
THIRD YEAR STUDENT PROJECT - ENSTA BRETAGNE - AUTONOMOUS ROBOTICS 1

Criterion proving non-existence of a path between
two possible states of a robot

Kévin AFFRAIX

Abstract—This article aims to find a criterion proving that a
robot, given its degrees of freedom and commandability, cannot
reach a target state from its initial state. Using interval analysis
to differentiate between possible and impossible states, we will
then calculate two bounds to estimate the minimum or maximum
time needed to reach this state, to finally judge its validity.

Index Terms—Interval analysis, Configuration space, Sub-
pavings, Non-existence criterion, Path-finding

I. INTRODUCTION

THIS article aims to implement the algorithm Feasi-
blePath2 conceptualized by J. Luc in his article Path

Planning Using Intervals and Graphs[1]. Therefore, we will
work on the same system, to better compare the results when
adding a new stop condition to the algorithm. As a reminder,
the problem we tackle is the following:

• A system described by the following coordinates:

x : {0, 0, 14, 14, 10, 10, 12, 12, 2, 2, 18, 18, 20, 20} (1)

y : {0, 14, 14, 6, 6, 8, 8, 12, 12, 2, 2, 18, 18, 0} (2)

• Two obstacles:

~a1 = (8, 10); ~b1 = (11, 10) (3)

~a2 = (25, 10); ~b2 = (28, 10) (4)

• A bar on which is fixated the system, represented by the
x-axis. The system can either slide on the bar or rotate
around its fixation point. A typical situation is represented
on Figure 1.

Fig. 1: Example of a possible state of the system, source:[1]

Given an initial initial state (~p1init, ~p2init), the aim is to
reach a target state (~p1goal, ~p2goal) considering both movement
constrains and obstacles. To better compare the two methods,
the same initial and goal states were chosen, as shown in
Figure 2.

Fig. 2: Initial and goal states, source:[1]

II. STATE OF THE ART

A. Interval analysis

In order to implement the FeasiblePath2 algorithm, we
must implement first a subdivision algorithm, to obtain sub-
pavings of the configuration space.

Given a box ~p0 ∈ IRn representing the configuration space
(i.e: all states considered), we want to obtain a sub-paving out
of which we will build two graphs: Gm and Gp. The former
would contain all boxes containing only feasible states, while
the latter would also include boxes in which both feasible and
impossible states mix in together. In order to do that , we will
run an inclusion test on ~p0[1], that you can see on Figure 8.
Three cases are to be studied:
• The result of the inclusion test is {0}: it means that all

possible states contained in ~p0 cannot be reached because
the system would collide with an obstacle. In this case,
~p0 will be discarded.

• The result of the inclusion test is {1}: it means that all
possible states contained in ~p0 are possible states of the
system. In this case, ~p0 will be added to both Gm and
Gp.

• The result of the inclusion test is {0, 1}: it means that
~p0 is too big and contains both feasible and impossible
states. It will later be bisected, but in the meantime, it
will be added to Gm.

Based on this result, the FeasiblePath2 algorithm will then
bisect or not ~p0, obtaining a new sub-paving to study. Each
iteration will refine the paving of the configuration space, with
smaller boxes describing areas of interest.

B. FeasiblePath Algorithm

In order to find a series of boxes both containing only
feasible states and linking the initial and desired state, me
must decide when to bisect a box of the paving, to enrich the
graphs until we find a solution. The only boxes that should be
bisected are those whose inclusion test result is {0, 1}, named
”uncertain boxes” later in the article. The first algorithm built
by J. Luc to do this works as follows:

THIRD YEAR STUDENT PROJECT - ENSTA BRETAGNE - AUTONOMOUS ROBOTICS 2

• Takes all boxes created in the wake of bisections made
in the previous step, one by one.

• Identify all boxes using an inclusion test and add them
to the corresponding graphs.

• Search a path between the initial and desired states in
both graphs. Not finding a path in Gp would mean that the
desired state is unreachable from the initial state, while
finding a path in Gm would mean that we have found a
solution.

• If no exit condition has been triggered, bisect all uncer-
tain boxes to obtain a more refined paving, iterate the
algorithm once again.

However, as J. Luc showed in his article, bisecting blindly
all uncertain boxes is not efficient at all, and would consider-
ably slow down the algorithm. The aim of the FeasiblePath2
algorithm, which pseudo-code can be found on Figure 9, is to
only bisect uncertain boxes that were chosen to build the path
in Gp. By doing this, graphs would not grow exponentially at
each step, and we would refine only the boxes of the paving
considered the best to find the solution.

C. Limitations

Two limitations can be found in the FeasiblePath2 al-
gorithm. The first limitation concerns the optimality of the
solution. In fact, the criterion used to measure the distance
between two states is the total number of boxes necessary
to link them. This leads the algorithm to prioritize large and
secure boxes covering most of the path towards the desired
state in a single step. However, we can see experimentally
that those boxes often leads to make a detour instead of going
through the optimal trajectory in the configuration space. The
second limitation concerns the exit conditions: FeasiblePath2
cannot ensure that not finding a path means that no path can
be found for the problem considered.

III. IMPROVEMENTS

A. Compute lower and upper bounds

The new idea developed in this article is to associate to all
boxes of the paving a temporal cost, forcing the algorithm to
search for more optimal solutions. The second advantage is
that we can add exit conditions to the algorithm that would
allow it to analyse further a possible solution to decide if it
is, or not, viable in our situation. To calculate this temporal
cost, we associate for each state variable a unit travel cost δti
(e.g: time needed to go from ~p1 = x to ~p1 = x + 1 meters,
and time needed to go from ~p2 = y to ~p2 = y + 1 radians).
Those values could be deduced experimentally, or calculated
thanks to the technical specifications of the actuators used.
Then, only a multiplication would be needed to transform a
movement δdi into time cost ci:

ci = δti × δdi (5)

The algorithm will now try to approximate two bounds.
Note that, to calculate such bound, we only know the box we
are currently in, and the box we consider to go next, preventing
us to optimise those bounds considering the whole path. This

is due to the use of Dijkstra’s algorithm utilization to find the
best path in the new graph, where the distance metric is no
longer equal between all boxes but weighted with the temporal
cost to pass though a box. This solution has been chosen as it is
one of the fastest algorithms solving shortest paths problems,
when considering only positive weights[2].

Considering we have only access to the box we are evaluat-
ing, and the neighbour we consider to go next, we make here
the assumption that we must be on one of the box ”edges”,
that is to say that each state variable could only be the lower
or upper bound of the interval corresponding to the possible
values of this state variable in the box. The notion of edges
can be seen on Figure 3. Then, excluding the edges belonging
to the common boundary between the two boxes, we compute
for each edge the cost vector corresponding to the minimal
distance to the boundary. Considering an edge on the boundary
would mean that the box we were in one step before would
lead to this edge, but in this case the algorithm should choose
to go directly to the next box without trying to go through the
current box.

Fig. 3: Concept of box edges and common boundary

To compute the lower and upper cost bounds we then con-
sider, for each edge, the cost vector. Each action corresponding
to a state variable can be done independently (i.e: we can slide
the system on the bar and rotate it at the same time), so the
minimal time to reach the boundary from a given edge would
be the maximum value of its cost vector cmax,e. The lower
and upper bounds m and M corresponding to the whole box
would then be :

m = min
e∈E,e/∈B

cmax,e (6)

M = max
e∈E,e/∈B

cmax,e (7)

where E is the set containing all edges of the current box,
and B is the set containing all states belonging to the boundary.

B. Dijkstra weights

An issue occurred when trying to use the lower bound as
a distance metric for Dijkstra’s algorithm. Once some areas
of the configuration space have been bisected numerous times
while neighbouring areas have not, the algorithm would try
by all means not to pass through the latter areas. Therefore,
those bounds make great criteria for exit conditions, but fail
as a distance metric, because its prevents the algorithm from
exploring the configuration space.

To fix this issue, a mew metric has been implemented. In
attempt to compute a value viable in every possible situation,
considering the distance between each middle point (i.e: state

THIRD YEAR STUDENT PROJECT - ENSTA BRETAGNE - AUTONOMOUS ROBOTICS 3

in the configuration space) of the two boxes was chosen. To
ensure that we only cross the boxes we consider and not the
neighbouring ones, a third intermediate point is introduced,
which is the middle point of the common boundary between
the two boxes. The Figure 4 illustrate this principle.

Fig. 4: Distance metric used for Dijkstra’s weights

C. Implementation on the algorithm

A few changes have been made to the FeasiblePath2
algorithm, while maintaining its skeleton:
• First, a new threshold is added to the list of parameters.

If the cost lower bound associated with L+ is above the
threshold, the algorithm stops and return ”No path”. If
the cost upper bound associated with L− is below the
threshold, the algorithm stops and return L−. If the cost
upper bound associated with L− is above the threshold,
the algorithm tries to find a faster path between the initial
and desired states.

• The function ShortestPath is replaced with the Dijkstra’s
algorithm. The graphs Gm and Gp now contains cost
bounds associated with the corresponding neighbours and
the weight used in Dijkstra’s algorithm.

IV. COMPARISON

A. Results

Fig. 5: Result when using FeasiblePath2

The new features have greatly improve the quality of the
solution, as we can see by comparing the solution with (Figure
6) and without them (Figure 5). We can also see the attempts
to optimize the trajectory in some critical areas that where

Fig. 6: Result when using new distance metrics and exit
conditions

Fig. 7: Critical zones of optimization : ”darker areas”

bisected numerous times, making them seem ”darker” on
Figure 7. Moreover, the algorithm now benefits from more exit
conditions that allow it to better identify the validity of a path.
Finally it also gives the user an indication on the feasibility of
a transformation between two states of a system, thanks to the
new configurable threshold. However, it is not yet complete
and some future improvement are needed.

B. Issues and possible future improvements

First, the time needed to compute a solution is now far
greater. Using an Intel Core i5-9300H, the algorithm Feasi-
blePath2 found a solution in 7 minutes (with graphics on)
while the new implementation took more than an hour. This
is mainly due to the application of Dijkstra’s algorithm at each
step, which is time-consuming when working with the huge
graphs generated by the sub-pavings. Therefore, we have to
choose between quality and calculation time.
Then, the criterion found to prove the non-existence of a path
is not absolute, and a threshold too ambitious would again
lead to an infinite loop in the algorithm.
Finally in some cases the algorithm, trying to optimize the
path, would not be able to find a path in L−, passing too
close to obstacles, as shown in Figure 10. To fix this issue,
a randomization as been implemented on Dijkstra’s algorithm
(result in Figure 6), giving a configurable chance to chose a

THIRD YEAR STUDENT PROJECT - ENSTA BRETAGNE - AUTONOMOUS ROBOTICS 4

neighbour box randomly instead of choosing the best solution.
This would allow a better exploration of the configuration
space, but worsen the quality of the solution found at the end.

V. CONCLUSION

To conclude, introducing a time as a variable to optimize
allowed the algorithm to better perform in the solution it finds.
The number of cases when the FeasiblePath2 algorithm fails
to reach a conclusion has also been reduced. However, the
time spend to find the solution has been greatly increased,
and there are still situations where it fails to reach a solution.

REFERENCES

[1] J. Luc, “Path planning using intervals and graphs,” Reliable Computing,
vol. 7, pp. 1–15, 02 2001.

[2] A. Manan and S. I. A. Lakyari, “Single source shortest path algorithm
dijkstra and bellman-ford algorithms: A comparative study,” International
Journal of Computer Science and Emerging Technologies, vol. 3, no. 2,
pp. 25–28, Jun. 2020.

THIRD YEAR STUDENT PROJECT - ENSTA BRETAGNE - AUTONOMOUS ROBOTICS 5

APPENDIX A
INCLUSION TEST ALGORITHM

Fig. 8: Inclusion test algorithm, source:[1]

THIRD YEAR STUDENT PROJECT - ENSTA BRETAGNE - AUTONOMOUS ROBOTICS 6

APPENDIX B
FEASIBLEPATH2 ALGORITHM

Fig. 9: FeasiblePath2 algorithm, source:[1]

APPENDIX C
CONVERGENCE ISSUES

Fig. 10: Convergence issues without randomization

1

Autonomous path planning for a sailboat based on
Deep Reinforcement Learning

Agathe Archet

Abstract—Deep Q-Learning networks have demonstrate encouraging results for path-planning for a motorized boat in dangerous
environment with static obtacles. This paper explores different strategies to generalize the problem to a sailboat, whose dynamics and
allowed movements are higly depedant of the wind orientation. More precisely, Reccurent Neural Network (Long Short Term Memory)
networks, Actor-Critic structure and Aritificial Potential field are implemented. The issue of a non-constant wind is also adressed.

Index Terms—Path planning, Deep Q-Learning, sailboat, Recurrent Neural Networks, LSTM, Actor-Critic

F

1 Introduction
With their strong autonomy and adaptability, unmanned

ships have gradually become the new research direction
pursued by the current industry. They are reliable means
for marine explorations, material transports, or military
missions. Just on their own they are already capable to
encounter and plan trips in dangerous environments, and can
even gain efficiency when cooperating with other manned
ships. Autonomous path planning then is an essential
function to help the improvement of autonomous ships in
their adaptation capacity. In the recent literature, Deep
Reinforcement Learning (DRL) emerged as a privileged tool
to deal with the collision threats, constantly raised with
uncertain environments study cases. The objectives remain,
first the guarantee that the boat will perform a safe trip, and
only then that the boat is following an optimized trajectory.

This paper, therefore, aims to continue the previous work
achieved by Silva Junior and al. [1], where path planning
was based on Reinforcement Learning (Q-Learning) to guide
a sailboat in an uncertain environment with a static wind.
The new objective would be to introduce deeper methods
such as Deep Q-Learning (DQL), in an even more dangerous
environment where wind may change during the trip.

The rest of this paper is structured, as follows. Section
2 reviews the current similar works found in the literature.
Section 3 presents the main actor modeling and the DQL
architecture chosen for the path planning of an autonomous
sailboat. Section 4 presents one first approach using LSTM
networks. Finally, Section 5 concludes the paper.

2 Literature review
One first simple solution, proposed by Silva Junior and

al. [1], uses Q-Learning and limited actions allowance to
produce a realizable path respecting the wind constraints
which otherwise tend to slow down the sailboat. Although the
convergence toward a good solution is fast and cost-friendly,
the Q-Table reward matrix apparently does not permit
adding other dynamic constraints. However, with sufficient
material resources, Deep Reinforcement Learning (DLR) may

give more freedom in the definition of constraints.

Guo Siyu and al. [2] justify the choice of the DQL method
for the path planning of an unmanned ship to avoid the huge
storage space of the Q-table. Their work also employs an
experience replay memory and a target network to enhance
the stability of the training process, but notably relies on
an Actor-Critic (AC) algorithm which is capable of handling
continuous action problems and is widely used in continuous
action spaces. The AC algorithm network structure includes
an Actor network and a Critic network. The Actor network
is responsible for outputting the probability value of the
action, whereas the Critic network evaluates the output
action. In the paper, all these structures are also combined
with a Deep Deterministic Policy Gradient, which better
manages continuous values handling, and so will not be
considered here, as discrete values will be used due to
available computation resources.

Another strategy studied by Clare Chen [3] in 2016, is to
select a special form of neural networks combined with DQL
to better acknowledge path planning as a sequence of states
instead of just one and take advantage of it. Mostly used
in natural language processing, Recurrent Neural Networks
(RNN) give the ability to retain information from states
further back in time and incorporate them into predicting
better Q-values and thus performing better, on games for
example, that require long-term planning.

Finally, for the path planning of an autonomous ship,
Xinyu Zhang and al [4] experience a mix of RNN and Artificial
Potential Field method to predict a path in an evolving envi-
ronment. Some static and dynamic obstacles are taken into
account to embrace even more possible sources of collision.
Their work introduces a nonlinear hybrid function, evaluating
distances between the ship from the different entities, for
the activation function to deal with the ship’s transportation
which stands as a continuous systematic event.

2

3 Deep Q-Learning applied to a sailboat
3.1 Q-Learning actors

Reinforcement Learning involves an agent s, a set of states
S, and a set A of actions per state. By performing an action
a ∈ A, the agent transitions from state to state. Executing
an action in a specific state provides the agent with a reward
(a numerical score). Q refers to the function that returns the
reward used to provide the reinforcement and can be said
to stand for the quality of an action taken in a given state.
For a finite Markov decision process, Q-learning finds an
optimal policy in the sense of maximizing the expected value
of the total reward over all successive steps, starting from
the current state. The only difference between Q-Learning
and DQL lays in the value function providing the score of
performing actions in a given state: Q-Learning depends on a
Q-Table matrix to which a (state, action) pair is provided to
obtain a score, whereas DQL relies on a neural network giving
scores/probabilities arising of all actions in one given state.

From this, the agent, the environment, the actions, the
reward function, the action selection strategy, and the type of
neural network used shall be defined.

3.2 The environment
Although Deep Q-Learning perfectly allows the manage-

ment of continuous values, a discretized environment is pro-
posed to deal with computational resources. The scene, where
the sailboat evolves, is composed of a North-West-orientated
grid whose each square stands for one geographical position.
Each position can be set to three profiles: an obstacle, a
navigable zone, or the target ending point of the trip. The
wind is evenly distributed over the scene, its force is fixed to 5
km/h for the sake of simplification, its orientation is allowed
to change in a maximum range of [−π, π] radians at most 2
times per episode. A visual render of the environment with the
boat is implemented to allow quick supervision of the progress
of the boat.

3.3 The sailboat agent
The Deep Q-Learning agent corresponds to the simplified

sailboat model proposed by Jaulin and Le Bars [5], with its
dynamics equations and its potential-field strategy controller.
This model is defined and evolves accordingly to three main
elements: a hull for state modeling, a rudder and a sail
for control. Only general dynamics are considered: three
degrees of freedom in a 2D plane, with waves, currents,
and gravitational forces neglected. A no-go zone reflects the
velocity loss due to the wind’s force and its orientation with
regards to the sailboat.

The sailboat’s state at any step of an episode is modeled
by 7 elements:

[x, y, θ, φw, φo, dt, do]

with (x, y) its discrete position in the environment grid,
θ ∈ [0, 2π] its orientation from North, φw ∈ [0, 2π] the wind’s
orientation from North, φo ∈ [0, 2π] the angle formed between
the boat’s orientation with the line linking the boat to its
closest obstacle, dt ∈ [0, 100] the distance to the target,

do ∈ [0, 100] the distance from the boat’s closest obstacle.
The idea to integrate other entities’ distances and angles is
suggested by Xinyu Zhang and al’s paper [4].

3.4 The actions
Just as the environment modeling, the actions set remains

discretized for a faster convergence towards a solution. In this
way, actions are not directly associated with the rudder or sail
commands but are defined so to permit navigation directly
between every adjacent coordinates point. The controller is
in charge of calculating the future command to give to the
sailboat to pass by these coordinates. The 8 authorized actions
are:

[right, up−45◦ , up, up+45◦ , left, down−45◦ , down, down+45◦]

expressed in the global environment frame.

3.5 The reward function
The reward function has to reflect three different con-

straints to guarantee an appropriate solution to the problem:
the sailboat must get closer to the target with time while
avoiding collision with obstacles while being well-positioned
with regards to the wind to go as fast as possible (in other
words, not being orientated in the no-go zone [5]). A non-
linear hybrid function can fulfill these criteria [4] as follow:

R =

10 if the sailboat reaches the target
2 if the sailboat gets closer to the target

with good wind orientation
0.5 if the sailboat gets closer to the target

with bad wind orientation
−1 if the sailboat gets closer with

the closest obstacle
−10 in case of collision

0 otherwise

3.6 The action selection strategy
In DRL problems, the action selection strategy must be

carefully chosen to allow the boat to sufficiently explore its
environment and then efficiently exploit the best strategy
found. To achieve it, a commonly used method is the ε-greedy
strategy. Within this configuration, the agent is always
looking for the action promising the best possible score in a
given state, except for a probability of ε of selecting a random
action. In so, the agent is encouraged to explore a priori
low-reward areas but who providing a better score in the
long-term.

Xinyu Zhang and al. [4] decided to fix the value of the
ε random parameter with a value based on the inverse of the
maximal score found for a given state. This could suggest that,
with time, higher scores will emerge for every state and lower
the randomness in action selection. However, in this paper,
the ε is set to favor a quick convergence. The initial value
of ε is fixed at 1 and decreases by a 0.9975 coefficient after
every episode. The randomness is forced during the very first
episodes (superior to 70% during the 200 first episodes), but
descents slowly toward a final 0.1% value in a second time to
reinforce the potential optimal strategy.

3

{
ε0 = 1
εn = max(0.9975n episode, 0.001)

3.7 The Actor-Critic structure
The Actor-Critic network is a hybrid Reinforcement

Learning method to merge advantages of value-based methods
(DQL) that map each state-action pair to a value, and policy-
based methods (a reinforcement with Policy Gradients) that
directly optimize the policy without using a value function.
It also corrects deficiencies of each method, so a good explo-
ration strategy with a good performance over a large set of
actions is likely to be expected. A separate memory structure
is set up to explicitly represent the policy independent of the
value function:

• A Critic estimates the value function, in our case the
action-value (the Q-value).

• An Actor updates the policy distribution in the di-
rection suggested by the Critic (such as with policy
gradients).

In a classic Q-Learning structure, the Q-table value matrix
is governed by the Bellman equation:

Q(s, a)← Q(s, a) + α

[
r(s, a) + γ × argmax

a′
Q′(s′, a′)−Q(s, a)

]
with s the current state, a the chosen action, s′ the next state
triggered by a in state s, γ the discount factor giving more or
less weight to the current choice compared to former choices,
and α te learning rate.

This equation is kept, but decomposed among the different
AC entities:

• The current value network (the actor) estimates
Q(s, a) from (s, a).

• The target value network estimates argmax
a′

Q′(s′, a′)
from s′.

• A loss function, to be defined, quantifies the error
(r(s, a) + γ × argmax

a′
Q′(s′, a′)) − Q(s, a), equivalent

to a target− value evaluation.
• The current value network is updated with a gradient

descent, parametized by a learning rate α.

The flow of information becomes:

Figure 1: Flowchart of the Actor-Critic network

4 Exploration with a LSTM network

4.1 LSTM networks

The architecture is now set up and the main DQL actors
are defined. The nature of the Deep Learning network, which
will be the same for the actor and critic networks, will be
based on a particular RNN to make the most out of sequence
information: Long Short Term Memory (LSTM).

A RNN is a type of artificial neural network which uses
sequential data or time-series data. These deep learning
algorithms are commonly used for ordinal or temporal
problems, such as language translation or natural language
processing. They are distinguished by their memory as
they take information from prior inputs to influence the
current input and output. However, two main weaknesses are
encountered: the gradient tends to vanish over the training,
and they are capable of handling long-term dependencies but
can only link current with prior information, and not the
prior from current ones.

These problems lead to the use of a LSTM network, which
avoids long-term dependency issues thanks to gates that can
retain or abandon data, to only keep relevant information.

Figure 2: Detail of an LSTM chain

Each LSTM cell has an input, output, and forget gates,
combinations of parametrizable activation functions. A
LSTM chain is composed of several LSTM units, whose each
receives as input one element of the sequence, as well as the
state and output of the previous cell. Therefore, the LSTM is
fed with a sequence and produces another sequence.

So the AC structure previously described has to take into
account the sequence input asked by the LSTM network. The
Playback Memory Unit has been designed to automatically
provides a temporal sequence in the expected format.

4.2 Implementation

The implementation is realized under Python 3.6, on a
Google Colab notebook to have access to powerful GPU re-
sources. The code depends on functions from Tensorflow 2.4.1
and keras libraries. Numpy, random, and matplotlib.pyplot
Python libraries are also used for convenience.

4

Figure 3: The Python classes

There are three Python classes that serve to distinct the
principal entities :

• The Sailboat class, where the boat dynamics and pos-
sible movements evaluate the likely result of an asked
action.

• The Env class, in which the geographical characteris-
tics of the area are stored (wind orientation, target,
and obstacles). Consequently, the calculation of re-
wards is also attached to this class. A visual rendition
is available for debugging and to analyze progress over
the training.

• The DQN agent, which handles the Deep Q-Learning
objects: the current and target networks, the replay
memory unit, an update counter to copy the weights
from the current network to the target network, and
effects of Artificial Potential Field (described later).

The DQL networks architecture has been adjusted
manually, without fine-tuning. They are both composed of
two 50 units LSTM layers (tf.keras.layers.LSTM), and a
final Dense layer with a linear activation function. A Mean
Squared Error loss function combined with an RSMprop
optimizer (with an initial learning rate of 0.001) was the best
combination found. RMSprop scales the learning rate so the
algorithm converges faster. A features normalization is done
before using each network for better performance.

The performance of the training is very sensitive to the
maximum number of steps allowed per episode if the sailboat
does not reach the target. As a first step, the area dimensions
will be fixed to 15x15, and the maximum number of steps
allowed per episode is set to 40. The wind is considered static
in the first examples but will change of a maximum 45◦ angle
after 20 episodes. The main ideas of the training algorithm are
described below.

4.3 First results
During the trials, one issue observed is the very slow

convergence of the training, even after parameter adjustments
for a simple area (15x15 blocks, with two static obstacles,
with a static wind). More specifically, the networks’ training
needs at least 1000 episodes to provide significant changes
for a dangerous exploration, which seems to be normal for
complex Deep-Learning structures such as LSTM. However,

Algorithm 1 Simplified DQL network training
Input Each observation obs describes: the current state

s, the selected action a, the reward r, the next state s′, the
boolean of reaching the target done. The input is a sequence
S of several observations obs, whose initial state is randomly
chosen among the possible ones, an update frequency fupdate.

Output Trainned networks current network and
target network
Require:A discount factor γ, an initial exploration factor ε
(for randomness and as convergence criterion), a minimum
sequence length l, a limit for the number of episodes e max,
a limit number of steps s max.

for episode = 0 to e max do
for step = 0 to s max do

while not(done) or step < step max do
if replay unit memory size < l then

return
else

- create minibatch sequence S from replay memory
unit

end if
for obs in minibatch do
Qs← current network.predict(s)
Qs′ ← target network.predict(s′)

end for
for obs in minibatch do
current Qs← Qs
current Qs[a]← r + γ ×maxa(Qs′)
X.append(s)
y.append(current Qs)

end for
current network.fit(X, y)
if fupdate is verified then
target netwotk.set(current netwotk.weights)

end if
end while

end for
end for

running 1000 episodes approximately corresponds to 10
hours straight of calculation. Also, there is a time limitation
imposed on Google colab notebooks, so that GPU units
are lent for a maximum time of 12 consecutive hours. So,
unfortunately, further training could not be completed.

Despite this, within the very first hundred episodes, the
agent is capable of planning a first logic strategy accordingly
to the initial wind orientation.

(a) 100 episodes (b) 1000 episodes

Figure 4: Performance according to the wind orientation

5

The best path obtained, for 1000 episodes, with a static
wind, with an initial position at (0,0), is the following:

Figure 5: The best observable performance for a difficult wind

Figure 6: The associated convergence of score (minimum,
maximum and average per 10 episodes)

As explained, the convergence is very slow, yet a trend
is visible. The low minimum scores seen for the very first
episode are due to the high presence of randomness in the
action-selection strategy at this part of the training.

When adding a dynamical wind, the 1000 episodes are not
enough to allow a good convergence. In order to compensate
for that, Artificial Potential Fields have been added to the
DQLAgent class to directly interact with the reward obtained
from the environment. This solution is usually recommended
to accelerate the convergence and more generally in path
planning problems. Potential fields tested are attractive, and
repulsive at the same time accordingly to this equation:

u = 0.5× katt × d2
target + 0.5× krep ×

1
max(dobstacle, 0.9))

2

with, dtarget the euclidean distance between a point and
the goal, dobstacle the euclidean distance between a point and
its nearest obstacle, katt a positive attraction coefficient (set
to 4), krep a negative repulsion coefficient (set to -30). u is
then added to the reward obtained by the boat, in this way
strengthening or lessening the initial reward value depending

on the place of the boat in its environment.

Even with this modification, the limitated number of
episodes encountered with Google colab does not permit to
account for a convergence of the path with a dynamical wind.

5 Conclusion
The defined actors, the Deep Q-Learning networks and

the Actor-Critic structure implemented together are able to
propose a logical path for the sailboat, among static obstacles
towards a goal with a static wind. The networks are effectively
sensitive to the fixed orientation of the wind and will suggest
different paths accordingly.

On another hand, a lack of computation time and
power has not permitted to verify if this result could be
generalized for a dynamical wind. Artificial Potential Fields
were added into the calculation of the reward to accentuate
the importance of the sailboat’s direct environment, in order
to fasten convergence. But it did not overcome the limits
imposed by Google colab.

Therefore, to defeat the changing wind issue, it would
be possible to try these strategies with a more powerful
GPU, or to consider other Deep Q-Learning networks that
would better handle such constraints (changing wind in a
dangerous environment), or even choose completely different
Reinforcement Learning architecture and networks.

Acronyms
AC Actor-Critic. 1, 3

DQL Deep Q-Learning. 1–4
DRL Deep Reinforcement Learning. 1, 2

LSTM Long Short Term Memory. 1, 3, 4

RNN Recurrent Neural Network. 1, 3

References
[1] A. G. d. S. Silva Junior, D. H. d. Santos, A. P. F. d.

Negreiros, J. M. V. B. d. S. Silva, and L. M. G. Gonçalves,
“High-level path planning for an autonomous sailboat robot
using q-learning,” Sensors, vol. 20, no. 6, March 2020. [Online].
Available: http://dx.doi.org/10.3390/s20061550

[2] G. Siyu, Z. Xiuguo, Z. Yisong, and D. Yiquan, “An autonomous
path planning model for unmanned ships based on deep
reinforcement learning,” Sensors, vol. 20, no. 2, 2020. [Online].
Available: https://www.mdpi.com/1424-8220/20/2/426

[3] C. Chen, “Deep q-learning with recurrent neural
networks,” Stanford University, 2016. [Online]. Available:
http://cs229.stanford.edu/proj2016/report/ChenYingLaird-
DeepQLearningWithRecurrentNeuralNetwords-report.pdf

[4] Y. L. Xinyu Zhang, Chengbo Wang and X. Chen, “Decision-
making for the autonomous navigation of maritime autonomous
surface ships based on scene division and deep reinforcement
learning,” Sensors, 2019.

[5] F. L. B. Luc Jaulin, “Proceedings of the 5th international robotic
sailing conference,” in A simple controller for line following of
sailboats, S. Eds, Ed. Cardiff, England: Proceedings of the 5th
International Robotic Sailing Conference, 2012.

Application de méthodes de calcul ensembliste pour
la conduite d’une cohorte de sous-marins suiveurs

Colin Baumgard
Elève ingénieur
ENSTA Bretagne

Brest, France
colin.baumgard@ensta-bretange.org

Abstract—This paper will focus on the localization and nav-
igation of underwater scouts in front of a surface vehicle. Lo-
calization will be performed with interval analysis. A singularity
avoidance controller will be implemented.

Index Terms—underwater, scouts, interval analysis, codac

I. INTRODUCTION

Cet article s’intéresse à la localisation et la navigation de
robots sous-marins utilisés en chiens de garde d’un véhicule
de surface. Pour cela nous utiliserons des méthodes ensemb-
listes fournies par la libraire CODAC développée à l’ENSTA
Bretagne.

II. SITUATION DU PROBLÈME

Un des problèmes majeurs des robots sous-marins est
la localisation. En effet, le milieu aquatique est un milieu
opaque à la plupart des ondes électromagnétique empêchant
les communications haut ou moyen-débit. Seules les ondes
mécaniques basses fréquences peuvent être utilisées. Ces on-
des ne permettent qu’un transfert très limité de données, et
interdit l’utilisation du système de positionnement par GPS.
Ainsi il faut trouver d’autres méthodes pour le contrôle des
engins. Une idée est de se servir d’un véhicule de surface
comme repère, et de placer les robots sous-marins en chien
de garde, devant celui-ci. Cela peut avoir un intérêt militaire
avec deux robots chasseurs de mines permettant de sécuriser le
chemin d’un bateau de la Marine Nationale. Dans la figure 1, le
véhicule du milieu à la trajectoire violette qui est un véhicule
de surface ayant accès au GPS. Les deux autres véhicules
ne communiquent que des distances. Nous nous plaçons donc
dans le cas de robots sous-marins capables de n’émettre et de
ne recevoir que des ”pings” ce qui leur permet de calculer les
distances entres chacun. Une première partie sera consacrée
aux stratégies mises en places pour l’envoie des ces pings
permettant d’acquérir les distances. Dans une deuxième partie
nous concentrerons sur la contraction de la localisation du
robot par un calcul par intervalle. Enfin nous déterminerons
les contrôleurs que nous pouvons associer afin de réduire les
incertitudes. Nous faisons le choix pour la simulation de partir

Fig. 1. Principe des chiens de garde

d’un modèle simple. On définit le vecteur d’état et la fonction
dévolution des véhicules comme suit :

x =

x
y
θ
v

 ; ẋ =

ẋ
ẏ

θ̇
v̇

 =

v ∗ cos()
v ∗ sin()
u1
u2

 (1)

III. COMMUNICATION ET CALCUL DE DISTANCES

On suppose que les missions sont de durée de l’ordre de
l’heure, et que les horloges embarquées sont synchronisées
durant ce temps. Chaque robot émet sur une fréquence propre
permettant de l’identifier. On note 0 le robot de surface, et 1 et
2 les robots sous-marins. La séquence ci-dessous permet que
chaque robot puisse calculer les distances entre chacun :

• 0 envoie un ping noté ping0
• 1 envoie un ping1 à la réception du ping0 : 0 a dt 0-1
• 0 envoie un ping0 à la réception du ping1 : 1 a dt 0-1
• 2 a reçu ping0, ping1, et encore ping0 il a donc le dt 0-1

(il y a 2 dt 0-1 entre les deux ping0)
• en parallèle, 2 à envoyé les même pings que 1, donc tout

le monde a toutes les distances.

Cette stratégie nous permet d’avoir sur chaque robot les
trois distances du triangles. On peut également appliquer cette
méthode pour une cohorte plus nombreuse.

IV. CALCUL ENSEMBLISTE

A. Présentation du calcul ensembliste

Le calcul ensembliste permet de palier les problèmes
d’incertitudes sur une mesure, ou simplement sur la
représentation d’une valeur. Il est par exemple impossible
d’avoir la valeur exacte de π mais il est possible de la borner
entre π− ε et π+ ε avec ε très petit devant π. On place donc
π dans un intervalle. Cette méthode permet de grandement
simplifier les calculs et de fournir des solutions certaines
et garanties. On peut ensuite poser des contraintes sur ces
intervalles. Cette méthode a été développé par L.Jaulin dans
sa thèse [1] puis une librairie a été développé pour faciliter
l’utilisation de ces concepts via une API d’une grande qualité
[2]. Cette librairie est toujours en développement constant.
La librairie intègre des contraintes prédéfinie. Pour prendre
l’exemple de la localisation d’un robot, on peut définir sa
position dans un vecteur d’intervalle formant une boı̂te. On
peut partir d’une boı̂te dans laquelle on est sûr de trouver
le robot et la contracter avec des contraintes pour réduire la
zone d’incertitude. L’article vise à utiliser cette méthode pour
localiser de manière relative à un véhicule de surface deux
robot chiens de gardes, en ne connaissant que les distances
entres ceux-ci.

B. Implémentation

Nous avons donc trois entités : un véhicule de surface,
connaissant sa position et maı̂trisant sa trajectoire, et deux
robot autonomes sous-marins (nommés scouts dans la suite
de l’article). Ces véhicules n’ont pas de connaissances à priori
de la trajectoire à suivre. Leur but est de se maintenir à une
certaine position relativement au véhicule de surface. L’article
s’appuie sur les travaux présentés dans la vidéo Distributed
localisation of a group of robots with interval analysis [3] de
L.Jaulin.

1) hypothèses: On suppose qu’ils ont accès à tout instant à
leur distances. Les distances sont considérés comme exactes.
En effet, pour des distances de l’ordre de la dizaine de
mètre, on peut considérer l’erreur négligeable. Comme la
position absolue du véhicule de surface ne nous intéresse pas,
nous la considérons connue de tous. En revanche la position
initiale des scouts n’est pas connue. Chaque véhicule connaı̂t
avec précision son cap et sa vitesse. Cette hypothèse est
simplificatrice dans la mesure où la mesure n’est pas exacte,
elle est cependant réaliste dans la mesure où les technologies
permettent aujourd’hui de mesurer ces valeurs avec de bonnes
précisions.

2) Algorithme: A chaque pas de temps, voici les calculs
effectués :

• On calcule la position exacte des robots avec les formules
de déplacements

• On estime le cap de chacun des véhicules avec les deux
positions estimées précédentes

• On définit les commandes de chaque robot, en
accélération et changement de cap

• On déplace et on agrandie la zone de position du robot
avec les informations de cap et de vitesse mesurées

• On récupère les distances entre véhicules et on contraint
les zones de position

Ces calculs permettent de restreindre la zone de position
suffisamment pour pouvoir piloter les scouts de manière sûr.

On voit sur la figure 2 en cyan la zone avant contraction et
en rouge la zone après contraction. Les contraction sont faites
à partir des contraintes de distance représentées par les cercles.
On voit que la contraction permet de diminuer de moitié la

Fig. 2. Contraction de la position avec la distance

zone d’incertitude. L’exemple est ici avec deux robots, avec
trois robots les contractions sont plus efficaces.

V. CONTRÔLEUR

Le contrôleur se charge de fournir au robot les consignes
en cap et en vitesse. Il a en entrée les positions estimées des
robots et doit diriger le robot sur son objectif. Il doit aussi
pratiquer des manoeuvres particulières lorsque les zones de
positions sont trop importantes

On veut que le scout soit placé devant le véhicule de surface,
un à gauche et un à droite. Pour cela les paramètres d’entrées
sont la distance selon l’axe longitudinale et la distance selon
l’axe latéral. On récupère également la position estimée des
différents véhicules, en prenant la valeur moyenne des in-
tervalles de positions. On applique ensuite une commande
proportionnelle à l’erreur en cap et en distance :

u1 = θ̇ = α ∗ (capidéal − capvrai) (2)

u2 = a = v̇ = vmin + β ∗ d(∗) (3)

(*) d est la distance à l’objectif devant à gauche ou à droite
du véhicule de surface. De plus on borne u1 et u2 pour plus
de sens physique.

1) Résultats: On obtient le résultat suivant en ligne droite
et en suivie de trajectoire :

Fig. 3. Estimation de la position en ligne droite

Fig. 4. Estimation de la position en suivie de courbe

On peut remarquer plusieurs choses sur ces figures (3 et
4) : premièrement on s’aperçoit que l’algorithme arrive à
contracter les positions, mais qu’en suite celles-ci divergent
de manière importantes. On s’aperçoit aussi que le contrôleur
a en entrée une donnée erronée, et ne peut donc pas donner
les bonnes consignes en cap et vitesse.

A. Limitation des singularités

Pour corriger les trop grandes erreurs de localisation , il
faut rompre les singularités. En effet, lorsque les robots se
déplacent en ligne droite, la contraction ne dispose pas de
données nouvelles, la contraction ne peut donc pas réduire
l’incertitude. Il faut donc, dans le contrôleur, ajouter une
commande sinusoı̈dale :

u1 = θ̇ = α ∗ (capidéal − capvrai) + γ ∗ cos(t/δ) (4)

Cela permet de disposer de données nouvelles et donc de con-
tracter. On applique cette nouvelle loi de commande lorsque

l’aire de la zone de position est trop importante. On voit sur

Fig. 5. Estimation de la position en ligne droite avec ruptures des singularités

Fig. 6. Estimation de la position en suivie de courbe avec ruptures des
singularités

les figures 5 et 6 que les incertitudes sont bien maintenues
dans des limites acceptables.

VI. VOIES D’AMÉLIORATIONS

Le contrôleur doit également s’assurer de la sécurité des
robots. Lorsque ceux-ci sont trop proches les uns des autres (i.e
quand leurs zones de positions on une intersection non nulle
) le contrôleur doit donner une trajectoire qui garantisse qu’il
n’y ait pas de collision. Une autres solution envisageable est
l’asservissement à deux profondeurs différentes. Ainsi aucune
collision n’est possible. De plus il est a noter que le problème
a été simplifié à un problème 2D alors qu’il est 3D. Un simple
calcul trigonométrique permet de passer de l’un à l’autre, et
il serait intéressant de pouvoir implémenter cette particularité.
L’utilisation de tubes comme définis par Bethencourt et Jaulin
[4] serait ici pertinente et permettrait d’inclure les équations
d’état bien plus finement dans les contractions. Il faut noter
qu’ici nous nous intéressons au temps réel uniquement et que
seul une propagation forward est envisageable. Une autres
voie d’amélioration est l’utilisation de l’algorithme SIVIA [5].

Cependant l’implémentation sous codac n’est pas aisée car peu
documentée.

VII. CONCLUSION

Dans cet article nous avons pu retrouver les résultats obtenus
par L.Jaulin [3] avec une implémentation dans la librairie C++
codac, et nous avons pu trouver un contrôleur permettant
de limiter les incertitudes liées aux singularités. Des pistes
d’améliorations ont été proposées. Certaines on commencées
à être explorées, notamment l’utilisation des tubes, mais n’ont
pas pu aboutir à des résultats tangibles pour le moment. Une
discussion avec un des principaux développeurs de la librairie
codac semble être utile pour mieux comprendre les possibilités
offertes par celle-ci.

REFERENCES

[1] L. Jaulin, Solution globale et garantie de problèmes ensemblistes;
Application à l’estimation non linéaire et à la commande robuste, 1994.

[2] S.Rohou, Reliable robot localization:a constraint programming approa-
chover dynamical systems, 2017.

[3] L.Jaulin, Distributed localisation of a group of robots with interval
analysis, 2015.

[4] Bethencourt and Jaulin, 2014, SolvingNon-Linear Constraint Satisfac-
tion Problems Involving Time-Dependant Func-tions.Mathematics in
Computer Science, 8(3):503–523

[5] L.Jaulin, Set Inversion via Interval Analysis for Nonlinear Bounded-error
Estimation, 1993

Direct Model Navigation

A safe and efficient way to navigate in an unknown environment

Jules Berhault

March 2, 2021

Contents
1 Introduction 3

1.1 Research subject . 3
1.2 Context . 3
1.3 Hypothesis and assumed resources . 4

2 Direct model navigation 5
2.1 Direct model approach . 5

2.1.1 Principle of the method . 5
2.1.2 Kinematic model . 5

2.2 The lines of flight method . 6
2.2.1 Generation of the lines of flight . 6
2.2.2 Elimination of the non-free lines of flight . 7
2.2.3 Selection of the best free line of flight . 7

3 Presentation of the simulation algorithm 8
3.1 Generation of a random simulation environment . 8

3.1.1 Smooth ground with marked obstacles . 8
3.1.2 Rough terrain with relief . 8

3.2 Algorithm . 8
3.2.1 Integration of the kinematic model . 8
3.2.2 Integration of lines of flight algorithm . 9

3.3 Robot drawing . 11

1

Abstract
Among the different issues raised by autonomous rover navigation in unstructured environments,

traversing rough areas is one of the most challenging. Indeed, these robots must operate on surfaces with
relief and obstacles.

Knowing that it evolves in an unknown environment, the robot needs first to catch the surface geometry
of the area to traverse, then select feasible trajectory according to his geometric and kinematics constraints
and finally execute properly the selected path.

2

1 Introduction
1.1 Research subject

The method consists in determining the command space admissible by the robot (compliance with
actuator constraints). This space is then discretised, and the resulting discrete commands are injected into
the direct kinematic model of the robot. The generated trajectories are projected into a grid map of the
robot’s environment. For each trajectory, the movement of the robot is simulated and the variations in
elevation of the path are observed. The trajectory that leads the robot in the right direction with a stable
and safe path is selected.

My research focused on the selection of the most relevant trajectory, by developing an algorithm that
determines safe and efficient movement.

The final objective is to reach a given waypoint by bypassing obstacles and relief that are too large,
always heading for the most efficient path, knowing that the robot is non-holonomous and is only aware of
the geometry of its surroundings at a range of 4m.

The algorithm consists in evaluating a set of trajectories (circle arcs with fixed steering angle) on a
digital elevation map continuously updated as the rover moves, considering geometrical constraints on the
robot chassis (maximum steering angle).

The approach has been successfully integrated within a simple autonomous navigation loop: All the
possible trajectories are discrete according to the steering angle and evaluated. We then apply a selection
algorithm to select the most relevant path in view of the constraints of our problem.

1.2 Context
The objective of the project is to determine the most suitable trajectory to reach a waypoint in view of

the constraints of the problem and knowing that the robot has only a limited set of data from its environment.
In most cases, the most suitable trajectory is the one that allows the robot to approach the waypoint at a
lower cost and without crossing obstacles in a local environment.

Environmental data is acquired in real time by a range of different sensors depending on the topography
of the environment:

• Geometry of the environment: LiDAR, 3D Camera, Sonar
• Geographical positioning: GNSS, IMU

Figure 1: Hanback LiDAR SmartCAR [1]
Figure 2: The two LAAS mobile robot Mana and Min-
nie [2]

These two robots are rovers that can carry out exploration missions in environments with unknown
topography. These robots differ in the type of environment in which they are designed to operate.

3

Hanback’s SmartCAR [1] is suitable for smooth terrain, so it must be able to avoid obstacles such as
walls.

Mana and Minnie from LAAS/CNRS [2] are designed for rough terrain, but cannot cross any terrain,
so it is important to be able to avoid the most difficult ones.

1.3 Hypothesis and assumed resources
To focus only on the part of trajectory planning and autonomous navigation, it was necessary to

assume a few points:

• the geographical position of the robot is known at any instant
• the geographical orientation of the robot is known at any instant
• the geographical position of the waypoint is known
• the geography of the surrounding terrain is known at each data refresh step within a radius of 4 m

around the robot
• the surrounding relief is discretized as an array with a pitch of 0.5m
• the refresh rate is 1.0s
• the robot has a non-holonomous structure (fixed maximum steering angle and wheelbase)

These different points have been taken into account in the algorithm in order to make the simulation
as realistic as possible.

4

2 Direct model navigation
2.1 Direct model approach

A family of navigation methods that we are considering is the direct model method which has the
advantage of being based on an element that is always defined for a mobile robot: its direct kinematic model.
All the trajectories resulting from this direct model can be projected in a representation of the robot’s
evolution environment. From this set, it is possible to choose the optimal trajectory, according to defined
criteria, which allows the robot to reach a given position while avoiding obstacles.

2.1.1 Principle of the method

This method consists of predicting the trajectories of the robot according to the commands sent to it.
All the possible trajectories are then projected into a map of the local environment in order to determine
the most suitable trajectory to reach the target while avoiding obstacles. The idea is therefore to evaluate
the different movements that the robot is able to perform and then to select the most relevant in view of the
mission constraints.

2.1.2 Kinematic model

The direct kinematic model determines the robot’s movements in the Cartesian coordinate system
according to the derivatives of the joint coordinates. The matrix for doing this calculation is the Jacobian
matrix J:

Ẋ = J · q̇ (1)

where Ẋ =
(
ẋ, ẏ, θ̇

)T is the vector of the robot’s movements in the Cartesian space and q̇ = (q̇1, q̇2, · · · , q̇n)T

is the vector of the movements in the joint space.

In wheeled mobile robotics, we rather use a simplified kinematic model, called a posture kinematic
model:

Ẋ = C (q) · u (2)

In our case, we are studying a car-type robot, (respectively the longitudinal speed of the robot and
the average steering angle of the wheels) and the kinematic model is of the form:

Ẋ = (ν · cos θ ν · sin θ ν · L · sinα)T (3)

with θ , the orientation of the robot in the Cartesian space and L , the wheelbase of the vehicle.

Thus, the study of this case study makes it possible to study most robots with a similar structure with
steerable wheels at the front and a fixed axle at the rear. The only two structural parameters that can differ
are the wheelbase and the maximum steering angle.

The principle of this direct model method is to use this type of kinematic model to calculate the
trajectories achievable by the robot. The set of final trajectories depends on the commands, the state of
the robot (position, orientation, kinematics) and the environment in which it evolves. The integration of all
these parameters makes it possible to determine a model capable of predicting the robot’s movement.

The achievable trajectories are then projected in a model of the robot’s evolutionary environment, and
to select among them the one that seems the most appropriate to fulfil the objective assigned to the robot.

5

2.2 The lines of flight method
We consider that the robot is in the X0 state at time t0 and is trying to reach a target position while

avoiding obstacles in its path. The different steps of the line of flight method are:

• generating all the trajectories Γ admissible by the robot, i.e., respecting its various constraints (kine-
matics, dynamics etc...) over a time horizon τ ; these trajectories are also called lines of flight,

• eliminating the non-free lines of flight (which intersect or pass too close to obstacles), by projecting
them in a local map which is regularly updated during navigation,

• choosing among the free lines of flight the one that will be proposed to the pilot, using a selection
criterion which depends on the mission assigned to the robot.

Figure 3: Principle of the lines of flight

Only a part of the selected trajectory is applied by the robot, the whole process is then repeated at
the sampling time following t0 + Te, with the new information collected as the robot progresses.

2.2.1 Generation of the lines of flight

Figure 4: The set of circle arcs evaluated at each step of the loop LAAS/CNRS[3]

In order to choose a set of commands to be executed, we must first study the result of all the commands
that can be carried out. In our case, we are studying a car-type robot, u = (ν, α)T (respectively the
longitudinal speed of the robot and the average steering angle of the wheels), which brings us to look for an
optimum with a combination of two variables. This search for an optimum in a continuous two-dimensional
space would require too much computing time.

The method proposed by David Bonnafous in "Motion generation for a rover on rough terrains" consists
in considering that the vehicule is a Dubins car (moving and turning with constant speed) and discretize the
space of the achievable values of the steering angle . With this method, the lines of flight take the form of
arcs of circles with radii of curvature giving different directions evenly distributed towards the front of the
robot.

6

Knowing that the discretized space of the achievable steering angle α values is between −αmax and
αmax (with αmax the maximum steering angle the robot structure can achieve), we can play on the number of
possible choices of angles depending on the complexity of the environment and the robot’s computing power.
All we need to do is to simulate the robot’s movement with the previously determined kinematic model for
each possible angle control, assuming the speed remains constant. We then obtain an estimate of the possible
trajectories for each associated steering angle.

2.2.2 Elimination of the non-free lines of flight

The choice of this trajectory must not cause the robot to collide with obstacles.

To do this, a simple algorithm runs through these trajectories and determine, for a given angle, at each
iteration, whether the robot will collide with an obstacle. In this case, the line of flight is then eliminated.
This is called a non-free line of flight and this possibility will be banned from the selection algorithm.

2.2.3 Selection of the best free line of flight

Finally, the lines of flight method must make it possible to determine the most suitable trajectory to
meet the mission objectives. In our case, it is a question of reaching a waypoint in the most safe and efficient
way (avoiding rough terrains and relief).

The generated trajectories are projected into a grid map of the robot’s environment. Each grid square
is assigned with à value which quantifies the elevation of the environment on this square. The grid map
represents the map of the surrounding environment observed by the robot through the sensors and evolving
over time.

The same algorithm that runs through the projected trajectories, records, at each iteration, the values
of the boxes crossed. These values will then serve as a set of data associated with the different angle controls.
This data is compiled to give a weight on each of the angles quantifying the interest of selecting this command.

Figure 5: Projection of a set of realizable trajectories in a map of the environment in the form of an occupancy
grid [4]

These weights are then associated with those given to the angle commands to maintain the heading
towards the waypoint.

Finally, the trajectory that leads the robot to the square with the best associated value is selected,
and the corresponding commands are sent as instructions to the robot’s actuators.

7

3 Presentation of the simulation algorithm
3.1 Generation of a random simulation environment
3.1.1 Smooth ground with marked obstacles

Flat environment containing randomly placed, ran-
domly sized obstacles.

• A box containing the value 0 means that the lo-
cation is passable (purple)

• A box with a value of 1 means that an obstacle
occupies the location (yellow)

create_env_obstacles(extent_env, n)

3.1.2 Rough terrain with relief

An environment containing randomly placed, ran-
domly sized bumps.

• Each box contains a float that quantifies the el-
evation of the terrain on that location (blue is
deep, yellow is high)

create_env_relief(extent_env, n)

3.2 Algorithm
3.2.1 Integration of the kinematic model

Dubins path :

In the simulation, we consider the car follows Dubins path because this model is commonly used in
the fields of robotics for path planning. Therefore the speed ν become constant and equal to 1 and the turn
rate control u is bounded.

In this case the maximum turning rate corresponds to some minimum turning radius (and equivalently
maximum curvature). The prescribed initial and terminal tangents correspond to initial and terminal head-
ings. The Dubins path gives the shortest path joining two oriented points that is feasible for the wheeled-robot
model.

Ẋ = (cos θ sin θ L · sinα)T (4)

where (x, y) is the car’s position, θ is the heading and u is the turn rate control.

So we can offer a function to compute the state of the system at each new instant of the simulation.

8

f(x, u, wheelbase)

The function calculates the derivative of Cartesian coordinates Ẋ =
(
ẋ, ẏ, θ̇

)T in order to model the
movement of the robot with an Euler method.

3.2.2 Integration of lines of flight algorithm

path_finder(x, dtsim, all_alpha, extent_env, grid_unit, d=4)

This function takes as arguments the state of the robot, the time discrete step, the list of feasible
steering angles, prediction distance as well as other environment data.

For each steering angle, the function predicts the trajectory step by step, assuming the controls remain
the same. At each iteration, it reads the value contained by the box corresponding to the location of the
robot at that moment and determines if it is an obstacle. If it is, the trajectory is rejected by means of a flag
and moves to the next angle. If not, the loop continues to predict the same angle command.

Once the trajectory is planned, it calculates the standard deviation of the recorded values and moves
to the next angle.

When all the lines of flight have been estimated, the path_finder function returns the variable
all_alpha containing the steering angle values, the standard deviation of the values of the boxes used
and the flags indicating the presence of obstacles on the various paths.

alpha_choice(x, pc, all_alpha, last_alpha)

The aim of this function is to select the best suited steering angle to the situation, considering the
mission objectives defined previously: reach the point while avoiding obstacles and relief.

To do so, this function compiles trajectory data according to three selection criteria:

• variations in elevation of the paths
• the course deviation
• stability in the direction of the robot

The first is given by the previous function calculating for each steering angle the standard deviation
of the elevations of the environment. A weight of interest is therefore assigned to each steering angle, which
will make it possible to assign an order of priority in the selection of the most suitable angle.

costs = all_alpha[2]

The second criterion is given by a directly visible value, the heading deviation. To implement this
criterion in the decision-making process, two methods were compared.

The first one consists in assigning to each angle a weight of interest proportional to this course deviation.
trajectory_relief_1.1.py

The second consists in distributing the weights of interest corresponding to the steering angles according
to a Gaussian function centred on the heading angle. trajectory_relief_2.0.py

9

Experimental comparison of these two methods revealed that the distribution of the weights in pro-
portion to the heading deviation showed more efficient results. The latter method was therefore chosen

direction = abs(sawtooth(x[2] + all_alpha[0]-thetac))

As the last selection criterion was stability, an integration method was applied. By retaining the
previous steering angle values selected, an average value can be deduced which corresponds to a selected
angle trend. Approaching this trend would increase stability, which is why a weight of interest is used for
each steering angle. In the same way as the above criterion, these weights are distributed proportionally or
Gaussian to the average value of the angles previously selected.

integ = abs(sawtooth(all_alpha[0]-np.mean(last_alphat)))

Figure 6: Overview of the distributions of values of the three selection criteria

Finally, the selection function adds these three distributions of values together with their respective
coefficients (kc, kp, ki) to generate a total interest weight corresponding to each steering angle. Thus, one
simply selects the angle control to be applied by determining the best value, here one chooses the angle
associated with the minimum.

values = kc * costs + kp * direction + ki * integ

10

3.3 Robot drawing

Draw the projected lines of flight non-free trajectories
are red, selected one is green

draw_trajectories(x, all_alpha, d, wheelbase)

Draw the circle of confidence representing the current
knowledge of the environment given by the LiDAR
(4m)

Draw the direction towards the target to be reached

draw_cap(x, pc)

11

Figure 7: Example of a mission in a smooth terrain Figure 8: Example of a mission in a rough terrain

As we could expect, the robot seems to avoid the obstacles in the flat space with obstacles and bumps
in the space with relief.

12

References
[1] Hanback Electronics, https://hanback.com/en/archives/1886

[2] LAAS CNRS, https://www.laas.fr/public/fr/deux-semaines-de-dur-labeur-au-maroc
-pour-les-robots-mana-et-minnie

[3] S. L. T. S. David Bonnafous, Motion generation for a rover on rough terrains, LAAS/CNRS, Toulouse,
2019.

[4] Nicolas Morette, Contribution à la navigation de robots mobiles : approche par modèle direct et commande
prédictive (French), [Contribution to the navigation of mobile robots: direct model approach and predictive
control], Université d’Orléans, Orléans, 2010.

[5] T. Belker and D. Schulz, Neural Network Hybrid, 2003.

13

List of Figures
1 Hanback LiDAR SmartCAR [1] . 3
2 The two LAAS mobile robot Mana and Minnie [2] . 3
3 Principle of the lines of flight . 6
4 The set of circle arcs evaluated at each step of the loop LAAS/CNRS[3] 6
5 Projection of a set of realizable trajectories in a map of the environment in the form of an

occupancy grid [4] . 7
6 Overview of the distributions of values of the three selection criteria 10
7 Example of a mission in a smooth terrain . 12
8 Example of a mission in a rough terrain . 12

14

ENSTA BRETAGNE - FORSSEA-ROBOTICS, 2020-2021 1

Flexible Tether Modeling for Underwater
Environment Simulation

Quentin Brateau, ENSTA Bretagne, Brest, France, quentin.brateau@ensta-bretagne.org

Abstract—Simulation in the field of robotics is a powerful tool.
Indeed, it allows to easily and quickly test the robot in different
conditions and to have a reproducibility of the results. Then
it let us be able to create situations that would be difficult
to find in reality, to make sure of the robot’s behavior. It
should be noticed that the simulation of robots does not replace
tests in real conditions, but it remains practical during the
development phase. However, the simulation of robots in the
maritime environment is a field that still has shortcomings,
especially when we want to simulate the tethers of submarine
robots. Indeed, it is not easy to find an analytical way to simulate
a tether that does not require large resources, especially when
simulation environments become complex. This is why we will try
to suggest a finite difference simulation of the tether by proposing
a behavioral model of force between each tether element. The
results seem satisfactory and with a correct initialization of the
position of the tether elements, the behavior of the tether seems
quite right.

Index Terms—Tether, Modeling, Simulation, Remotely Oper-
ated Underwater Vehicle.

I. INTRODUCTION

In the world of marine and underwater robotics, we can
identify two categories of elements: mobile marine objects
(MMO) and flexible tethers (FT) [1]. Mobile marine objects
include surface vessels, submarines, and remotely operated
vehicles [2]. Flexible tethers can represent umbilical cables,
traction cables, and anchor chains in the marine environ-
ment [2]. They constitute all the necessary elements to achieve
a mission in this environment. FIGURE 1 shows an example
of a complex underwater environment as we could find in real
conditions.

The simulation of moving marine objects is something well
known. We are now able to know from state equations the
behavior of robots in their environment, and these equations
are known for ships, submarines, sailboats, etc... [2], [3]

On the other hand, determining the behavior of a flexible
tether becomes more complicated. Indeed, the equation of
motion of these objects involves non-linear partial differential
equations and the motion between the different objects in
the environment are dynamically dependent [1]. It is well
illustrated that if the boat moves, it will induce a motion in the
flexible tether that will modify the trajectory of the remotely
operated vehicle. This is why it is difficult to find a way to
model flexible tethers in underwater environments.

Most of the existing solutions in terms of physical simu-
lation are position-based simulations [4]. This is a field that
is well found in the various references that propose flexible
tether simulation methods. The idea is to make a simulation
based on a discretization of the tether by finite elements, whose

Fig. 1: Example of a complex underwater environment, O.
Blintsov, “Development of the mathematical modeling method
for dynamics of the flexible tether as an element of the
underwater complex”, 2017. [1]

successive positions over time are calculated by a force-based
approach [1], [5]–[9].

The problem induced by this method is that it is essential to
know the force that each node applies to its neighbor, which is
not necessarily known. Some use the equations of continuum
mechanics to determine this force [8], [9], and others propose
a method based on a proportional corrector on the erroneous
distance between adjacent nodes [1], [5], [7].

The solution proposed in this paper is to propose a behav-
ioral model of this force and to see to what extent the results
given by this modeling are physically acceptable. This solution
has not been as advanced in the other papers proposing a
simulation based on position by discretization [1], [7]. We will
therefore be able to use this proposed force model to make a
finite element simulation.

II. FORMALISM

Suppose we want to simulate a tether of length L. We will
then divide it into a finite number n of nodes connected by
links. These links should be of length l = L

n−1 as the two
nodes at the ends of the tether will not be connected to any
other links.

We will focus here on the case where the first node and the
last node are immobile, because otherwise we would have to
simulate a mobile marine object that would be attached at the
end, which is not the goal of our study.

Next, it is necessary to make a balance of the forces that
apply to each tether element. For this simulation, we will

2 ENSTA BRETAGNE - FORSSEA-ROBOTICS, 2020-2021

take into account the weight, noted w, the buoyancy, noted b,
the force exerted by the previous element on the considered
element, noted fp, as well as that of the next element, noted
fn, and the drag force, noted d

• Weight w : Considering that each element has a mass
m, and by noting g the standard gravity, we have :

w =

 0
0
−m.g

• Buoyancy b : If we note the volume of each element
V and ρ the density of the fluid in which the tether is
immersed, we have :

b =

 0
0

ρ.V.g

• Tether force fp and fn : It is difficult to find an analytical

form to describe these two forces. Therefore, we must
find a way to describe them. This is why we will use
a behavioral model here. We know that each node will
have to be at a distance l from each of its neighbors.
We can assume that the system behaves here as a three-
dimensional damped mass-spring system and we will then
consider that these forces are like elastic spring forces and
viscous frictionnal forces.
By noting then pp the position of the previous node
and pc the position of the current node, by introducing
three coefficients Kp, Kd and Ki allowing to express
the stiffness with which a node will correct its position
with respect to its neighbors, we are able to express the
behavioral model of these two forces:

f = −
(
Kp · e(t) +Kd · ė(t) +Ki ·

∫ t

0

e(τ) · dτ
)
· u

In these expressions, it is assumed that u is the unitary
vector oriented from the current node to the neighboring
node, e is the error of position between two nodes, ė
is the derivative of this error and

∫ t

0
e(τ) · dτ is the

integral of this error. Both derivative and integral part will
be estimated numerically respectively using the Euler’s
method and the rectangles method. We have therefore :

u =
pc − pp

‖pc − pp‖
e(t) =

‖pc − pp‖ − l
‖pc − pp‖

These two forces fp and fn can therefore be expressed
using the expression of f , taking care to take the correct
current and previous element for each case.

• Drag d : By noting A the cross section area, CD the
drag coefficient, ρ the density of fluid, and v the velocity
of the node we have :

d = −1

2
· ρ ·A · CD · ‖v‖ · v

3
Thus we have expressed the forces necessary for the sim-

ulation of the tether. FIGURE 2 shows us the modelization of
the tether. We see the different TetherElements represented in

fp fn

w

b

d

v

x

y

z

Fig. 2: Modelization of the problem

blue. For clarity reasons, the different forces are represented
only on one node but must be computed for each node. The
speed of the node is noted v. Finally, in order not to fully
draw the tether, the representation has been deliberately cut
after the first node and before the last node to represent only
three central nodes.

III. IMPLEMENTATION

The Python 3 implementation of this simulation is available
in a GitHub repository1. This code is based on Numpy [10],
Matplotlib [11] and Scipy [12] packages. The goal of this
simulator is to study the viability of such a system, in
particular to validate the performance of the tether with this
behavioral model.

So we will create a class TetherElement which will represent
a node. It will have to contain its mass, volume and distance
information from its neighbors, but also its position, velocity
and acceleration, as well as a pointer to each of its two
neighbors. Finally it is necessary to have each coefficient Kp,
Kd and Ki to compute

−−→
Ft,p and

−−→
Ft,n.

This will allow us later on to implement a Tether class
to be able to simulate a tether. This object must have a
length, a number of elements and a list containing the different
TetherElement that compose it. It must also have the mass
and the volume of each node, but also the length of each
link between nodes in order to correctly instantiate each
TetherElement.

A diagram of these two classes is visible on the FIGURE 3.
It respects the UML format and allows to see the different
class variables and methods associated to each class.

Tether
+ element mass : double
+ element volume : double
+ element length : double
+ position first : numpy.ndarray
+ position last : numpy.ndarray
+ elements : list of TetherElement

TetherElement
+ mass : double
+ volume : double
+ length : double
+ position : numpy.ndarray
+ velocity : numpy.ndarray
+ acceleration : numpy.ndarray
+ previous : TetherElement
+ next : TetherElement
+ K p : double
+ K d : double
+ K i : double
+ F p(self) : numpy.ndarray
+ F b(self) : numpy.ndarray
+ F f(self) : numpy.ndarray
+ Ft prev(self) : numpy.ndarray
+ Ft next(self) : numpy.ndarray

n

Fig. 3: UML diagram of the Tether and TetherElement classes

1Avalable at : https://github.com/Teusner/Tether Modeling

https://github.com/Teusner/Tether_Modeling

RIGID TETHER MODELING FOR UNDERWATER ENVIRONMENT SIMULATION 3

IV. INITIALIZATION

Initialization is an important step because if the initial
position of each TetherElement is random, the Tether will take
a long time to converge and the system will be inconsistent.
This is mainly due to the fact that the coefficients of the
behavioral model are set to keep the nodes at a good distance
from each other when a small perturbation is brought to the
system.

To initialize the different nodes, we use the catenary equa-
tion [13] [14]. The idea is to use the shape taken by a rope
attached at the ends to two fixed coordinate points. This rope
will want to minimize its energy and so it takes this shape.
This chain should check the following second order differential
equation.

z̈ =
1

k
·
√
1 + ż

The solutions are known [13] [14] and of the form:

z(x) = k · cosh
(x
k

)
However, this solution shows a rope centered around the

ordinate axis. This is not necessarily a situation that we will
find in our simulation. Here we would like to set the two fixed
extremities, noted (x1, y1, z1) and (xn, yn, zn). By introducing
c1, c2 and c3 three coefficients allowing to correctly place the
rope [14], we will then want to find here an equation of the
form:

z(x) = c1 · cosh
(
x+ c2
c1

)
+ c3

To find these coefficients, we have at our disposal three
conditions: the two conditions related to the end points and the
length of the string which must be equal to L. These conditions
are expressed by the following equations [14]:

L =c1 · sinh
(
xn + c2
c1

)
− c1 · sinh

(
x1 + c2
c1

)
z1 =c1 · cosh

(
x1 + c2
c1

)
+ c3

zn =c1 · cosh
(
xn + c2
c1

)
+ c3

It is possible to solve the system of equations numerically
using the function fsolve of the package scipy.optimize [12].
Finally, from the calculated coefficients, and by knowing the
length between the first node and the ith node, it is possible
to initialize the nodes by reusing the previous constraints but
the unknowns become the position xi and zi. Note that the
constraint on the position of the first node brings nothing to the
system of equations, which leads to a system of two equations
with two unknowns. The yi of each TetherElement are linearly
spaced between the two extremities.

V. RESULTS

This section will present the results of the simulation. We
then have the necessary tools to simulate the behavior of a
tether. The FIGURE 4 shows the results of a tether simulation
with a length L = 25m with 11 TetherELements. Each node
has a mass m = 10 kg, and a volume v = 1.10−3 m3. The
coefficients have been set to Kp = 350, Kd = 5.0 and Ki =
35.0. To set these coefficients we need to build some tools to
analyze the behavior of the tether to validate the modeling of
the system.

X

10
12

14
16

18
20

Y
−6

−4
−2

0
2

4
6

Z

−15.0

−12.5

−10.0

−7.5

−5.0

−2.5

0.0

2.5

5.0

Fig. 4: Tether simulation

The different tools that will be presented in the rest of this
section will allow analyzing the simulation launched with the
previous parameters.

A. Length of different links

Monitoring the length of each link is important to verify the
good performance of the simulation. The plot of these lengths
will validate the behavioral force presented in this paper.

The FIGURE 5 shows in gray the plot of the length of each
link. In crimson is plotted the average of these lengths and in
yellow the target length. Finally, the blue area shows the 95 %
confidence interval.

As we can see, we can have a coherent behavior a few sec-
onds after initialization. On average the link lengths converge
towards the set length and the standard deviation is not too
high. However, there are still some oscillations and not all
links are exactly at the target length due to the weight and
buoyancy perturbations.

B. Relative error

Another way to interpret the link length error is to plot the
error relative to the target length. This makes it possible to
check the behavior of the system with tuned coefficients of
the implemented behavioral model.

The FIGURE 6 shows us the average relative length error of
the different links compared to the target length.

The adjustment of the coefficients of the behavioral model
is done as follows. First, the Kp is set to obtain an oscillating

4 ENSTA BRETAGNE - FORSSEA-ROBOTICS, 2020-2021

0 10 20 30 40 50

Time (in s)

0

2

4

6

8

L
en

gt
h

(i
n
m

)

mean of lengths
target length
3.σ area

Fig. 5: Length of the links, average length and confidence
interval

system with a bounded average link length. Then we add
a derivative effect to reduce oscillations on the system by
increasing the coefficient Kd. Finally, we add an integrator
effect to remove a static error to make the length of the links
reach the target length despite the presence of disturbances.

0 10 20 30 40 50

Time (in s)

0

10

20

30

40

50

R
el

at
iv

e
er

ro
r

(i
n

%
)

Fig. 6: Relative error between the target length and the mean
length of links

C. Energetical approach

Finally, the energy approach is the most important to
validate the simulation, because it determines whether the
simulation makes physical sense. The system must not have
divergent energy, which would be a physical counter-sense,
but here, as there is no energy source, the overall energy must
decrease over time, as soon as there is some fluid friction due
to the drag force.

The mechanical energy of the system decomposes into the
sum of two energies: kinetic energy and potential energy [15].

• Kinetic Energy : The global kinetic energy of the Tether
is calculated simply by summing the kinetic energies of
the different TetherElements.

Ek =

N∑
i=0

(
1

2
·m · v2i

)
Where vi is the velocity of the ith element.

0 10 20 30 40 50

Time (in s)

0

20

40

60

80

100

120

E
ne

rg
y

(i
n
J

)

mean of kinetic energy
3.σ area

Fig. 7: Kinetic energy of the system

The FIGURE 7 presents the evolution of the kinetic energy
of the system, within gray the kinetic energy of each
node, in crimson the average of the kinetic energies, and
the blue area represents the 95 % confidence interval.
We can see that the kinetic energy decreases and cancels
rapidly. This is explained by the fact that the Tether after
a few seconds is correctly initialized and the nodes come
to a standstill.

• Potential Energy : To calculate the potential energy
related to the application of a force on a solid, it is
necessary to use the definition of potential energy [15].
Indeed we know that by noting dt the time step of the
simulation :

δW (
−→
F) =

−→
F ·
−−−→
dOM =

−→
F · −→v · dt

Ep =

∫ t

0

∑
Fext

δW (
−−→
Fext) + cste

Thus we can calculate the potential energy by calculating
the sum of the elementary work of each force on the
system, i.e. the forces that apply to each node, and then
by integrating this quantity over time. We then have an
expression of the potential energy of the system over time
for the Tether which is defined to within a constant, which
is set to 0 in our case.
The FIGURE 8 shows us the evolution of potential energy
over time. In gray is plotted the potential energy of each

RIGID TETHER MODELING FOR UNDERWATER ENVIRONMENT SIMULATION 5

node, in crimson is the average potential energy and the
blue area represents the 95 % confidence interval. We see
that the potential energy of the system does not diverge
and that the system tends to position itself in a minimum
of potential energy.

0 10 20 30 40 50

Time (in s)

−100

−50

0

50

100

150

200

E
ne

rg
y

(i
n
J

)

mean of potential energy
3.σ area

Fig. 8: Potential energy of the system over the time

• Mechanical Energy : Finally, by summing the kinetic
and potential energies previously calculated, we are able
to get the mechanical energy of the system [15]. This will
give us information about the non-conservative forces that
are included in this system. Indeed, the drag force will
cause the system to lose energy since this energy will not
be transformed into another form that can be used by the
system, but will be dissipated as heat.
The FIGURE 9 shows us the evolution of the mechanical
energy over time. In gray is plotted the mechanical energy
of each node, in crimson is the average mechanical energy
and the blue area represents the 95 % confidence interval.

0 10 20 30 40 50

Time (in s)

−100

0

100

200

300

E
ne

rg
y

(i
n
J

)

mean of energy
3.σ area

Fig. 9: Energy of the system

We can see that the energy of the system does not diverge,
which seems to support the idea that the modeling is
correct. Then, we notice that the system tends to minimize
its energy, which is exactly the behavior expected for any
physical system.

VI. CONCLUSION

In conclusion, the tether modeling as presented in this paper
seems to give correct results. The idea of reasoning by finite
differences allows us to simulate the tether as a succession of
tether elements linked by variable-length links. The problem
induced by this method is to provide a model to describe the
force of a node on its neighbors to reach the target length. The
proposed behavioral model provides good results here, and it
leads to a simulator with a physical meaning.

Besides, there are still some issues that have not been ad-
dressed. First of all the tether was not tested in an environment
where the extremities were subjected to movement. Second,
the Tether is simulated with a fixed length, which is not
necessarily the case during a submarine mission. Indeed it
is common to have to unroll and rewind the Tether during the
mission to prevent it from becoming tangled. Then, no force
simulates the stiffness of the Tether, but it is not infinitely
flexible. A solution to the two previous problems seems to
be presented in [7]. Finally, there is no transmissible torque
across the tether, which can typically be induced by a tether
twist.

REFERENCES

[1] O. Blintsov, “Development of the mathematical modeling method for
dynamics of the flexible tether as an element of the underwater com-
plex,” 2017.

[2] T. Fossen, Handbook of Marine Craft Hydrodynamics and Motion
Control. Wiley, 2011. [Online]. Available: https://books.google.fr/
books?id=oR3sBgAAQBAJ

[3] L. Jaulin, Mobile Robotics. Wiley, 2019. [Online]. Available:
https://books.google.fr/books?id=OMWxDwAAQBAJ

[4] J. Bender, M. Müller, M. A. Otaduy, M. Teschner, and M. Macklin, “A
survey on position-based simulation methods in computer graphics,”
Comput. Graph. Forum, vol. 33, no. 6, p. 228–251, Sep. 2014. [Online].
Available: https://doi.org/10.1111/cgf.12346

[5] J. R. Ellis, “Modeling, Dynamics, and Control of Tethered Satellite
Systems,” Ph.D. dissertation, Virginia Polytechnic Institute and State
University, The address of the publisher, 03 2010. [Online]. Available:
http://scholar.lib.vt.edu/theses/available/etd-03182010-130812/

[6] R. Marshall, R. Jensen, and G. Wood, “A general newtonian simulation
of an n-segment open chain model,” Journal of Biomechanics,
vol. 18, no. 5, pp. 359–367, 1985. [Online]. Available: https:
//www.sciencedirect.com/science/article/pii/002192908590291X

[7] O. Ganoni, R. Mukundan, and R. Green, “Visually realistic graphical
simulation of underwater cable,” jan 2018.

[8] J. Koenemann, P. Williams, S. Sieberling, and M. Diehl, “Modeling
of an airborne wind energy system with a flexible tether model
for the optimization of landing trajectories **Support by the EU
via ERC-HIGHWIND (259 166), ITN-TEMPO (607 957), and ITN-
AWESCO (642 682) and by DFG in context of the Research Unit
FOR 2401.” IFAC-PapersOnLine, vol. 50, no. 1, pp. 11 944–11 950,
Jul. 2017. [Online]. Available: https://www.sciencedirect.com/science/
article/pii/S2405896317315227

[9] S. Prabhakar and B. Buckham, “Dynamics modeling and control of
a variable length remotely operated vehicle tether,” in Proceedings of
OCEANS 2005 MTS/IEEE, 2005, pp. 1255–1262 Vol. 2.

https://books.google.fr/books?id=oR3sBgAAQBAJ
https://books.google.fr/books?id=oR3sBgAAQBAJ
https://books.google.fr/books?id=OMWxDwAAQBAJ
https://doi.org/10.1111/cgf.12346
http://scholar.lib.vt.edu/theses/available/etd-03182010-130812/
https://www.sciencedirect.com/science/article/pii/002192908590291X
https://www.sciencedirect.com/science/article/pii/002192908590291X
https://www.sciencedirect.com/science/article/pii/S2405896317315227
https://www.sciencedirect.com/science/article/pii/S2405896317315227

6 ENSTA BRETAGNE - FORSSEA-ROBOTICS, 2020-2021

[10] C. R. Harris, K. J. Millman, S. J. van der Walt, R. Gommers,
P. Virtanen, D. Cournapeau, E. Wieser, J. Taylor, S. Berg, N. J.
Smith, R. Kern, M. Picus, S. Hoyer, M. H. van Kerkwijk, M. Brett,
A. Haldane, J. F. del R’ıo, M. Wiebe, P. Peterson, P. G’erard-Marchant,
K. Sheppard, T. Reddy, W. Weckesser, H. Abbasi, C. Gohlke,
and T. E. Oliphant, “Array programming with NumPy,” Nature,
vol. 585, no. 7825, pp. 357–362, Sep. 2020. [Online]. Available:
https://doi.org/10.1038/s41586-020-2649-2

[11] J. D. Hunter, “Matplotlib: A 2d graphics environment,” Computing in
Science & Engineering, vol. 9, no. 3, pp. 90–95, 2007.

[12] P. Virtanen, R. Gommers, T. E. Oliphant, M. Haberland, T. Reddy,
D. Cournapeau, E. Burovski, P. Peterson, W. Weckesser, J. Bright, S. J.
van der Walt, M. Brett, J. Wilson, K. J. Millman, N. Mayorov, A. R. J.
Nelson, E. Jones, R. Kern, E. Larson, C. J. Carey, İ. Polat, Y. Feng, E. W.
Moore, J. VanderPlas, D. Laxalde, J. Perktold, R. Cimrman, I. Henrik-
sen, E. A. Quintero, C. R. Harris, A. M. Archibald, A. H. Ribeiro,
F. Pedregosa, P. van Mulbregt, and SciPy 1.0 Contributors, “SciPy 1.0:
Fundamental Algorithms for Scientific Computing in Python,” Nature
Methods, vol. 17, pp. 261–272, 2020.

[13] A. S. of Mechanical Engineers, Applied Mechanics Reviews. American
Society of Mechanical Engineers, 1968, no. vol. 21. [Online]. Available:
https://books.google.fr/books?id=00muEpyMcn0C

[14] W. Ren, M. Huang, and W. Hu, “A parabolic cable element for static
analysis of cable structures,” Engineering Computations, vol. 25, no. 4,
pp. 366–384, May 2008. [Online]. Available: https://www.emerald.com/
insight/content/doi/10.1108/02644400810874967/full/html

[15] J. Viegas, Kinetic and Potential Energy: Understanding Changes Within
Physical Systems, ser. The Library of Physics. Rosen Publishing
Group, 2004. [Online]. Available: https://books.google.fr/books?id=
q1JHaokEC2QC

https://doi.org/10.1038/s41586-020-2649-2
https://books.google.fr/books?id=00muEpyMcn0C
https://www.emerald.com/insight/content/doi/10.1108/02644400810874967/full/html
https://www.emerald.com/insight/content/doi/10.1108/02644400810874967/full/html
https://books.google.fr/books?id=q1JHaokEC2QC
https://books.google.fr/books?id=q1JHaokEC2QC

Mise en place d’une station de référence de transmission
de corrections RTK : Exemple des GPS ublox

Mots-clés : GPS, RTK, Géolocalisation, RTCM, Réseau

Resumé :

En robotique et dans d’autres domaines de l’ingénierie, le GPS est un l’un des capteurs les
plus utilisé. Il sert en général à donner la position d’un objet (un robot par exemple) avec une
précision de l’ordre du mètre. Dans certaines utilisations du GPS une précision centimétrique
peut être recherché. Un moyen d’atteindre cela est d’envoyer des corrections RTK au GPS qui
localise notre objet. En fonction de la ville dans laquelle on se trouve, il peut y avoir une
station de référence, non loin de là où on utilise le GPS, pour transmettre ces corrections.
Mais dans certains endroits, on ne reçoit pas bien ces corrections (car trop éloigné de la
station de référence), ou encore elles sont mêmes payantes. Ce article permet de mettre en
place notre propre station de référence avec un GPS, puis de les envoyer un autre GPS grâce à
un code python.

Introduction:

Comment décrire la position d’un objet sur la Terre ? C’est à cette question que la
géolocalisation répond. Donc la géolocalisation est un ensemble de procédés permettant de
localiser en 3D un objet, une personne, un véhicule sur la terre à l’aide de coordonnées
géographiques. Ce procédé s’appuie principalement sur les systèmes de de positionnement par
satellites. Ces applications sont nombreuses : La navigation, le guidage, la géophysique (carte
bathymétrique). Pour chaque application les précisions attendues ne sont pas les mêmes. Par
exemple pour le guidage, la précision attendue est de l’ordre 5cm ou encore pour la
génération des cartes bathymétriques les précisions de la localisation doivent être de l’ordre
5mm. Pour des positionnements standards c’est-a-dire l’utilisation simple de gps sans
amélioration de la position, la précision varie entre 5m et 15m. Ce qui est un frein aux
applications de guidage et de géophysique. Pour améliorer la précision d’autres méthodes de
positionnement existent telles que DGNSS (Differential GNSS), PPP (Precise Point
Positionning), RTK (Real Time Kinematic), PPK (Post Processed Kinematic).

Contexte: Pendant le projet magmap dont mon rôle était la prise en main d’un robot terrestre
appelé saturne, il nous a été demandé par le groupe localisation de la luge d’enregistrer des
données de positions de la luge et du robot afin qu’il valide leur modèle. En plus il nous a été
demandé d’envoyer des corrections RTK aux gps se trouvant sur la luge et sur le robot. Afin
de répondre à leur problématique, nous avons voulu créer notre propre base qui enverra les
corrections RTK aux différents GPS. Même si finalement le groupe Localisation de la luge
n’a plus utilisé les corrections RTK pour améliorer la précison des gps sur le robot, Je tenais
quant à présenter ce travail pour plusieurs.

-Tout d’abord je pense que le travail réalisé pourra servir aux prochaines promotions de la
filière robotique de bénéficier de moyens de mettre en place une base RTK.

-Tout le travail effectué a été testé puis validé

-Enfin le travail que j’ai réaliser sur mon sujet d’initiation à la recherche (réglage des
Coefficients du PID par le bias de l’analyse par Intervalle) n’a pas atteint l’objectif escompté.
Car mon sujet était étroitement lié au cours de Commande Robuste a due être arrêter, je n’ai
pas pu terminer le travail comme je le voulait. Même si j’ai réussi à implémenter la solution
de l’article, mais je n’ai pu intégrer les nouvelles fonctionnalités pour améliorer l’algorithme.

Dans les lignes qui suivent, je vais présenter dans un temps comment fonctionne le
positionnement par GNSS, ensuite comment configurer un GPS pour qu’il se comporte
comme une base de référence pour transmettre les corrections, en outre comment envoyer ces
corrections et les appliquer au GPS récepteur et enfin les résultats obtenus.

I- Positionnement par GNSS : comment ça fonctionne ?

Le positionnement par GNSS(Global Navigation Satellite System) est basé sur l’émission des
signaux de satellite en orbite autour de la terre et fournissant une couverture mondiale. C’est
au milieu des années 90 que le GNSS apparaissait. Il s’agit du GPS concu et développé par le
département de défense américaine. Depuis 2007 d’autres systèmes de GNSS sont apparus
tels que Galileo (UE), Beidou (Chine) ou encore Glonass (Russie). Donc l’objectif de ces
systèmes de positionnement est de fournir à un récepteur sa position, sa vitesse de
déplacement et l’heure.

Deux choix de positionnement s’offre à nous : Le positionnement absolu et le positionnement
relatif. En absolu, le positionnement se fait directement par rapport au satellite. Ce qui permet
d’avoir un positionnement autonome. Mais l’inconvénient est que ce positionnement n’est pas
précis. En relatif, le positionnement est plus précis mais requiert une station de référence
proche pour corriger les erreurs de positions.

Comment obtenir une station référence afin d’avoir un positionnement relatif précis ?

II- Configuraton de station de reference pour la transmission de corrections

Comme mentionner précédemment le positionnement en absolu n’est pas précis à cause des
erreurs de modélisations. Pour corriger ces erreurs, une station de référence se charge
d’envoyer des corrections au format RTCM (Radio Technical Commision for Maritime
Services) au récepteur GPS (Ici des corrections RTK). Durant ce projet nous avons à
dispositions des GPS ublox. Le constructeur de ces GPS met à notre disposition un logiciel
(U-center) pour la configuration d’un GPS en station de référence et des autres GPS en
Récepteurs de corrections RTK. Les étapes pour la configuration de la base GPS sont :

1- Brancher le GPS par USB sur la machine sur laquelle se trouve le logiciel U-center.

2- Ouvrir U-center, sélectionner le port correspondant au GPS et sélectionner du baudrate
(regarder le champ Receiver).

3- Indiquer su u-center que l’on travaille avec des trames NMEA haute precisions

4- Dans Receiver->configuration View, activer les messages RTCM

5- Enter les coordonnées de la station de référence. Lorsqu’on dispose d’une position précise
(par exemple une position pourrait être donnée par les élèves de la filière hydrographie) ,
entrer ces coordonnées ou selectionner le mode Survey-in (qui permet de calculer
automatiquement la position de la station de reference) si cela n’est pas le cas.

Durant le projet j’ai récupéré avec les hydros les coordonnées de quelques points situés près
du terrain de foot. Le point pouvant etre pris comme été situé :

-Lattitude=48°25’ 05.06174’’ N

-Longitude=04°28’ 23.60489’’ O

-Hauteur=139.622

.

6- On enregistre le travail effectué

Il faut également configurer le GPS recepteur des corrections RTK. La méthode est presque la
même que celui fait précédemment. Après l’étape 3, au configure les ports d’entré/sortie puis
on enregistre. Suivre ce tuto lorsqu’on voudra configurer nos GPS [1].

Maintenant que les des GPS ont été configurer en station de référence et récepteur de
corrections RTK, comment envoyer les trames RTCM de corrections vers le ou les récepteurs
GPS.

III- Transmissions des Corrections RTK vers les GPS.

Afin de transmettre les corrections RTK, Nous a besoin de faire communiquer la station de
référence et les autres récepteurs GPS. Il faut donc relier tous les GPS au même réseau (celui
du robot par exemple) que celui de la station de contrôle en leur donnant une adresse IP. Le
problème est que Les GPS à notre disposition ont des ports USB et non des ports Ethernets.
Donc impossible de les relier directement au réseau. Pour la station de référence, if faut
simplement brancher le GPS (en USB) à un PC qui doit être connecter au réseau du robot.
Pour les GPS récepteurs RTK, On peut les brancher directement sur le PC embarqué du robot.
Si on n’a pas assez de ports USB sur le PC embarqué, on peut utiliser un adaptateur USB-
Ethernet et brancher directement le GPS sur le switch.

Dans le cadre du projet, nous avons donc deux GPS qui doivent recevoir des corrections
RTK : un sur la luge l’autre placé sur le Robot. Le code développé pour transmettre les
corrections RTCM aux récepteurs est basé sur le protocole TCP/IP:

-La station de référence se comporte comme un serveur qui publie des corrections RTK

-hôte= 0.0.0.0 on publie en broadcast sur le port 12800. Donc n’importe quel PC sur le réseau
pourra recevoir ces corrections et les écrire sur le GPS connecté sur son port USB ou
directement au réseau.

-Le code serveur2-2.py permet de publier les corrections sur deux GPS uniquement, mais il
pourrait être adapter pour 1 et plusieurs GPS.

-Le code client1.py permet de pour recevoir les corrections RTK et les appliqués aux GPS
récepteurs.

IV- Résultats

Pour vérifier si les différents GPS recevaient les corrections RTK, nous avons analyser les
trames NMEA de chaque GPS.

On a observé que au niveau du type de positionnement, on obtenait une valeur de 4. Ce qui
signifie que le GPS reçoit effectivement des corrections RTK.

Conclusion:Beaucoup d’applications utilisent le GPS pour déterminer une position. Une
application standard du GPS ne nous donne pas une localisation satisfaisante dans certains
cas. Utiliser des corrections RTK s’impose donc. Or Ces corrections ne sont pas toujours
facile à obtenir. Cet article a permit de mettre en place une base RTK pour transmettre des
corrections.

Référence:

[1] https://www.ensta-bretagne.fr/lebars/Share/uCenter_RTK_guide.pdf

https://www.ensta-bretagne.fr/lebars/Share/uCenter_RTK_guide.pdf

SIMULTANEOUS LOCALIZATION AND MAPPING WITH ROS IN AN INSIDE ENVIREMNENT 1

Simultaneous Localization and Mapping with ROS in an inside
enviremnent

EVAIN Alexandre
FISE 2021 ROB - ENSTA Bretagne

In this work, we studied and compared different existing Simultaneous Localization and Mapping (SLAM) algorithms in the
context of interior mapping in a Gazebo simulation using the Robot Operating System (ROS). We used a Turtlebot3 Burger robot,
and tested Gmapping, Hector-SLAM and KartoSLAM. This report focus first on a short theoretical explanation of of how each
SLAM algorithm works, then in the second part on the simulation itself and its results. After several simulations in the same
conditions, we can see the advantages and drawbacks of each solution, in order to see which one is the most adapted to our case.

Index Terms—ROS, SLAM, Cartography, Mapping

I. INTRODUCTION

S IMULTANEOUS Localization and Mapping (SLAM)
presents the double challenge of doing a map of an

unknown environment while at the same time trying to find
the position of the robot within this environement. Because
of the complexity of this challenge, several SLAM algorithms
were created using different methods and algorithms.

ROS (Robot Operating System) is a software development
platform for robot which provides tools used to create, run
and distribute ROS-based softwares, clients for C++ and
python languages (roscpp and rospy) and packages containing
programs for ROS using one or more ROS clients.

Therefore, we will use our simulation on the ROS envi-
ronement, and we will test three different SLAM algorithms:
Gmapping, Hector-SLAM and KartoSLAM. All these algo-
rithms and packages used in this report are all based on the
ROS environement.

A. Mapping Challenges
The first challenge that we face are the sensor errors which

are not randomly distributed, but instead cumulative. While
it wouldn’t be a problem in the case of short movements,
because the sensors have limitated ranges, robotic mapping
requires that the robot moves through its environment to map
it completely; resulting in important cumulative errors. In
addition to sensor errors, we also face motion errors, meaning
that we cannot merely use the command sent to the robot to
deduce its position.

Fig. 1.
Cumulative odometric errors, resulting in an unreliable path[1]

B. LIDAR and Occupancy Grid Map

LIDAR (Laser Imaging, Detection, And Ranging) is a
method to get a distance between an object and a sensor by
emiting a laser beam and measuring the time of reflection of
the beam (given that the light velocity is well known).

An Occupancy Grid Map is a map of the environment as an
field of number each representing the presence or absence of
an obstacle at that location in the environment. When doing
measures, the laser provides binary values for each coordinate:
Mx,y = 1 if the laser hit an object, 0 in the other case. Using
this data, the different SLAM algorithms that we will use will
produce an Occupancy Grid Map. In order to remain able
to correct the measurement, the data on the occupancy grid
map are not values but probabilities, allowing the algorithm
to correct both the laser measurement imprecisions and the
data noise.

Fig. 2.
An example of an Occupancy Grid Map, with the probabilities
associated to each point. We can notice that even in the case
of a wall, the probability remains under 1, allowing further
adjustments if needed (such as following a change of the
environment)[2].

II. PREVIOUS WORK

Comparisons of the different SLAM algorithms already
exists, some more complete and more accurate than this one.
Notably, [2], [3] and [1] are all existing reports involving the
SLAM algorithms used here. Most importantly, the reports
focusing only on a single algorithm are usually the most
complete (some were even written by the algorithm’s creator

SIMULTANEOUS LOCALIZATION AND MAPPING WITH ROS IN AN INSIDE ENVIREMNENT 2

themselves) available, and provides much more detailled theo-
rical explanation of the algorithms functions. [4] is focused on
Hector-Slam and was written by its designers, [5] is focused
on KartoSLAM and involved the company that made it and
finally [6] focuses on the Gmapping algorithm.

III. GMAPPING

A. Overview

Gmapping is an algorithm created by Brian Gerkey requir-
ing a robot able to provide odometry data and equipped with
a horizontally-mounted, fixed, laser range-finder. It is based
on the Rao-Blackwellized particle filter (RBPF). This particle
filter was then modified in Gmapping to take into account the
previous odometry data and the newest observation in order
to get more accurate data estimations.

B. The RBPF approach

Particles filters operate on the same main method: each
particle is considered as a landmark. After a movement of
the robot, several particle matching hypothesis are made: the
ones with the highest weight are the most likely to be exact
and are therefore guarded, while the ones with low weights
are unlikely to be accurate and are discarded.

The Rao-Blackwellized method allows to compute the prob-
ability of each hypothesus with the equation:

p(x1:t,m | z1:t, u1:t−1) = p(m | x1:t, z1:t).p(x1:t | z1:t, u1:t−1)
(1)

with x1:t the list of the position of the robot, z1:t the map
data and u1:t the odometric data. [2]

It should be also noticed that Gmapping is able to function
without odometric data by relying fully on the scan match-
ing algorithm; however its accuracy is decreased in such a
situation.

Fig. 3.
Without odometric data, the Gmapping algorithm follows these
steps[6]:
1) Initial state guess. The pose is obtained from the previous
pose with measurement zt-1.
2) Scan-matching algorithm obtains map mt-1 from initial state
guess.
3)Updates of particles.

IV. HECTOR-SLAM

A. Overview

Hector SLAM is an algorithm created by Stefan
Kohlbrecher, Oskar von Stryk, Johannes Meyer and Uwe

Klingauf from the Technische Universitat Darmstadt[4]. This
algorithm is different from the other SLAM methods tested
because it does not require odometric data, however it does
require accurare LIDAR data. The operation of this algorithm
is quite simple to understand: at the initial time, the LIDAR
scan is saved as the initial Occupancy Grid Map (OGM). At
the next instant, the robot moves, the new LIDAR data is
matched and aligned with the previous map in order to obtain
an estimate of the change in position. From this estimate,
the algorithm sends back this estimated position to the robot
controller, and updates the map.

Fig. 4.
Hector mapping and navigation system[4]

B. Scan matching: the Gauss-Newton approach

The process of aligning the new LIDAR scans with the
existing map is called Scan Matching. Hector-SLAM uses a
Gauss-Newton approach to do this matching, allowing Hector-
SLAM to bypass the robot pose search. When the scans are
aligned on the map, the robot position is deduced from the
scan matching. All the mathematical expressions presented in
this section comes directly from [4].

The goal of the scan matching is to minimise the differences
between the laser scan and the map, in order to find the
best alignment between them. Mathematically, this amounts to
finding the transformation ξ = (px, py, ψ)T that minimises:

ξ∗ = argmin

n∑
i=1

[1−M(Si(ξ))]
2 (2)

WIth Si(ξ) the world coordinates of scan endpoint and
M(Si(ξ)) the resulting map value.

Searching this minimum transformation is equivalent to
searching the limit

∑n
i=1[1−M(Si(ξ + ∆ξ))]2 → 0

After using a first order Taylor expansion to M(Si(ξ+∆ξ))
and setting to zero the partial derivative with respect to ∆ξ
we get:

∆ξ = H−1
n∑

i=1

[
∇M(Si(ξ))

∂Si(ξ)

∂ξ

]T
[1−M(Si(ξ))] (3)

with

SIMULTANEOUS LOCALIZATION AND MAPPING WITH ROS IN AN INSIDE ENVIREMNENT 3

H =

[
∇M(Si(ξ))

∂Si(ξ)

∂ξ

]T [
∇M(Si(ξ))

∂Si(ξ)

∂ξ

]
(4)

This approach do not use any kind of loop closure in order to
keep computational requirement low, the authors considering
that their algorithm is sufficiently accurate in small scale
scenarios to avoid it[4].

V. KARTOSLAM

A. Overview

KartoSLAM is an algorithm developed by SRI Interna-
tional’s Karto Robotics which uses a Sparse Pose Adjust-
ment (SPA) algorithm[3]. This algorithm uses the Levenberg-
Marquardt (LM) method as a base framework, and the direct
sparse Cholesky decomposition to solve the linear system in
order to do the scan matching. Unlike the other algorithm
previously used, KartoSLAM uses pose graphs, which are
sets of robot poses connected by constraints obtained from
observations of features (such as the lidar data).The advantages
of this method according to its authors are that it possesses
a very fast convergence, it takes covariance information into
account and it is very robust with low failures rates.[5]

Fig. 5.
A usual graph-based slam system[5]

B. The SPA method

The variables of the system are the set of global poses c
of the robot, parameterized by a translation and angle: c =
[ti, θi] = [xi, yi, θi]

T

The error e is expressed by: eij ≡ z̄ij − h(ci, cj) with

h(ci, cj) =

{
RT

i (tj − ti)
θj − θi

[5]

Algorithm 1 ContinuableLM(c, e, λ), continuable Levenberg-
Marquardt algorithm [5]
Input: nodes c and constraints e, and diagonal increment λ
Output: updated c
If λ = 0, set λ to the stored value from the previous run
Set up the sparse H matrix using CreateSparse(e, c−c0), with
c0 as the fixed pose.
Solve (H+λdiagH)∆x = JT Λe, using sparse Cholesky with
an approximate minimal degree (AMD) algorithm.
Update the variables c − c0 using equation: ti = ti + ∆ti and
θi = θi + ∆θi
If the error e has decreased, divide λ by two and save, and
return the updated poses for c − c0
If the error e has increased, multiply λ by two and save, and
return the original poses for c − c0

VI. METHODOLOGY

A. The Equipement

During this experiment, we used a TurtleBot3 robot, de-
velopped by the Open Source Robotics Foundation (OSRF)
and ROBOTIS. It is equiped with two motors, a 1,800mAh
battery pack, a LDS-01 360 degree LIDAR, a camera and a
single board computer (Raspberry PI 3). In our case, we used
the model “Burger”, chosen because its small size makes it
easier to handle and control.

TABLE I
LIDAR SPECIFICATIONS[7]

Distance Range 120 ~ 3,500mm
Distance Accuracy (120mm ~ 499mm) ±15mm

Distance Accuracy (500mm ~ 3,500mm) ±5.0%
Distance Precision (120mm ~ 499mm) ±10mm

Distance Precision (500mm ~ 3,500mm) ±3.5%
Scan Rate 300±10 rpm

Angular Range 360°
Angular Resolution 1°

B. Simulation

In order to compare the different SLAM algorithms in the
absence of real robots or any kind of LIDAR equipement, a
simulation was the only available choice. This simulation is
done in Gazebo, and present a real scale house, included in
the Turtlebot3 package. While other worlds were available,
this one was chosen because it was the closest case to the real
use of the robot in real conditions.

Fig. 6.
The house used during the simulations

The house is continuous and is filled with furniture, many
obstacles that we might encounter in real life situations.
Because the LIDAR is elevated on the Turtlebot3, it is too
high to detect the bottom of the different shelves, however
their walls remain detectable. Although the door of the house

SIMULTANEOUS LOCALIZATION AND MAPPING WITH ROS IN AN INSIDE ENVIREMNENT 4

is open, the exterior will be left unexplored, the focus of this
report beeing interior mapping.

The Turtlebot package comes with an automatic controller
for mapping surveys. However, the behavior of this controller
was too sensitive to obstacle avoidance, and struggled to move
from one room to another. As a result, the robot was manually
controlled in all simulations and followed the same path.

VII. RESULTS

Fig. 7.
The map obtained after using Gmapping

The first test was done with Gmapping. As we can see on
the Figure above, while Gmapping allowed to make a map
and individually conserve the shape of each room, globally
the angle errors are clearly visible, and the resulting map is
distorded. However, the loop closing was working, and the
algorithm was able to know when the robot was going into
room previously explorated. Given that it is a small scale
building, the algorithm do not seems suited for larger scale
buildings, the angle errors distording the building’s shape too
much

At first the Hector SLAM algorithm seemed much more
promising than Gmapping. The room’s shapes and angle were
conserved with minimal distortion. However, despite such a
good start, this algorithm do not handle well sudden change
of angle, and everytime the robot made a sharp turn, the
scan matching failed completely, resulting in the new map
overlaping on the old in an unsatisfactory way. While it might
be possible to use Hector SLAM with slower movements, in
our simulation it failed several times, and ultimately do not
seems suited for the simulation.

Of all the algorithms used, the KartoSLAM algorithm is the
one that gave the best results. It handled perfectly the loop
closure and the shape convervation, and the angle errors are
too small to be seen by the bare eye. It was able to remain
precise even with fast robot movements, and so far I have
experienced no drawback when using it in simulations.

Fig. 8.
Results obtained when using Hector SLAM

Fig. 9.
Results obtained when using Karto

VIII. CONCLUSIONS

Of all the algorithm tested in this simulation, KartoSLAM
was the one who gave reliably the best results and the map
closest to the exterior environement. Hector-SLAM was too
prone to failure at each robot rotation while Gmapping cannot
compensate cummulative angle errors, resulting in distorded

TABLE II
SUMMARY OF THE RESULTS

SLAM method Main approach Full map Angle accuracy Selected method
Gmapping Particle Filters Yes No No

Hector SLAM Gauss-Newton No Yes No
Karto Sparse Pose Adjustment Yes Yes Yes

SIMULTANEOUS LOCALIZATION AND MAPPING WITH ROS IN AN INSIDE ENVIREMNENT 5

maps of the environement. However; it should be noted that
there are other SLAM algorithms that were not tested, and that
this test was always done in the same conditions. It is very
likely that under different circumstances Hector-SLAM is able
to provide much better results; however I remain doubtfull
of the ability of gmapping to solve the cumulative odometric
errors in its current state.

In addition, all the results were only done through a
simulated environement, and from these we cannot give an
evaluation of the actual behavior of these mapping algorithm
in real situations. From previous experience, it is unlikely that
the SLAM algorithms behaves exactly in the same way in
reality and in the simulation.

Finally, not all comparison criterias were evaluated in these
simulations, and parameters such as GPU usage, the algo-
rithm’s speed or numerical accuracy were not compared due
to the impossibility of conducting real life experiments.

ACKNOWLEGMENT

All the theorical knowledge was obtained through research
and comes from the references bellow.

REFERENCES

[1] S. Thrun, “Robotic mapping: A survey,” http://robots.stanford.edu/papers/
thrun.mapping-tr.pdf, February 2002.

[2] K. Kamarudin, S. M. Mamduh, A. Y. M. Shakaff, and A. Zakaria,
“Performance analysis of the microsoft kinect sensor for 2d simultaneous
localization and mapping (slam) techniques,” https://www.ncbi.nlm.nih.
gov/pmc/articles/PMC4299068/, December 2014.

[3] J. M. Santos, D. Portugal, and R. P. Rocha, “An evaluation of 2d
slam techniques available in robot operating system,” https://core.ac.uk/
download/pdf/29175747.pdf, June 2013.

[4] S. Kohlbrecher, O. von Stryk, J. Meyer, and U. Klingauf, “A
flexible and scalable slam system with full 3d motion estimation,”
https://www.researchgate.net/publication/228852006_A_flexible_and_
scalable_SLAM_system_with_full_3D_motion_estimation, November
2011.

[5] K. Konolige, G. Grisetti, R. Kummerle, B. Limketkai, and R. Vincent,
“Efficient sparse pose adjustment for 2d mapping,” http://ais.informatik.
uni-freiburg.de/publications/papers/konolige10iros.pdf, 2010.

[6] J. Esenkanova, H. O. Ilhan, and S. Yavuz, “Pre-mapping
system with single laser sensor based on gmapping algorithm,”
https://www.researchgate.net/publication/274466838_Pre-Mapping_
System_with_Single_Laser_Sensor_Based_on_Gmapping_Algorithm,
January 2013.

[7] “Robotis e-manual - turtlebot 3,” https://emanual.robotis.com/docs/en/
platform/turtlebot3/appendix_lds_01/.

http://robots.stanford.edu/papers/thrun.mapping-tr.pdf
http://robots.stanford.edu/papers/thrun.mapping-tr.pdf
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4299068/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4299068/
https://core.ac.uk/download/pdf/29175747.pdf
https://core.ac.uk/download/pdf/29175747.pdf
https://www.researchgate.net/publication/228852006_A_flexible_and_scalable_SLAM_system_with_full_3D_motion_estimation
https://www.researchgate.net/publication/228852006_A_flexible_and_scalable_SLAM_system_with_full_3D_motion_estimation
http://ais.informatik.uni-freiburg.de/publications/papers/konolige10iros.pdf
http://ais.informatik.uni-freiburg.de/publications/papers/konolige10iros.pdf
https://www.researchgate.net/publication/274466838_Pre-Mapping_System_with_Single_Laser_Sensor_Based_on_Gmapping_Algorithm
https://www.researchgate.net/publication/274466838_Pre-Mapping_System_with_Single_Laser_Sensor_Based_on_Gmapping_Algorithm
https://emanual.robotis.com/docs/en/platform/turtlebot3/appendix_lds_01/
https://emanual.robotis.com/docs/en/platform/turtlebot3/appendix_lds_01/

1

Word Embedding and Semantic Networks for
vocabulary representation in Natural Language

Processing (NLP)
Romane Fléchard, ENSTA Bretagne Student

Abstract—This article presents the work carried out in the
framework of a research initiation project on the theme of
robotics and artificial intelligence. The subject chosen is focused
on the study of the different technical solutions for the repre-
sentation of the meaning of words for a computer. This paper
firstly presents the different existing technical solutions such as
semantic networks and Word Embedding algorithms, as well
as their concrete applications in the field of natural language
processing. Then, the Word2Vec and GloVe models, which are
two Word Embedding learning algorithms, have been tested and
their performances compared with each other, but also with data
from the literature. The methodology followed as well as the
results obtained are therefore also presented in this article. The
different Word Embedding algorithms learned were visualised in
the Tensor Flow Projector and the performance of the algorithms
measured using the functions of the Python gensim library. The
results show that the GloVe algorithm appears to be more efficient
than the Word2Vec algorithm, and that the size of the learning
database plays a crucial role in the performance obtained. The
work carried out has therefore led to rather satisfactory results,
in line with the information from the literature, although time
and means were lacking to be able to carry out a truly exhaustive
study of the different word representation solutions, as well
as of the impact of the different learning parameters on the
performance obtained.

Index Terms—Artificial intelligence, Machine Learning
algorithms, Word Embedding, Natural Language Processing,
Semantic Networks

I. INTRODUCTION

NATURAL Language Processing (NLP) is a field at the
crossroads of computer science, artificial intelligence

and linguistics, with multiple applications, particularly in the
field of robotics. Indeed, it is now possible, for example, to
create robots capable of understanding human language in
order to carry out various tasks based on the words spoken
by the user. Chatbots, automatic translation or correction
systems, automatic document classification or conversational
agents are all applications that are also representative of
the usefulness of natural language processing. However,
understanding the meaning of words is a very special capacity
of the human brain that cannot be provided by a computer.
Indeed, a computer only processes encrypted data, and the
words used in computer programs are in fact only a sequence
of characters, themselves digitally coded thanks to the ASCII
computer standard (American Standard Code for Information
Interchange). For any conventional computer program, words
are therefore just a series of numbers without any meaning.

However, in order to create robots capable of understanding
human language, it seems obvious that this is not enough.
How can we make a computer understand the meaning
of words and their semantics? The aim of this article is
therefore to look at the various existing technical solutions
that make it possible to represent words and their semantics,
so that they can be used in the various applications of
natural language processing. In this article, a first part will be
dedicated to the study and explanation of existing solutions.
Semantic networks and various Word Embedding algorithms
will be presented and explained, as well as the results of
studies comparing these different methods. In a second part,
the work carried out on the subject will be presented, i.e.
the implementation of the most efficient Word Embedding
algorithms according to the literature review carried out
previously. The implementation of comparison tools between
these different algorithms will also be detailed. Finally,
a third part will be devoted to the results obtained. The
performances of the different algorithms will be compared
with each other, but also with the values obtained in the
articles of the literature presented in the first part, and ideas
for improvement will be proposed.

II. LITERATURE REVIEW

In this part, different technical solutions for the represen-
tation of words and their meanings will be presented and
explained, based on information from the literature.

A semantic network is an oriented and labelled graph to
represent knowledge. This method of knowledge representa-
tion was first used in cognitive psychology, because this model
corresponds to the organisation of the semantic memory of the
human brain, i.e. the memory of words, concepts and general
knowledge about the world. This model makes it possible
to represent both the organisation of knowledge in memory,
but also the paths to access the different concepts. Following
the first models proposed for the representation of knowledge
in cognitive psychology [1], semantic networks were quickly
used in the field of artificial intelligence because they structure
data in such a way that they can be easily represented by com-
puters. To better understand the representation of knowledge
in a semantic network, an example is given Fig. 1:

2

Fig. 1: Example of a reduced semantic network [2]

A semantic network is composed of nodes representing
concepts, linked by arrows representing the links between
these concepts. These links are labelled in order to define
the relationship between two concepts. These relationships
are supposed to be universal [3], they are a kind of semantic
primitives that allow to link many concepts together.

One of the most elaborate semantic networks so far is
WordNet. It was developed by the Princeton cognitive science
laboratory. The database is available free of charge and can
be used via different programming languages [4]. It is also
possible to create one’s own application-specific database and
create one’s own semantic network, for example using the
semantic-net Python library. As mentioned above, semantic
networks are very efficient for modelling the functioning of
memory, the storage of information and the access paths to
retrieve this data in memory. The other main advantages [5]
of semantic networks are their ease of implementation and
use. They are also easy to understand because they represent
knowledge in the most natural and logical way possible.
However, their definition is not very objective and depends
on the creator. For example, there is no standard definition for
the labels of the different links [5]. Moreover, some concepts
such as verbs are less well represented than nouns, and only
binary and unidirectional links between two concepts may, in
some cases, be too constraining and constitute the limits of
the model.

Another more standardised way of representing words for
natural language processing is called Word Embedding. Word
Embedding refers to the set of techniques for representing
words as vectors of real numbers, so that semantic information
can be transformed into numerical data that can be processed
by a computer. Word Embedding is based on the linguistic
theory founded by Zelling Harris [6], which states that the
meaning of a word is directly linked to its context in the
sentence or text in which it is found. In other words, two
words that are relatively close together in a text are more
likely to be semantically close than two words that are very
far apart in the text evoking two completely different concepts.
The idea of Word Embedding is to represent each word by an
N-dimensional vector, so that two semantically close words
are represented by two spatially close vectors.

In order to measure the distance between two vectors
(which corresponds to the rate of similarity between the two
corresponding words), a metric called cosine similarity is
defined [7].

The score thus calculated between two vectors indicates
whether the words are very similar (score close to 1) or very
different (score close to 0). To better understand the meaning
of vectors, here is a simplified example of Word Embedding :

Fig. 2: Simplified example of a Word Embedding

In this example, N = 3: each word is represented by a
vector of 3 values. We notice for example that the words
dog and cat have rather similar vectors, and this is what the
cosine calculation will show. On the other hand, the calculation
of similarity between the words cat and apricot will give a
much lower score. In reality, the N dimension of the vectors
representing the words is usually of the order of a hundred
(N = 100 or 300). As part of automatic language processing,
Machine Learning algorithms are now capable of automat-
ically learning the representation of words as vectors. The
best known and most widely used algorithm is the Word2Vec
algorithm. There are two types of Word2Vec algorithms. The
first model is called ”Continuous-Bag-Of-Words” (CBOW): it
takes as input the context of a word in a text (a window is
defined in order to select a certain number of neighbouring
words) and predicts as output the most probable word in view
of this context. The second Word2Vec algorithm is the Skip-
Gram model which performs the exact inverse of the CBOW
algorithm: it takes a word as input and predicts its context.
The two types of Word2Vec algorithms are three-layer neural
networks, the hidden layer of which is composed of about a
hundred neurons. Here is their architecture [8] :

3

Fig. 3: Architecture of CBOW and Skip-Gram models

Word2Vec algorithms are very powerful and have the ad-
vantage of being easy to implement. This is unsupervised
learning because the data does not need to be labelled: learning
is only done from a database containing many texts, and
the analysis of prediction performance is directly carried out
from the texts provided as input. Machine learning provides
very good prediction performance. However, it is important
to note that the validation or not of the predictions of the
algorithm remains subjective. There is no right value to
predict, since the perception of the language (and especially
for complex notions) depends on each individual, and this is
precisely why it is a question of unsupervised learning. In
order to evaluate the performance of this type of algorithm,
it is nevertheless possible to compare the predictions of the
algorithm with those that a human being would have made.
As far as the Word2Vec algorithm is concerned, the Skip-
Gram variant seems to be the most used because it corresponds
better to the targeted applications. Moreover, Skip-Gram works
well for small databases and represents rare words well,
while CBOW is faster and returns a better representation of
common words [9]. There are many other algorithms [10]
for learning Word Embeddings. First of all, any algorithm
that performs dimensionality reduction can be used to create
Word Embeddings. This is notably the case of Latent Semantic
Analysis (LSA), which uses the classical matrix factorisation
technique. Today, it is the Word2Vec algorithm that remains
the reference, but there have been attempts to improve it. The
GloVe algorithm (Global Vectors for Word Representation) is
in particular an extension of the Word2Vec algorithm which
uses the matrix factorisation technique used by LSA. Indeed,
the Word2Vec algorithm works very well but is dependent on
certain parameters, such as the window size used to define the
context of the word. It also means that words far away in the
text will be more difficult to associate with each other, even
if their meaning is close. Matrix factorisation, on the other
hand, makes it possible to obtain global statistics on the entire
database. For example, a co-occurrence matrix of words over
the entire text corpus can be used to link words which would

not have been linked in a classic Word2Vec algorithm [11].
A paper from Stanford University has also been published
[12] comparing the performance of the Word2Vec and GloVe
algorithms. Despite some inhomogeneities due to the fact that
the two algorithms do not have the same parameters, and
therefore cannot be compared perfectly on the same basis, it
emerges from this article that the GloVe algorithm is globally
more efficient than the Word2Vec algorithm.

Fig. 4: Performance comparison between Word2Vec and
GLoVe algorithms

III. METHODOLOGY

In this part, the work carried out to compare two Word Em-
bedding algorithms will be presented: Word2Vec and GloVe.
Given the time allocated to this research project, it would
have been impossible to test all the Word Embedding methods
presented in the literature review. It was therefore necessary
to make a choice and the Word2Vec and GloVe algorithms
emerged as the most relevant ones to test because, according to
the literature review, they are the two most efficient algorithms
and, as a result, the most used and most documented. The
objective of the work carried out was therefore to test these
two algorithms, to compare their performances, and finally
to compare these results in particular with those of Stanford
University, presented in the literature review. Moreover, the
choice was also made not to implement a semantic network
because this method is not really comparable with the two
other algorithms of Word Embedding, in particular because the
performances of a semantic network are difficult to evaluate.
Indeed, as previously mentioned, semantic networks are often
used for particular applications such as memory modelling,
but their implementation here would not have been relevant
for the objectives.

To begin with, a first Word2Vec algorithm model was
developed step by step, then trained on a small database
created for the occasion. This allowed a real understanding
of how a Word Embedding algorithm works, the role of the
different parameters to be set but also the potential limits of
this method. Then, in order to compare the performances of
the Word2Vec and GloVe algorithms, two pre-trained models
were downloaded and evaluated. Indeed, the computing power
required to learn such models on very large databases was too
great for the means available. The use of pre-trained models
makes it possible to free oneself from this learning time

4

while still being able to compare the two models according to
different criteria.

For the implementation and training of the Word2Vec algo-
rithm on a small database, a Colab Notebook was created in
Google Drive. Tensor Flow’s high level Keras API was used,
as it enables simple and efficient implementation, training and
evaluation of Machine Learning and Deep Learning models. It
was also necessary to create a database in the form of a text file
(Einstein.txt). In order to measure the impact of the size of the
text corpus given as input to the algorithm on its performance,
the Einstein.txt file initially contained a single biography of
Albert Einstein retrieved from the internet. Later, in order to
multiply the input data, several biographies (again of Albert
Einstein) were added. The corpus of raw text present in the .txt
file is first pre-processed, in order to obtain a database usable
by the Word2Vec algorithm. Here are the different steps of
data pre-processing :

1) Definition of the parameters of the algorithm
2) Splitting the corpus of texts into sequences
3) Vectorization of sequences
4) Removal of words with a very high frequency of occur-

rence
5) Generation of training data
In a Word2Vec algorithm, it is necessary to adjust certain

parameters, depending on the chosen database and the appli-
cation in question. Here are some of them:

- vocab size = vocabulary size: number of (different) words
that we consider

- sequence length = length of a sequence: number of
words for a sequence

- window size = size of the window: number of neighbours
taken into account for the definition of the context of the
selected word

- embedding dim = dimension of the embedding: dimen-
sion of the vectors representing the words of the vocabulary
at the output of the neural network.

A study was carried out to determine the optimal value of
the various parameters. The corpus of texts is then divided into
sequences, a sequence generally consisting of about ten words.
A sequence can be likened to a sentence. Each sequence is then
vectorised, i.e. each word in the vocabulary is associated with a
unique integer number. Words that appear too frequently in the
text corpus are then removed from the vocabulary. This stage
normally allows you to get rid of linking words, pronouns, etc.
which are not useful for the creation of Word Embeddings,
and which could even lead to prediction errors if left as they
are. Once the corpus of text has been transformed, the training
database can be created, which is made up of targets, concepts
and labels. As a reminder, this is unsupervised learning, as the
labels are determined directly from the data in the text corpus.
The Word2Vec model (three-layer neural network) is then
created from the training data using the functions provided
by the Keras API and trained. Two .tsv files (vectors.tsv and
metadata.tsv) are then created and used to visualise the Word
Embedding in the Tensor Flow projector tool, which will allow
the data obtained to be analysed and the performance of the
model to be evaluated.

Regarding the implementation of the pre-trained Word2Vec
and GloVe templates, the principle is the same as in the pre-
vious paragraph, however, the steps of creating the database,
pre-processing the data, creating the template (Word2Vec or
GloVe) and learning the template have already been carried
out beforehand. For the Word2Vec algorithm, the model
pre-trained by Google has been selected because it is the
most complete. The GoogleNews-vectors-negative300.bin file
(3.6 GB) contains the Word Embeddings resulting from
the training of a Word2Vec model on the Google News
database (approximately 100 billion words, or a vocabulary
of three million words) [13] and whose output vector size is
embedding dim = 300. This model is very popular and is
used in many document classification applications. Similarly,
the GloVe model pre-trained by Stanford University has been
downloaded. The glove.6B.zip archive contains four GloVe
models trained on the Wikipedia database containing a total
of 6 Billion words (tokens), or a vocabulary of 400,000 words
(tokens are the total number of words in the text corpus, while
the vocabulary size is the number of unique words in the
input database). The four models have a different dimension,
which makes it possible to evaluate the impact of the Word
Embedding dimension on the performance of the algorithm.
The following four Word Embeddings could therefore be
evaluated, which made it possible to estimate the impact of the
embedding dim parameter on the performance of the model
:

- glove.6B.50d.txt (embedding dim = 50, 136 MB)

- glove.6B.100d.txt (embedding dim = 100, 331 MB)

- glove.6B.200d.txt (embedding dim = 200, 661 MB)

- glove.6B.300d.txt (embedding dim = 300, 990 MB)

The gensim library was used for the import of pre-trained
models and their evaluation. Gensim is a widely used Python
library for Word Embedding. For each case (Word2Vec or
GloVe), arithmetic tests could be carried out in order to
evaluate the performance of each model. Indeed, the interest
of transforming words into vectors is that it is then possible to
perform arithmetic operations between these words. Examples
of arithmetic operations as well as the results obtained will
be given in the following section. In addition, the gensim
library also provides a reference database called WordSim353
with which models can be compared. This database contains
pairs of words that have been associated by human judgement.
This database could be likened to labelled data with the value
”true” as is usually done in supervised learning. However,
this database is not used for learning but simply provides a
similarity score between the Word Embeddings created by the
model and the associations that a human would have created
naturally. The results of the evaluation of the two models will
also be given in the next section. Finally, in the same way as
for the Word2Vec model trained on the small specific database,
the Word Embeddings associated with the two large databases
(Google News for Word2Vec and Wikipedia for GloVe) could
be visualised in the Tensor Flow Projector. Once again, these
results will be provided in the next section and will confirm
the performance evaluation of each model.

5

IV. RESULTS

In this first section will be given the observations result-
ing from the implementation and training of the Word2Vec
algorithm on a small database, as explained in the previous
part of the article. The Word2Vec algorithm takes as input a
corpus of texts. The idea was therefore to create a corpus
on a particular theme in order to be able to evaluate the
performance of the algorithm for different corpus sizes. In
order to stay within the scientific theme, it was decided that
the corpus would contain biographical texts of Albert Einstein.
Moreover, in order to evaluate the performance of the model,
it is relevant to choose texts whose meaning is familiar to the
user, so that he can compare the Word Embeddings created
with the associations he would have made himself. Initially,
a single biography was copied into the Einstein.txt file but
this gave very poor results. Indeed, the Word2Vec algorithm
requires a sufficiently large input database to be able to create
relevant associations between words. With a single text (a
single biography), two similar words are likely to appear
only once in the context of each other, if at all. The vectors
associated with them will therefore not be in close proximity
in the spatial representation of Word Embeddings. Conversely,
two words that are not similar may be close to each other in a
text. If the text is large enough and this approximation occurs
only once, the Word2Vec algorithm will not normally take this
into account. On the other hand, if the size of the text corpus is
too limited, these associations will be taken into account and
will therefore distort the Word Embeddings created. In order
to improve the input data, several other biographies have been
added to the Einstein.txt file for a total of 14,000 words. Here
is the visualisation of the Word Embeddings in the Tensor
Flow Projector :

Fig. 5: Visualization of the Word Embedding learned by the
Word2Vec algorithm on the text corpus Einstein.txt

A point corresponds to a vector. The size of the circle
associated with this point is proportional to the number of
occurrences of this word in the input text corpus. Two close
points in this three-dimensional space correspond (normally)
to two words with a close meaning. The TensorFlow Projector
also allows you to view the nearest n neighbours of a selected
word. Here are the results for the words ’théorie’ and ’science’:

Fig. 6: Visualization of the neighbours of the word ”theorie”
in the Word Embedding learned by the Word2Vec algorithm

on the small dataset Einseint.txt

Fig. 7: Visualization of the neighbours of the word ”science”
in the Word Embedding learned by the Word2Vec algorithm

on the small dataset Einseint.txt

For the word ”théorie”, the words ”fondateurs” and
”photoélectrique” are parts of the 10 closest words, which
appears to be consistent with the input data. However, other
words such as ”déplacements” or ”glorification” should not be
included in the list. It can be observed that these are not words
whose meaning is totally removed from the word ”théorie”,
but other words such as ”relativité” or ”scientifique” would
have been considered as a priority. The same limitations are
observed with the word ”science”. This is due to a much too
small body of text. Indeed, with 14,000, the corpus created is a
far cry from the billions of words used by Google or Stanford
University. Moreover, some pre-processing of the data could
be improved to ignore dates such as ”1912” which appears
linked to the word science. Another bug related to the small
amount of input data is that the word ”Einstein” was removed
from the vocabulary in the data pre-processing phase because
it appeared too recurring compared to other words in the text
corpus. This should not have happened because it is actually
one of the most important words in the corpus! Nevertheless,

6

it can be noted that the results are already much better than
when a single biography was used. The Word Embeddings
created are not optimal, but the results are still consistent
and they validate the functioning of the Word2Vec algorithm.
Thus, the size of the input text corpus is really decisive in
evaluating the performance of a Word Embedding algorithm.
Moreover, as mentioned above, different parameters have been
tested to try to evaluate the value of the optimal parameters
of the algorithm. Here are those that were retained:

- vocab size = 4096
- sequence length = 10
- window size = 2
- embedding dim = 128
In the second phase of the work, the impact of the Word

Embedding dimension on the performance of the algorithm
was evaluated, then the GloVe and Word2Vec models pre-
trained on large amounts of data were compared. In order
to evaluate the impact of the Word Embedding dimension,
the GloVe algorithm was trained for four different embedding
dimensions, and in all four cases, the 10 words most similar
to the expression ”woman” + ”king” - ”man” were displayed.
Here are the results:

Fig. 8: 10 words most similar to the expression ”woman” +
”king” - ”man” depending on the embedding dimension for

the GloVe algorithm

It is noticeable that the 10 words most similar to the
expression ”woman” + ”king” - ”man” are almost identical
from one dimension to the other, only the order of the words

varies somewhat. The word ”queen” comes first in all four
cases and all the words are perfectly coherent. The difference
from one dimension to another is due to the calculation of the
Word Embeddings but this does not affect the overall result.
Moreover, one solution is no more accurate than the other, as
there is no absolute true value defining a ranking of the 10
words that are semantically closest to the expression ”woman”
+ ”king” - ”man”. From one person to another, human judge-
ment can vary and the solutions given by the GloVe algorithm
are all satisfactory, regardless of the dimension chosen. On the
other hand, we can still note that the dimensions tested are
not insignificant. Indeed, according to the literature review,
the optimal dimension for a Word Embedding algorithm is
of the order of a dozen or a hundred, generally between 100
and 300; beyond that, performance may begin to decline. For
further work, the dimension chosen will be D = 300 because
this is also the dimension used by Google when learning the
Word2Vec model. In addition, in order to visualise the impact
of the input database size on the calculated Word Embeddings,
those of the GloVe algorithm have also been displayed on the
Tensor Flow Projector :

Fig. 9: Visualization of the Word Embedding learned by the
GloVe algorithm on the Wikipedia dataset

(glove.6B.300d.txt)

A much denser and less legible cloud of dots is observed.
In fact, the cloud has 400,000 points (compared to barely
3,000 previously), with a dimension of 300 for each vector.
As the Tensor Flow Projector has reached its limits here,
it was impossible to load the Word Embedding resulting
from the Word2Vec algorithm because the number of points
(3 million) exceeds the capabilities of the software. It was
nevertheless possible to visualise a few particular words and
their closest neighbours. Here are the results obtained for the
words ”science” and ”queen”:

7

Fig. 10: Visualization of the neighbours of the word
”science” in the Word Embedding learned by the GloVe
algorithm on the Wikipedia dataset (glove.6B.300d.txt)

Fig. 11: Visualization of the neighbours of the word ”queen”
in the Word Embedding learned by the GloVe algorithm on

the Wikipedia dataset (glove.6B.300d.txt)

To the right of each image is a list of the closest neighbours
associated with the selected word, while in the centre of the
image are the vectors in three-dimensional space. For the word
”science”, the words determined as the closest neighbours
are ”fiction”, ”science”, ”scientific”, ”physics”, ”astronomy”,
”biology”, ”technology” and ”biomedical”. The results are
therefore much better than those obtained by learning from
the small database. It is nevertheless important to note that
the Einstein.txt corpus created is far too small, which has led
to poor performance on Word Embeddings. On the other hand,
one should not necessarily eliminate the idea of creating one’s
own text corpus and carrying out the model training. Indeed,
each method has its advantages and disadvantages. The first
option offers the possibility to train your own template and
to choose or create your own database adapted to your needs.
The advantage: the model created is completely applied to the
particular task it will have to perform afterwards. For example,
if the purpose of Word Embedding is to classify scientific
documents on Albert Einstein, it is interesting to choose this
method. If a model pre-trained on a large dataset was used,
the results would surely be less good because there would
not be enough useful data on Albert Einstein and especially
too much useless data. Moreover, if the choice was made to
learn one’s own model on a large dataset, the learning process
would be very long and would not be appropriate for the task
at hand. On the other hand, if the targeted application is fairly
generalist (common and varied vocabulary), it is interesting to
use a large database because it is complete and can be adapted

to other applications. Moreover, the use of a pre-trained model
allows a considerable time saving because there is no need for
additional learning. Thus, the two methods are complementary
and the choice of one or the other should depend on the
application in question:

→ If the application requires a specific vocabulary: prefer
to train your own model on a database specific to the target
application.

→ If the application uses a varied and non-specific vocabu-
lary: prefer the use of a pre-trained model on a large database.

Moreover, the pre-trained GloVe and Word2Vec models
could be compared thanks to the functions of the gensim
library. For example, the function model.similarity() can be
used to display the similarity score between two words.

Fig. 12: Similarity score between the words ”man” and
”woman” in the Word Embedding learned by both the GloVe

and the Word2Vec algorithms

However, without comparison with other words, this score
is difficult to interpret. This is why, in order to better evaluate
Word Embedding templates, the gensim library has created
a function to evaluate the performance of the templates in
a more general way. The function evaluate word pairs()
calculates the correlation between the Word Embeddings cre-
ated by the model in question and associations coming from
human judgement (wordsim353.tsv). This function returns a
Spearman’s correlation coefficient and the associated p value.
Here are the results obtained :

Fig. 13: Spearman’s correlation coefficient and the associated
p value between the Word Embedding learned by both the

GloVe and the Word2Vec algorithms, and associations made
from human judgement (wordsim353.tsv)

Spearman’s correlation coefficient measures the correlation
between two databases. The coefficient is between -1 and
1, where 1 is a perfect correlation; -1 is a perfect negative
correlation; and 0 is no correlation at all. The following is a
guide to interpreting the score [14] :

8

Fig. 14: Guide for the interpretation of the Spearman’s
Correlation Coefficient [14]

For both models, the p-value is very low, which means that
the calculated correlation coefficient can be trusted. Indeed,
the p value corresponds to the probability that the correlation
found is due to chance. We can therefore conclude that
for both models, there is a good correlation between the
Word Embeddings learned by Machine Learning algorithms
and the associations made by human judgement, and that
this correlation is assured, although it is not very strong.
Finally, the Stanford University paper comparing the GloVe
and Word2Vec algorithms attributed the best performance
to the GloVe algorithm (see literature review), which seems
logical given that the GloVe algorithm is supposed to be an
improvement of the Word2Vec algorithm. However, in the
work carried out and presented in this article, the correlation
coefficient associated with the Word2Vec algorithm is slightly
higher than that of the GloVe algorithm. This can be explained
by the fact that the database used to learn the Word2Vec
model was much larger than the one used for the GloVe model
(100 Billion vs. 6 Billion words). Nevertheless, the correlation
rates are relatively close in comparison, which confirms the
efficiency of the GloVe algorithm despite a smaller training
database.

Furthermore, the Stanford University article also pointed
out the difficulties encountered in comparing the two models
on an equal footing, due to the many parameters to be varied
which are not always accessible. To improve the work carried
out here, it would be interesting to be able to compare
the two models on exactly the same basis, i.e. by initially
setting all the parameters identically (quantity of learning
data (tokens), vocabulary size, embedding size, size of the
context window, etc.) and then varying them one by one. It
would also be interesting to be able to train these models
on larger databases in order to compare their learning times.
Another idea which could prove useful in the case of learning
Word Embeddings on a small database and for a particular
application would be to create your own database for the
assessment (an equivalent of the wordsim353.tsv file) so that
you can adapt the calculated score to the specific needs of
the application and interpret it more easily.

V. CONCLUSION

As planned, the work carried out made it possible to test
the Word2Vec and GloVe algorithms and to compare their
performances. The results obtained are rather satisfactory as
they corroborate the information presented in the literature
review. Nevertheless, more time and additional means would
have been needed to carry out a truly exhaustive study of
the various existing solutions. Moreover, the comparison be-
tween the Word2Vec and GloVe algorithms remains difficult
if pre-trained models are used, as the databases and learning
parameters used are not necessarily identical. Ideally, it would
therefore be interesting to continue this work by training one’s
own models on large databases, varying the different learning
parameters, in order to be able to more reliably evaluate their
impact on the performance of each algorithm.

9

REFERENCES

[1] F. Rastier, Sémantique et recherches cognitives. Presses Universitaires
de France, 2010.

[2] “Semantic network,” Available at https://en.wikipedia.org/wiki/
Semantic network (2021/02/02).

[3] J.-P. Desclés, “Réseaux sémantiques : la nature logique et linguistique
des relateurs,” Langages, vol. Sémantique et intelligence artificielle, pp.
55–78, 1987.

[4] “Wordnet,” Available at https://fr.wikipedia.org/wiki/WordNet
(2020/06/04).

[5] M. F.R., “How important are semantic networks in artificial intelligence,”
Available at https://analyticsindiamag.com/semantic-networks-ai/
(2019/01/23).

[6] D. A. Post, “Word embedding,” Available at https://dataanalyticspost.
com/Lexique/word-embedding/.

[7] B. Pierrejean, “Comprendre et utiliser les word embeddings,” Available
at http://w3.erss.univ-tlse2.fr/UETAL/2018-2019/Tuto-embeddings.pdf.

[8] “Word2vec architecture,” Available at https://figshare.com/articles/
figure/ i Word2Vec i architecture The figure shows two variants
of word2vec architecture CBOW and Skip gram 26 for a sample /
11982951(2020/03/13).

[9] D. Karani, “Introduction to word embedding and
word2vec,” Available at https://towardsdatascience.com/
introduction-to-word-embedding-and-word2vec-652d0c2060fa(2018/09/01).

[10] A. Bilogur, “Notes on word embedding algorithms,”
Available at https://www.kaggle.com/residentmario/
notes-on-word-embedding-algorithms(2020).

[11] J. Browlee, “What are word embeddings for text?” Available at https://
machinelearningmastery.com/what-are-word-embeddings/(2017/10/11).

[12] C. D. M. Jeffrey Pennington, Richard Socher, “Glove: Global vectors
for word representation,” Ph.D. dissertation.

[13] A. Pai, “An essential guide to pretrained word embeddings for nlp
practitioners,” Available at https://www.analyticsvidhya.com/blog/2020/
03/pretrained-word-embeddings-nlp/(2020/03/16).

[14] B. F. S. Center, “Spearman’s rank correlation coefficient rs and proba-
bility (p) value calculator,” Available at https://geographyfieldwork.com/
SpearmansRankCalculator.html(2020/09/01).

An overview of Reinforcement Learning
Hamid HACENE1,�

1ENSTA Bretagne third year student in Autonomous Robotics field, Brest, France

Reinforcement learning techniques are particularly useful in the
field of artificial intelligence when it is difficult to predict the
right decisions to be made. Reinforcement learning allows an
agent to learn autonomously a behavior that has never been
previously defined by humans. The agent discovers the envi-
ronment and the different consequences of his actions through
interactions with it: he learns from his own experience to build
the optimal policy by trial-and-error and continuously interact-
ing with the environment.
This paper reviews the different aspects of reinforcement learn-
ing and discusses its basic framework : the optimal policies used
in RL (model free policies and model based policies). At last but
not the least, this paper briefly describes the Neuro Evolution of
Augmenting Topology (NEAT) algorithm, one of the most suc-
cessful algorithms for solving traditional reinforcement learning
tasks.

Reinforcement Learning | IA | Q-learning | NEAT algorithm

Correspondence: hamid.hacene@ensta-bretagne.org

Contents of the paper
1. Introduction

2. Basic concepts of RL

3. Learning of the optimal policy

4. Implementation and results

5. Contribution : NEAT algorithm

6. Conclusion

Introduction
Reinforcement learning (RL) finds its origins in some sub-
jects: statistics, control theory and game theory. It has a
very long history, until the late 80s and early 90s that rein-
forcement learning technology obtains the wide research and
application in some fields such as artificial intelligence and
machine learning (1). RL is one of the techniques in artificial
intelligence which is usually considered as a goal-directed
method for solving problems in uncertain and dynamic envi-
ronments.
Machine learning problems can be categorized in three ways:

• Supervised learning;

• Unsupervised learning;

• Reinforcement learning.

In RL algorithms, we seek to maximize a reward function. It
differs from the supervised learning (SL) methods in the fol-
lowing aspect: in SL, an agent learns from examples (labelled
data) which are provided by an external supervisor.
In RL, the agent learns by trying many actions and deter-
mines which of those actions produce the best reward (2).
This is achieved by directly interacting with the system and
its environment.

Basic concepts of RL
A reinforcement learning model consists of:

• A discrete set of environment states "S";

• A discrete set of agent action "A";

• A set of scalar rewards 0, 1 or reals;

A reinforcement learning agent is autonomous which means
that its behavior is determined by its own experience. Learn-
ing is the mechanism through which an agent can increase
its intelligence while performing operations. What is outside
the agent is considered as the environment. The states are pa-
rameters that describe the environment. A RL agent senses
the environment and learns the optimal policy by taking ac-
tions in each state of the environment. It tries to maximize
the reward or minimize the punishment (3). The Continuous
learning and adapting through interaction with environment
helps the agent to learn online in terms of performing the re-
quired task and improving its behavior in real time.

Fig. 1. Basic model of RL

Figure 1 shows the basic model of the reinforcement signal :

1. The agent receives as input, some indication of current
state of the environment;

2. The agent then chooses an action from the set of ac-
tions (A) to generate as output;

3. (a) The action changes the state of environment;

Hamid | bioRχiv | March 10, 2021 | 1–5

(b) The value of this state transition is communicated
to the agent through a scalar reward (r).

Knowledge gained by an RL agent is specific to the environ-
ment in which it is trained and cannot be easily transferred to
another agent, even if the environments are very similar. This
is one of the significant issues in the domain.

Learning of the optimal policy
Optimal Policies of RL. Before making RL algorithms to
behave optimally, we have to choose the models of optimal-
ity. There are four optimality criterions used for generation
of scalar reward/punishment signal (4):

• Finite-horizon model: in this model, at a given moment
the agent should optimize its expected reward for the
next n steps : E(

∑n
i=0 ri). In this expression, ri rep-

resents the scalar reward after n steps into the future. It
is the easiest model.

• Receding-horizon control: it always takes n-step op-
timal action. The agent acts always according to the
same policy, the value of n limits how far an agent
looks in choosing its actions.

• Infinite-horizon discounted model: The rewards re-
ceived in the future are geometrically discounted ac-
cording to the discounted factor γ whose value should
lie between 0 and 1 : E(

∑n
i=0 γ

iri). This model takes
into account a long-run reward of the agent.

• Average-reward model: the agent takes actions
which optimize its long-run average rewards :
limn→∞E(1

n

∑n
i=0 ri)

The choice of optimality model and the choice of parameters
matters much and so should be chosen carefully.

Learning the policy. In a Markov Decision Problems
(MDP), a model is already present to obtain an optimal pol-
icy. An MDP model is usually consists of :

1. A discrete set of environment states S;

2. A discrete set of agent action A;

3. A reward function R;

4. A state transition probability function P, which maps
different states to its probabilities.

P (s1,a,s2) denotes the probability of state transition from
state s1 to state s2 using action a. R(s1,a) denotes the im-
mediate reward value obtained when the environment state
s1 changes to state s1 using action a.
The model is markov, when the state transitions are indepen-
dent of any previous states or the agent actions.
Reinforcement learning is mainly concerned with how an op-
timal policy can be obtained when a model is not known in
advance. The agent directly interacts with the environment

to obtain information, which is processed through appropri-
ate algorithms to produce an optimal policy. The two ways
in which it can be proceed: model-free method and model-
based methods. In model-free methods, a controller is learnt
without learning a model whereas in model-based methods
, first the algorithm is learnt then it is used to derive a con-
troller. Some model-free methods are : temporal difference
methods, Q-learning, average rewards. Some model-based
methods are : Certainty equivalent, Dyna, queue Dyna, pri-
ority sweeping...
In this paper, we will focus on model–free methods, espe-
cially the Q-learning method.

Model-Free Methods. A model-free algorithm is an algorithm
which does not use the transition probability distribution as-
sociated with the Markov decision process (MDP). It can be
thought of as a trial-and-error algorithm.
Q-learning. Q-learning algorithm was proposed by Watkins
(5).
Let Q∗(s1,a) be the expected discounted reward of taking
action a in the state s1, then continues by choosing action
optimally.
Let V ∗(s1) = maxaQ

∗(s1,a) where V ∗(s1) is the value of
s1 with the assumption that the best action is taken initially.
The recursion formula of Q∗(s1,a) is as follows:
Q∗(s1,a) =R(s1,a)+γ

∑
s2∈S T (s1,a,s2)maxaQ∗(s2,a

′)
The optimal policy would be given by :
Π∗(s) = argmaxaQ

∗(s1,a)
The action can be chosen by taking the one which has the
maximum Q-value for the current state. The Q-learning rule
is given by:
Q∗(s1,a) =Q(s1,a) +α(r+γmaxaQ

∗(s2,a
′)−Q(s1,a)

Which can be rewritten as :
Q(s1,a) = (1−α)Q(s1,a) +α(r+γmaxaQ

∗(s2,a
′))

If α decays appropriately and each action is executed in each
state an infinite number of times in an infinite run then Q-
values will converge with a probability of 1 to Q∗. When Q
values are nearly converged to their optimal values, the agent
can act greedily by selecting the actions with the highest Q
value.
Q-learning is exploration insensitive i.e. the Q values will
converge to optimal values, independent ofhow an agent be-
haves when the data is being collected. The details of the ex-
ploration strategy do not affect the convergence of the learn-
ing algorithm (6). Q-learning is the most popular and most
effective model-free algorithm for learning from delayed en-
vironment. Q-learning can be applied to discounted infinite-
horizon MDPs. Q-learning can also be applied to undis-
counted problems if the optimal policy is guaranteed to reach
a reward-free state and the state is periodically reset.

Implementation of Q-learning
To implement the Q-learning algorithm, we are going
to be working with OpenAI’s gym, specifically with the
"MountainCar-v0" environment.
For the various environments, we can query them for how
many actions are possible. In this case, there are three actions

2 | bioRχiv Hamid | RL methods

we can pass. This means, when we step the environment, we
can pass a 0, 1, or 2 as our "action" for each step. Each time
we do this, the environment will return to us the new state,
a reward, whether or not the environment is done/complete,
and then any extra information.

Fig. 2. MountainCar-v0 environment

It doesn’t matter to our model, but, a 0 means push left, 1 is
stay still, and 2 means push right. We won’t tell our model
any of this, and that’s the power of Q-learning. This informa-
tion is basically irrelevant to it. All the model needs to know
is what the options for actions are, and what the reward of
performing a chain of those actions would be given a state.
As we can see in figure 2, despite asking this car to go right
constantly, we can see that it just doesn’t quite have the power
to make it. Instead, we need to actually build momentum to
reach that flag. To do that, we wouldd want to move back and
forth to build up momentum. We will use Q-learning to solve
this problem.
In the case of this gym environment, the observations space
is position (along an horizontal axis) and velocity.
At each step, we get the new state, the reward and whether or
not the environment is done (number of steps for example).
First step, we need to build our Q value table which contains
all of our possible discrete states.
Then, we will use the algorithm described before to update
those values in the Q table and build an intelligent agent to
reach the goal.

Results. The main codes can be found on my github. I will
expose some results on the evolution of the Q-learning algo-
rithms.
We tracked some very basic metrics from within our program
(average rewards, maximum rewards and minimum rewards).
This metrics will give us a correct view of how well the agent
is dowing. Besides, there are some parameters that we need
to tune to find the best way to train the agent by building the
optimal Q table.
Figure 3 shows that the agent can still going by training to
improve its score. The minimum reward is at its least value.
By increasing the number of episodes to 10.000, we signifi-
cantly improve the metrics : in figure 4 the minimum rewards
ar no longer at the least values. The average rewards ar quiet
good also.
We can go further by training our agent for 25k episodes. The
metrics are shown in figure 5. By analyzing this, it looks like

Fig. 3. 4000 episodes

Fig. 4. 10000 episodes

Fig. 5. 25k episodes

we may have the model around 20K episodes since it had
high overall rewards, but also the minimum is still high too.
After that, we can save the final trained table to replay our
agent later.
We finally found a way to get the Q table for each action. The
result is shown in figure 6

NEAT algorithm
Neuroevolution algorithms. Neuroevolution is a field of
study dedicated to the generation and improvement of neural
networks using evolutionary algorithms. Traditionally asso-
ciated with the generation of neuron weights through evolu-
tion, current approaches associated focus on multiple aspects
of the construction of a network, such as learning their acti-
vation functions, hyperparameters (learning rates), architec-
tures (number of neurons per layer, number of layers, and
which layers connect to which) and even the rules for learn-

Hamid | RL methods bioRχiv | 3

Fig. 6. Q table

ing themselves. One famous neuroevolution approach called
Neuroevolution of Augmenting Topologies.

NEAT algorithm. Neuroevolution of Augmenting Topolo-
gies, also called NEAT, is an algorithm designed for neu-
ral network topology construction (7). NEAT uses a ge-
netic algorithm structure to generate small initial networks
that evolve and grow over generations by adding neurons and
connections and adjusting their weights to generate structures
capable of performing well while keeping them minimal in
size. This minimalist aspect of NEAT is one of its core dif-
ferences to otherneuroevolution algorithms, as it focuses on
only adding neurons or connections when they have an active
impact in the network’s performance (8).
Starting with an initial population of small networks based
on a common topology, NEAT evaluates changes tothese
networks iteratively by adding and removing neurons and
connections across generations. The algorithm defines the
genome that describes the nodes and connections by a mech-
anism called genetic encoding, used in the operations that
modify the network structures through classic genetic algo-
rithm operators such as crossover and mutations (9).

Fig. 7. NEAT mutations

Implementation. For implementation purposes, we will use
the NEAT-Python library : https://neat-python.

readthedocs.io/en/latest/.

Fig. 8. NEAT configuration file

We are going to be working with OpenAI’s gym, specifically
with the "CartPole-v1" environment (figure 8).

Fig. 9. NEAT configuration file

Fig. 10. Result of running NEAT algorithm

In the NEAT library, we have to set a configuration file as
shown in figure 9. In this file, we set various hyperparam-
eters, but at this early stage (when this paper was written),

4 | bioRχiv Hamid | RL methods

https://neat-python.readthedocs.io/en/latest/
https://neat-python.readthedocs.io/en/latest/

we don’t have all the expertises to tune the parameters. The
only results that we can show at this moment are presented in
figure 10.

Conclusion
There are a large variety of RL techniques that work effec-
tively on a variety of small problems. But there exist very few
techniques that can be scaled to larger problems. The prob-
lem is it is very difficult to solve arbitrary problems in the
general case. NEAT algorithm produced very good results in
simple environments, but we have to test the implementation
on several environments to have a precise idea of how good
the model could be.
Through this work, we have conducted extensive research
on a constantly and rapidly evolving scientific subject. This
work allowed us to experience research and constitutes a first
approach to the world of PhD studies, doors that could be
opened to us after our engineering degree.

Bibliography
1. Rashmi Sharma, Manish Prateek, and Ashok K. Sinha. Article: Use of reinforcement learning

as a challenge: A review. International Journal of Computer Applications, 69(22):28–34, May
2013. Full text available.

2. M. Iosifescu and R. Theodorescu. On bush-mosteller stochastic models for learning. Journal
of Mathematical Psychology, 2(1):196–203, 1965. ISSN 0022-2496. doi: https://doi.org/10.
1016/0022-2496(65)90025-8.

3. Artif. Intell. Rev., 17(3), 2002. ISSN 0269-2821.
4. Leslie Pack Kaelbling, Michael L. Littman, and Andrew W. Moore. Reinforcement learning: A

survey. CoRR, cs.AI/9605103, 1996.
5. Christopher J. C. H. Watkins and Peter Dayan. Q-learning. In Machine Learning, pages

279–292, 1992.
6. Gary G. Yen and Travis W. Hickey. Reinforcement learning algorithms for robotic navigation

in dynamic environments. ISA Transactions, 43(2):217–230, 2004. ISSN 0019-0578. doi:
https://doi.org/10.1016/S0019-0578(07)60032-9.

7. Kenneth O. Stanley. Efficient Evolution of Neural Networks Through Complexification. PhD
thesis, Department of Computer Sciences, The University of Texas at Austin, 2004.

8. Kenneth O. Stanley and Risto Miikkulainen. Efficient evolution of neural network topologies.
In William B. Langdon, Erick Cantu-Paz, Keith E. Mathias, Rajkumar Roy, David Davis, Ric-
cardo Poli, Karthik Balakrishnan, Vasant Honavar, G"unter Rudolph, Joachim Wegener, Larry
Bull, Mitchell A. Potter, and Alan C. Schultz, editors, Proceedings of the Genetic and Evolu-
tionary Computation Conference, pages 1757–1762, Piscataway, NJ, 2002. San Francisco,
CA: Morgan Kaufmann.

9. Kenneth O. Stanley, Bobby D. Bryant, and Risto Miikkulainen. Evolving adaptive neural net-
works with and without adaptive synapses. In Proceedings of the 2003 Congress on Evolu-
tionary Computation, Piscataway, NJ, 2003. IEEE.

Hamid | RL methods bioRχiv | 5

 Initiation à la recherche

 Deep learning pour la detection des objets : Comparaison entre le Yolo

 et le Faster R-CNN avec une application sous Gazebo du YOLO à l’aide d’un drone.

Réalisé par : Maha HALIMI

Encadré par : Luc JAULIN

Mot clés :

Résumé :

De nos jours, il existe un besoin croissant de drones volants dotés de

capacités diverses pour applications civils et militaires. En effet les

tendances croissantes du marché des drones et l'intérêt pour des

applications potentielles telles que la surveillance, la navigation visuelle,

la détection d'objets et la planification d'évitement d'obstacles basée sur

des capteurs ont été porteurs de bonnes promesses dans le domaine du

Deep Learning. Les algorithmes de détection d'objets mis en œuvre dans

le cadre du Deep Learning, sont rapidement devenus des méthodes de

traitement d'images en mouvement capturées à partir de drones.

En outre, la détection d'objet a évolué parallèlement à l’avancement, sans

précédent, de Convolutional Neural Network "CNN" et de ses variantes.

[1],[2],[3].

Au sein de cet article de synthèse, on présente, à l’aide d’une illustration

par simulation sous GAZEBO d'un véhicule aérien sans pilote (UAV), une

comparaison entre "Faster R-CNN", et l'un des meilleurs systèmes de

détections d'objets de traitement en temps réel, You Only Look Once, ou

autrement "YOLO". Ce dernier innove une nouvelle façon de la détection

d'objets avec la manière la plus simple, la plus efficace et la plus complète.

Vu sa vitesse la plus rapide, il a atteint un résultat incomparable sans

précédent, qui a dépassé considérablement le résultat des performances

du Faster R-CNN. [4],[5]

En outre, comparé à la dernière solution la plus avancée, YOLO réalise

un excellent compromis du point de vue vitesse et précision ainsi qu'une

détection d'objets d'une forte capacité de généralisation pour représenter

l'image entière. [6]

Lien vers GitHub : https://github.com/MahaHalimi/object-detection

Deep Learning,

Détection d’objet,

Drone,

Algorithme,

YOLO,

Faster R-CNN,

CNN,

 Classifications.

https://github.com/MahaHalimi/object-detection

2

1. Introduction :
Ces dernières années, les véhicules aériens

sans pilote (UAV) autonomes, en particulier les

drones équipés de caméras, sont devenus très

populaires en raison de la diversité de leurs

applications telles que la surveillance, la

cartographie aérienne, la recherche et le

sauvetage, etc. La compréhension des données

visuelles collectées de manière autonome à

partir de ces drones a été un domaine d'intérêt

croissant. En effet, la détection visuelle d'objets

est l'un des aspects les plus importants des

applications des drones qui demeure

essentielle dans les systèmes entièrement

autonomes.[7]

Cependant, la détection d'objets avec des

drones est très difficile et complexe car elle est

impactée par diverses conditions d'imagerie

telles que le bruit, le flou, la faible résolution,

la petite taille des cibles, etc. La tâche est

encore plus difficile en raison de la limite des

ressources informatiques disponibles sur les

drones et la nécessité de performances en

temps réel dans de nombreuses applications

telles que la navigation. Les principaux défis

dans le déploiement des capacités de vision et

d'intelligence sur une plate-forme d'UAV sont:

atteindre une consommation d'énergie

minimale afin de minimiser l'effet sur la

consommation d'énergie de la batterie et

globalement temps de vol du drone, nécessiter

moins d'empreinte mémoire et de puissance de

calcul car les drones typiques ont des

limitations de ressources et traiter les données

d'entrée de sa caméra avec faible latence et les

exécuter plus rapidement afin d'effectuer des

tâches critiques telles que la détection d'objets,

l'évitement et la navigation de chemin en

temps réel. [8] ,[9].

Avec la percée du Deep Learning utilisant les

réseaux de neurones convolutifs, il y a eu une

augmentation frappante des performances

dans le traitement des tâches de vision par

ordinateur. L'idée clé est d'apprendre les

caractéristiques et le modèle des objets à partir

des données brutes de pixels de l'image. La

formation de ces modèles d'apprentissage en

profondeur nécessite généralement de grands

ensembles de données, mais ce problème a

également été surmonté par la publication de

nombreux ensembles de données étiquetées à

grande échelle tels que ImageNet, COCO,

Pascal VOC, etc. Cependant, ces méthodes

nécessitent une énorme quantité de puissance

de calcul et de mémoire intégrée. Il y a toujours

eu un compromis entre les performances de

détection et la vitesse. [10]

Dans cet article, nous allons explorer et

comprendre l'architecture et le fonctionnement

de Faster R-CNN et YOLO [URL 7].

A l’aide d’une comparaison entre le Faster R-

CNN et le YOLO au niveau de leurs précisions,

leurs vitesses, leurs coûts et leurs complexités

leurs avantages et leurs lacunes seront

déterminés.

Enfin, au niveau de la conclusion il sera

question d’aborder les perspectives de chaque

algorithme dans l’avenir. [11]

2. Faster R-CNN
Basé sur Fast R-CNN, Faster R-CNN [12]

résout le problème de la RPN (Region Proposal

Networks), qui est sa contribution clé. Faster

R-CNN obtient la RPN non pas sur l'image

originale mais sur l'image finale qui sera

l’entrée. Comme la résolution de l'image

principale est inférieure à celle de l'image

originale, le calcul de Faster R-CNN est

certainement beaucoup moins que celui de tous

les anciens modèles de CNN. [13]

 La caractéristique principale de Region

Proposal Network (RPN) est que chaque

proposition de glissement générera 9 ancres

candidates avec différentes échelles: largeurs

et hauteurs. Le concept du Faster R-CNN pour

extraire les caractéristiques des ancres est

similaire à celui du Fast R-CNN, tandis que sa

classification d'objet consiste uniquement à

reconnaître que les caractéristiques sont au

premier plan ou en arrière-plan. Et la

régression de la proposition est uniquement

pour trouver un emplacement plus précis de

l'objet cible. Pour chaque emplacement de la

proposition, RPN utilise deux couches

entièrement connectées (classification des

objets et régression de proposition) pour juger

et abandonner les ancres. Il ne fait jamais de

proposition régionale explicite. Les principales

règles de sélection des ancres sont : rejeter les

ancres sur la frontière, les ancres dont la zone

de chevauchement avec l'échantillon qui

supérieurs à 0,7 seraient classés comme

premier plan, et celles dont les zones de

3

chevauchement inférieures à 0,3 seraient

classées comme arrière-plan. [14],[15] [16]

 De cette façon, RPN choisit environ 300 ancres

pour chaque proposition glissante. Faster R-

CNN utilise le mode d'entraînement en

alternance pour entraîner les fonctionnalités

partagées. Il utilise le récent réseau pour

initier le poids du RPN, extrait les bonnes

propositions de l'ensemble de données de

formation et entraîne le modèle Faster R-CNN

avec les propositions à plusieurs reprises

jusqu'à ce que le résultat converge bien.

Faster R-CNN a déjà offert un résultat avec

une précision de reconnaissance parfaite.

Seulement nécessite une amélioration

supplémentaire au niveau de sa vitesse, qui est

la principale raison pour laquelle sont basés les

algorithmes conçus ultérieurs. [19]

3. YOLO
Une nouvelle approche de la détection d'objets

nommée You Only Look Once (YOLO), c’est à

dire que l’ image prédite nous informe sur les

objets et de l'endroit où ils se trouvent en un

seul coup d'œil. En tant que première méthode

qui élimine entièrement le pipeline, elle

encadre la détection d'objet comme un

problème de régression vers des boîtes de

délimitation spatialement séparées et des

probabilités de classe associées, qui sont

prédites avec un seul réseau de neurones à

partir d'images complètes dans une évaluation.

 En tant que première méthode qui élimine

entièrement le pipeline, elle encadre la

détection d'objet comme un problème de

régression vers des boîtes de délimitation

spatialement séparées et des probabilités de

classe associées, qui sont prédites avec un seul

réseau de neurones à partir d'images complètes

dans une évaluation.

Le réseau de détection de YOLO comprend 24

couches convolutives suivies de 2 couches

entièrement connectées. YOLO utilise des

couches de réduction 1 × 1 suivies de couches

convolutives 3 × 3. L'alternance des couches

convolutives 1 × 1 réduit l'espace des

caractéristiques des couches précédentes.

Les couches convolutives sont pré-entraînées

sur la tâche de classification ImageNet à la

moitié de la résolution (image d'entrée 224 ×

224), puis doublent la résolution pour la

détection.

YOLO utilise une fonction d'activation linéaire

pour la couche finale et un ReLU pour toutes

les autres couches. Ainsi qu'il prédit les

coordonnées des boîtes englobantes

directement à l'aide de couches entièrement

connectées au-dessus de l'extracteur d'entités

convolutifs. YOLO ne prédit que 98 boîtes par

image. [20] [21]

Figure 1 : Détection d’objet par YOLO sous

Gazebo

Figure 2 : Pourcentage des objets détectés

4. Comparaison :

YOLO suggère toute une nouvelle façon de

traiter l'image qui varie trop, non seulement de

Faster R-CNN mais aussi de R-CNN et de

4

toutes ses variantes. Dans ce qui vient, seules

les principales différences entre YOLO et

Faster R-CNN seront discutées comme suit :

✓ Le Framework :

Bien que Faster R-CNN et YOLO utilisent

CNN comme noyau, et que leurs objectifs clés

soit de trouver une meilleure manière de

diviser les propositions basées sur CNN, leurs

cadres diffèrent grandement les uns des

autres.

Faster R-CNN conserve le cadre général

traditionnel de R-CNN : l'utilisation de CNN

traite l'ensemble de l'image d'entrée au début

et divise les propositions plus tard, en

maintenant la proposition régionale et la mise

en commun des ROL.

La contribution adopte le Réseau de

proposition régional pour accélérer

spécialement le calcul des traitements des

propositions. YOLO divise l'image entière au

tout début et utilise plus tard CNN pour le

traitement. En outre, YOLO abandonne

complètement les fenêtres coulissantes et la

RPN et divise l’image d'entrée en S X S grilles.

Pendant ce temps, il innove le mécanisme

d'IOU de confiance pour chaque réseau et la

probabilité de classe pour prendre une décision.

Contrairement à YOLOv2 qui réutilise les

boîtes d'ancrage, YOLOv1 l'a abandonné

à la création de YOLO. Le YOLOv2 utilise 5

boîtes d'ancrage tandis que Faster R-CNN a 9

boîtes d'ancrage.

De plus, YOLOv2 crée de nombreuses

nouvelles techniques pour améliorer la

précision, telles que les clusters de dimensions,

alors que Faster R-CNN ne prend pas en

charge.

✓ Performance extérieure :

Faster R-CNN se concentre sur l'accélération

du Framework R-CNN en partageant le calcul

et en utilisant les réseaux de neurones pour

proposer des régions au lieu de la recherche

sélective. Bien qu'il offre la rapidité, la

précision et les améliorations par rapport à R-

CNN, les deux sont toujours en deçà des

performances en temps réel. Au lieu d'essayer

d'optimiser les composants individuels d'un

grand pipeline de détection, YOLO jette

complètement le pipeline de plus il est rapide

intentionnellement. Ainsi, YOLOv2 peut

atteindre une haute précision et convient en

temps réel pour des images à haute résolution.

Alors que pour les images à faible résolution, il

montre une vitesse élevée exceptionnelle avec

une excellente valeur mAP.

En outre, aucun des systèmes de détection n’a

surpassé les performances inégalées de Fast

YOLO avec 155 FPS et valeur mAP 52,7

jusqu'à présent.

5. Conclusion :
Cet article aborde brièvement des algorithmes

actuels de détection d'objets, spécifiquement

Faster R-CNN, et YOLO. Par rapport aux

Faster R-CNN, YOLO a une application plus

avancée dans la pratique. C’est un modèle

unifié de détection d'objets. Il est simple à

construire et peut être formé directement sur

des images complètes. Contrairement aux

approches basées sur les classificateurs, YOLO

est formé sur une fonction de perte (loss

function) qui correspond directement aux

performances de détection. L'ensemble du

modèle est entrainé conjointement.

Fast YOLO est le détecteur d'objet polyvalent

le plus rapide, et YOLOv2 fournit sur une

variété de jeux de données de détection, le

meilleur compromis entre la réelle vitesse

temporelle et l’excellente précision pour la

détection d'objets que d'autres systèmes de

détection.

En outre, YOLO généralise mieux la

représentation des objets que les autres

modèles, ce qui le rend idéal pour les

applications qui reposent sur une détection

d'objets rapide et robuste. Ces avantages

excellents et précieux le rendent digne d'être

fortement recommandé et popularisé.

 A l’exception de la structure de chaque

algorithme, le défi le plus urgent dans l’avenir

pour la machine Learning est la portée de

l'ensemble de données. La disponibilité de

données de formation appropriées pourrait être

la partie vitale du processus d'apprentissage,

pour obtenir des résultats idéals.

5

6. Bibliographie :
[1] D. Krijnen, C. Dekker, AR Drone 2.0 with

Subsumption Architecture, In Artificial

intelligence research seminar, 2014.

[2] A. Cavoukian, Privacy and Drones:

Unmanned Aerial Vehicles, Information and

Privacy Commissioner of Ontario, Canada,

2012.

[3] S.G. Gupta, M.M. Ghonge, P.M.

Jawandhiya, Review of unmanned aircraft

system (UAS), Technology 2 (4) (2013).

[4] U.K. MoD, Joint Doctrine Note 2/11 the UK

Approach to Unmanned Aircraft Systems, UK

MoD The Development, Concepts and Doctrine

Centre, SWINDON, Wiltshire, 2011.

[5] R.J. Bachmann, F.J. Boria, R.

Vaidyanathan, P.G. Ifju, R.D. Quinn, A

biologically inspired micro-vehicle capable of

aerial and terrestrial locomotion, Mech. Mach.

Theory 44 (2009) 513–526.

[6] Kabrisky, M. (1964). a Proposed Model for

Visual Information Processing in the Human

Brain.

[7] https://towardsdatascience.com/computer-

vision-a-journey-from-cnn-to-mask-r-cnn-and-

yolo-part-2-b0b9e67762b1

 [8] Springer, Berlin, Heidelberg. LeCun, Y.,

Boser, B., Denker, J. S., Henderson, D.,

Howard, R. E., Hubbard, W., & Jackel, L.D.

(1989).Backpropagation applied to

handwritten zip code recognition. Neural

computation, 1(4), 541-551.

[9] LeCun, Y., Boser, B., Denker, J. S.,

Henderson, D., Howard, R. E., Hubbard, W., &

Jackel, L.D. (1989). Backpropagation applied to

handwritten zip code recognition. Neural

computation, 1(4), 541-551.

[10] LeCun, Y., Bottou, L., Bengio, Y., &

Haffner, P. (1998). Gradient-based learning

applied to document recognition. Proceedings

of the IEEE, 86(11), 2278-2324.

[11] Simonyan, K., & Zisserman, A. (2014). Very

deep convolutional networks for large-scale

image recognition. arXiv preprint

arXiv:1409.1556.

[12] Szegedy, C., Liu, W., Jia, Y., Sermanet, P.,

Reed, S., Anguelov, D., ... & Rabinovich, A.

(2015).

[13] Going deeper with convolutions. In

Proceedings of the IEEE conference on

computer vision and pattern (p :1-9)

[14]He,K.,Zhang,X.,Ren,S.,&Sun,J.(2016).

Deep residual learning for image recognition.

In Proceedings of the IEEE conference on

computer vision & pattern recognition (pp. 770-

778).

[15] Felzenszwalb, P. F., Girshick, R. B.,

McAllester, D., & Ramanan, D. (2010). Object

detection with discriminatively trained part-

based models. IEEE transactions on pattern

analysis and machine intelligence, 32(9), 1627-

1645.

[16] Redmon, J., & Farhadi, A. (2016).

YOLO9000: better, faster, stronger. arXiv

preprint arXiv:1612.08242.

[17] Sharif Razavian, A., Azizpour, H.,

Sullivan, J., & Carlsson, S. (2014). CNN

features off-the-shelf: an astounding baseline

for recognition. In Proceedings of the IEEE

conference on computer vision and pattern

recognition workshops (pp. 806-813).

[18] Girshick, R., Donahue, J., Darrell, T., &

Malik, J. (2014). Rich feature hierarchies for

accurate object detection and semantic

segmentation. In Proceedings of the IEEE

conference on computer vision and pattern

recognition (pp. 580-587).

[19] Girshick, R. (2015). Fast r-cnn. In

Proceedings of the IEEE international

conference on computer vision (pp. 1440-1448).

[20] Ren, S., He, K., Girshick, R., & Sun, J. (2015).

Faster R-CNN: Towards real-time object detection

with region proposal networks. In Advances in

neural information processing

systems (pp. 91-99).

[21] Redmon, J., Divvala, S., Girshick, R., &

Farhadi, A. (2016). You only look once: Unified,

real-time object detection. In Proceedings of the

IEEE Conference on Computer Vision and

Pattern Recognition (pp. 779-788).

[22] Krizhevsky, A., Sutskever, I., & Hinton, G.

E. (2012). Imagenet classification with deep

convolutional neural networks. In Advances in

neural information processing systems (pp.

1097-1105).

https://towardsdatascience.com/computer-vision-a-journey-from-cnn-to-mask-r-cnn-and-yolo-part-2-b0b9e67762b1
https://towardsdatascience.com/computer-vision-a-journey-from-cnn-to-mask-r-cnn-and-yolo-part-2-b0b9e67762b1
https://towardsdatascience.com/computer-vision-a-journey-from-cnn-to-mask-r-cnn-and-yolo-part-2-b0b9e67762b1

INITIATION TO RESEARCH COURSE, UE 5.1 1

Online VS Offline algorithms for the Traveling
Salesman Problem

Mourtaza KASSAMALY, student at ENSTA Bretagne (Brest, France) in the field of Autonomous Robotics
mourtaza.kassamaly@ensta-bretagne.org

Abstract—Solving the Traveling Salesman Problem is NP-
hard and no deterministic solution can be found. Near-optimal
solutions can be used by using heuristics or through the use
of swarm intelligence and AI algorithms such as Reinforcement
or Deep Learning. This study is included in an Initiation to
Research course proposed at École Nationale Supérieure des
Techniques Avancées de Bretagne (ENSTA Bretagne) in the field
of Autonomous Robotics. Its goal is to assess the efficiency of
online path-planning algorithms for the solving of the Travel-
ing Salesman Problem, in comparison to offline path-planning
algorithms.

Index Terms—Monte-Carlo Tree Search, Ants Colony Opti-
mization, Optimal path, Near-optimal path, Waypoints, Shortest
Path, Traveling Salesman Problem, Path planning, Online plan-
ning, Offline planning

I. INTRODUCTION

IN various fields such as infrastructure monitoring or au-
tonomous deliveries and logistics, Autonomous Vehicles

can be used to travel a given number of locations. Trajectories
must be optimized to avoid a waste of time and energy and
thus, looking for the shortest path traveling key locations
becomes crucial. This is known as the Traveling Salesman
Problem (TSP). It consists in finding the optimal, i.e. shortest
path traveling a set of spatial points only once. It is derived
in many variants as described in [1] where each spatial point
has to be visited more than once or where obstructions can
occur as static or dynamic obstacles. In the Dynamic Traveling
Salesman Problem (DTSP) spatial points can be mobile. In
the Multiple Traveling Salesman Problem (MTSP) targets
are visited by a swarm of vehicles to split the workload.
Other variants simulate better the problem of Autonomous
Deliveries such as the Black and White Traveling Salesman
Problem [2] in which spatial points are colored in black or
white and the vehicle has to travel all the points but without
exceeding a given number consecutive white points without
having visited a black one. This could address the problem of
visiting locations by stopping at charging stations.

II. ALGORITHMS

A. Formulation of the problem

Let us consider G = (V,E) a weighted directed graph
with V and E its vertices and edges. There are M vertices
(waypoints) and the graph is fully connected which means
there is an edge between every pair of waypoints. The weight
of edges will be determined by the Euclidian distance to
travel from one waypoint to another. Let us note C a MxM

matrix containing the costs between waypoints: Cij is the
cost for moving from waypoint i to waypoint j. The total cost
accumulated is noted Co. For each pair of vertices (i, j), xij

is equal to 1 if the edge from waypoint i to j belongs to the
path, 0 otherwise. Let us note that xij is not necessarily the
same as xji. The “path-planning” issue is presented as follows:

minimize

Co =
∑

(i,j) Cij for (i,j) in path

subject to

∑M
i=1 xij = 1 ∀j ∈ {1, ...,M} (1)∑M
j=1 xij = 1 ∀i ∈ {1, ...,M} (2)

The problem is to be tackled using two different types of
algorithms. On the one hand, the Monte Carlo Tree Search
Algorithm (MCTS) explained in the next section is used as an
online (i.e. on the fly) planning algorithm. On the other hand,
an offline state-of-the-art algorithm will be implemented as a
comparison and the choice was made to use an Ants Colony
Optimization Algorithm (ACO) [4].

B. Online path planning: Monte Carlo Tree Search Algorithm

The Monte Carlo Tree Search, as described in [3], is an
algorithm that seeks to find the most rewarding move regarding
a given goal at a given time and a given state in a mission or
game. It is based on a search tree with different arborescence
that will grow and evolve as it is used. The MCTS algorithm is
similar to the minimax algorithm but is less time consuming.

The minimax algorithm considers, at each state, all the
different states that can be reached from the current state.
As a result, absolutely all scenarios are considered and the
algorithm is sure to find a suitable action. However, projecting
dozens of steps into the future while considering all possible
scenarios at each step can quickly increase the memory used
and the time needed to converge. The MCTS algorithm solves
this problem by not considering all the possible scenarios at
each step but only a few: first by chance, then by preferentially
selecting the scenarios that have given a high reward, and
sometimes by preferring scenarios still unexplored. It balances
exploitation and exploration and covers the most promising
scenarios, thus saving computational resources. The tree is
composed of leaves and branches (nodes and edges). Each
leaf or node represents a game state and each branch or edge
represents a transition between two game states by an action of

INITIATION TO RESEARCH COURSE, UE 5.1 2

one of the players. The algorithm is used in two parts: training
and exploiting.

The first part, training, is divided into 4 steps. The comple-
tion of all the 4 steps is often called a rollout. Each rollout
will update the search tree and one can do as much rollout
as desired. The number of rollouts will surely depend on how
much available time one have before making a decision in the
game.

1) The selection consists in selecting an unvisited node.
The selection is done according to rules or a policy to
be defined, random policy is also one of the possibilities.

2) The expansion consists in choosing a child node from
the newly selected node, that is to say that the execution
of an action in accordance with the rules of the game
allows to obtain this child node from the node selected
in step 1.

3) The simulation consists in executing a random game
from the extended node found in step 2, (this could be
done randomly or according to a policy to be defined)
until reaching a final node (until the game reaches a final
state).

4) Back propagation consists in back propagating the re-
ward obtained at the end of the simulation through
the nodes encountered. Each node then contains two
information that are kept up to date: the average reward
obtained starting from this node, and the number of
times this node has been visited by the algorithm.

The second part is the exploiting part, it consists in using the
updated tree from the training to make a decision in the game.
Considering the state of the game we are in (the node), we
have to make a decision (make a move in the game according
to the rules), which is to say select which child node to
choose according to the updated tree. The node is chosen by
maximizing

a = r + c ∗
√
(ln(N)

n)

where r is the average reward among all simulations obtained
starting from this node, N is the number of times the parent
node has been visited, n the number of times the considered
node has been visited and c is an exploration parameter which
gives weight to unvisited nodes to encourage exploration. This
last coefficient is meant to be chosen empirically. In brief, the
Monte Carlo Tree Search is a method that uses a search tree
that allows to forecast the most likely scenarios from a given
state and use it to find the most promising moves towards a
given objective.

C. Simulations and results

Simulations were made using ROS and Python and con-
sisted in a Dubin’s vehicle moving to specific targets one by
one using artificial potential fields. The vehicle comes back to
its original position after all targets were visited. Targets were
chosen by a planner that would either use an ACO algorithm
at the beginning of the run or a MCTS algorithm used on
the fly whenever a target has been reached by the vehicle.
The simulations are made available on a Github 1 repository.

1https://github.com/MourtazaKASSAMALY/initiation to research

The field is 15x15 meters and hosts multiple scenarios. A
scenario consists in a number of targets that varies from 2
to 10 and each scenario has been repeated in 30 different
configurations or layouts, as shown by a few examples in Fig
1. To compare performance, the metric used is the travelled
distance by the vehicle for collecting all targets and coming
back to the original position. Results of the simulations are
shown in Fig 2.

(a) A scenario with 2 targets

(b) A scenario with 7 targets

(c) A different configuration for 7 targets

Fig. 1: Overview of ROS Simulations

Performance are similar with a few number of targets to
reach but ACO algorithm rapidly outperforms MCTS algo-
rithm for a higher number of targets. With 10 targets to collect,
the vehicle travelled 48 meters using ACO planning while
MCTS planning made it travel 53 meters. The gap could just
grow higher as the number of targets increases. As explained

https://github.com/MourtazaKASSAMALY/initiation_to_research

INITIATION TO RESEARCH COURSE, UE 5.1 3

Fig. 2: Average travelled distance vs. number of targets

in the previous sections, the MCTS algorithms grows a search
tree to look for promising moves using rollouts. The number
of rollouts is surely a critical factor for assessing its efficiency
and mostly depends on the computational ressources and time
available for making a decision. To simulate online (i.e. almost
real-time) path-planning, the choice was made to run only 10
rollouts after each target reached to compute the next one.
The outcome would be different if this number was higher
but again, it is related to one’s requirements.

III. CONCLUSION

This short comparison shows that state-of-the-art offline
algorithms performs better than online algorithms for path-
planning to deal with the Traveling Salesman Problem. Dig-
ging into online algorithms is still worth when dealing with
situations derived from Dynamic Traveling Salesman Problem
where targets are non-static and obstructions can appear.
Indeed, online algorithms certainly outputs a less optimal
answer but they are rapidly executed and can easier adapt
to changing configurations. A large amount of work has been
made on adapting state-of-the-art offline algorithms to cope
with dynamic constraints such as in [6] where a strategy is
explained to reuse previous ACO results to recompute a path
on the fly without starting again from scratch. As for the
MCTS algorithm, improvements can be made in the choice
of selection and simulation policies that are just greedy in this
study. Significant progress can be achieved by building policies
using Deep Reinforcement Learning and by splitting the
workload between multiple agents in a decentralized version
of the MCTS Algorithm [7] [8].

ACKNOWLEDGMENT

I would like to thank M. Luc JAULIN, professor in mobile
robotics at ENSTA Bretagne and a researcher at Lab STICC in
Brest (France) in the fields of assembly computing and marine
robots.

REFERENCES

[1] K. Ilavarasi and K. S. Joseph, ”Variants of travelling
salesman problem: A survey,” International Conference
on Information Communication and Embedded Systems
(ICICES2014), Chennai, India, 2014, pp. 1-7, doi:
10.1109/ICICES.2014.7033850.

[2] G. Ghiani, G. Laporte, and F. Semet, “The Black
and White Traveling Salesman Problem,” Operations
Research, vol. 54, no. 2, pp. 366–378, Apr. 2006, doi:
10.1287/opre.1050.0218.

[3] M. C. Fu, ”MONTE CARLO TREE SEARCH: A
TUTORIAL,” 2018 Winter Simulation Conference
(WSC), Gothenburg, Sweden, 2018, pp. 222-236, doi:
10.1109/WSC.2018.8632344.

[4] Chen, Mingzhi and Daqi Zhu. “Data collection
from underwater acoustic sensor networks based on
optimization algorithms.” Computing 102 (2019): 83-104.

[5] KASSAMALY Mourtaza, Initiation to Research, (2021),
GitHub repository

[6] Y. Cao, X. Hu and J. Zhang, ”Dynamic swarm
intelligence algorithms with reuse strategy for
dynamic traveling salesman problem,” 2017 Seventh
International Conference on Information Science and
Technology (ICIST), Da Nang, 2017, pp. 169-176, doi:
10.1109/ICIST.2017.7926751.

[7] M. Daneshvaramoli et al., ”Decentralized
Communication-less Multi-Agent Task Assignment
with Cooperative Monte-Carlo Tree Search,” 2020 6th
International Conference on Control, Automation and
Robotics (ICCAR), Singapore, 2020, pp. 612-616, doi:
10.1109/ICCAR49639.2020.9108073.

[8] Czechowski, Aleksander Oliehoek, Frans. (2020). Decen-
tralized MCTS via Learned Teammate Models.

INITIATION À LA RECHERCHE, 2020 - 2021 1

Modeling and State Estimation by Neural Networks
Corentin Lemoine

Abstract—Neural networks can be very efficient to approxi-
mate nonlinear functions with a large number of parameters. We
may need to approximate such functions to model and estimate
the state of a robot in its environment. Machine learning of neural
networks allows to take into account all the factors influencing
the robot’s behavior, without making assumptions on the shape
of these factors.

Index Terms—Neural networks, modeling, state estimation.

I. INTRODUCTION

MACHINE learning techniques based on neural networks
have been greatly developed in recent years. Many

fields benefit from these advances, and we can easily imagine
how to adapt some of these techniques in the context of
mobile robotics. Among the domains with which we can draw
parallels, we can mention language learning or time series
prediction. In this paper, we will propose an adaptation of
these technologies to predict the state of a robot.

II. STATE OF THE ART

A. Réseaux feedforward

A feedforward neural network is a network without cycles,
in which the information propagates only in one direction.
This type of network has no memory of previous inputs.

Fig. 1. Feedforward Neural Network

One method of using this type of network is the NARX[1]
architecture. We suppose in this case that the function we try
to estimate is of the form :
y(t) = f(y(t − 1), y(t − 2), . . . , y(t − ny), u(t − 1), u(t −

2), . . . , u(t− nu))
Where nf and ny are constants. We then construct the input

vector of the network :
(y(t−1), y(t−2), . . . , y(t−ny), u(t−1), u(t−2), . . . , u(t−

nu))
and we train our feedforward network how to estimate the

f function.
We can then use the NARX network :

• in open loop for prediction on a single time step
• in closed loop for prediction on several time steps

To obtain the closed-loop network, it is sufficient for each
time step to reconstruct the input vector with the output of
our model for the previous time step.

B. Recurrent Neural Networks

In recurrent neural networks, the network has a memory of
the data it has received; it therefore forms an output consistent
with a sequence of inputs. This type of network is therefore
widely used in the context of predicting chronologically or-
dered data.

Fig. 2. Réseau de neurones récurrent [2]

Among the classical recurrent neural networks, we can
quote the networks based on cells LSTM[3], or cells GRU[4].
These models allow to get rid of the problem of gradient
disappearance [5]. This classical problem of recurrent net-
works occurs during the computation of the gradient of the
cost function, which loses very quickly the memory of the
past data. It then becomes very difficult, if not impossible, to
perform the learning. The network cannot then extract any link
between the data.

The cells LSTM for Long Short-Term Memory have been
conceptualized since 1995. They are used in the context of
language learning, or in the prediction of stock market values.
It is this type of network that will be implemented here for
the prediction of a robot’s state.

C. Attention mechanisms

Very often, we have a large amount of input data which
makes the learning phase very slow. A solution often proposed
to reduce the size of the input data is the use of an attention-
based mechanism[6]: a second neural network is trained to
extract better descriptors of the state of a system.

This second network can be trained in a fully supervised
way, which implies to manually choose the adapted descrip-
tors, or in an automatic way by using an autoencoder[7][8].
The number of descriptors is then reduced to an arbitrarily
chosen number.

INITIATION À LA RECHERCHE, 2020 - 2021 2

III. IMPLEMENTATION

A. Choice of data

The choice of data is the first step in the implementation
of such a solution. Indeed, it is necessary to choose what will
be the input data of our neural network and what will be the
output data. In order to have a model that can be run in a closed
loop, it is necessary that the output y(t) can enter the inputs
at time t+ 1. We therefore keep the architecture proposed by
the network NARX :

y(t) = f(y(t − 1), y(t − 2), . . . , y(t − ny), u(t − 1), u(t −
2), . . . , u(t− nu))

y(t) is therefore our state vector at time t and u(t) our
command. By nature, the neural network will not be able to
extrapolate its model outside the domain of the data on which
it has been trained. For example, it will be more difficult to get
the (x, y) position of a system from data allowing to calculate
its speed, than to predict its speed and then integrate it to
get its position. The ”black box” aspect of the neural network
must be limited as much as possible to obtain the best possible
results.

For this implementation, we will use data from a quadri-
copter drone flight. Our state vector will include the filtered
x, y and z axis output of the gyroscope.

Fig. 3. y1

The command will be the command applied to the motors.

Fig. 4. u1

B. Data preprocessing

Using a neural network involves preprocessing the data so
that the training data has a mean of zero and a standard
deviation of 1. This transformation must therefore be kept
in mind to apply to the new data, and reversed to obtain
consistent output data.

As with the choice of data above, it is always best to keep
only the most significant data. Too much data will only noisy
the input of the network and decrease the performance of the
neural network. The raw dataset used comes from a 2000
Hz sampling of the data of a flight controller; not only is
this measurement oversampled in view of the dynamics of
the system, but this amount of data implies that it is not
possible to keep a large memory of the past for a simple
limitation of memory and computing power. Here we choose
to subsample to 200 Hz. So we have about 2 minutes of data,
or 15453 training samples after separation into training, test
and validation data.

Finally, even if it doesn’t apply here, it is classical in data
sets to find sequences that are more adapted to the network
in a certain form: for example, the heading of a vehicle will
be much better apprehended in the form of a two-component
direction vector than in its raw form in order to avoid a jump
between −π and π.

C. Building the Neural Network

We choose ny and nu arbitrarily to correspond to the
dynamics of our system. Here we will use 200 samples which
will represent 1 second.

We will experiment with 2 architectures: a network NARX
and a cell-based network LSTM.

D. Training and prediction

1) NARX: The training of the network NARX is quite fast.
We use the mean square error to measure the performance
of the network, which would only represent the average
error of our network after the inverse data preprocessing
transformation.

INITIATION À LA RECHERCHE, 2020 - 2021 3

Fig. 5. MSE per epoch, NARX

This network allows us to quickly obtain a prediction at
t+ 1.

Fig. 6. Single time steps prediction, NARX

In the next figure, we fed our neural network with 200
consecutive time steps of our dataset. We then iteratively
predict the next gyroscope measurement, stack this prediction
with the actual command sent to the motors, and looped this
new vector to the input of the network. By predicting on 200
time steps, i.e. on one second, we obtain the following figure:

Fig. 7. Mutliple time steps prediction, NARX

We observe that the network is able to predict on only
100 samples before the prediction becomes unstable and the
generated noise becomes too large.

2) LSTM: The LSTM network is harder to train; and
appears to necessitate more data in order to not overfit. We
can see that on the following figure :

Fig. 8. MSE per epoch, LSTM

The network is then able to predict very accurately on
a single time step, but the model drifts very quickly when
predicting on several time steps. The size of the data set is
probably too small here.

INITIATION À LA RECHERCHE, 2020 - 2021 4

Fig. 9. Single time steps prediction, LSTM

Fig. 10. Mutliple time steps prediction, LSTM

IV. BENEFITS AND LIMITATIONS

A. Dataset size

The main limitation we encounter is the dataset size : it is
quite hard to find a dataset, and by essence we need the robot
to be operational to collect data. This solution may be used
to get better performances, but necessitate either a working
platform or a good simulator.

The neural network should in theory get better with the
data it acquires, and could be setup to learn continuously. The
dataset size is a limitation because the initialization can be
tricky.

B. Reliability

The neural network is a black box, and it is not possible to
guarantee a range for its error. By measuring its mean squared
error, we should be able to get accurate statistics though. A
way to mitigate this limiting factor is to associate this system
with a Kalman filter to be able to reject prediction that seems
far off.

C. Adaptability

A strength of the neural network is its ability to adapt, and
be trained continuously. A robot can then adapt to its wear
over time, or to a change in its environment affecting it.

D. Predictive command

A direct application to the state predicting neural network
is the predictive command: we can very quickly predict how a
series of commands will affect our robot, and choose the best
series to reach our goal.

V. CONCLUSION

To conclude, this technique can effectively predict the state
of a system on several time steps. If here the number of
data is quite low both in number of series and in length,
we have shown that the NARX architecture allows to quickly
reach results. Previous studies have shown the superiority of
recurrent neural networks in the processing of large databases,
which is promising to go further.

APPENDIX

Code is available on github as a jupyter notebook at
https://github.com/Pafnouti/NeuralNetStatePrediction

REFERENCES

[1] P. P. C. Yip and Yoh-Han Pao. A recurrent neural net approach to one-
step ahead control problems. IEEE Transactions on Systems, Man, and
Cybernetics, 24(4):678–683, 1994.

[2] fdeloche. Structure of rnn, 2017. [Online; accessed March 9, 2021].
[3] Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory.

Neural computation, 9:1735–80, 12 1997.
[4] Junyoung Chung, Caglar Gulcehre, KyungHyun Cho, and Yoshua Bengio.

Empirical evaluation of gated recurrent neural networks on sequence
modeling, 2014.

[5] Fakultit Informatik, Y. Bengio, Paolo Frasconi, and Jfirgen Schmidhuber.
Gradient flow in recurrent nets: the difficulty of learning long-term
dependencies. A Field Guide to Dynamical Recurrent Neural Networks,
03 2003.

[6] Yao Qin, Dongjin Song, Haifeng Chen, Wei Cheng, Guofei Jiang, and
Garrison W. Cottrell. A dual-stage attention-based recurrent neural
network for time series prediction. CoRR, abs/1704.02971, 2017.

[7] Hareesh Bahuleyan, Lili Mou, Olga Vechtomova, and Pascal Poupart.
Variational attention for sequence-to-sequence models. CoRR,
abs/1712.08207, 2017.

[8] J. Pereira and M. Silveira. Unsupervised anomaly detection in energy
time series data using variational recurrent autoencoders with attention.
In 2018 17th IEEE International Conference on Machine Learning and
Applications (ICMLA), pages 1275–1282, 2018.

Point-to-Point Navigation with Deep
Reinforcement Learning

Paul-Antoine Le Tolguenec1,�

1ENSTA Bretagne, Brest

Nowadays the problem of the autonomous vehicle is one of the
most developed subjects in the world of research. Although
there are different methods, methods based on deep learning
are more and more used in this field. This article illustrates a
solution based on Deep Reinforcement Learning.

Deep learning | Reinforcement | Control | Autonomous car

Correspondence: paul-antoine.le_tolguenec@ensta-bretagne.org

Introduction
In recent years, mobile robotics has experienced unprece-
dented growth. Most of the methods concerning trajectory es-
timation are based on automatic laws. A very robust method
is the linearizing loop control method. But in some cases this
method has to be reworked, because it has to be linearised
around a working point or other. Another very robust method
is that of potential fields, since it also allows to avoid certain
obstacles that could appear spontaneously on the way to the
robot. But for this type of method it is often necessary to
implement other layers that allow to find the path to reach a
point in the defined space. Most of the time it is also nec-
essary to develop a finite state machine to manage the high
level of the robot. Usual methods are therefore very time-
consuming to implement and can lead to mistakes. More-
over, once the control of the robot is set up, optimisation is
difficult. With the progress of deep learning, a new control
approach has emerged: deep reinforcement learning. The ad-
vantage of this method is that once the method is set up it can
be generalised to many problems and it is only necessary to
change certain parameters. Also this method is permanently
optimized. In this article, I expose my work which has al-
lowed me to train a model to make decisions to orientate a car
so that it is able to go from point A to point B as quickly as
possible by avoiding objects (2) that appear as they go along.
To train the model I use the A2C (Advantage Actor Critic) al-
gorithm which uses the principle of reinforcement learning.
Part II illustrates the modelling I have carried out and within
which I have trained the network. Part III presents the im-
plementation of the method (network architecture, theory ...).
Finally, part IV illustrates the experimentation phase.

Modelisation

A. Formalisme. The objective of our work is to automate
a car so that it is able to go from point A to point B while
avoiding obstacles. The kinematics of the car is modelled by

the following equations:

(i) ẋ= v cosφ
(ii) ẋ= v sinφ
(iii) φ= uπθ

(iv) v = k

(1)

At first, I tried to control only the steering angle of the car.
Thus uπθ

represents the φ output taken via a policy πθ. The
robot is also equipped with three sonars, one frontal and two
lateral, which allow to visualize its environment.

B. Simulation. Once the kinematics were defined, I had to
simulate the robot and obtain a visual rendering. I used the
Kivy library of python. Kivy is a free and open source Python
framework for developing mobile apps and other multitouch
application software with a natural user interface. The ob-
jective was to have a visual rendering of the robot’s evolu-
tion, but also to be able to interact with the environment via
a man-machine interface. Once the simulation is launched, a
window opens and the robot evolves in its environment. The
operator can interact with the robot’s environment by creat-
ing walls that he can draw with the mouse. There is also a
button to erase all the walls on the map to rebuild others and
see if the robot is able to generalise its behaviour in any type
of environment.

Fig. 1. Simulation of the system

As can be seen in the figure. The car is represented by a
white square. The sonars of the car are represented by the
three circles at the front of the car.

Paul-Antoine LE TOLGUENEC | bioRχiv | March 1, 2021 | 1–4

Fig. 2. Robot sonars

The walls are represented by the yellow lines. And the ob-
jective of the robot is represented by the red dot. At first, the
robot can cross walls but when it does so its speed decreases
and it gets a negative reward because it has crossed the wall
and because it will arrive less quickly at its target.

Proposed method
The objective of our work is to train an agent to be able to
choose the orientation angle of the car according to his per-
ception of the environment.

C. network structure. The structure of the network is quite
simple. The network takes as input: the distances output by
the sonars, and the angle formed by the direction of the robot
and the line passing through the centre of the robot and tar-
get. To simplify the teaching process, we have discretised the
robot’s exit space. The robot can make three decisions: do
nothing, increment its angle by +20 degrees or -20 degrees.
Of course, making the exit area discreet means poorer results
in the long term. But it allows for a quicker convergence to-
wards a more stable policy (1).

Fig. 3. Neural Network Structure

As you can see the network is divided into two parts(6):

• Critic

The Critic part is used to determine the value of the
state in which the agent is in. This part corresponds
to the value-based part of the learning. It allows to
stabilize the learning and to converge towards a global
maximum of the policy.

• Actor

The actor part corresponds to the part of the agent that
takes action. It is the policy-based part of learning.
The actor part pulls out a probability distribution πθ(s)

which makes it possible to determine what probability
is for the agent to take this or that action given the state.

The advantage of such a method is that a continuous space of
action can be used.(8) Unlike conventional Deep Q-Learning
methods.(9) The problem is that algorithms such as the
DDPG (Deep deterministic policy gradient) which provide
a continuous policy space do not guarantee to find the opti-
mal policy for a given network and MDP, which is the case
for a stochastic critical actor. Moreover, they introduce many
problems that make them difficult to converge.(4) That’s why
we discretize the space in this problem. Here he purpose of
learning is to change the probability distribution in the direc-
tion that gives the maximum reward.

The value part allows to compare the quality of an action car-
ried out in relation to the value of a state already estimated
to know if this action is more optimised than what has been
done before.

D. Advantage Actor Critic algorithm. To update the net-
work parameters we used reinforcement learning. We used
one of the most powerful reinforcement learning algorithms
before the A3C. A2C is an algorithm halfway between value
based learning and policy based learning.

Fig. 4. Actor Critic

The Advantage Actor Critic algorithm takes the following
form :

Fig. 5. Actor Critic

As can be seen in figure 4, the principle of the critical actor is

2 | bioRχiv Paul-Antoine LE TOLGUENEC | Deep Reinforcement Learning

E Reward process

Algorithm 1 N-step Advantage Actor-Critic

1: procedure N-STEP ADVANTAGE ACTOR-CRITIC
2: Start with policy model πθ and value model Vω
3: repeat:
4: Generate an episode S0,A0, r0, . . . ,ST−1,AT−1, rT−1
5: for t from T −1 to 0:
6: Vend = 0 if (t+N ≥ T) else Vω(st+N)
7: Rt = γNVend +∑N−1

k=0 γk (rt+k if (t+k < T) else 0)
8: L(θ) = 1

T

∑T−1
i=0 (Rt−Vω(St)) logπθ(At|St)

9: L(ω) = 1
T

∑T−1
i=0 (Rt−Vω(St))2

10: Optimize πθ using ∇L(θ)
11: Optimize Vω using∇L(ω)
12: end procedure

to take an action thanks to the actor and to criticise the action
achieved thanks to the critic. But to criticise this action you
need something to compare this action with the critic. This
is the Advantage part. There are several ways of expressing
Advantage. But the most common method is to take as the
advantage : Rt−Vπθ(s,a)

with Rt= γNVend+
∑N−1
k=0 γk(rt+k).

We have used the Monte-Carlo evaluation. The Monte-Carlo
method involves letting an agent learn from the environment
by interacting with it and collecting samples. This is equiv-
alent to sampling from the probability distribution P(s, a, s’)
and R(s, a).

However, Monte-Carlo (MC) estimation is only for trial-
based learning. In other words, an MDP without the P tuple
can learn by trial-and-error, through many repetitions.

In this learning process, each “try” is called an episode, and
all episodes must terminate. That is, the final state of the
MDP should be reached. Values for each state are updated
only based on final reward Rt, not on estimations of neighbor
states — as occurs in the Bellman Optimality Equation.

MC learns from complete episodes and is therefore only suit-
able for what we call episodic MDP.

Here it’s not the case, but we are going to use the same
method to take into account more information.

As can be seen in figure 5, the advantage part of the algorithm
can also be called the TD error.

In the literature one initially findsRt= γVt+1 +rt but recent
work on replay experience has shown that taking into account
more rewards (like the monte-carlo evaluation) makes it eas-
ier to converge towards a global minimum of the cost func-
tion estimating the MDP (Markovian decision process). On
the other hand, using this method implies a certain volatility
of the estimator since a stock affects the value of a state fur-
ther in time, and it often takes longer to converge. It is there-
fore a question of finding the best hyper-parameters, which
are often found empirically.

E. Reward process. In reinforcement learning methods the
reward process is very important as it allows the robot to per-
ceive its environment. More importantly, it corresponds to
the MRP (Markovian reward process) that we try to estimate
thanks to the neural network (the critical part). So if the re-
ward process does not correspond exactly to the environment,
the agent will not correctly estimate the behaviour it has to
adopt.

Rt =−2, if None(life penalty)
Rt = +1, if distancet < distancet−1

Rt =−5, if x,y ∈ Ωsand
(2)

The life penalty, allows the agent to get out of certain situa-
tions such as when he comes into contact with a wall and gets
stuck. If a negative life penalty is not applied, the robot may
get stuck in its situation.

Experimental discussion and results
The neural network used is quite simple so the learning pro-
cess is not long but the final results can be improved. To
evaluate the quality of a reinforcement learning project, it is
not enough to look at the final quality of the model. It is nec-
essary to evaluate the training time, the response time of the
system, and to determine on parameters such as the learning
curve if the model can still learn or if it is not the case.

Learning. It is difficult to visualize neural network learning
for reinforcement learning problems. Especially when using
a critical actor. In fact, if the error on the critic decreases
it does not necessarily mean that the actor learns correctly.
But it is really the actor who interests us. The error on the
actor can be interpreted but it does not allow us to visualize
the quality of the policy used by the agent at a given moment
t. To visualize the evolution of an agent in his environment,
we must take into account the number of rewards he acquires
over time.

Fig. 6. Rewards curve

As can be seen on the reward curve the model converges to an
acceptable policy after 10K iterations, which is about 5 min-
utes. We can consider that the model learned very quickly.
The environment is quite simple since at first we don’t use
walls.

Obstacle avoidance. Our initial goal was to create an agent
capable of avoiding all the obstacles he could find. With the
chosen network and the established configuration our agent
is able to reach his target avoiding most of the obstacles.

Paul-Antoine LE TOLGUENEC | Deep Reinforcement Learning bioRχiv | 3

Fig. 7. Avoiding one Obstacle

Even following a path.

Fig. 8. Avoiding one Obstacle

However in some configurations the robot is sometimes
forced to cross the wall to reach the target.

Fig. 9. The U problem.

So if the model presents very good results, it is still per-
fectible. To check the results go to : Actor-Critic.

Prospects for improvement. As the results obtained are
the result of a detailed search for the best hyper-parameters of
the model (learning rate, gamma, etc.), there are three ways
of improving the agent’s performance:

• Building a deeper network One of the possible rea-
sons is that the network that has been built is not suf-
ficient to find the most optimal policy in this Marko-
vian decision process problem. One of the solutions
is therefore to create a deeper network and thus to add
layers of neurons.

• Add an lstm layer LSTM (7) are recurrent neural net-
works. They make it possible to store information in
memory. So in case the robot is stuck in a corner,
it would be able to know where it comes from. For
the moment it only goes with what it sees. Keeping
information in memory could probably optimise the
robot’s performance. However, using this type of net-
work leads to problems that can be difficult to solve,
such as the vanishing gradient.(3)

• Implementing another algorithm As we have seen,
there are several ways to train a neural network to find
the CDM. But one of the most optimal methods is the
A3C (5) algorithm. (asynchronous advantage actor-
critic) This method maximizes the exploration of sev-
eral agents communicating with each other to find the
best policy.

Conclusion
Our method makes it possible to approximate the CDM and
find an acceptable policy. However, the model can still learn.
For the moment a more conventional method such as a vector
field would work without any doubt. But the advantage of
reinforcement learning methods is that it can be applied to a
totally different problem without changing the agent struc-
ture and therefore the method. This is not the case with
conventional methods where each problem introduces a new
method.
1. Bhatnagar, S., R. S. Sutton, M. Ghavamzadeh, and M. Lee (2009) “Natural actor–critic algo-

rithms,” Automatica 45(11), 2471–2482, ISSN 0005-1098
2. Evans, B., H. W. Jordaan, and H. A. Engelbrecht (2021) “Autonomous obstacle avoidance by

learning policies for reference modification,”
3. Hu, Y., A. E. G. Huber, J. Anumula, and S. Liu (2018) “Overcoming the vanishing gradient

problem in plain recurrent networks,” CoRR abs/1801.06105
4. Matheron, G., N. Perrin, and O. Sigaud (2019) “The problem with DDPG: understanding

failures in deterministic environments with sparse rewards,” CoRR abs/1911.11679
5. Mnih, V., A. P. Badia, M. Mirza, A. Graves, T. P. Lillicrap, T. Harley, D. Silver, and

K. Kavukcuoglu (2016) “Asynchronous methods for deep reinforcement learning,”
6. SC., W. (2003) Artificial Neural Network, The Springer International Series in Engineering

and Computer Science,
7. Staudemeyer, R. C., and E. R. Morris (2019) “Understanding LSTM - a tutorial into long

short-term memory recurrent neural networks,” CoRR abs/1909.09586
8. van Hasselt, H., and M. A. Wiering (2007) “Reinforcement learning in continuous action

spaces,” in 2007 IEEE International Symposium on Approximate Dynamic Programming and
Reinforcement Learning, pp. 272–279

9. Yang, Z., Y. Xie, and Z. Wang (2019) “A theoretical analysis of deep q-learning,” CoRR
abs/1901.00137

4 | bioRχiv Paul-Antoine LE TOLGUENEC | Deep Reinforcement Learning

https://github.com/Paul-antoineLeTolguenec/Actor-critic

Autonomous navigation of an underwater robot
(AUV) by genetic algorithm

Paul Pineau
Brest, France

Email: paul.pineau@ensta-bretagne.org

Abstract—There are multiple methods to navigate an AUV
independently. Creating an autonomous mission controller and
planner with FSM is of several interest for underwater missions.
First of all the architecture is algorithmically simple. The
positioning of an AUV is also problematic and this method of
navigation offers a lot of room for maneuver if the robot is lost.
This paper discusses how to find the optimal headings for the
state machine in order to quickly validate the waypoints. For
this purpose a genetic algorithm is used in order to optimize by
a few iterations the optimal headings.

Keywords: FSM, AUV, Genetic algorithm, autonomous

I. INTRODUCTION

The ocean remains an extremely unknown environment
for man because it is dangerous and difficult to explore. If
before one could study the surface with boats relatively easily,
studying the seabed was (and remains) extremely complex.
Several technological innovations have gradually allowed to
replace divers by robots. The first were the ROV (Remotely
Operated Vehicles) which made it possible to remove the
human risk but being linked by a wire to an operator the
missions are thus limited, in time as well as in space. This
is why AUVs (Autonomous Underwater Vehicles) offer many
advantages for underwater exploration. Their range is infinite
(using the battery) and they can take readings on their own.
However, the difficulty lies in the positioning of the robot that
does not have access to GPS underwater. In a lake a robot
often has to make a path between different waypoints. Using
a finite state machine has many advantages, especially on the
algorithmic complexity of the controller that results from it.
However finding this controller can be complicated. In this
topic, the goal is to find the optimal FSM for the path of the
AUV through a genetic algorithm.

The purpose of the state machine is to ”bounce” the AUV
on isobaths. On a nautical chart, an isobath is a line joining
points of equal depth. It is thus a curve of level, indicating
the depth of a surface below the water level. At each isobath
detection the AUV takes a new course in a predefined list. The
goal is to find this list of heading in order to validate in an
optimal way the waypoints given by the user at the beginning
of the mission.

II. GENETIC PROGRAMMING FOR HEADINGS
OPTIMISATION

The genetic programming method consist of iterate a list
of data in order to find the optimal value. In this cas the
data are a list of headings. For the algorithm[1] we need an

initial population called M0, composed of N members denoted
mk, k ∈ [1, N]. We will iterate this population until we find
at least one member that satisfies our needs. Then we define
f(mk) the fitness function that will define the quality of the
member, in our case it will be the travel time. The principle of
the algorithm is to keep the best members and combine them
in order to improve the result in the image of the theory of
evolution. We therefore define two operations, a unary one, the
mutation that we will note gm(mk) and another binary one,
the crossover that we will note gc(mk). We can then apply
the genetic algorithm[1].

Algorithm 1 Mutation(m = [h1, h2, .., hn])

Require: k ← randint(1, N)
Require: p← random(0, 1)

1: if p > 0.5 then
2: m[k]← m[k] + 20
3: else
4: m[k]← m[k]− 20
5: end if

Algorithm 2 Calculate m = gc(m1 = [h11, h12, .., h1n],m2 =
[h21, h22, .., h2n])

Ensure: m1 and m2 are sorted
1: for iteration = 1, 2, k . . . do
2: m[k] ←1 2 .(m1[k] +m2[k])
3: end for

A. Fitness Function

So we have f(mk) the fitness function. f(mk) calculates the
time taken by the submarine to complete the route delimited by
the waypoints. Thanks to an Euler method, the time taken by
the submarine for each mk of the population M is calculated.
We need to check if all waypoints are validated. Let define
v(wk) for wk ∈ W , with W the list of waypoints. v(wk)
return True if the waypoint is validated, false otherwise. A
matrix M is then defined with M(i, j) = 1 if waypoint j is
validated starting from i. We then have that all the waypoints
are validated if ∀i,

∑
j M(i, j) > 2 and ∀j,

∑
iM(i, j) > 2

which means that at least the AUV came to the waypoint and

leave. For example, if W = ([0,0],[10,0],[0,10]), we have M
that can look like this :

 1 1 0
0 1 1
1 0 1

Here, the path is w1 to w2, w2 to w3 and finally w3 to w1.

B. The algorithm

Let define M the population,PopSize the size, τ the
probability to choose the crossover operation instead of the
mutation, Nmax the maximum iteration of the algorithm.

Algorithm 3 Compute optimal headings h

Require: globalbest← inf
Require: bestheading ← []

1: for iteration = 1, . . . , Nmax do
2: globalbest← best score in the population
3: bestheading ← the associate population member

Require: M is sorted with the fitness
4: for 1, . . . , k, . . . , PopSize do
5: if random(0, 1) > τ then
6: M [k]← mutation(bestMembers)
7: else
8: M [k]← crossover(bestMembers)
9:

Where bestMembers are the best members of the popula-
tion at that time according to the fitness function.

III. PYTHON SIMULATION

I chose to implement the algorithm in python. To do so, I
started by modeling the physics of a riptide submarine [2][3].
Then I had to apply a controller via FSM[4] (Finite State
Machine). The principle is to measure a distance to the bottom
that will have been modeled beforehand is to change state each
time the k−meter isobath is reached. I choose to use only a
list of three headings.

A. FSM

The FSM look like this in my case.

Fig. 1: FSM

There is one problem we need to take into account. When
the AUV detect the isobath, he change heading and a few mo-
ment later detect almost the same isobath so we need to create
special state. For example for the state H1 corresponding to
heading 1. We need to have H1in and H1out. the out state
is useful for the transition and when we detect an isobath, we
change state to the out one and when it’s detected another time
we change to the in state. With this tip there is no problem
when the depth is rising or falling.

Fig. 2: In and Out States, source:”https://educalingo.com”

IV. RESULATS

The algorithm makes it possible to find by having
as waypoints [[10, 20,−2], [20, 20,−2], [20, 10,−2]], with
as background a giant bowl, optimal headings worth:
[1.7856, 2.9496, 5.0813] for an optimal time of 5.3.

Fig. 3: Results

REFERENCES

[1] Koza, J., 1998. Genetic programming 1998. San Fran-
cisco: M. Kaufmann Publishers
[2] Thor I Fossen.Handbook of marine craft hydrodynamics
and motion control. John Wiley Sons, 2011
[3] Luc Jaulin.Mobile robotics. John Wiley Sons, 2019

[4] Timothy Kam, Tiziano Villa, Robert K. Brayton et
Alberto Sangiovanni-Vincentelli, Synthesis of Finite State Ma-
chines : Functional Optimization, Springer, 1996, 282 p.

Swarm Robotics
Julien Piranda
Brest, France

Email: julien.piranda@ensta-bretagne.org

Abstract—As an emerging field of research in which swarm
intelligence is applied to multi-robot systems, swarm robotics (a
very specific sub-domain of collective robotics) studies how to
coordinate large groups of relatively simple robots through the
use of local rules. It focuses on the study of the design of a large
number of relatively simple robots, their physical bodies and their
control behaviours. We will focus on the phenomenon by which
robots move by themselves, using only limited environmental
information and simple rules.

Keywords: Robotic, AUV, Swarm robotics, autonomous

I. INTRODUCTION

Inspired by the complex behaviours observed in natural
swarm systems (e.g. social insects and live animals in or-
der), swarm intelligence is a new field that aims to build
fully distributed decentralised systems in which the overall
functionality of the system emerges from the interaction of
individual agents with each other and with their environment.
In order to apply the knowledge gained in this research area to
multi-robotics, a new research field called ”swarm robotics”
is being created [1]. Swarm robotics (SR) is the study of how
to coordinate large groups of relatively simple robots using
local rules. It focuses on the study of the design of a large
number of relatively simple robots, their physical bodies and
their control behaviour. Swarm robotics is closely related to
the idea of swarm intelligence and shares its interest in self-
organised decentralised systems.

II. SWARM INTELLIGENCE

Based on simple but collectively complex individual be-
haviour natural grouping systems including social insects such
as colonies of ants, termites, bees, wasps, etc. [2], and high-
level live animals such as flocks of birds, schools of fish
and packs of wolves, etc. are examples of collective intelli-
gence. Inspired by the robustness, extensible and principles of
distributed self-organisation observed in these astonishingly
complex natural collective behaviours resulting from simple
and individual local interaction rules, an attempt to apply the
knowledge gained from this research to artificial systems (e.g.
massively distributed computer and robotic systems) has given
rise to a new research topic called swarm intelligence [3].

A. Overview

This growing field of research, which was first introduced
in the context of cellular robotic systems by Beni and Wang,
is considered a sub-field of artificial intelligence based on
the study of collective behaviour in decentralised and self-
organised systems [4]. Although there is no specific definition
of swarm intelligence, we adopt the heir to that of Dorigo

Birattari: ”The discipline that deals with natural and artificial
systems composed of many individuals who coordinate using
decentralised control and self-organisation. In particular, the
discipline focuses on collective behaviours that result from the
local interactions of individuals with each other and with their
environment”. Thus, a swarm intelligence system typically
consists of a population of relatively simple agents that interact
only locally with themselves and their environment, without
having a global knowledge of their own state and the state
of the world. Moreover, the observed global behaviour is
in response to the local environment and local interactions
between agents that follow often very simple rules.

B. Existing Algorithms

Theories based on natural swarms have been applied to
solve similar engineering problems in several fields: engi-
neering, from combinatorial optimisation to the rooting of
communication networks, via robotic applications, etc [5]. The
best-known swarm-based algorithms are: ant colony optimisa-
tion algorithms (ACO), particle swarm optimisation algorithms
(PSO), artificial fish swarm algorithm (AFSA) and bee-based
algorithms. The ACO algorithm is based on the foraging
behaviour of ant colonies to find the shortest routes between
their nests and food sources. The AFSO algorithm is based on
the collective movement observed in different fish behaviours
such as foraging, tracking other fish, protecting the group from
hazards and stochastic searching.

III. SWARM SIMULATION

There are therefore several complex algorithms developed
for swarm robotics. In this project, we will try to implement
swarm robotics inspired on the collective behavior. We will
draw inspiration from the behaviour of animals, especially
birds. Indeed, there are algorithms which simulate the flocking
behaviour of birds. We will use them in order to simulate the
basic movements of our swarm robots.

A. Boids

Boids is an artificial life program, developed by Craig
Reynolds in 1986, which simulates the behaviour of birds
in flight. His paper on the subject was published in 1987 in
the proceedings of the ACM SIGGRAPH conference. 1] The
name ”boid” corresponds to an abbreviated version of ”bird-
oid object”, which refers to a bird-like object. By the way,
”boid” is also a pronunciation of the New York Metropolitan
dialect for ”bird”.

B. Principe

Boids is an example of emergent behavior, the complexity
of Boids arises from the interaction of individual agents
adhering to a set of simple rules [6]. In our case, it will allow
to define the basic movements of our robots.
The main rules are :

1. Separation
Each boid also tries to avoid running into the other boids. If it
gets too close to another boid it will steer away from it. You
can control how quickly it steers with the ”separation” slider.

Fig. 1: Separation rule

2. Alignment
Finally, each boid tries to match the vector (speed and direc-
tion) of the other boids around it. Again, you can control how
quickly they try to match vectors using the ”coherence” slider.

Fig. 2: Alignment rule

3. Cohesion
Each boid flies towards the the other boids. But they don’t
just immediately fly directly at each other. They gradually
steer towards each other at a rate that you can adjust with
the ”coherence” slider.

Fig. 3: Cohesion rule

IV. OUR MODEL

Thus, we can represent how our robots will move during the
mission. We will now establish the intelligence of the swarm.
For that, we will try to implement swarm robotics inspired on
the collective behavior of fish schools. Indeed, in this project
our robots are underwater and their collective behaviour could
be represent by a fish swarm.

A. Fish School Search

The Fish School Search (FSS), created by Bastos Filho
and Lima Neto in 2007, is, in its basic version, a unimodal
optimisation algorithm inspired by the collective behaviour of
fish schools [7]. The FSS is directly inspired by the feeding
and coordinated movement mechanism of schools of fish to
create coordination between the robots. The basic idea is to
make the fish ”swim” towards the positive gradient in order to
”eat” and ”gain weight”. Collectively, the heavier fish have
more influence on the overall search process, causing the
centre of gravity of fish school to move to better locations
in the search space over iterations [8].

B. Overview of FSS Algorithms

1. Individual component of the movement
Each fish in the school carries out a local search for promising
regions in the research area. This research is carried out as
follows

Let xi(t) ∈ R3, the position of the ith fish at time t, where
t ∈ R and i ∈ N

xi(t + 1) = xi(t) + rand(−1, 1)stepind (1)

where xi(t), xi(t + 1) represent the position of the
fish i before and after the individual movement operator,
respectively. rand(1, 1) is a uniformly distributed random
number varying from -1 up to 1 and stepind is a parameter
that defines the maximum displacement for this movement.
The new position xi(t+1) is only accepted if the fitness of the
fish improves with the position change. If it is not the case,
the fish remains in the same position and xi(t + 1) = xi(t).

2. Collective-instinctive component of the movement
The model takes into account the trend of the group by
calculating the average of the individual movements.
Let consider I a vector which represents the weighted average
of the displacements of each fish.

I =

∑N
i=1 ∆xi∆fi∑N

i=1 ∆fi
(2)

This will attract the fish that have improved more will
attract the fish in its position. Thus, every fish will be
encouraged to move according to : xi(t + 1) = xi(t) + I.

3. Collective-volitive component of the movement
Let consider B ∈ R3 the barycenter which are calculated

based on the position xi and weight Wi of each fish with
the followed relation :

B(t) =

∑N
i=1 xi(t)Wi(t)∑N

i=1 Wi(t)
(3)

This operator is used in order to regulate the exploration/ex-
ploitation ability of the school during the search process.
Then, there are two possibilities :

Case 1 : if the total school weight
N∑
i=1

Wi has increased

The fishes are attracted to the barycenter according to the
equation :

xi(t + 1) = xi(t)− stepvolrand(0, 1)
xi(t)−B(t)

distance(xi(t), B(t))

Case 2 : if the total school weight
N∑
i=1

Wi has decreased

xi(t + 1) = xi(t) + stepvolrand(0, 1)
xi(t)−B(t)

distance(xi(t), B(t))

where stepvol defines the size of the maximum dis-
placement performed with the use of this operator.
distance(xi(t), B(t)) is the euclidean distance between the
fish i position and the school barycenter. rand(0, 1) is a
uniformly distributed random number varying from 0 up to
1.
Besides the movement operators, it was also defined a feeding
operator used in order to update the weights of every fish
according to

Wi(t + 1) = Wi(t) +
∆fi

max(|∆fi|)
(4)

where Wi(t) is the weight parameter for fish i, ∆fi is the
fitness variation between the last and the new position, and
max(|∆fi|) represents the maximum absolute value of the
fitness variation among all the fishes in the school. W is only
allowed to vary from 1 up to Wscale/2 , which is a user defined
attribute. The weights of all fishes are initialized with the value
Wscale/2.

V. CONCLUSION

Because of the lack of time, we could not couple its 2 algo-
rithms, combining the boids to control the basic movements of
our swarm to the FSS allowing the search of waypoints. The
boids algorithm is a very good algorithm to represent and order
a swarm of robots. The FSS algorithm seems useful in the
search for waypoints which it interprets as food. However, we
are therefore not able to draw any conclusion on the veracity
of using these 2 types of algorithms together.

REFERENCES

[1] Banks, A., Vincent, Æ. J., Anyakoha, Æ. C. Banks, A.
A review of particle swarm optimization. Part I: Background
and development. Natural Computing 467–484 (2007)
[2] E. Bonabeau, M. Dorigo, and G. Theraulaz, Swarm
Intelligence: From Natural to Artificial Systems, Oxford
University Press, New York, NY, USA, 1999
[3] G. Beni, “From swarm intelligence to swarm robotics,” in
Swarm Robotics Workshop: State-of-the-Art Survey, E. Şahin
and W. Spears, Eds., no. 3342, pp. 1–9, Springer, Berlin,
Germany, 2005. View at: Google Scholar
[4] S. Garnier, J. Gautrais, and G. Theraulaz, “The biological
principles of swarm intelligence,” Swarm Intelligence, vol. 1,
no. 1, pp. 3–31, 2007. View at: Google Scholar
[5] Miner - Swarm Robotics Algorithms A Survey.pdf.
[6] DJ-boids — Proceedings of the 8th interna-
tional conference on Intelligent user interfaces.
https://dl.acm.org/doi/10.1145/604045.604089.
[7] Lima Neto, F. Lacerda, M. Multimodal Fish School
Search Algorithms Based on Local Information for School
Splitting. in (2013). doi:10.1109/BRICS-CCI-CBIC.2013.35.
[8] Weight based fish school search - IEEE Conference Publi-
cation. https://ieeexplore.ieee.org/abstract/document/6973919/.

UV 5.1 Initiation à la recherche

Navigation Autonome en utilisant des méthodes
de renforcement.
Introduction
En tant qu’êtres humains, quand nous voulons aller dans un endroit étrange,
nous essayons d’abord de comprendre l’environnement dès le départ et de trouver
la destination, puis de planifier inconsciemment la voie la plus efficace dans le
cerveau. Ce principe est au cœur de la navigation des appareils mobiles. De
manière abstraite, le cœur comprend deux parties, l’environnement perceptuel
et le cheminement basé sur l’environnement connu. Nous avons d’abord eu,
l’émergence du SLAM (simultaneous localization and mapping) qui a eu a des
répercussions importance pour la navigation des robots mobiles. [3] Le SLAM est
un processus dans lequel les robots sont équipés de capteurs tels que la camera, le
laser ou l’odomètre pour construire une carte tout en comprenant l’environnement
inconnu. Une fois la carte obtenue nous pouvons définir un chemin le plus court
entre le robot et l’objectif, par exemple en utilisant l’algorithme A*. Il s’agit du
planificateur global.[1] Pour des applications dans le monde réel l’environnement
est changeant, un obstacle peut entraver le chemin et le planificateur global
ne suffit plus. Il est d’usage de définir alors un planificateur local permettant
d’adapter la trajectoire au besoin pour par exemple éviter un obstacle et rejoindre
le chemin du planificateur global. De manière classique, la méthode des champs
de potentiels permet d’éviter des obstacles. Les capteurs de perception (LIDAR,
camera RGB etc.) repèrent un obstacle, le définissent comme obstacle, font une
mise à jour de la carte puis evite l’obstacle. Toutefois ce processus peut être
couteux en temps et en énergie et le robot n’a aucune connaissance de la nature
de l’obstacle. Les méthodes de renforcement utilisant des réseaux de neurones
proposent des pistes intéressantes pour limiter ces problèmes : identifier un
obstacle (convolution) et adptation à de nombreuses situations. Dans cet article
nous étudierons d’abord les planificateurs globaux pour définir une trajectoire,
puis nous nous attarderons sur les planificateurs locaux pouvant éviter des
obstacles entravant la trajectoire. Nous aborderons enfin la simulation et son
environnement et les pistes d’amélioration.

Planificateur global
Le problème de la planification de chemin peut être décrit comme faire naviguer
un robot mobile dans un espace dans lequel un nombre d’obstacles est à éviter.
La tâche repose généralement sur certains critères d’optimisation, tels que le
moindre coût de fonctionnement en énergie, la plus courte distance de marche,
temps de marche minimal, etc. Il s’agit d’un sujet important et stimulant en
robotique.

En ayant effectué un SLAM, le robot a une connaissance de la carte. Les obstacles

1

statique et globaux son reconnus. Il faut maintenant trouver un chemin le plus
court possible le menant à la cible. Différents algorithmes peuvent être utilisé
comme par exemple l’algorithme A*. Il est analogue à l’algorithme de Dijkstra
mais converge plus rapidement dans la plus part des cas, car il ne parcourt pas
seulement le graphe en largeur comme peut le faire Dijkstra. Nous obtenons
alors une trajectoire de waypoint qui peut être envoyé au planificateur local.

Figure 1: Trajectoire de waypoints trouvée par A*

Planificateur local
Nous souhaitons ici construire un planificateur basé sur des méthodes de
d’apprentissage par renforcement.

En intelligence artificielle, plus précisément en apprentissage automatique,
l’apprentissage par renforcement consiste, pour un agent autonome (robot, etc.),
à apprendre les actions à effectuer à partir d’expériences, de façon à optimiser
une récompense quantitative au cours du temps. L’agent est plongé au sein
d’un environnement, et prend ses décisions en fonction de son état courant. En
retour, l’environnement procure à l’agent une récompense, qui peut être positive
ou négative. L’agent cherche au travers d’expériences itérées un comportement
décisionnel optimal, appelé stratégie ou politique, et qui est une fonction asso-
ciant à l’état courant l’action à exécuter. Son but étant de trouver le meilleur
comportement décisionnel maximisant la somme des récompenses au cours du
temps.

Nous allons plus précisément parler ici de Deep Reinforcement Learning, puisqu’il
s’agit de la fusion de deux mondes qui sont l’apprentissage par renforcement qui
émerge de la programmation dynamique, et du Deep Learning.

2

Figure 2: Couche de navigation : lien entre le planificateur global et le plan-
ificateur local. Le planificateur global définit une série de WP tandis que
le planificateur local tente de se rapprocher de la trajectoire sans percuter
d’obstacles

Figure 3: On voit ici, la récompense attribuée à l’agent suivant l’état dans lequel
il se trouve, definir la fonction de récompense est une partie critique dont va
dépendre la convergence plus ou moins rapide vers le bon contrôleur

3

Apprentissage par renforcement (RL)

Avant même de comprendre l’intérêt du Deep Learning dans les méthodes de
renforcement, il faut comprendre le fonctionnement de la méthode d’apprentissage
par Q-Learning. En effet, le Q-Learning ou reinforcement est plus ancien et
donc utilisé depuis plus longtemps que le Deep Learning en programmation
dynamique. Le principe du Q-Learning est d’estimer la qualité de l’action ou de
l’état d’un agent dans un environnement donné. Pour estimer cette qualité, on
fait appelle aux processus de décision markoviens (MDP), la valeur associée à
chaque états est estimée récursivement par l’équation de Bellman. [2]

Figure 4: Pss′ correspond à la probabilités de transition d’un état à un autre, R
est la récompense obtenue [2]

Quand l’espace d’état est discret ainsi que l’espace d’action est discret de faible
dimension, on peut facilement stocker et les valeurs associées à chaques états et
de manière et itérer récursivement de manière à trouver la valeur de chaque état.
Pour ensuite se déplacer d’états en états ayant les plus grandes valeurs, on dit
qu’on agit greedly.

Dans notre cas, notre capteur pour repérer les obstacles est un Lidar-2D de-
vant couvrir au moins 120 degrès, nous avons l’odométrie à ajouter à l’espace
d’état. Celle-ci variant dans un monde qui doit être suffisamment découpé pour
représenter la réalité de la façon la plus exacte possible. L’espace d’état est donc
gigantesque et ne peut plus être représenté par un seul graphe et être ré-estimé
à chaque itération. Le Deep Q-Learning (DQN) entre alors en jeu.

Deep-Q Learning

En programmation dynamique, il faut absolument stocker les valeurs des dif-
férentes qualités des états dans une matrice ou autre, ce qui n’est pas le cas dans
les méthodes de deep reinforcement learning. En effet, les réseaux de neurones
sont des estimateurs universels. On les utilise aussi bien en classification d’image
que pour des problèmes d’estimations de prix d’une maison. Ainsi, plutôt que de
stocker la valeur d’un état ou d’une action, nous pouvons la ré-estimer à chaque
instant. [6]

En reinforcement, l’objectif est d’entraîner le réseau de neurones pour qu’il trouve
une politique (un comportement) optimal par rapport à l’environnement. Pour
ce faire, il faut définir au préalable une fonction de reward. En effet, à chaque
instant le robot va évoluer avec son environnement et recevoir une récompense.
Les méthodes développées visent à optimiser la policy (politique de l’agent) de
façon à maximiser ces récompenses.

4

Figure 5: Difference entre le Q-Learning et le Deep-Q-Learning

Environnement de simulation et résultats
L’environnement de simulation utilise le moteur physique Gazebo, on a un robot
mobile avec deux roues motrice et une roue folle. Les equations d’état sont les
suivantes :

ẋ = v cos(θ)
ẏ = v sin(θ)
v = u1

θ̇ = u2

Pour utiliser un algorithme de Deep-Q-Learning, nous sommes obligés de discré-
tiser l’espace d’actions ici en 9 actions qui correspondent chacune à un couple
(u1, u2). La fonction de récompense définie est la suivante :

r =

1 if discible < 0.5
−1 if dismur < 0.1
discible

10 else

Nous obtenons bien le fait que le robot navigue en évitant les murs, toutefois le
robotne se déplace pas de manière directe sur la cible. Cela est dû au fait que
l’espace d’action est trop faible et donc le pilotage n’est pas assez fins.

5

Figure 6: Robot dans Gazebo

Conclusion et Améliorations
Dans cet article nous avons proposé un contrôleur basé sur des méthode
d’apprentissage par renforcement. Le contrôleur est perfectible. L’idéal
serait d’utiliser un espace d’action continu afin d’avoir des trajectoires moins
anguleuses, mais pour cela l’algorithme de Deep-Q Learning ne suffit plus il faut
utiliser un algorithme de type acteur-critique [5], qui n’est plus seulement basé
sur l’estimation des Q-Valeurs. On a deux réseaux de neurones un pour l’acteur,
un pour le critique :

• Acteur : L’objectif de l’acteur est d’indiquer la politique à adopter (on
parle en effet d’un acteur). Ainsi, c’est l’acteur qui choisit quelle action
adopter en fonction de l’état dans lequel il se trouve. Il prend donc en
entrée l’état de l’agent et il ressort en sortie l’action à adopter.

• Critique : L’objectif du critique est de critiquer l’action ou l’état du robot.
En effet, cela dépend de la méthode employé.Il prend en entrée l’état de
l’agent et ressort en sortie la valeur de l’état dans lequel se trouve l’agent.

Après avoir fait ses preuves dans le domaine du jeu vidéo. Le défi du RL est
de le déployer sur des plateforme réelles, cela constitue un sujet de recherche
important.

Bibliographie
[1] Noriyuki Kojima and Jia Deng. To Learn or Not to Learn: Analyzing the
Role of Learning for Navigation in Virtual Environments. University of Michigan,

6

Ann Arbor, Princeton University

[2] Richard S Sutton and Andrew G Barto. Reinforcement Learning: An
Introduction. MIT Press, 1998.

[3] Hao Quan , Yansheng Li and Yi Zhang . A novel mobile robot navigation
method based on deep reinforcement learning. International Journal of Advanced
Robotic Systems

[4] Jing Xin,Huan Zhao,Ding Liu. Application of Deep Reinforcement Learning
in Mobile Robot Path Planning. Shaanxi Key Laboratory of Complex System
Control and Intelligent Information Processing Xi’an University of Technology

[5] Ivo Grondman; Lucian Busoniu; Gabriel A. D. Lopes. A Survey of Actor-Critic
Reinforcement Learning: Standard and Natural Policy Gradients. IEEE

[6] Kai Arulkumaran, Marc Peter Deisenroth, Miles Brundage, Anil Anthony
Bharath. A Brief Survey of Deep Reinforcement Learning. IEEE SIGNAL

7

RESEARCH INITIATION, UE 5.1, AUTONOMOUS ROBOTICS, ENSTA BRETAGNE, 2021 1

Calibrating a magnetometer sensor using multiple methods

Robin Sanchez

Index Terms—Magnetometer, calibration, compass, least squares, ellipsoid

I. INTRODUCTION

MAGNETOMETERS are often used in attitude and head-
ing reference systems (AHRS), mainly in order to

compute the sensor heading without using an expensive dual
GNSS antennas compass or an even more expensive fiber-
optic gyroscope. However, magnetometers are very sensitive
to magnetic interference in their environment and thus need
to be calibrated after every change of environment.
According to Talat Ozyagcilar [2], there is two kind of mag-
netic interference: hard-iron and soft-iron. Hard-iron interfer-
ence are generated by permanently magnetized ferromagnetic
elements and are additive to the earth magnetic field. Soft-
iron interference are distortions to the magnetic field by
unmagnetized elements.
We will compare three calibration methods. Two of them are
least squares based methods. One will permit to calibrate the
sensor in an hard-iron only perturbed environment while the
other will do the same in a both hard and soft-iron perturbed
environment.The third method is a pseudo calibration, often
used for inexpensive sensors, using only minimum and maxi-
mum computations on each axis of the magnetometer.

II. SOFT AND HARD-IRON CALIBRATION

A. Magnetic measurements model

According to [1], in an environment with both hard and soft
iron perturbations, the measurement of the magnetic field Bp

is:

Bp = WRx(φ)Ry(θ)Rz(ψ)B

cos(δ)0
sin(δ)

+V (1)

with W the soft-iron matrix, V the hard-iron offset, δ the
magnetic inclination, B the magnetic magnitude and Rx(φ)
Ry(θ) Rz(ψ) rotation matrix around the yaw (ψ), pitch (θ)
and roll (φ) angles of the sensor.
For any rotation matrix R(α):

RT(α) = R−1(α) =⇒ RT(α)R(α) = I

Using (1):

W−1(Bp −V) = Rx(φ)Ry(θ)Rz(ψ)B

cos(δ)0

sin(δ)

(W−1(Bp −V))T =

Rx(φ)Ry(θ)Rz(ψ)B

cos(δ)0

sin(δ)

T

=⇒ (W−1(Bp −V))TW−1(Bp −V) = B2

=⇒ (Bp −V)TA(Bp −V) = B2 (2)

with A = (W−1)T(W−1)

According to the introduction of [3], equation (2) describe an
ellipsoid of parameters (A,V).

B. Least squares fitting

The quadratic equation of an ellipsoid is [3]:

xTMx+ bTx+ d = 0 (3)

with M =

m1 m2 m3

m2 m4 m5

m3 m5 m6

 b =

b1b2
b3

 where A is a

positive-definite matrix.

(3) =⇒ m1x
2
1 +m4x

2
2 +m6x

2
3 +m2x1x2 +m3x1x3+

m5x2x3 + b1x1 + b2x2 + b3x3 + d = 0
(4)

The equation (4) can easily be fitted using linear least
squares.
With M̂, b̂ and d̂ the least squares estimate of M, b and d,
we can then calculate Â and V̂.
According to [3] (equation (5)),{

V̂ = − 1
2M̂

−1b̂

Â = 1
V̂ TM̂V̂−d̂

In order to calibrate the sensor, we need to compute both V̂
and Ŵ−1. Using equation (20) of [1], we know that Ŵ−1 =
A

1
2 . We could also use a Cholesky decomposition.

Finally, we can obtain calibrated magnetic measurements using
the following equation:

Bcal = Ŵ−1(Bmes − V̂) (5)

III. HARD-IRON ONLY CALIBRATION

A. Magnetic measurements model

In this case, we assume that soft-iron interference are neg-
ligible compared to hard-iron. Thus, W = I3 =⇒ A = I3.
Equation (2) became:

(Bp −V)T(Bp −V) = B2 (6)

RESEARCH INITIATION, UE 5.1, AUTONOMOUS ROBOTICS, ENSTA BRETAGNE, 2021 2

B. Least squares fitting

Then, using equation (6) and equation (26) of [3], we can
obtain the vector V̂ and B̂ using linear least squares with the
following equation:

(
Bpx Bpy Bpz 1

)
Vx

Vy

Vz

B2 − (V2
x +V2

y +V2
z)

= Bp

2
x +Bp

2
y +Bp

2
z

(7)

Finally, we can obtain calibrated magnetic measurements using
the following equation:

Bcal = Bmes − V̂ (8)

IV. PSEUDO-CALIBRATION

To pseudo calibrate magnetic measurements with a dataset
of n samples of the form Bm[i] =

(
Bx[i] By[i] Bz[i]

)T
:

• Compute xmin, xmax, ymin, ymax, zmin and zmax on
the dataset,

• Compute xmean, ymean and zmean on the dataset,
• For each measurement Bm[i], Bcal[i] =

2(Bx[i]−xmean)
xmax−xmin

2(By [i]−ymean)
ymax−ymin

2(Bz [i]−zmean)
zmax−zmin

V. RESULTS

To test these algorithms, we will use two sensors: a MPU-
9250 (SparkFun ”9DoF Razor IMU M0”) and the magnetome-
ters of an SBG Ellipse 2A. These tests use raw data from
the sensors, and thus don’t permit to compare or judge there
performance as we did not use the manufacturer recommended
way of calibrating the sensor.
All the calibrations have been done the same day in the same
place. For each sensor, three calibrations have been performed:
the first without an apparent perturbation, the second with a
0.8 kg piece of steel fixed to the sensor and the last with a
smartphone attached to the sensor.
According to equation (1), after calibration, magnetic mea-
surements should be in the following form:

Bcal = Rx(φ)Ry(θ)Rz(ψ)B

cos(δ)0
sin(δ)

 (9)

Thus each calibrated measurement must be on a sphere. After
each calibration, we will measure the distance of each cali-
brated measurement to a sphere of radius r = 1. We will then
compute the mean and standard deviation of these distances to
compare the performance of the different calibration methods.
For each calibrations, the sensor has been rotated in all the
directions at least two times.

No perturbation MPU-9250 SBG Ellipse 2A
Mean Std Mean Std

Soft and hard-iron calibration 0.0028 0.0236 0.0003 0.0108
Hard-iron only calibration 0.0004 0.0296 0.0002 0.0183
Pseudo-calibration 0.0266 0.029 0.0049 0.042

0.8kg piece of steel MPU-9250 SBG Ellipse 2A
Mean Std Mean Std

Soft and hard-iron calibration 0.0088 0.0462 0.0012 0.0219
Hard-iron only calibration 0.0079 0.1254 0.0251 0.2228
Pseudo-calibration 0.0469 0.155 0.0381 0.1226

Smartphone perturbation MPU-9250 SBG Ellipse 2A
Mean Std Mean Std

Soft and hard-iron calibration 0.0189 0.0717 0.0029 0.0288
Hard-iron only calibration 0.0016 0.0562 0.0006 0.0344
Pseudo-calibration 0.0431 0.0575 0.0124 0.0416

MPU-9250 Ellipsoid semi-axis Hard-iron offset
No perturbation

(
262 283 272

) (
−91.5 104 −274

)
Piece of steel

(
193 714 1362

) (
−130 −177 −175

)
Smartphone

(
275 299 312

) (
−85.0 172 −432

)
SBG Ellipse 2A Ellipsoid semi-axis Hard-iron offset
No perturbation

(
1.09 1.02 1.05

) (
0.008 −0.012 0.048

)
Piece of steel

(
1.24 0.55 0.50

) (
0.11 0.0037 0.055

)
Smartphone

(
0.93 0.85 0.86

) (
0.30 0.24 0.47

)

Ellipsoid semi-axis and hard-iron offset are obtained with
the soft and hard-iron calibration.
The results in the ”no perturbation” case shows that the both
soft and the hard-iron calibration and hard-iron only one
are almost equivalent. However, the pseudo-calibration gives
worst results than the two others methods but the standard
deviation stay in the same order of magnitude than the others
methods. The ”smartphone perturbation” gives the sames
results. The hard-iron offset is strong in these cases compared
to the differences between the ellipsoid semi-axis which
represent the soft-iron interference.
In the ”0.8kg piece of steel” case, both the pseudo-calibration
and the hard-iron only one are really off compared to the
soft and hard-iron one. This could be explained by the fact
that the piece of steel seems to create an important soft-iron
interference which could be observed in ellipsoid semi-axis.

VI. CONCLUSION

The soft and hard iron seems to be an efficient calibration
method. The hard iron only method gives good performances
in an magnetically undistorted by soft-iron interference en-
vironment. Compared to the soft and hard iron The pseudo-
calibation is less efficient than the others methods and thus
shall be only used in case we are not able to compute least
squares algorithms.

ACKNOWLEDGMENT

The authors would like to thank Fabrice Le Bars for
providing the sensors and Luc Jaulin for his help.

REFERENCES

[1] Talat Ozyagcilar, Application Note: Calibrating an eCompass in the
Presence of Hard- and Soft-Iron Interference, Freescale Semiconductor
Inc, 2013.

[2] Talat Ozyagcilar, Application Note: Layout Recommendations for PCBs
Using a Magnetometer Sensor, Freescale Semiconductor Inc, 2013.

[3] Markovsky, I. and Kukush, A. and Huffel, S. Van, Consistent least squares
fitting of ellipsoids, Numerische Mathematik, pages 177-194, 2004.

Monocular odometry using ORB-SLAM 2
Bertrand Turck
ENSTA Bretagne

Brest, France
Email: bertrand.turck@ensta-bretagne.org

Abstract—This paper aim to use ORB-SLAM to estimate the
trajectory of a camera using only a monocular camera. ORB-
SLAM is able to realize simultaneous localization and mappingin
real time. However, this algorithm face a problem with scale when
using a single camera. We present a solution to fix this problem.

I. INTRODUCTION

Simultaneous localization and mapping (SLAM) is a famous
problem encountered in robotics. The best ways to solve this
problem are to use precise sensors (LiDAR, IMU, . . .) or to
place landmarks on the ground. But for cheaper robots, these
solutions are not viable. A solution could be to use a simple
camera, as this sensor can be found at low price.
The ORB-SLAM 2 algorithm [1] aim to construct a 3D envi-
ronment using only a calibrated monocular camera and using
bundle adjustments. This algorithm resolve common issues
like losing the tracking when the system moves too quickly.
But another problem this algorithm is facing is the problem of
depth error: with only a monocular camera, you can’t directly
estimate a distance, thus the constructed environment doesn’t
have the correct scale. We will try to resolve this problem.

II. ORB-SLAM 2
The ORB-SLAM 2 algorithm is divided into 3 parts which

works one after another. The first one is the tracking part which
aim to create a local map and estimate the small movement
of the camera. The second part is local mapping and tries to
optimize the successive maps and estimate a global movement
of the camera. Last but not least, the loop closing part aims
to notice if the camera as already seen a place and optimize
the global map if possible.

Fig. 1. ORB-SLAM functioning overview.

A. Bundle adjustment

Simultaneous Localization and Mapping (SLAM) can be
achieved by solving bundle adjustment, which consist in
creating a map of a 3D environment while estimating the
consecutive states of our system [2].
Bundle adjustment can be translated as a mathematical prob-
lem: minimizing the reprojection error, which is the distance
between the projection of a cloud point in the camera frame
and points acquired by the camera.

B. Tracking

To begin, the algorithm looks for features which are visible
between to successive images by using the ORB features
detector algorithm [3] and match them. We can note that only
few points are used and every other pieces of information are
discarded, which makes this method less effective compare to
one which may use artificial intelligence to get features.
A first motion only bundle adjustment is computed knowing
only a small movement occurred between two images. Points
are added to the local map in a way which minimize the
reprojection error. Bundle adjustment estimate rotation and
translation between the 2 images as odometry, like the iterative
closest point (ICP) algorithm would do for LiDAR data.

C. Local Mapping

As the tracking part add more and more points to the
local map, local mapping tries to eliminate the points which
are redundant by merging close points together. Also, outlier
points are discarded if they are not seen by at least 25 % of
the images.
Also, a local bundle adjustment allows to have an estimation of
rotation and translation in the global environment. The origin
is defined as the first keyframe after the system was initialized.

D. Loop closing

Loop closure is the part which really define a SLAM
algorithm. Loop closure is performed by checking if a loop
is detected and if one is detected a pose-graph optimization
is performed. These operations are quite costly and thus are
performed in a parallel thread.
The paper explains that when using a monocular camera, the
drift is too large for a loop closing to be performed correctly. In
fact, with monocular SLAM, the map can drift with 7 degrees
of freedom: 3 rotations, 3 translations and a scale factor.
When a loop closure is achieved, a full bundle adjustment is
computed as the map was updated.

III. SOLUTION TO THE SCALE PROBLEM

A. ROS implementation

With ORB SLAM 2 is given a simple example to use
the algorithm using images from ROS topic. To work with,
we added a topic which publishes the successive estimated
positions of the camera as a path topic. This enable us to
visualize the trajectory in real time.
But the algorithm doesn’t give us the position directly. The
rotation is not given in the base ROS uses, so we have to
apply a rotation of minus

π

2
around x to get x forward and y

left. This is done using quaternion and Hamilton products.

B. Solution implemented

As ORB-SLAM is unable to get a scale value with monoc-
ular camera, the scale of the cloud point and also the scale
of the movement depend of the initialization. To get a proper
initialization, the system tries to match two local maps. The
movement between these two maps define the scale, so scale
changes every time, you can’t just find a coefficient which
works every time.
A solution [4] is to use external sensors to estimate a scale
coefficient. By moving the system of a known distance and
by checking the value given by ORB-SLAM you can find a
coefficient.
As we don’t want to use external sensors, we move the
system by hand when ORB-SLAM is done with initialization.
After moving the system of a known distance, we notify the
algorithm of the distance travelled by typing the value in a
dedicated ROS topic. Then, poses are modified to take the
scale into account. The math is quite simple, we just have to
multiply the pose given by ORB-SLAM with the scale and we
get the corrected pose.

IV. RESULTS

Experimentations were conducted on the ground floor of
the building N of ENSTA Bretagne as a map has already been
realized with a good LiDAR and a IMU, so we had a precise
reference. To get reproductible data, we used ROS bags to get
data and to play them more easily. We can notice by playing
the same data over again that the trajectory is never the same
and may fluctuate of about 50 cm at the end.

We can observe that scaling is working, but it is not perfect.
The position at the end of the experimentation is 1 meter away
from where the experimentation really ended. Also, as the
initialization of the camera occur spontaneously, it is difficult
to have a reference for the measurement of the distance.

V. CONCLUSION

ORB-SLAM 2 is a powerful tool which can be use in
robotics. This algorithm is a cheap way to have access to an
estimate of a state. But as the result as shown, it is not to be
used on is own. By merging the data with another sensor, we
could get much better results.
Also, this algorithm itself can be tricky to install and launch,
and his quite expensive in computationnal power. Then, it is
not suitable for every robot.

Fig. 2. Trajectory of the camera before applying scale (in green).

Fig. 3. Trajectory of the camera after applying scale (in green).

REFERENCES

[1] Raúl Mur-Artal, J. M. M. Montiel and Juan D. Tardós. ORB-SLAM: A
Versatile and Accurate Monocular SLAM System. IEEE Transactions on
Robotics, vol. 31, no. 5, pp. 1147-1163, 2015.

[2] B. Triggs, P. F. McLauchlan, R. I. Hartley, and A. W. Fitzgibbon, “Bundle
adjustment a modern synthesis,” in Vision algorithms: theory and practice,
2000, pp. 298–372.

[3] Rublee, Ethan; Rabaud, Vincent; Konolige, Kurt; Bradski, Gary, ”ORB:
an efficient alternative to SIFT or SURF”, IEEE International Conference
on Computer Vision (ICCV), 2011.

[4] D. Gehrig, M. Göttgens, B. Paden, E. Frazzoli, ”Scale-Corrected
Monocular-SLAM for the AR.Drone 2.0”, 2017.

INITIATION TO RESEARCH, FEBRUARY 2021 1

Searching for Optimal Path for an AUV in the
Current: Application to Cycle Search

Quentin Vintras
ENSTA Bretagne

Email: quentin.vintras@ensta-bretagne.org

Abstract—Abstract— This paper proposes a method based on
Dijkstra algorithm to find an optimal path for an AUV1 in a ocean
environment characterized by strong currents and enhanced
space–time variability. The goal is to find a safe path that
takes the vehicle from its starting location to a mission-specified
destination, minimizing the energy cost. Dijkstra algorithm is
based on a graph creation with a current map. The performance
of Dijkstra algorithm can be discussed as it presumes that the
current field is known before the mission. The final goal of the
paper is to use the path planning to search cycle minimizing the
energy cost.

Index Terms—optimal, mission planning, paths, cycles, current,
dijkstra

I. INTRODUCTION

PATH PLANNING for autonomous underwater vehicles is
one of the most important thing. Since the vehicle evolve

in harsh conditions without the possibility to communicated
with an operator in surface. Path planning works very well
when the user wants to avoid dangerous areas or known
obstacles. But some applications require to minimize the size
of AUVs or their operating range. This require to economize
power since they can’t have unlimited resources. Path planning
must therefore take into account other parameters such as the
current that can be a very powerful obstacle. Some techniques
of path planning were developed [1]. These methods can
be divided into two broad categories, pre-mission planning
and real-time in-mission planning. In the first category, the
operator will define a plan before the mission and the robot
will stick to this plan whatever the hazards encountered. The
second category of algorithm assigns to the robot the choice
of the plan that is created during the mission.In this article
we are going to make an inventory of existing path planning
algorithms, in particular for underwater vehicles, then we will
set up one of them, to minimise the energy spent, thanks to the
force of the current. Finally, we will use these developments
to apply this algorithm to the search for optimal cycles from
an energy point of view and we will discuss its efficiency.

II. PREVIOUS WORK

Numerous researches and algorithms have been developed
to solve this path planning problem.

1Autonomous Underwater Vehicle

A. Potential fields

The techniques on the fields of potential are very effective
and very quick to implement. They are based on the creation of
an artificially created potential field from goals and obstacles.
Obstacles will thus be repulsive while goals will be attractive.
The disadvantage of this technique is the susceptibility to local
minima that might not make us find the optimal path or prevent
us from reaching the goal.

B. Graph Techniques

Graph searching techniques are also widely used [2]. They
are based on the discretization of space to form a graph in
which it is fairly simple to find a path that avoids obstacles.
This way, all unfeasible paths and optimal paths can be found.
These techniques are very reliable for local minima but pose
big problems when the dimensions increase. These techniques
include the A* method [3], the Jump Point Search algorithm,
the Dijkstra algorithm...

C. Case Based Path Planning

Case reasoning[4] is based on experience. Indeed, this
technique uses the experience of past missions to plan a new
mission. When a new road has to be created, we use the old
ones for which we know the environment. In this way we can
reconstruct a route that we are sure will be reliable. Finally,
this new road will be added to the database to increase the
reliability of future roads. The advantage of this technique is
the speed of calculation, however it requires a large database
and a fairly stable environment.

D. Genetic Algorithms

Some algorithms based on Darwinian theories of evolution
have been developed and applied to path planning [5]. These
algorithms called GAs2 create a list of possible paths which
are then modified by genetic operators such as mutations.Their
advantage is the much lower calculation time compared to
other techniques, however we are not sure that we can achieve
an optimal solution in finished time. Some GAs have also been
adapted to calculate paths in real time [6].

2Genetic Algorithms

INITIATION TO RESEARCH, FEBRUARY 2021 2

Fig. 1: Current map used to test algorithms

III. CURRENT FIELDS

Currents are continuous water movements. They are the
result of several factors such as wind and tides at the surface
and salinity and temperature deeper down. Currents are fairly
predictable except in coastal areas where the effect of tides
and topography can have unpredictable effects. In oceanic
areas, currents are fairly redundant and predictable thanks to
meteorological technologies. The research around the currents
is pretty well done and we have a lot of information. A lot of
data is available on ocean currents. For some regions of the
world, we have very precise data on the ocean environment
thanks to a combination of techniques such as HF radar surface
current measurements, satellite observations... The reliable
and daily updated open source predictive tools that can be
used are : Global Real-Time Ocean Forecast System (RTOF-
SGlobal), Regional Ocean Model System and NavyCoastal
Ocean Model. In this paper, I consider RTOFSGlobal model.
It provides current velocities all around the world with a time
resolution of 3 hours and a spatial 2 dimension resolution of
7 kilometers. Figure 1 display the part of the world I used to
test path planning algorithms.

IV. DIJKSTRA ALGORITHM FOR PATH PLANNING

The Dijkstra algorithm with the pseudo-code presented in
Figure 2 is an algorithm to find the shortest path between
two nodes of a weighted graph. The challenge in this paper
is to create the graph from the current field map. The graph
is created by discretizing the current field to form a mesh.
Each intersection of this mesh will be a node. Each node
corresponds to a position where the velocity of the current is
known in two dimensions. Each node will be connected to the
8 adjacent nodes. The weights are calculated by a simple scalar
product between the velocity of the current at the considered
node and the vector that links the two nodes. Since the Dijkstra
algorithm does not take into account negative weights, if the
current is contrary to the direction of the edge, the weight is

Fig. 2: Dijkstra algorithm pseudo-code

set to infinity, this also guarantees that the AUV will never go
against the current. Moreover, in the Dijkstra algorithm we try
to find the path with the most, which is the same as finding
the path with the lowest weights, so I took the inverse of the
weights so that when the current is strong in one direction, the
weights in that direction are very weak and vice versa. This
is equivalent to taking into account the travel time rather than
the speed. Finally just need to choose 2 nodes and to launch
the Dijkstra algorithm on the previously created graph.

A. Simple Path Planning

First I used the Dijkstra algorithm to plan a mission from
point A to point B without taking into account the temporal
variation of the current. To do that I just compute the pre-
decessors with the Dijkstra algorithm and after that I start
from the point of arrival and goes back up the dictionary of
predecessors until arriving at the point of departure. If there is
no path between the point of arrival and the point of departure,
it means that there is no path in the area described without
a counter-current passage. An example of the shortest path in
the current with the Dijkstra algorithm is given in figure 3,
where the current field is shown and the points represent the
nodes through which one has to pass.

B. Path planning With Time Simulation

An improvement in this planning would be to take into ac-
count the variation of the current field over time. To add a time
component, the predecessors’ dictionary must be recalculated
with each change in the current field. However, one of the
problems of the Dijkstra algorithm is that you have to go back
to the starting point of the predecessors’ dictionary. This forces
us to know the variation of the current field in advance. This
can be a problem in areas where currents are not studied or
are very unpredictable. However, in most cases the currents
are predictable and known. In this article I used a database

INITIATION TO RESEARCH, FEBRUARY 2021 3

Fig. 3: An example of shortest path in current with Dijkstra algorithm

that recorded the current fields over a given area with a time
step of 3 hours. In addition I know the current field at all time
steps in advance. To take into account the time step I have
therefore first calculated the predecessors’ dictionary for the
current field at the arrival time which will be noted h.We will
note the time step dt.We start by calculating the dictionary of
predecessors at time h.The dictionary is then put back together,
paying attention to the weights. Between each node we will
look at the speed at which the robot will go, we can deduce a
travel time between two nodes because we know the distance
between each node. We’re going to use this travel time. Let’s
note the travel time between the predecessor nodes i and i−1,
ti. As we go back in the dictionary of predecessors we add
the ti. If the sum S of ti is greater than dt, it means that
the current field has changed. The dictionary of predecessors
must therefore be recalculated from a new graph and S is
reset to 0. This operation is repeated until the starting point
is reached. We can thus deduce the date on which we have
to leave, if we go through n nodes, the departure date will be
d = h−

∑n
ni=1 ti. Finally in this case Dijkstra algorithm give

the shortest path and the departure date to reach the end point
at the desired date. In a practical field this time component

would be very complicated to put it in place, or it must be
done in very short period of time and on very short distance.
The uncertainty on current prevision makes the problem very
tricky. Moreover it requires a lot of computing resources and
this can be time consuming as the dictionary of predecessors
has to be recalculated at every time step.

V. APPLICATION OF DIJKSTRA ALGORITHM TO CYCLES

More and more scientific applications require data collec-
tion. The oceans are a vast field of study, where data collec-
tion is becoming increasingly important with environmental
changes. In this hostile environment, where human deployment
is complicated and expensive, the use of autonomous vehicles
capable of travelling long distances using the least amount of
energy is fully justified. From this point of view, the search
for the execution of cycles by an AUV propelled solely by
currents is a field with a great deal at stake. In this paper
I propose the application of the Dijkstra algorithm for path
planning in the search for the most economical cycles for an
AUV in an ocean.

INITIATION TO RESEARCH, FEBRUARY 2021 4

Fig. 4: Surface circulation on the main oceans of the world

A. Methodology

As we have seen previously, with the Dijkstra algorithm
we are able to plan the shortest path between two points
in the ocean taking into account the current field. However,
this requires some assumptions such as knowing the upstream
current field. For this application I will not take into account
the time component. Thus we assume that the AUV can move
in a current field invariant in time and depth. To constitute a
cycle we then need at least 2 points through which the AUV
must pass. Let’s note n the number of points by which we
would like to pass and pi i ∈ J1, nK the ith point. To compute
the shortest cycle that pass to all we compute the graph of
the zone we choose the points. The dictionary of predecessors
from p1 to pn is then calculated and for i from n to 2 the
dictionary of predecessors from pi to pi−1 is calculated, noting
each time the shortest path between the two points. Thus we
have a cycle passing through all the points.

B. Results

I tested this methodology with cycles of two points.
The python code given in the repository https://github.com/
QuentinVintras/AUV Dijkstra path.git compute the most eco-
nomic cycle for two points. It returns a figure with the cycle
if there is one and an error message if we can’t find a path
that satisfies the conditions listed above in the section III.A.
The larger the area chosen, the better the chances of finding
a suitable path. The currents being circular at the level of
an ocean as shown in figure 4 []. If we consider the whole
globe or a whole ocean, the probability of finding a cycle is
maximized. The only limitation is the computing resources
because the more nodes there are in the graph, the longer the
calculation takes.

I have computed a cycle between two points in an area
defined by a graph of 100 by 100 nodes with a spatial
resolution of 7km. It gives a area of 700x700 km in the Pacific
Ocean. That is not sufficient to be sure to find a path. After
some trials I managed to find some cycles. One of them is
displayed in the figure 5.

C. Possible improvements

Finally this technique is powerful to plan cycles in large
areas with a very low resolution. In this paper we don’t take
into account the time variability of ocean currents and we
assume that they are predictable. This first point can be taken

Fig. 5: An example of most economic cycle in current with
Dijkstra algorithm, blue points are displaying the path

between point 1 to 2 and red between 2 to 1

into account with the technique presented in section IV.B. We
can also test our algorithm with more that two passage points
but this increases the risk that no path is possible, since the
current is seen here as an obstacle, the AUV cannot go against
the current.

VI. CONCLUSION

Dijkstra algorithm which is a graph method works correctly
if the resolution and therefore the number of nodes is not too
large. Carrying out large cycle planning when the current fields
are predictable works well in theory. In practice we could
couple this obtained path with a faster algorithm for real time
use on a finer resolution. The arrival of underwater gliders
and the development of autonomy requirements for AUVs
will allow the use and development of new path planning
algorithms using current force as the only propulsion.

REFERENCES

[1] Konuralp Yiğit. Path planning methods for Autonomous Underwater Vehi-
cles. PhD thesis, Massachusetts Institute of Technology, 2011. Accepted:
2011-12-19T19:00:13Z journalAbbreviation: Path planning methods for
AUVs.

[2] Jan Faigl. Grid and graph based path planning methods. page 87.
[3] K. P. Carroll, S. R. McClaran, E. L. Nelson, D. M. Barnett, D. K. Friesen,

and G. N. William. Auv path planning: an a* approach to path planning
with consideration of variable vehicle speeds and multiple, overlapping,
time-dependent exclusion zones. In Proceedings of the 1992 Symposium
on Autonomous Underwater Vehicle Technology, page 79–84, Jun 1992.

[4] C. Vasudevan and K. Ganesan. Case-based path planning for autonomous
underwater vehicles. Autonomous Robots, 3(2):79–89, Jun 1996.

[5] C. Hocaoglu and A. C. Sanderson. Planning multi-paths using speciation
in genetic algorithms. In Proceedings of IEEE International Conference
on Evolutionary Computation, page 378–383, May 1996.

[6] A. Alvarez, A. Caiti, and R. Onken. Evolutionary path planning for
autonomous underwater vehicles in a variable ocean. IEEE Journal of
Oceanic Engineering, 29(2):418–429, Apr 2004.

https://github.com/QuentinVintras/AUV_Dijkstra_path.git
https://github.com/QuentinVintras/AUV_Dijkstra_path.git

