, linear and angular, velocities. The general method is

Fig. 6. Diagram of the general method of velocity tracking controller

summarized in figure 6. In this picture, people can see how
the elements are relied. The desired trajectory is an arbitrary
one decided by the user. The speed commands relatives to
the desired trajectory are given by the following formulas :

Ẋjcommand = kpx
· (Xjtraj −Xj) + Ẋjtraj (4)

Żjcommand = kpx
· (Zjtraj − Zj) + Żjtraj (5)

α̇jcommand = kpα
· (αjtraj − αj) + α̇jtraj (6)

Where αj corresponds to the angle between the bucket and
the horizontal axis.
As mentioned previously, we used Proximal Policy Optimiza-
tion (PPO) to have the valve commands at time t. It is a rein-
forcement learning algorithm that iteratively refines an agent’s
policy to find an optimal strategy in a given environment.
At its core, PPO employs a surrogate objective function to
guide policy updates, integrating a clipping mechanism to limit
large changes in the policy during each iteration. This clipping
ensures stability and prevents the policy from diverging too
significantly from the previous iteration. Concretely, it enables
to have relative continuous movements for the excavator arm.
There will not be a sudden jump of the arm which could be
really dangerous for people in the environment during opera-
tion. PPO typically performs multiple optimization epochs on
collected data, utilizing a value function to estimate expected
cumulative rewards and calculate advantages for policy up-
dates. Operating within an actor-critic framework, PPO strikes
a balance between exploration and exploitation, facilitating
robust learning across various environments. In our case, the
reward function will be given by the following formula :

rk = max
(
0.0, rkv + ṙkα + rkr + rkc

)
, (7)

rkv = 0.05 exp
(
−60fc,1∥Xj∗k −Xjk∥22

)
,

ṙkα = 0.02 exp
(
−60fc,1∥̇∗k − k̇∥22

)
,

rkr = −0.75fc,2∥ak − ak−1∥1,
rkc = 0.025.

Where, ak represents the valve command at the interaction
k with the environment. This reward function has been given
by [1]. Once we defined the reward, the observations and the
actions (valve commands), we can design the control policy
network : In our context, we take a neural network with tanh
as an activation function and a size of hidden layers of 128.
Finally, in order to evaluate the results, people can compute
the error between reference values and the learning values. In
our case, we took the joints velocities norms. We had a mean-
error superior to 0.2 rad/s. The results we wanted to have are
computed in the following figure extracted from [1] :

Fig. 7. Error between the learning velocity and the wanted velocity

Here, Leica corresponds to the speeds sensor installed on
the machine. Our error can come from several things. First,
it would have been better to have real data and not simulated
one. Secondly, the coefficients were not really adapted to the
situation. Then, the parmeters for the control policy network
are maybe not optimal.

IV. CONCLUSION

This work shows a method to automate the arm of a
heavy hydraulic excavator for high-precision grading using a
data- driven actuator model that captures the nonlinearities
of the hy- draulic actuation and a control policy trained in
simulation using RL that directly outputs pilot stage valve
commands without requiring joint level gain tuning by an
expert. Moreover, users don’t really need high knowledge of
the machine which is quite interesting. It also means that the
process can be applied to other excavator types. The results
provided in the study are quite interesting. Indeed, we can
predict very well the joints velocities and positions at time
t+0.01s. Moreover, the forward kinematic calculation is very
precise thanks to the calibrated URDF. Finally, it would be
very interesting to take data with a real machine and to
implement the process with PPO on a real excavator.

REFERENCES

[1] P. Egli and M. Hutter. “A General Approach for the Automation of
Hydraulic Excava- tor Arms Using Reinforcement Learning”. In: IEEE
Robotics and Automation Letters 7.2 (2022), pp. 5679–5686.

[2] M. Abd Elmoumen DJABALLAH. ”Système de prédiction de la con-
sommation d’énergie basé Deep Learning”.

[3] T. Pouplier, B. Brousseau-Rigaudie, M-A. Dumont, ”Apprentissage par
renforcement appliqué à des robots bipèdes”

[4] P. Egli and M. Hutter. “Towards RL-Based Hydraulic Excavator Au-
tomation”. In: 2020 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS). 2020, pp. 2692– 2697.

[5] L. Jaulin ”robmooc”. p 13
[6] J.Brugiere ”Contrôle Robotique Autonome avec Apprentissage par Ren-

forcement Profond” p 12
[7] I. Kurinov, G. Orzechowski, ”Automated Excavator Based on Reinforce-

ment Learning and Multibody System Dynamics”. In IEEE Access (
Volume: 8) pp. 213998 - 214006

Probabilistic consensus decision making algorithm for robotic swarm

Etienne Roussel

aENSTA Bretagne, Brest, France, Mars 2024

Abstract

This paper introduces a consensus algorithm for swarms of basic agents, such as robots equipped with constrained sensing, pro-
cessing, and communication capabilities. The algorithm addresses collective decision-making within a network of interconnected
robots. In this context, decisions are treated as abstract choices, thus the algorithm can be used for a broad range of applications
with specific decisions. Each robot within the swarm is considered as a probabilistic finite state machine, with preferences for a set
of discrete states defined as a probabilistic mass function. Then, the individual preferences are updated via local negotiation with
directly connected robots.

1. Introduction

A robotic swarm aims to achieve physical and computational
flexibility and increased system robustness in multi-robot tasks,
such as localization, mapping, and navigation in an unknown,
possibly dynamic, environment. The main characteristics of a
swarm robotic system includes the following [1, 2]:

• Autonomy: Robots are autonomous. Individual robots and
the entire swarm exhibit different levels of autonomy.

• Localized sensing and communication: Each robot’s sens-
ing and communication capabilities are local.

• Decentralized control: Individual robots do not have ac-
cess to centralized control and global knowledge.

• Cooperative action: Robots cooperate with each other to
perform an intended task.

These characteristics uniquely qualify robotic swarms to
perform certain types of tasks effectively, such as large area
coverage within a short time; tasks in dynamic, uncertain, or
unstructured environments; tasks that require scaling up or
down; and tasks requiring redundancy in information[1].

Despite the potential benefits, the application of swarm
robotic systems to real-world challenges faces various engi-
neering dificulties. One major obstacle involves achieving
swarm behavior without centralized control. Previous research
has concentrated on attaining specific global swarm behaviors
by implementing relatively straightforward rules at the indi-
vidual robot level. The targeted global behaviors encompass
swarm aggregation [3], shape/pattern formation [4], and
navigation [5]. To effectively address real-world problems, a
robotic swarm must demonstrate the capability to sequentially
execute multiple global behaviors. For instance, successfully
localizing and retrieving an object from a confined tunnel may
necessitate the swarm to aggregate, adopt a linear formation,

navigate, and collaborate in transporting the object back to the
designated base location.

This paper is based on the precedent work of Yang Liu of
a decision making algorithm for swarm robots [1]. So this
paper presents his algorithm. The problem is formulated as a
consensus decision making process given a finite number of
choices for individual robots. The objective of the algorithm
is to acheive a global consensus among the robots, it is not to
aggregate or navigate. To do so, individual robots are modeled
as Probabilistic Finite State Machines (PFSMs), where their
finite states are defined by a set of executable distinctive
behavioral rules but these are abstract here. A successful
global behavior emerges when the majority, if not all, of the
robots execute the same rule-set simultaneously. Since local
sensing/communication and decentralized control are assumed,
decision making must also take place at the individual robot
level while consensus in the individual decisions is sought
for achieving a global behavior at the swarm level. Each
robot’s preference towards n possible choices is defined as a
Probability Mass Function (PMF). The choice with the highest
preference is called the “exhibited decision” of the robot.
The presented method aims to achieve consensus based on
local communication between the nearby robots and internal
processing of the individual preferences.

1. Modeling individual robots as PFSMs by generating initial
preference distributions over given choices;

2. Updating each robot’s preferences based on its own and
locally connected robots’ preferences; and

3. Accelerating convergence and conflict resolving by
increasing confidence toward the exhibited decision.

The presented algorithm focuses on achieving guaranteed
consensus over a finite set of abstract decisions for a group
of robots in a single network. It achieves consensus in a
swarm network regardless of its connectivity density, i.e.,

consensus can be reached when the network is fully connected
or even when sparsely connected. But all the robots have to be
connected to the network, i.e to be close enough to each other.
Given a fully connected network condition (i.e., each robot
communicates with every other robots), a simple majority rule
would be sufficient, and the presented algorithm would fall
back to the same majority rule. However, if the network is
sparsely connected and only highly localized communication
is available, the presented algorithm would more effectively
resolve the conflicting decisions within the network than the
methods based on the majority rule. The robots in majority
rule based methods aim to gather direct information from as
many other robots as possible, which is difficult in a sparsely
connected network. By targeting consensus in a standalone
network, the problem setup and algorithm are well positioned
for further designing complex sequential swarm robot behav-
iors.

PFSM-based modeling methods have been widely applied
for different swarm formation problems, such as aggregation [3]
and chain formation [6]. Biological inspiration has also played
an important role in many swarm decision making algorithms.
The psychology of a human group can inspire as well for swarm
applications [7].

2. The Algorithm

The presented method focuses on achieving consensus in a
swarm of simple robots, and thus the following constraints are
considered:

• Individual robots are primitive with limited sensing, com-
munication, and processing capabilities.

• Communication in the swarm is local; each robot can com-
municate only with nearby robots within the communica-
tion range.

• Robots have no temporal memory (i.e., no log of history
data) and function like finite state machines.

It is further assumed that the network topology does not
change during the decision making process. If the deci-
sion making process is relatively fast enough compared to the
robots’ physical movements, the change in the network topol-
ogy would remain trivial while the physical locations of the
robots may change during this process.

The overall collective decision making algorithm, consists
of three parts: (1) initializing the swarm network with random
preference distributions; (2) updating individual preference dis-
tributions based on local interactions; and (3) improving confi-
dence in the decision. Each node representing a primitive robot
follows these steps until a consensus in the swarm is reached.

2.1. Initialization of the swarm network
Let R = {1, 2, . . . ,m} be an index set of m robots in the

swarm and Q = {1, 2, . . . , n} be the index set of n distinct
choices, corresponding to global swarm behaviors. Individual

robot is referred to as Rk for k = 1, · · · ,m. Each robot’s
preference towards n choices is modeled as a Probability Mass
Function (PMF), such that

∑n
j=1 Pk(j) = 1, where Pk(j) indi-

cates the Rk’s preference toward the choice j. This probability
distribution is hereafter referred to as the preference distribu-
tion. Each robot exhibits one decision at a time, determined
by the corresponding index of max{Pk(1), · · · , Pk(n)}. Initial
values of these preference distributions are randomly generated
for the initial set up of the swarm network.

2.2. Preference updating via local interaction

Each robot updates its own preference by interacting with
its neighboring robots within the communication range. If a
robot is too far, the swarm has to aggregate before starting the
decision making process. For Rk, all neighboring robots of Rk

and itself forms a local connection group, denoted by Ck. Each
robot holds IDs of all members within its local connection
group. Robots within the same connection group exchanges
their preference distributions. A local consensus group, Dk is
defined as a non-empty set of the robots connected to Rk that
express the same decision as Rk. Each robot within a local
consensus group shares information of the IDs of all members,
but not their the preference distributions. When a robot decides
to join or leave a local consensus group, its closest neighbors
in the group can detect the change, and this information is
broadcasted within the local consensus group. So each robot
have access to the number of robots directly and indirectly
connected with the same decision in addition to the preference
distribution of the directly connected neighbors only.

Figure 1 shows an example of how these two groups are de-
termined for a network of 8 robots. The node colors indicate the
exhibited decision of the robots. When two connected robots
exhibit the same decision, the connecting lines are also visual-
ized with the color of the decision. For R4, the local connection
group is defined by C4; and the local consensus group showing
the “red” decision is D4. As shown in the figure, members of
D4 may not be directly connected to R4, but forms a connected
network including R4. It is noted that R4 shares IDs and pref-
erence distribution with the members of C4 while sharing only
the IDs with the members of D4.

Each robot updates its own preference distribution by taking
account of preferences of other robots in its local connection
group:

Pk(j) =
∑

i NiPi(j)∑
i Ni

, i ∈ Ck, j ∈ Q (1)

where Ni = |Di| is the size of the Ri’s local consensus group.
This equation is a weighted average of the preference distribu-
tions among all directly connected robots, where the weights
are determined by the size of the decision group. In the equa-
tion, each robot compromises its preference by considering
its neighbors’ preferences, where the decision agreed by more
robots carry a larger weight in this process. If Ck is a subset of
Dk, then the decision has been locally converged at Rk, and (1)
results in an equally weighted average. The weights proposed

2

Figure 1: A network of 8 robots, showing R4’s local consensus group C4 and
local connection group D4

in (1) help resolve potential conflicts among all the local con-
sensus groups by favoring large-sized local consensus groups.

2.3. Internal processing for decision uncertainty reduction
Once the following two conditions are satisfied, Rk is consid-

ered locally converged:

• (1) local consensus is achieved (i.e., Ck ⊂ Dk).

• (2) the maximum difference of the preference distributions
within Ck is below a threshold.

The maximum difference in the preference distributions among
the members of Ck is defined as λk and calculated by

λk = max
k1,k2∈Ck ,k1,k2

 n∑
j=1

| Pk1(j) − Pk2(j) |

 . (2)

λk is a measure of the degree of divergence in Ck. If λk <
λT is satisfied for an empirical threshold value λT , then Rk is
considered being confident about its own exhibited decision.

Once the above conditions are satisfied, Rk’s preference dis-
tribution is further updated to accelerate the convergence pro-
cess by multiplying a linear multiplier, Lk(j), for j ∈ Q:

Pnew
k (j) = Pk(j)Lk(s(j)) (3)

where s(j) is introduced to rearrange the probabilities in Pk in a
descending order, such that Pk(j) is in s(j) position in the new
order. Lk is constructed as follows:

Lk(j) = Ll
j − 1
n − 1

+ Lu
n − j
n − 1

, j ∈ Q (4)

where Lℓ =
1
n

(
λk

λT

)0.3

; Lu =
2
n
− Lℓ. Lℓ and Lu are the lower

and upper ends of the linear multiplier. This process reduces
the uncertainty on the exhibited decisions of individual robots
by increasing the preference values of the highly preferred

choices and further reducing the preferences values of the less
preferred choices.

Thus, Figure 2 shows a random 100-node network (m = 100)
and its convergence towards a consensus using the algorithm
described above. Different colors indicate exhibited decisions
of individual nodes among 30 possible choices (n = 30). An
edge between two nodes turns into a specific color if they form
a local consensus group, Dk.

Figure 2: The evolution of the consensus process for 100-size network

3. Conclusion

A new distributed collective decision making algorithm for
swarm robotic applications has been presented in this paper. In-
dividual robots are assumed to be primitive with limited sens-
ing, communication, and processing capabilities. Under this
assumption, while individual robots may exhibit any of n pos-
sible decisions, the swarm can only exhibit a global behavior
if most of individual robots, if not all, agree on a unique deci-
sion. The presented algorithm achieves guaranteed consensus
in a connected network.

References

[1] Liu, Y., Lee, K Probabilistic consensus decision making algorithm for ar-
tificial swarm of primitive robots, SN Appl. Sci. 2, 95 (2020).

[2] M. Brambilla, E. Ferrante, M. Birattari, M. Dorigo, Swarm robotics: a
review from the swarm engineering perspective, Swarm Intell, 7(1), 1–41
(2013).

[3] O. Soysal, E. Şahin, Probabilistic aggregation strategies in swarm robotic
systems, In: Swarm intelligence symposium, 2005. SIS 2005. Proceedings
2005 IEEE. IEEE, pp 325–332 (2005).

[4] J. Yang, X. Wang, P. Bauer, Line and V-shape formation based distributed
processing for robotic swarms, Sensors 18(8), 2543 (2018).

[5] F. Ducatelle, G.A. Di Caro, C. Pinciroli, F. Mondada, L. Gambardella,
Communication assisted navigation in robotic swarms: self-organization
and cooperation, In: 2011 IEEE/RSJ international conference on intelli-
gent robots and systems. IEEE, pp 4981–4988 (2011).

[6] S. Nouyan, A. Campo, M. Dorigo, Path formation in a robot swarm,
Swarm Intell 2(1), 1–23 (2008).

3

[7] M. Moussaid, S. Garnier, G. Theraulaz, D. Helbing, Collective Information
Processing and Pattern Formation in Swarms, Flocks, and Crowds, (2009).

4

Improvement of Underwater Image Quality through
a Machine Learning Approach

Mathys SÉRY
ROB24 - STIC

ENSTA BRETAGNE
Brest, France

mathys.sery@ensta-bretagne.org

Abstract—In the context of our projects in Robotics (ROB) at
ENSTA Bretagne, we have encountered systems where the core
of the project revolves around vision. However, in the case of
underwater robot projects, vision becomes a real challenge due
to the unique conditions presented by such environments. The
perfect example, which is the focus of my project this year, is
the Guerlédan Lake. Upon observing the visual results from the
robot’s camera in this setting, I questioned the existence of more
efficient algorithms that differ from our traditional histogram
equalization algorithms (already used for this project). The most
interesting solution I found was developed by two individuals:
Cheol Woo Park and Il Kyu Eom. Their solution involves the
use of a neural network that takes into account the impact
of the aquatic environment on the distribution of the R, G,
and B channel histograms of color images. Their solution
appears to be adaptable to various underwater environments.
However, despite the promising results presented in their article,
I obtained opposite results after a personal implementation
attempt. The likely causes of this difference stem from the
disparities between our two computing configurations: due to a
lack of computational power, I had to reduce my dataset and
the number of epochs for training my model.

Index Terms—Underwater image enhancement, Convolutional
Neural Network, Normalization, Standardization, Robotics

I. INTRODUCTION

The use of computer vision, especially in the context of
robotics, is a versatile tool full of potential. In classical appli-
cations, one can find obstacle detection, object classification,
as well as mapping and localization with methods such as
SLAM [1].

Robotics evolves in different environments and in different
ways, from robotic arms to flying drones to autonomous cars
(fig. 1). In the case of our robotics studies at ENSTA Bretagne
in ROB, we are led to explore robotics in marine/aquatic
environments. This branch of robotics has characteristics of
its own in terms of dynamic behaviors of systems, sensors,
and especially from a vision perspective. Aside from factors
that can affect the appearance and quality of the image
stemming from the system itself (quality of equipment,
information storage method, etc.), we have factors specific
to aquatic environments: variations in brightness depending
on depth, the turbidity of the environment, water quality, the

Fig. 1: Applications of vision in robotics

presence of suspended particles in the water, etc. [2], [3].

To overcome these challenges, one can employ general
image processing algorithms or specialize in underwater
imaging to improve and restore the quality of our images
and/or videos taken underwater. Techniques for underwater
image restoration focus on correcting alterations using
physical models, or image enhancement techniques aiming
to increase the visual quality of the image with more
varied and less precision-oriented approaches [4]. Within
these different categories, a wide variety of techniques can
be found, for example, in the frequency domain, spatial
domain, or color constancy (=human ability to identify the
color of an object independently of its lighting conditions) [3].

But in recent years, machine learning and the tools
it develops have been massively used in various fields,
especially to modify and/or improve images. These tools

seem to have a promising future with good results [1], [4], [5].
Therefore, in this research exercise, we will focus on one of
the many developed convolutional neural networks, which we
will analyze and compare with other more traditional methods.

II. ANALYSIS OF THE CHOSEN METHOD

To construct this small work, I relied on and focused on an
article written very recently and published in 2024 by Cheol
Woo Park and Il Kyu Eom [5]. In this article, they describe
and use the following network schema (fig.2).

The main architecture of this neural network is composed
of four major blocks in different quantities. We have:

• K + 1 ASNet (Adaptive Standardisation Network) blocks,
• 2 ANNet (Adaptive Normalization Network) blocks,
• 1 convolutional layer,
• 1 sigmoid activation function.

Let’s now discuss the utility of each of these blocks and the
organization of this network.

A. Classical Functions: Convolutional Layer and Sigmoid
Activation Function

These two functions are present both at the end of the
main architecture and in the internal architecture of an ASNet
or ANNet block, which is why it is useful to explain them first.

1) Convolutional Layer: The convolutional layer has
several possible uses in a CNN: it allows extracting important
features from an image or reducing the dimension of the
image while preserving important data. A convolutional layer
can exploit the spatial aspect of the data values provided at
its input, making it effective with data like images. Placed
at the end of our overall architecture, we ensure that the
global model’s output is an image with 3 channels, while the
number of channels increases during the model.

2) Sigmoid Activation Function: Traditionally, this function
is used for binary classification tasks where the output should
be interpreted as a probability. Here, it normalizes the
output values to a fixed range, thereby controlling the output
values. In the article, this part has been minimally documented.

B. ASNet Block

In natural images, the chromatic distributions of blue,
green, and red tend to coincide. There are no significant
differences between each channel. However, in the case
of underwater images, the distribution of the red channel
is shifted towards lower pixel values (recall the range of
values a color pixel can take is from 0 to 255). Therefore, to
improve our image, we need to align the histograms even in
this scenario.

A classic solution that is applicable is the standardization
technique. This technique allows achieving this alignment by
resizing the features of our image using statistical tools such
as mean and standard deviation.

Fig. 3: ASNet Architecture

The ASNet block was designed by the two authors to
implement this technique and thus match these histograms.
According to Figure 3, it is composed of:

• 1 convolutional layer,
• 1 Batch Normalization (BN) block,
• 1 sigmoid activation function.

The BN block is responsible for the standardization of
features. It also allows for a higher learning rate and less
meticulous initialization. This same block also handles the
adaptive part of the ASNet block:

At the input of the Batch Normalization block, we have
an input u = [u1, u2, ..., ui, ..., uN], and at the output, b =
[b1, b2, ..., bi, ..., bN]. For each bi, we have,

bi = αi ∗
ui − µ(ui)√
Var(ui) + ϵ

+ βi

where αi and βi are adjustable parameters, ϵ is a very
small value to avoid division by zero without impacting the
operation too much, µ correspond to a mean value.

As standardization gives unbounded results, we use the
sigmoid function to restrict the range of possible values.
However, this causes saturation for extreme values, which
can affect the quality of the final image.

C. ANNet Block

This second block, conceived by the two authors of
my reference article, contributes to achieving satisfactory
performance in color restoration and contrast enhancement. To
accomplish this restoration and improvement, a normalization
technique is employed. This technique involves modifying the
range of values of input features by stretching the contrast
based on the minimum and maximum values of these features.

However, this technique is sensitive to outliers. In this case,
it is necessary to use the minimum and maximum values

Fig. 2: Proposed CNN model by Cheol Woo Park and Il Kyu Eom(subject of the study)

in percentiles. For a given input feature X , we obtain a
normalized version Xnor as follows:

Xnor =
X − minp

maxp − minp

where maxp (resp. minp) corresponds to the maximum (resp.
minimum) value in percentiles. Generally, this technique is
ineffective on underwater images due to the diversity of their
chromatic distributions. However, it is possible to achieve
interesting results by finding suitable values for min and max
in percentiles. The challenge with the normalization technique
is that it is difficult to find optimal values as they differ for
each given feature.

To address this issue, the authors have developed a block
named ANNet, allowing for a sophisticated selection of
extreme percentile values that can adapt to each given
feature (Adaptive), resulting in excellent normalization
(Normalization).

Fig. 4: ANNet Architecture

According to Fig. 4, its architecture contains two parallel
blocks: one MaSE block and one MiSE block, each providing
the maximum and minimum values in percentiles. For any
input feature X , we have the normalized feature XN as
follows:

XN =
X − minp

maxp − minp

MiSE and MaSE have an almost identical architecture.
They consist of two Squeeze and Excitation (SE) blocks
to which we add, at the very beginning, the search for a
maximum (max pooling) or a minimum (min pooling).

The SE block aims to adaptively recalibrate the responses
of each feature per channel, taking into account inter-channel
connections. The first operation (Squeeze operation) aims to
compress the spatial data of input features using a global
average pooling operation: calculation.
The second operation (Excitation operation), composed of
two Fully Connected (FC) layers separated by a ReLU
function and followed by a sigmoid function, aims to capture
all inter-channel dependencies. It exploits the information
aggregated during the previous operation.

4. Global Architecture

Even though each block of the neural network seems to
have interesting individual properties, it is only by combining
them in a specific order that truly interesting results are
obtained:

• At the very beginning of the network, the first ASNet
allows obtaining the initial standardized features from our
input image and aims to align the distribution of these
features.

• As the values output by ASNet can be too saturated
for extreme values, it is followed by an ANNet block
to address these shortcomings. This block adaptively
stretches the distribution of features, ultimately assisting
in color restoration and improving the contrast of the final
image.

• The subsequent K ASNets extract a sufficient number of
interesting features and progressively align the distribu-
tions of these features. According to their tests, Cheol
Woo Park and Il Kyu Eom observed that K=5 ASNets

seemed to be the best compromise for obtaining a high-
quality image at the output of the overall network.

• Through their ablation tests (keeping and/or removing
certain parts of the neural network to study the output),
they observed that using 2 ANNets leads to a more
”natural” improvement in the enhanced output image.
Hence, there is a second ANNet block after the K
ASNets. These tests highlighted the importance of
ASNet in color correction and ANNet in contrast
enhancement.

III. EXPERIMENTAL RESULTS

To assess the performance and outputs of this neural
network, I aimed to compare it with other more traditional
methods. I also employed the algorithm used in our Guerlédan
project, named ”ESPADON,” which utilizes the CLAHE
algorithm, brightness correction, and another algorithm
applying histogram equalization followed by CLAHE on
each channel of the base image [6]. This entire program
was executed via Google Colab to train the model and
immediately compare its results with others.

Note: The ”ESPADON” project is a third-year ROB 24
project led by Titouan BÉLIER, Jules LE GOUALLEC,
Mathieu PITAUD, and Mathys SÉRY, supervised by Thomas
LE MEZO. The images from this project come from the
camera of a BlueROV, an ROV from BlueRobotics.

To align more closely with the training in the article, I kept
exactly the same optimization and loss functions (adam and
mean square error), as well as the same learning rate values.
Due to my limited computing power, I had to drastically
reduce the number of data points taken in training and the
number of epochs: moving from training on over 6000 images
for 250 epochs to training on 300 images (randomly selected
to ensure variety in images and situations) for 100 epochs.
With this small comparative test, my goal is to check if my
model is usable for the ”ESPADON” project in its current
state.

The first comparison is based on a capture taken in the
Guerlédan lake during an approach mission to our structure.
To navigate, the robot must use the ARUCO markers present
on this structure. The obtained result is shown in Fig.5.

Fig. 5: Comparison of Underwater Image Processing at Lake
Guerlédan

The second test is on another capture taken during a pool
test at ENSTA Bretagne. We are using the same equipment
but in different conditions. The results are presented in Fig.
6.

Fig. 6: Comparison of Underwater Image Processing in the
Lab-STICC Pool (ENSTA Bretagne)

These two trials highlight the weakness of Machine
Learning methods: to achieve a quality result, a large, varied,
and high-quality training set is required, along with sufficient
computing power to train our model extensively and in-depth.
Traditional methods prove to be better choices for processing.

Although the results obtained in the article are very
encouraging (Fig.7), they deserve further refinement in

training to find an optimal configuration even under minimal
computing capacity.

Fig. 7: Results taken from the reference article [5] of this study

IV. CONCLUSION

In conclusion, we can assert that this CNN, chosen as a case
study, is, in theory, an excellent idea with significant potential.
However, at the present moment, employing it for ROV image
processing and developing it with common hardware (such as
a portable student PC without extensive technical capabilities)
seems challenging. This is evident from the results of tests
conducted on captures from the ”ESPADON” project. Tradi-
tional methods, therefore, are not on the verge of disappearing
to be entirely replaced by machine learning-based approaches.

REFERENCES

[1] B. Van Eden and B. Rosman, An overview of robot vision, in 2019
Southern African Universities Power Engineering Conference/Robotics
and Mechatronics/Pattern Recognition Association of South Africa
(SAUPEC/RobMech/PRASA), pp. 98–104, IEEE, 2019.

[2] A. Marouchos, M. Sherlock, and J. Cordell, Challenges in underwater
image capture, in OCEANS 2018 MTS/IEEE Charleston, pp. 1–5, IEEE,
2018.

[3] W. Zhang, L. Dong, X. Pan, P. Zou, L. Qin, and W. Xu, A survey of
restoration and enhancement for underwater images, IEEE Access, vol.
7, pp. 182259–182279, IEEE, 2019.

[4] S. Raveendran, M. D. Patil, and G. K. Birajdar, Underwater image
enhancement: a comprehensive review, recent trends, challenges and
applications, Artificial Intelligence Review, vol. 54, pp. 5413–5467,
Springer, 2021.

[5] C. W. Park and I. K. Eom, Underwater image enhancement using
adaptive standardization and normalization networks, Engineering Ap-
plications of Artificial Intelligence, vol. 127, p. 107445, Elsevier, 2024.

[6] Omer Deperlioglu and Utku Kose, Practical method for the underwater
image enhancement with adjusted CLAHE, In 2018 International Con-
ference on Artificial Intelligence and Data Processing (IDAP), pages
1–6, 2018, IEEE.

Representation of the Websocket protocol with Colored Petri

Nets

Zafrana Joachim

March 1, 2024

Abstract

In today’s digital landscape, where instan-
taneous interaction is not just a luxury but
a necessity, WebSockets have emerged as
a fundamental technology driving real-time
communication on the web. From live chat
applications to collaborative editing plat-
forms, WebSockets offer a seamless and
efficient way to establish persistent, bidi-
rectional communication channels between
clients and servers. In this article, we delve
into the world of WebSockets, exploring
their architecture, advantages, and diverse
applications across various industries. Join
us as we unravel the transformative poten-
tial of this powerful web technology.

1

Contents

1 Introduction . 3
2 CPN model for Websocket Protocol . 4
3 CPN WS Model Verification . 5
4 Possible Websockets applications . 5
5 Conclusion . 6

2

1 Introduction

Petri nets (PN), or Petri net models, are math-
ematical and graphical tools used for the mod-
eling and analysis of concurrent systems. They
were introduced by Carl Adam Petri in the
1960’s and have since found applications in var-
ious fields, including computer science, systems
engineering, and biology. They can be defined
as a graphical structure which contains places,
transitions, arcs and tokens. The dynamics of
a Petri net model are governed by the move-
ment of tokens between places and transitions
according to predefined rules. Tokens represent
the state of the system, and transitions repre-
sent events or actions that can occur. When a
transition is enabled, meaning that it has suf-
ficient tokens in its input places, it can fire,
causing tokens to move from input places to
output places based on arc weights.

Figure 1: Simple examble of a PN

Since PN allow two tokens to be crossed si-
multaneously, they are particularly useful for
checking the operation of computer protocols
(TCP ...). Furthermore, Colored Petri Nets
integrate a programming language, typically
Standard ML, to model and manipulate data.
This programming language allows for the def-
inition of complex data structures, functions,
and algorithms within the CPN model. It al-
lowed the development of PetriCode which is
used for automatically generating protocol im-
plementations, based on their CPN represen-
tation. In this study we will focus on one of
these protocols.

On the other hand, Websocket technology is
a rather new technology (still under develop-
ment). As said previously, WebSocket is a bidi-
rectional, full-duplex communication protocol.
Once the initial connection is established, both
the client and the server can send messages to
each other at any time without waiting for a
request from the other party. This allows for
real-time, low-latency communication.

Figure 2: Websocket Protocol [2]

Today, websockets are used extensively in
web applications, and their bidirectional com-
munication properties enable them to set up
controllers for different systems. For exam-
ple, in the article Web-Based control applica-
tion using Websocket [3], an application for
controlling radiation phenomena is presented.
They are also widely used for data visualiza-
tion, since it’s easy to serialize any type of data
in JSON format and send it via Websocket, as
explained in article Remote Data Visualization
through WebSockets[4].
The chosen article, taken from Implement-

ing the WebSocket Protocol Based on Formal
Modelling and Automated Code Generation [1]
, shows the interest of PN in the representation
and implementation of protocols and more es-
pecially Websockets.

3

2 CPN model for Websocket Proto-
col

In this article, is showcased an implementation
of this protocol using CPN, in order to see the
complexity of this protocol.
The following figure illustrates the top-level

module of the CPNmodel representing the pro-
tocol system level for the WebSocket protocol.
The protocol system comprises two principal
entities: the Client and the Server, depicted as
substitution transitions labeled accordingly. .

Figure 3: PN representation of the Websocket
Protocol

Additionally, the channel module symbol-
izes the connection between the Client and the
Server. It’s often host by the server on one
of his port, which allows him to communicate
with all his clients. Then, below is the Client
submodule.

Figure 4: PN representation of the Client Sub-
module

As you can see, there’s a lot of places
and transition modules. Initially, the place
“READY” contains a token which allows
“OpenConnection” transition to be completed,
and a token will be placed in the place
“OPEN”. That’s the beginning of the Web-
socket Protocol, on the client side. Then, all
external services will be called, enabling the
client protocol to function: keep the connection
alive, receive and send messages at any time.
Finally, when desired, the client can choose to
close the connection. As explained in the ar-
ticle, the complete CPN model contains 136

places and 84 transitions to represent the com-
plete process, so even if it seems be a lot, it
just shows how important are CPN in the im-
plementation of this protocol.

4

3 CPN WS Model Verification

CPN are also usefull for testing the protocol.
Indeed, the previous representation of the pro-
tocol allows us to explore all reachable states of
the model, in order to eliminate those we don’t
want them to happen, with their potential er-
rors. To illustrate this, the approach adopted
in the article based on behaviour properties of
the CPN model:

1. Client and Server modules can both open
the connection from the initial state.
(they have one token each in the place
OPEN of their module).

2. All terminal states (without enabled tran-
sitions) only happen if the connection has
been properly closed.

3. Regardless of the sequence of events, it is
always possible to achieve a proper clo-
sure of the WebSocket connection from
any reachable state.

By using ML methods specific to CPN
models (testing all reachable states, accord-
ing to these 3 properties), we can generate the
amount of Nodes and arcs necessary to repre-
sent the system. In the case where both Client
and Server are sending messages, we saw that
we would need approximately 40 000 nodes and
177 000 arcs. We then realised the complex-
ity of the protocol, and that led to the inclu-
sion of new modules and transitions (Clear-
Bufffers), in order to reduce the number of ter-
minal states.

Once a stable and not too complex CPN
has been obtained, we can automatically gen-
erate code to implement this process using the
groovy platform, capable of automatically gen-
erating Java code (like it’s done in the Petri-
Code [5]).

4 Possible Websockets applications

Nowadays, Websocket technology finds appli-
cations in various real-time communication
scenarios, such as Chat Applications, Multi-
player online games, or live streaming applica-
tions. In order to showcase its interest, I’ve
developed a Websocket-Based web interface to

control a Trax robot whose assiociated URDF
representation is presented below.

Figure 5: URDF of the Trax Robot

This Trax uses ROS2 as middleware and
the point here is to create a link between a
Web Interface and the Backend part using a
Websocket. Thus, the user of the web inter-
face needs to be able to listen ROS topics, or
publish on them. To put in place this Web-
Interface, I used the following process :

As Trax is equipped with ROS middleware,
we can create a global subscriber in ROS (us-
ing python). This subscribes to relevant topics
(that we wish to display on the web applica-
tion), and we generate a dictionary in JSON
format that we send every 200ms to the Web-
socket server via a TCP socket hosted on a
local port of the robot’s teensy. Once the
connection has been opened by a client, this
dictionary is sent at regular intervals to auto-
matically update Trax-related data (arm po-
sition, current user command, etc.). For its
part, the client can also send commands on
this Websocket, sent in the opposite direction,
to the ROS node, capable of interacting with
the robot. This protocol is summarized in the
following figure:

5

Trax Middleware (ROS2 Node) Websocket Server
http://<ip>:<port>

TCP Local Socket

Client 3

Client 2

Client 1

Figure 6: Interfacing process used

Once the WebSocket server has been initial-
ized, the user can connect to it (provided he or
she is connected to the same network or uses a
VPN), by going to the web page:

http://<ip-adress-of-the-teensy>:

<port-on-which-the-WS-server-is-hosted>

The user can then control the trax remotely
from any device with a web browser.

Figure 7: Web interface of the Trax

5 Conclusion

In this study, we explored the field of Petri
Nets, and noted their usefulness in the repre-
sentation of complex processes, such as Web-
sockets. Combined with Petri Code, they en-
able the automatic generation of JAVA code by
AIs that automatically implement these pro-
tocols. This greatly facilitates the develop-
ment of various IT processes, no matter how
complex, as long as they can be represented
graphically, which is supposedly simpler and
more accessible to everyone. By enabling a
more robust and structured implementation,
this method promotes the reliability and main-
tainability of IT systems.
Thus, by reducing reliance on manual program-
ming, it paves the way for more efficient and
scalable software engineering.

6

Bibliography

[1] Kent Fagerland Simonsen, Lars Michael
Kristensen: Implementing the WebSocket
Protocol Based on Formal Modelling and
Automated Code Generation

[2] Alex Diaconu: Ably,
https://ably.com/topic/websockets

[3] Y. Furukawa: Web-Based control applica-
tion using Websocket

[4] A. Wessels, M. Purvis, J. Jackson and
S. Rahman, ”Remote Data Visualiza-
tion through WebSockets,” 2011 Eighth
International Conference on Information
Technology: New Generations, Las Ve-
gas, NV, USA, 2011, pp. 1050-1051, doi:
10.1109/ITNG.2011.182.

[5] Petri Code :
https://github.com/kentis/nppn-cli

7

Introduction to Traffic Collision Avoidance System,
TCAS

Rania ZIANE
ECOLE NATIONALE DES SCIENCES ET TECHNIQUES AVANCEES BRETAGNE

Autonomous Robotics
Email: rania.ziane@ensta-bretagne.org

Abstract—Every year, several in-flight airplane accidents occur,
resulting in the loss of precious lives. In this paper, we have
outlined the operation of the traffic collision avoidance system,
designed to prevent collisions between aircraft and thus ensure
a safe journey for passengers. We also explored potential im-
provements to the system, while examining the shortcomings of
the current TCAS and the changing needs due to increasing air
traffic. Enhancing maneuverability through a new trajectory cal-
culation algorithm and establishing a dedicated communication
link contribute to strengthening threat management.

Index Terms—Collision prevention in air traffic, radar and
navigation aids, electronic and electronic telecommunications

I. INTRODUCTION

Every year, several airplane accidents occur in mid-flight,
resulting in the loss of precious lives [1]. One of the most
tragic accidents occurred when a Russian Tupolev flight
collided with a DHL cargo plane in mid-air on July 1,
2002, shortly after 11:30 PM, above Überlingen near Lake
Constance [2], highlighting the importance of developing
collision systems. Numerous studies have focused on this
topic, proposing increasingly sophisticated optimizations [3]–
[6]. In this document, we proposed a basic model of detection
based on the operation of the Traffic Collision Avoidance
System (TCAS) [7], designed to prevent collisions between
aircraft and thus ensure a safe journey for passengers [8],
[9]. We also explored potential improvements to the system,
while examining the shortcomings of the current TCAS and
the changing needs due to increasing air traffic. Enhancing
maneuverability through a new trajectory calculation algorithm
and establishing an exclusive communication link contribute
to strengthening threat management.

II. OPERATION

A. Basic TCAS

The Traffic Collision Avoidance System (TCAS) operates
using advanced radar communication technology, enabling the
detection and avoidance of mid-air collisions.

This system sends radar interrogations to nearby aircraft via
a 1030 MHz radio frequency and receives responses on 1090
MHz. Through these exchanges, TCAS calculates the relative
position of other planes – distance, direction, and altitude – in
relation to itself.

Identify applicable funding agency here. If none, delete this.

In case of a detected collision risk, it generates visual and
auditory alerts to warn the crew.

If necessary, it also provides precise instructions to alter the
flight path, through pitch commands, to avoid the accident.
These instructions are coordinated among all TCAS-equipped
aircraft involved, ensuring a concerted and safe action. Ca-
pable of managing multiple planes simultaneously, TCAS is
an essential tool for flight safety, ensuring continuous and
proactive surveillance of congested airspace.

Two versions of the TCAS system have been developed.
The first version, TCAS I, was enhanced to become TCAS II,
introducing several major changes from the original version.

These modifications will be detailed later.

B. The warnings

There are two types of alerts issued by the TCAS system,
namely the Traffic Advisory, known by the acronym TA, and
the Resolution Advisory, or RA. These alerts constitute the
main difference between the TCAS I and TCAS II versions.

When a TA is activated, the pilot is alerted by the display
of the word TRAFFIC in yellow on the navigation screen, as
well as by a sound announcement saying ”traffic, traffic”.This
alert does not indicate the most critical level but mainly aims
to draw attention to a potentially conflicting situation. A TA is
issued by the TCAS as soon as an aircraft or any unidentified
object comes into immediate proximity of the aircraft.

The RA (Resolution Advisory) is triggered if the intruding
object continues to approach and the conflicting situation does
not improve. Usually, an RA is issued 10 to 15 seconds after
a TA. When an RA is activated, the pilot is guided by a vocal
announcement instructing them to perform a climb or descent,
with instructions on the speed to adopt if required.

According to the description of figure 1
An alarm signal is emitted by the TCAS as soon as an

aircraft intrudes into this Tau region, whose threshold is based
on the concept of time until the closest point of approach
(CPA), calculated by the ratio between the remaining distance
and the speed of convergence, both in vertical and horizontal
directions.

For example, if the tau time threshold is set at 40 seconds,
the alarm is triggered as soon as the intruding aircraft is less
than 40 seconds from the CPA. The TCAS system adapts

Fig. 1. Intruder aircraft in the TAU.

the tau thresholds according to the current altitude, making
detection more sensitive as the aircraft climbs in altitude.

Due to obvious safety concerns, the TCAS system avoids
issuing descent instructions when the aircraft operates at a low
altitude, just as it refrains from doing so at high altitudes to
prevent stalling.

The major distinction between the TCAS I and TCAS II
versions is that the former can only generate TA-type alerts
(Traffic Advisory), while the latter is capable of producing
both TA and RA (Resolution Advisory) alerts. This extended
capability is the fundamental reason why TCAS I was up-
graded to the TCAS II model.

C. The interrogation protocols

In the field of aviation, transponders play a crucial role by
facilitating communication and surveillance between aircraft
and air traffic controllers.

To standardize these exchanges, several radio frequency
(RF) communication protocols have been established, adapted
to different needs and operational contexts. Among these
protocols, Modes 1, 2, 3/A, 4, A, C, and S are particularly
noteworthy.

Mode S (for Selective) is distinguished by its widespread
use in air collision avoidance systems, such as the TCAS
(Traffic Collision Avoidance System). Designed to minimize
the risks of interrogation overload—a phenomenon that can
occur in congested airspaces where many radars attempt
to communicate simultaneously with transponders—Mode S
allows for a more precise and efficient selection of aircraft to
interrogate.

This specificity reduces radar background noise and im-
proves the reliability of transmitted data, thereby facilitating
collision detection and avoidance.

Transponders operating in Mode S are also designed to be
compatible with Modes A and C.

Mode A relates to the aircraft’s identification, while Mode
C provides information on its altitude. This interoperability
ensures a complete coverage of the information necessary for
tracking and managing air traffic.

Beyond its role in TCAS, Mode S is also a central element
of ADS-B (Automatic Dependent Surveillance-Broadcast) sys-
tems.

These systems allow for the automatic transmission of key
information such as the aircraft’s identity, position, speed,
and direction, without requiring active interrogation by ground
radars.

ADS-B messages are emitted at the frequency of 1090 MHz,
and a variant of these transmissions can also be relayed by a
Universal Access Transceiver (UAT) in the 900 MHz band.

ADS-B significantly improves the situational awareness of
pilots and air traffic controllers, contributing to safer and more
efficient navigation in global airspace.

D. ADS-B

TCAS equipment capable of processing ADS-B messages
can use this information to enhance the performance of the
TCAS through techniques known as ”hybrid surveillance.” In
its current implementation, hybrid surveillance utilizes the re-
ception of ADS-B messages emitted by an aircraft to decrease
the frequency at which the TCAS equipment interrogates that
aircraft.

This reduction in interrogations decreases the use of the
1030/1090 MHz radio channel, which will extend the op-
erational lifespan of TCAS technology over time. ADS-B
messages will also provide a low-cost technology for aircraft,
delivering real-time traffic information in the cockpit for small
planes.

Hybrid surveillance does not involve using the aircraft’s
flight information in the TCAS conflict detection algorithms;
ADS-B is used solely to identify which aircraft can be safely
interrogated at a reduced frequency.

This approach allows for more efficient management of
airspace by reducing the need for constant radar interrogations,
while maintaining accurate surveillance and reducing the risk
of saturating the radio frequencies critical for air safety.

III. TCAS SYSTEM COMPONENTS

A. The calculation unit

The TCAS (Traffic Collision Avoidance System) computer
unit, or TCAS processor, performs airspace surveillance, in-
truder tracking, tracking of its own aircraft altitude, threat
detection, determination and selection of Conflict Resolution
Advisory (RA) maneuvers, as well as generating guidance.
The TCAS processor utilizes pressure altitude, radar altitude,
and specific aircraft state inputs from its own aircraft to
regulate collision avoidance logic parameters that define the
protected volume around the TCAS-equipped aircraft. If a
tracked aircraft poses a collision threat, the processor selects
an avoidance maneuver that will ensure a safe vertical distance
from the intruder.

B. The S transponder

The Mode S transponder is an essential component of the
TCAS II (Traffic Alert and Collision Avoidance System),
playing a critical role in its overall functionality. Without the
installation and proper operation of the Mode S transponder,
TCAS II cannot operate correctly. In the event of a Mode S

transponder failure, the TCAS Performance Monitor automat-
ically detects this incident and puts the TCAS system into
Standby mode, thus ensuring efficient fault management. The
Mode S transponder is not only crucial for communication
with the ground air traffic control (ATC) system, but it also
facilitates the exchange of data between aircraft equipped
with TCAS, allowing for precise coordination of collision
avoidance maneuvers. A single control panel allows the crew
to select and control all aspects of the TCAS equipment,
including the Mode S transponder. This panel offers various
control options, allowing the crew to choose between different
operational modes, including Standby, Transponder, TA only,
or Auto/TA-RA, depending on the needs of the situation. In
conclusion, the Mode S transponder is a fundamental element
of TCAS II, ensuring flight safety by facilitating communica-
tion and coordination of collision avoidance actions between
aircraft.

C. The antennas

The antennas used by TCAS II consist of a directional
antenna mounted on top of the aircraft, as well as either a
unidirectional antenna or a directional antenna placed beneath
it. Most installations prefer to use the optional directional
antenna located underneath the aircraft. These antennas emit
interrogations at 1030 MHz with varying power levels in four
azimuth segments of 90 degrees each. The antenna mounted
beneath the aircraft emits fewer interrogations and at lower
power than the one mounted on top. Additionally, these an-
tennas receive responses from transponders at 1090 MHz and
transmit them to the TCAS processor. The directional antennas
allow for the separation of responses to reduce synchronous
interference. Besides the two TCAS antennas, two additional
antennas are required for the Mode S transponder. One is
mounted on top of the aircraft and the other underneath. These
antennas enable the Mode S transponder to receive interroga-
tions at 1030 MHz and to respond to these interrogations at
1090 MHz. The choice between the antenna mounted on top or
the one underneath is automatically selected to optimize signal
strength and reduce multipath interference. It is important to
note that TCAS operation is automatically disabled when the
Mode S transponder transmits, to prevent the TCAS from
tracking the aircraft to which it is attached.

IV. TCAS II LIMITS

Despite its advantages, TCAS II has several limitations, but
potential solutions could address these issues. First, the TCAS
II system can only handle three aircraft simultaneously due to
its limited vertical resolutions. Currently, only vertical move-
ments are proposed as a solution, which can be problematic in
conflicts at different altitudes. To overcome this limitation, a
software update that allows for horizontal resolutions, such as
turns or tilts, could be considered to enable TCAS to manage
multiple aircraft simultaneously.

Second, contradictory instructions between TCAS and air
traffic controllers (ATC) can lead to confusion and potential
collisions. Although TCAS generally has priority over ATC,

improved communication systems could be envisioned, allow-
ing TCAS to share its resolutions with ATC, so that aircraft
receive consistent directives.

Third, the current TCAS focuses mainly on a range-based
representation, which may not always be intuitive for pilots.
By introducing a time-based representation, TCAS could pro-
vide clearer information on imminent collisions by calculating
approach rates and announcing the remaining time before
collision.

Finally, integrating flight plan information into TCAS could
improve its ability to anticipate conflicts. Currently, TCAS re-
lies solely on the detection of intruders without considering the
flight plans of the aircraft. Introducing this data would allow
for a better assessment of potentially conflicting trajectories,
thus enhancing TCAS’s ability to avoid collisions.

By adopting these measures, TCAS II could be improved
to more effectively meet challenges and enhance safety in air
traffic.

V. MODELING AND CONFLICT MANAGEMENT BETWEEN
AIRCRAFT IN FLIGHT

Modern aviation faces the critical challenge of ensuring
flight safety, particularly by avoiding collisions between air-
craft in flight. In this context, the presented simulation aims
to provide a modeling tool to study aircraft movement and
manage potential conflicts. This paper describes the main
aspects of the simulation, including aircraft modeling, conflict
calculation, and the utilization of TCAS for conflict manage-
ment.

A. Aircraft Modeling

An Aircraft class has been developed to represent aircrafts
in flight. Each aircraft is defined by its position, velocity, and
altitude attributes. Position and altitude updates are performed
based on navigation requirements and conflict resolution.
Additionally, a method in the Aircraft class allows for grad-
ual adjustment of altitude towards a target altitude to avoid
conflicts.

Aircraft 1 speed: 0.139 m/s (approx. 500 km/h converted to
m/s and adjusted for simulation time scale). Aircraft 2 speed:
0.133 m/s (approx. 480 km/h converted to m/s and adjusted for
simulation time scale). It should be noted that speeds remain
constant, unlike altitude, which changes gradually to minimize
the risk of collision.

B. Conflict Detection and Management

The time before a potential conflict and the safety distance
between two aircraft in flight are calculated based on their rel-
ative velocities and positions. An evaluation is then conducted
to determine if two aircraft are in a conflict situation, based on
specific thresholds of spatial proximity and altitude difference.
In the event of a detected conflict, the TCAS system sends
altitude change instructions to the involved aircraft to move
them away from each other and avoid collision.

La distance entre les deux avions avant l’instruction du
TCAS était d’environ 19.46 unités, représentant la distance

euclidienne entre leurs positions dans l’espace de simulation,
soulignant leur proximité immédiate avant l’intervention pour
éviter un conflit.

C. Results

The simulation results indicate that The initial trajectories
of the aircraft in 3D, as well as the evolution of their altitudes
over time, are presented in Figures 2 and 3 respectively.

Fig. 2. 3D visualization of trajectories.

Fig. 3. Altitude and speed graphs

CONCLUSION

The main areas of development in the fight against collision
threats are aimed at improving the TCAS SYSTEM. Firstly, it
is important to introduce maneuvers combining both vertical
and horizontal and horizontal movements. This approach will
enable better resolution of threats, especially in dense dense
air traffic environments. In addition, the system will need to
be updated to transmit the aircraft’s flight plan, as well as and
other vital navigation data. This additional information will
enable a better assessment conflict situations.

Finally, a voice link will have to be established between
the two aircraft when they are in the most critical threat zone.
These TCAS improvements should considerably reduce the
risk of mid-air risk of mid-air collision. However, it is im-
portant to recognize that, even with these improvements total
prevention of mid-air collisions remains difficult to guarantee
due to the complexity of the human factors involved in flight
operations.

REFERENCES

[1] Le Tupolev Tu-154, un avion réputé mais victime d’une série
noire , Le Figaro. Consulté le: 1 mars 2024. [En ligne].
Disponible sur: https://www.lefigaro.fr/international/2016/12/25/01003-
20161225ARTFIG00047-le-tupolev-tu-154-un-avion-repute-mais-
victime-d-une-serie-noire.php s

[2] Crash d’Überlingen – Il y a dix ans, le père d’une victime tuait un
contrôleur aérien , Tribune de Genève. Consulté le: 1 mars 2024. [En
ligne]. Disponible sur: https://www.tdg.ch/il-y-a-dix-ans-le-pere-d-une-
victime-tuait-un-controleur-aerien-955096586736

[3] H. Durrant-Whyte, N. Roy, et P. Abbeel, Robotics: Science and Systems
VII. MIT Press, 2012.

[4] K. D. Julian, M. J. Kochenderfer, et M. P. Owen, Deep Neural Network
Compression for Aircraft Collision Avoidance Systems , J. Guid. Control
Dyn., vol. 42, no 3, p. 598-608, 2019, doi: 10.2514/1.G003724.

[5] K. D. Julian et M. J. Kochenderfer, Guaranteeing Safety for Neu-
ral Network-Based Aircraft Collision Avoidance Systems , in 2019
IEEE/AIAA 38th Digital Avionics Systems Conference (DASC), sept.
2019, p. 1-10. doi: 10.1109/DASC43569.2019.9081748. .

[6] A. Calò, P. Arcaini, S. Ali, F. Hauer, et F. Ishikawa, Simultane-
ously searching and solving multiple avoidable collisions for testing
autonomous driving systems , in Proceedings of the 2020 Genetic and
Evolutionary Computation Conference, in GECCO ’20. New York, NY,
USA: Association for Computing Machinery, juin 2020, p. 1055-1063.
doi: 10.1145/3377930.3389827.

[7] S. Murugan et A. A.Oblah, TCAS Functioning and Enhancements , Int.
J. Comput. Appl., vol. 1, no 8, p. 45-49, févr. 2010.

[8] W. H. H. Iii, TCAS: a system for preventing midair collisions
[9] Enhanced Ground Proximity Warning System . Con-

sulté le: 1 mars 2024. [En ligne]. Disponible sur:
https://aerospace.honeywell.com/us/en/pages/enhanced-
ground-proximity-warning-system?fbclid=IwAR0x0fTI9a-
WjSFfD2LXL7d5zgQWSqxR9CGg7Lv1SiaAu1bh6pSk5DX2pfk

