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1 Introduction

1.1 Abstract

Over a period of 60 time slots, third-year engineering students specializing in autonomous

robotics at the National School of Applied Sciences and Technologies (ENSTA Bretagne)

developed a solution for exploring karstic environments, underground cavities formed by the

dissolution of limestone rock by slightly acidic water. This report provides a detailed overview

of the chosen technical solution, the sensors used, and the mechanical, electronic, and software

architecture adopted for the "Karstex" robot.

1.2 Context

Understanding karstic caves is crucial for regions like southern France, including the city of

Nîmes, where these caves hold significant freshwater reserves. However, traditional exploration

methods, such as drilling or sending divers, are both expensive and risky due to the complex

underground terrain and dangers like stalactites, stalagmites, and narrow passages. Therefore,

there’s a pressing need to accurately map these caves to guide safe extraction efforts efficiently,

minimizing costs and risks.

To address this challenge, an innovative initiative is underway to develop an autonomous

robotic solution capable of navigating these environments and mapping caves without endan-

gering human divers. By harnessing advanced robotics and sensor technologies, this project

aims to create a versatile robot that can maneuver through the caves, mapping their features,

and gathering crucial data without putting human lives at risk.

This approach not only improves safety but also ensures comprehensive exploration and

mapping of karstic caves, thereby facilitating sustainable water resource management in the

region. By eliminating the need for human divers to venture into hazardous conditions, this

innovative approach enhances safety while promoting efficient and effective exploration of

these valuable natural resources.

1.3 Organisation

You can see in Figure 1, the organisation we have chosen during this project.

Figure 1: Project’s organisation
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2 Mechanical architecture

Students : Mathys SÉRY, Rania ZIANE, Marguerite MIALLIER, Emilie LEDOUSSAL, Mathieu

PITAUD, Martin PILON, Étienne ROUSSEL

2.1 Preliminary work

Before starting any mechanical design, it is essential to understand the environment in which

our robot operates, as well as its constraints and functions: what should our robot absolutely

contain? What should it do and how should it do it?

Firstly, consider the environment in which the robot moves. It must operate:

• In an underwater environment. This implies taking waterproofing into account in the

design. Waterproofing will be ensured by Blue Robotics and Blue Trail materials (for

connectors). The Karstix must also be able to remain submerged for an extended period

without being damaged or weakened by water and potential corrosion. Therefore, the

use of corrosion-resistant materials such as plastic should be favored.

• In a restricted and irregular environment. Karsts have rocky walls with randomly varying

sections throughout their length. Consequently, a robot that takes up the least amount of

space possible, or at least the narrowest possible robot, should be considered. Additionally,

rocks can snag cables if they are not protected and/or exposed around the robot.

Therefore, an architecture should be planned to also store and protect data, command,

or power cables.

Next, let’s address the constraints and functions of the system:

• The Karstix must move "agilely" within its environment. To achieve this, two concepts

have been chosen: the addition of ballast and a central and controllable articulation.

These concepts form the basis of our vehicle and are combined with rear propulsion

generated by a T200 motor from Blue Robotics. The central articulation will be actuated

by a waterproof servo motor.

• The goal of Kartix is to autonomously explore unknown karsts. In its exploration equip-

ment, there are Blue Robotics echosounders and a RealSense camera for stereovision.

Since RealSense is not waterproof, a way must be found to install it in the robot while

allowing it to see what is happening in front. As karsts are dark, bright spots (from Blue

Robotics) must also be added to the front of the robot to illuminate the path. Regarding

echosounders, they must also be placed at the front to detect potential collisions. Each

echosounder has an emission cone that must be taken into account for their integration

into the system.

Note: Initially, we were planning to use a mechanical scanning sonar, a Ping 360 from Blue

Robotics. However, its scanning speed is too slow for our intended use. It was therefore agreed

with the "echosounder" group that we would use 3 echo sounders arranged regularly (spaced

120° apart) to reproduce this scanning effect.
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We have a preliminary architecture taking shape: a underwater robot consisting of two

distinct parts, which we will call « Corps Avant » and « Corps Arrière ». These two parts

are connected by an intermediate assembly allowing the robot to bend at its center using a

servo motor. At the front of the robot (on the "Front Body"/ « Corps Avant » ), our sensors

(echosounders and camera inside) should be placed, and attached to the "Rear Body"/« Corps

Arrière », our propulsion should be located. For stability reasons, it has been agreed with the

Ballast group that we would have 2 ballasts: 1 for each body, as far apart as possible and in

the axis of the robot.

From this initial description of the architecture, we have been able to start proposing concepts

Figure 2: Minimalist Architecture of Karstix

for parts and assembly for the 3D design of the robot, with a view to potential real-world

manufacturing.

2.2 Robot Skeleton

The robot is composed of two main "bodies" to which lights, sensors, motors, etc., are added.

Each "body" consists of a ballast and a cylinder containing a part of the "control & power"

system. Between these two parts, there is a small space where cables connect them for control.

To harmonize the structure and ensure waterproofing, we have opted for the use of Blue

Robotics tubes.

There are various tube formats (multiple "width-length" combinations possible). For the

"control & power" part, in collaboration with the "electronics" group, we have decided to use

4-inch tubes (approximately 10-11 cm in diameter) and 30 cm in length. This "4” - 300 mm"

format allows us to accommodate enough equipment while restricting the overall size of the

robot: the Karstix must carry all the necessary equipment while maintaining a compact profile

(important for navigating in karsts).

Concerning the ballasts, their size and evolution have been subject to regular discussions

between our group and the group in charge of their development. The goal was to follow their

progress for optimal integration into the system. Changes in ballast architecture may result

in design changes for the overall robot architecture, especially for inter-cylinder attachment

parts.

7



(a) Composition of the Front Body (b) Composition of the Rear Body

Figure 3: Organisation of each Body

2.3 Connection/Coherence within the Main Bodies

2.3.1 Connection Plates

The two cylinders of each body are held together by long PVC plates. Three plates surround

each body and run the entire length of the body.

Due to their length, flexural phenomena may occur at the center of each plate if they

are only fixed at the ends (and if they are too thin). For this reason, and to ensure a good

attachment to the cylinders, we have 4 fixation points for each plate (2 fixation points per

cylinder).

(a) Flexion

(b) Connection PLates with fixation

points

Figure 4: Position of the connection plates with fixation points

2.3.2 Cylinder Attachments

The design of fixation parts, capable of fitting on Blue Robotics cylinders and serving as a

support for additional components on the robot, was based on existing pieces (réf. :Watertight

Enclosure Clamps).

Figure 5: Connection Plate
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The idea was to start from this fixation in two "half-pieces" that we shape to serve as

support for the 3 plates as well as lights and echo-sounders.

• First Proposal: A robust-looking piece capable of accommodating 4 fixation plates. It

focuses only on the attachment of the cylinders to each other (no consideration for

echo-sounders and lights).

This piece served as a "trial run": corrections and remarks were provided by Lab-STIC

resource center members regarding its size, machinability, and how it attaches to the

cylinder.

Figure 6: First Proposal

• Second Proposal: Taking into account the feedback, we arrived at 2 pieces (one being a

derivative of the other). We reduced the number of plates to 3, the attachment to the

cylinder is done by a piece of rubber glued under the part, and we have a version that

can accommodate additional supports.

(a) With additional supports (b) Without additional supports

Figure 7: Second Proposal

Four pieces (two rings) were machined from POM-C to verify the real-world result:

Figure 8: Real fixations
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2.4 Servomotor attachment

To articulate the rear and front parts of the robot, we have opted for a servo motor allowing

rotation around the z-axis.

The issue lies in the fragility of the servo motor due to the forces and hydrodynamic torques

generated on the system. Therefore, we have considered a rigid-elastic linkage system. The

chosen solution involves using two springs coupled to a connecting rod to ensure the rotation

of the two parts of the robot, and a third spring beneath the servo motor to provide flexibility

and balance to the system.

Below is a detailed plan of the chosen system.

Figure 9: servomotor attachment system plan
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2.5 T200 thruster fixings

To attach the T200 motor to the overall structure : First, we remove the conical cap from the

T200 thruster to be able to attach the white plate instead. Then, we screw three threaded

rods into the rear part. Finally, we fix the plate onto the three rods using bolts. The final

assembly is shown in the figures below.

Figure 10: T200 thruster fixings on Computer aided design software

Figure 11: T200 thruster fixings

One of the problems with this design is the potential obstruction of water flow caused by

the flat piece attached to the thruster. As a result, an alternative, more hydrodynamic design

was considered. However, this proved too difficult to manufacture and consumed excessive

quantities of materials.
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2.6 Echo sounders fixings

To design these parts, we worked with the "Echo sounders" team.

Echo sounders are attached to the body by a combination of three different parts that

interlock with each other :

• the first one is screwed to the body

• the second one glides in the first one. It can be oriented in two different ways depending

on whether we want the sonar to be at 45° or towards the front of the robot

• the sonar is screwed in the third one, that glides in the second one.

Figure 12: Echo sounders support

Figure 13: Echo sounders support with rail
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The height and the width of the second part could be reduced, to reduce the weight and

the global diameter of the robot.

Figure 14: Echosounder fixation assembly

2.7 Lights fixations

The lights we used are the Lumen Subsea Light from Bluerobotics, we designed a support

which can probably be folded from a piece of plastic using a thermoforming machine.

Figure 15: Support for the lights

2.8 Global Final results

(a) 0° (b) 45°

Figure 16: Echo-sounders configurations
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3 Electronics

Student : Taddeo GUERIN

3.1 Architecture électronique

As our robot has to move autonomously in underwater karsts, it needs a number of sensors

and actuators to ensure its autonomy. All these components are shown in the figure below:

Figure 17: Electronic architecture

The robot being composed of two distinct parts (determined by the mechanical group),

we divided the various components according to their utility in the robot. Two 4S batteries

power the entire system, one being reserved for the actuators and the other for the sensors

and controllers/microcontrollers. This division is useful if one of the actuators were to stall

and thus use a large amount of current. Indeed, if all components were connected to the same

battery and the actuators drew too much current, it could impair the power supply to the
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controllers, which could output aberrant values, and thus affect the robot’s trajectory. Our

system addresses this issue.

3.2 Front Part

The front part contains the electronic components enabling our AUV to receive and process

the information it receives in the water. The Raspberry Pi 4 is used here to perform complex

real-time calculations, enabling the processing of data from various sensors. It runs perception,

navigation, or trajectory planning algorithms to enable the robot to perform autonomous

missions. We also chose it because of its flexibility and ease of programming.

The Pixhawk is primarily used here for its IMU. This device, composed of a gyroscope, an

accelerometer, and a magnetometer, is used to measure the linear and angular accelerations

experienced by the vehicle. These data are used to estimate the vehicle’s attitude (its tilt,

orientation) and to compensate for external disturbances. Finally, combined with the other

sensors that we will describe just after, the Pixhawk can estimate the vehicle’s position,

orientation, and velocity in space.

The echosounders, BlueRobotics’ Ping2 sonars, are detection and localization devices that

use sound waves to measure the distance between the underwater robot and surrounding

obstacles. Positioned around our AUV, they help center it in the underwater cavity and navigate

it. In addition, we use a pressure sensor (the BAR 30) to measure the surrounding pressure

and thus the robot’s depth.

Finally, the camera and lights are used for filming and performing visual servoing in karsts,

regardless of the ambient lighting. We use the RealSense 435i camera, which is a 3D depth

camera designed to capture both high-resolution color images and real-time depth data.

The other components, such as the On/Off Button and the TEN 30 1221 current regulator,

have been mounted on a PCB specially designed for the robot. They can be seen in the figure

below:

(a) Front PCB(editor) (b) Front mounted PCB

Figure 18: Front PCB

3.3 Rear Part

The rear part is dedicated to the robot’s actuators. It therefore contains an ESP32, which

with its numerous I/O interfaces, can generate precise control signals to drive these actuators

according to the application’s needs. This microcontroller is connected to the front part for
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power and to receive information from the Raspberry Pi. It is the Raspberry Pi that gives it

the instructions to transmit to the thruster and servo motor. The ESP32 also acts as a safety

intermediary between the RPI and the actuators, as it is less susceptible to bugs than the

other controller, and we can add a filter to it to prevent aberrant values from reaching the

motors.ons ajouter un filtre dessus permettant d’empêcher les valeurs aberrantes d’accéder

jusqu’aux moteurs.

The other components mainly serve to regulate the different voltages present in this part

of the robot, and some are placed on a printed circuit board created directly by a milling

machine at ENSTA Bretagne.

(a) Rear PCB(editor) (b) Rear Mounted PCB

Figure 19: Rear PCB

3.4 Final assembly

Figure 20: Karst assembly

Yellow for the camera and lumens, Green for the echosounders, Blue for the Pixhawk and

pressure sensor, Red for the actuators, Orange for the batteries, White for the PCBs and Pink

for the controllers.
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4 Ballast

Students : Le Gouallec Jules, Bourzoufi Samy, Leroy Hippolyte

4.1 Rappel

The purpose of the ballast group is to provide the Karstex Robot a ballast system allowing it

to control its depth in Z, but also to balance itself on the pitch angle. To balance the robot,

we’ll place one ballast at the front and one at the rear of the robot. A ballast is a system

that can be seen as a pump, i.e. it pumps water in to make itself heavier and pumps water

out to make itself lighter. In this way, the robot will have a mass slightly less than its volume,

allowing it to sink when it pumps enough water and to rise when it rejects enough. Water

levels in each of the ballast tanks will not necessarily be equal at all times, so this dual ballast

system ensures zero pitching in the event of the robot’s intial imbalance.

What we’re more used to seeing is AUVs controlling their depth with thrusters, which can

be power-hungry. It’s mainly for this and balancing that we chose ballasts.

Initially, the idea was to create the system ourselves, taking inspiration from work already

done by others, however rare, such as that of Thomas Le Mézo. However, for lack of time

and for safety’s sake, we also decided to order some off-the-shelf, despite the limited supply.

Here’s the ballast from Engel-modellbau, which we have in duplicate.

4.2 Off-the-shell solution

Figure 21: Ballast cross-section diagram

This ballast works as follows: The DC motor drives a worm screw through reducers to

move it in or out of the tube, to which is attached a piston to make a syringe system, which

pumps water in or out via the orifice on the left of the figure. This orifice allows us to attach

a plastic tube to the ballast and pull it out of the robot. The ballast is therefore located in the

dry zone inside the robot. Given that distance A in figure [] is 10cm, we need to allow for a

total space of 22cm when the auger is extended.
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The Engel ballast works quite simply. Controlled with the UNIpro switch, it is possible to

carry out a proportional control of the ballast position. The measurement of the position of the

piston is done using a Hall effect sensor and magnets sticked on a gear wheel. The configuration

of the ballast is done as follows: choose a voltage interval by successively putting two different

voltages min and max to the switch successively (the minimum voltage corresponds to the

piston pushed to its maximum position and the maximum voltage to its minimum position),

choose a mode control, for example in 80/20. Once configured, it is then necessary to provide

a voltage in the chosen interval to impose a position on the piston. The input voltage can be

transmitted through a PWM signal generated by an Arduino. The UNIpro switch is actually

made to prevent the system go over a certain pressure level : a mechanical pressure sensor

will send a signal to the switch and the piston will get pushed to its maximal position to

empty the ballast. This is what we want to avoid in our case as the ballast can’t handle too

much pressure (2 bars). These ballasts will help us testing our command law in a pool without

worrying about pressure problem.
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4.3 Developed solution

In order to provide our own solution we have chosen to base our architecture on a worm

screw actuated by a DC motor with odometers. Screw-nut connection eliminates the need to

supply energy to hold the ballast in a fixed position. Moreover, the screw pitch, in the order of

a millimetre, multiplies the torque supplied by the motor, enabling it to withstand the high

pressures exerted by the water. When the motor rotates, it drives a tapped gear, which in

turn moves the worm screw. We dimensioned the tube to contain a volume of 200 mL, for a

diameter of 75 mm, giving us a useful length of 45 mm. We wanted the ballast to go to a

depth of 50 m, which implies a 5 bar differential pressure. For a piston diameter of 75 mm, it

represents a force of 2210N to counter.

The minimal torque of the motor is calculated as following :

dW1 =
Cmotor
R1

·dx1

dW2 = Fwater ·dx2
dx1 = dθ1 ·R1

dx2 = dθ1 ·
R1
R2
·
st
2 ·π

(st is the screw thread)

As a minimum, the input torque must be equal to the output torque: dW1 = dW2, which leads

to :

Cmotor = Fwater ·
R1
R2
·
st
2 ·π

With a motor torque of 12kg.cm and a reduction ratio of 1, a force of 3760N is provided

which is enough for our application.
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Figure 22: Ballast control circuit
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Figure 23: Diagram of the developed ballast
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5 Inertial Measurement Unit and Depth Sensor

Students : BELLOT Victor, BETTON Gabriel, RIZK Catherine

5.1 Pixhawk 3 Pro Autopilot

To manage the Blue Robotics BAR30 pressure sensor, we will be using the Pixhawk 3 Pro

autopilot with its integrated IMU.

(a) Blue Robotics BAR30 pressure sensor (b) Pixhawk 3 Pro autopilot

Figure 24: IMU and Depth Sensor gears

The BAR30 can measure up to 30 bar (300m depth) and communicates over I2C. It also

includes a temperature sensor accurate to ±4◦C.

The Pixhawk autopilot communicates with the main processing unit (a Raspberry 4 in our

case) through USB. It sends and receives MAVLink messages to change the autopilot state

and to claim the measurements we need. Here are the types of the messages we are looking

for :

• ATTITUDE (roll, pitch, yaw, rollspeed, pitchspeed, yawspeed)

• SCALED_PRESSURE2 (press_abs, press_diff)

We calibrated the integrated IMU using QGroundControl software. This involved placing

the IMU in various positions (along different axes) and letting it acquire data in these positions.

The following picture shows how well the process went:

23



Figure 25: The IMU calibration process

5.2 ROS2 interface

To read the MAVLink messages, we first attempt to use the MAVROS ROS2 package. We

hadn’t succeeded in using it properly so we are finally using the pymavlink Python library. This

enable us to create a ROS2 node publishing two sensor topics : /imu and /pressure. We’ve

also written a launch file to facilitate integration of the package into the common ROS. It

allows you to specify the USB port to which the Pixhawk is connected using the "usb_port

:=<>" argument.

Our ROS package is untitled inertel_toolz_tkt_bb (referring to the last names of its

three authors), and the IMU/pressure node can be launched using the following command :

r o s 2 l a u n ch i n e r t e l_ too l z_ t k t_bb s e n s o r s . l a u n c h

Figure 26: Hardware and Software structure
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6 Echosounders

Students : Martin PILON, Emilie LEDOUSSAL, Marguerite MIALLIER

Figure 27: Testing the echosounders in the pool at ENSTA Bretagne

6.1 Choosing echo sounders

Several solutions were considered for implementing obstacle detection using an echo sounder.

One of them was the use of sector sonar or scanning sonar, but in addition to being difficult

to attach to the front of the robot due to the porthole allowing camera vision, this would

not have been relevant because it would have made it possible to know the information only

in the space immediately surrounding the front of the robot, therefore preventing possible

obstacles from being detected in advance. We therefore opted for the use of several 1D sonars,

positioned at the front of the robot at an angle of 45°. The three of them are separated by

120°.

The sonar Ping2 from Blue Robotics has been chosen for this project, because it is easy to

use in Python with the brping library developed by Blue Robotics itself. The library can be

found at : https://pypi.org/project/bluerobotics-ping/.

6.2 Getting the echo sounders data

At first the Python ROS node has been developed for only one echo sounder. Tests have

been led in the pool, to verify that the distance values obtained by the node were the same as

those showed by the Ping Viewer software, developed by the manufacturer.

Then, the node has been adapted to the use of three sonars. As the three of them publish

at the same frequency, they cannot be used at the same time due to the interference. They
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are therefore used one by one : when the first one has received the signal back, the second

one emits, waits for the responds, and finally the third one does the same. This process take

around 0.68 seconds.

6.3 ROS2 interface

Data of each sonar is published on one topic as a Float32 message. The publishers publish

at a period of 0.1s. If the data hasn’t been updated since the last publication, the last value

will be republished. The low frequency of update should not be a problem since the robot

moves slowly.
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7 Hydrodynamic model

Student : Gwendal Crequer

The goal of this part is to estimate drag coefficients and/or friction actions depending

on the flow and the configuration of the structure. This work has first been done with a

Fluid-structure interaction solver, but an simpler approach will be presented for the succession.

7.1 COMSOL modeling

The goal of this method is to find a general law, in laminar flow, and to enhance parameters

which could be fitted to the real karstex robot. The simulation environment is presented in

figure 28.

Figure 28: Pressure field around the shape

The angle between the 2 bodies changes but the flow is only in the opposite direction of the

thrust (i.e. hypothesis : no drift). The two shapes are considered with a revolution symmetry, so

the model is simplified to a plane problem which would need experimental validation. Because

of the hypothesis of no-drift effect, the behavior of the robot is supposedly the same in all

orientations while the flow is opposed to the thrust force.
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The situation is presented for various α values in figure ??. We can notice that the

over pression between the the bodies progressively becomes a depression, then, a suction

phenomenon appears.

7.2 Parameters estimation

The integral of pressure around each body permits to estimate drag and lift forces. Because

F⃗drag =−12ρ.SprojCdrag ||u⃗||u⃗, we can easily estimate SprojCdrag for various angles and various

speeds, as presented in Figure 29.

CdragSproj and Cl i f tSproj for front body, de-

pending on speed

CdragSproj and Cl i f tSproj for rear body, de-

pending on speed

Figure 29: (Maybe) because of the laminar hypothesis used in the solver, there is no drag and

lift dependency on the flow intensity, notice once again the suction effect for α > 0.6rd

Considering symmetry of the behaviour for α > 0 and α < 0, heuristics with 2 parameters

are suggested figure 30.

CdragSproj is approximated by an affine rela-

tion
Cl i f tSproj is approximated by a arctan relation

Figure 30: Heuristics and parameters to determine

7.3 Critics about the results

There are 2 main issues which makes this estimation unusable for now:
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• All of these operations are considered with no drift, but 3D simulations of the robot lead

to an important drift, as lift coefficients figure 30 enhance too. Then, that might imply

to switch model and to log a parametric 3D surface/heuristic for the same result and

the curve fitting with real data. That is computationally heavy,

• Lift effect for high α value is not supposed to be higher than drag effect. It could be due

to an illogical projection of forces in the wrong frame (frame of the front body while the

dynamical model is only working in the frame of the rear body.

7.4 Easier alternative

2 alternative methods might be used to get a robust hydrodynamic models:

• Assemble the robot and log a lookup table of all the forces and torques on the articulation

with experimental measurement (maybe find an relation with the speed of the flow).

Torque values can help for finding the application point of the force. This method is

close to the real environment and can be highly accurate, but needs an assembled robot

and a method to measure the pose of the robot, and the water flow.

• Simplifying each body by an ellipsoid, theoretical results exist for such primitive, smooth

shapes. The main drawback, if each ellipsoid is computed independently, is that the rear

ellipsoid drag coefficient might be highly affected. Then, a solution is to consider that

the input flow for the rear body is a combination of the main flow the mean flow at the

side of the front body, near the articulation (linear combination ?).
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8 Équations d’état

Students : Johan Berrier-Gonzalez, Gwendal Crequer

8.1 Description

The aim of this part is to define the equations of state of the robot. This will be useful for

the rest of the project, as it will enable the robot’s behaviour to be represented and therefore

enable control and guidance laws to be tested, etc.

Initially, we provided a simplified version of the model to give the other members of the

project an initial working tool.

In a second phase, the idea was to propose a more realistic method for the model using

different approaches to dynamics (PFD, Kinetic Energy Theorem, etc.).

8.2 Simplified 2D study of the Karst

In the first version of the model, we decoupled the robot’s behaviour to represent the robot

without the ballast and therefore without the articulated part.

Explanation of equations of state

In the first part of the study we obtain one of the bodies, so we end up with the following

model :

Figure 31: Karst System

We have a single thruster at the rear to keep the robot moving.

We therefore have the velocity vector which has a component along x. Thanks to the use

of ballasts, we can manage its translation along the z axis (this part will be studied in the

control section) and prevent any rotation along the x axis.

We can therefore study the system in the (x,y) plane without taking the z axis into account.

I remind you of the model
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Figure 32: action eau sur robot

˙V r = ar −ωr ∧Vr

ωr = 0

so
˙V rx = arx

V rx : composante seulement suivant x

Fx ∗V = d/dt(1/2∗m ∗V 2) =m ∗ v ∗ V̇ =m ∗arx = (m+ma)∗arx

ma = ka ∗ρeau ∗Vrob =m

Fx =Kp ∗u0−1/2∗Cx ∗Sx ∗ρeau ∗V 2

arx = Fx/2∗m = (Kp ∗U20/2∗m)− (Cx ∗Sx ∗ρeau ∗V 2/4∗m

with

p1 =Kp ∗/2∗m

p2 = Cx ∗Sx ∗ρeau/4∗m

The result is

V̇ = p1 ∗U20 −p2 ∗V 2

with U0 : commande du propulseur

Now let’s take a look at the real systems
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Figure 33: 2D System



˙x1 = v cos(θ)

˙x2 = v sin(θ)

θ̇ =?

˙x4 = v sin(x3− x4)
v̇ = p21−p22

θ : angle servomoteur

Now let’s take a closer look at x4, because its expression is incomplete

Figure 34: Systeme 2D

x4 represents the angle between body 1 and 2.

Over time this angle will vary to follow the orientation of the head. When the head is

tilted, the pressure of the water on the head increases, creating a torque and causing the rear

section to rotate.

We therefore have :

32





˙x1 = v cos(θ)

˙x2 = v sin(θ)

θ̇ =?

˙x4 = v sin(x3− x4)−k ∗ x4
v̇ = p21−p22

with

K =M ∗L=
P ∗L
S
=
p0ghcos(θ)

S
(1)

8.3 3D model and refinement

This model is based on the Newton’s law of Motion, through mechanization equations. Then,

the main work is about defining forces and their intensity, application points, localizing the

center of mass and taking knowledge of the limits.

8.3.1 3D model and parameters

Actions and Geometry are defined in the figure 35. Actions considered are :

• the weight of each body, at their center of mass :
−→
Pi =mg

−→z0
∣∣∣
Gi ,R1

,

• the weight of each ballast, at their center of mass:
−→
Pbi =mig

−→z0
∣∣∣
Bi ,R1

,

• the buoyant force of each body, at their centroid,
−→
Ai =−mg−→z0

∣∣∣
Gi ,R1

,

• the thrust of the propeller, at the back of the rear body,
−→
T = T−→x1

∣∣
T1,R1

,

• the viscous friction forces, expressed at an arbitrary point, defined as the extremum of

each body :
−→
Fi =−k(state)

−−−−−−→
VOi∈bodyi∣∣∣∣∣∣−−−−−−→VOi∈bodyi

∣∣∣∣∣∣
∣∣∣∣∣
Oi ,R1

Forces considered in the 3D model Geometrical parameters of the model

Figure 35: Scheme of the 3D model

Some aspects have been considered :
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• A small centerboard could be added on body 1 to balance the torque of the thruster.

• The application point of the drag is realistic in a case of a small drift. However, it is not

the case here, it might be interesting to apply the drag force at the centroid (to avoid

excessive calculus) or at the point of the body where the speed is maximal,

• lift force is not considered in this model, supposing that most viscous effects create

drag,

• There is no added mass in this model, that is not justifiable,

• the drag coefficient is a constant, because the hydro-dynamical model has been considered

as non-relevant. It is destined to change with a more accurate modeling of hydrodynamical

properties, empirically or with a model including parameters of the final shape.

8.3.2 Center of mass and reduction of the problem

The dynamical equations are applied at the center of mass, which is moving depending of the

angle between body 1 and body 2. All inertia matrices (cylinders for bodies, point for ballasts

until their shape are decided) are so moved to the center of mass.

Torques due to all the forces are computed at the center of mass. It will be possible to

add pure torques easily. All forces are expressed in the body frame.

8.3.3 Mechanization equations and state model

The proposed state is :
X Position in R0
R Rotation R0→R1
v Speed in R1
ω Angular speed in R1

The state equations is so :



Ẋ= Rv

Ṙ= R(ω∧)
v̇ = 1

mtot
Σ
−→
F
∣∣∣
R1
−ω×v

ω̇ = I−1G

(
Σ
−→
C
∣∣∣
R1
−ω× IGω

)
and can be solve iteratively with Runge-Kutta methods for X, v and ω, an exponential method

can be suggested for R. The state model is also adapted for euler angles.

Beware : dynamical effects due to the control of the servomotor are not considered, and

the center of mass is moving in its own frame.

8.4 results

The dynamical model is coherent with expectation for no inclination between the 2 bodies, or

with no propulsion (achieve equilibrium point). Gwendal Crequer and Leo Bernard worked at

explaining a phenomenon which creates an intense rotation for very small inclinations : it might

be due to the application point of the drag force, and its evolution due to the hydrodynamical

model is not implemented.
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8.5 liens avec les autres groupes

Ces equations 2D ont été fournis dans les groupes suivants :

Figure 36: Lien avec les autre groupes
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9 Control

Students : Tristan LE FLOCH, Louis-Nam GROS, BERNARD Leo, Mathieu PITAUD, Louis

GILLARD

9.1 Control Architecture

Figure 37: Control Architecture

Figure 38: Navigation Guidance Control Architecture
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9.2 Vertical Regulator

Work with groups Ballast, Guidance, Simulation and Kalman

9.2.1 Context and definitions

We call A the rear module and B the front module.

Figure 39: Model of the double ballast

We make the assumption that it is the volume that is modified, not the mass, when the

ballasts fill or empty.

Let’s state some constants and variables:

• Constants:

– mA0 and mB0: masses of modules A and B

– m0 =mA0+mB0: total mass of the robot

– VA0 and VB0: volumes max of modules A and B (ie when there is no water in the

ballasts)

– L: the length between the two barycenters of the ballasts, which are both a length

L/2 from the total barycenter of the robot. It means we consider the robot symetric

for the masses.

• Variables:

– z : the depth

– vz : the speed along z-axis

– θ: the pitch

– θ̇: the angular velocity for the pitch

– VAw and VBw : volumes of water in ballasts A and B

– u3 and u4: the commands sent to the ballasts A and B (variations of volumes)

Then, we define the state vector and the evolution equation as:
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x=



z

vz

θ

θ̇

VAw

VBw


; ẋ=



vz

g ∗ (−1+(VA0+VB0− (VAw +VBw ))∗ρ0/m0)
θ̇

Lgcos(θ)
2JY Y

(mB0−mA0+(VA0−VB0−VAw +VBw )∗ρ0)
u3

u4


Proof using the Newton’s second law of motion :

∑Fz =−m0g+ρ0gVA+ρ0gVB =mv̇z (2)

With the volume of the ballast A : VA = VA0−VAw , and for B : VB = VB0−VBw , it comes :

V̇z = g(−1+ρ0(VA0+VB0− (VAw +VBw ))/m0) (3)

And also :

∑MY =
Lcos(θ)

2
(−mA0g+ρ0gVA)−

Lcos(θ)

2
(−mB0g+ρ0gVB) = JY Y ˙̇θ (4)

Which leads to the following equation :

˙̇θ =
Lgcos(θ)

2JY Y
(mB0−mA0+ρ0(VA−VB)) (5)

In order to process a precise control using feedback linearization, we need to know the

state precisely. We know θ and θ̇ with high-precision thanks to the inertial unit, and we also

know the volumes VAw and VBw from the electronics in the ballasts. But there is noise on the

pressure measurements, so we need an accurate estimation of the real depth and speed. For

this purpose we use a Kalman Filter.

9.2.2 Kalman Filter

We try to estimate z and vz using the measurements of a pressure sensor.

The Kalman system can be described by the following model:

Figure 40: Kalman model

The state vector to be estimated is therefore: x=

(
z

vz

)
with the evolution function:

ẋ= fc(x,a) =

(
vz

a

)
Then, we can discretize the equation and apply the Euler method:
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Figure 41: Simulated evolution of y and ẏ using Kalman approach and finite differences, with

respect to time

xk+1 = Akxk +uk +αk

with Ak =

(
1 dt

0 1

)
; uk =

(
0

0

)
As we don’t know the acceleration, we introduce an uncertainty, in which we consider the

acceleration due to the weight and the buoyancy but also the possible perturbations that could

act on the robot. For this purpose, we will define amax , the maximum acceleration that the

system could be subject to. Then, we have:

Γαk = dt ·Γα = dt

(
0 0

0 a2max

)
We measure the pressure, from which we deduce a depth, so:

y = g(x)+β = Cx+β

with

C =
(
1 0

)
so:

yk = Cxk +βk

and

Γβk =
1

dt
∗depth_accuracy2

For the simulation we used amax = 10m.s−2 and depth_accuracy = 20cm

After simulating the robot with arbitrary commands for the ballasts, we get the following

results: y is the estimated depth of the robot and dy the estimated vertical speed. We can

clearly see that the Kalman approach is satisfactory and gives a much better curve than the

finite difference method because the noise in the observation throws off the finite differences.
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9.2.3 Feedback Linearization{
ẋ= f (x)+g1(x)∗u3+g2(x)∗u4
y = h(x)

with:

f (x) =



vz

g ∗ (−1+(VA0+VB0− (VAw +VBw ))∗ρ0/m0)
θ̇

1/JY Y ∗L/2∗cos(θ)∗g ∗ (mB0−mA0+(VA0−VB0−VAw +VBw )∗ρ0)
0

0


;

g1(x) =



0

0

0

0

1

0


; g2(x) =



0

0

0

0

0

1


; h(x) =

(
z

θ

)

We define, using Lie derivatives, v =

(
z (3)

θ(3)

)
= A(x) ·x+b(x)

with A(x) =

(
Lg1L2f h1(x) Lg2L2f h1(x)
Lg1L2f h2(x) Lg2L2f h2(x)

)
and b(x) =

(
L3f h1(x)
L3f h2(x)

)

Finally, we define the control law by choosing v = (w − y)+3(ẇ − ẏ)+3(ẅ − ÿ)+w (3)

with w our desired state for y and ẇ ,ẅ ,w (3) its derivatives

and we have:

u =

(
u3

u4

)
= A(x)−1(v −b(x))

Figure 42: Feedback Linearization process
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9.2.4 Simulation Python

Simulation in Python environment of the vertical regulator on a simple double ballast system

9.3 Horizontal Regulator

Work with groups State Equations, Guidance, Simulation

9.3.1 Context and definitions

Figure 43: Model of the Robot on the Horizontal plane

Let’s first define some variables and constants:

• Variables:

– (x,y) : the position of the robot in the horizontal plane (position of the servomotor)

– v : the forward speed, in the direction of thrust

– ψ : the yaw

– σ : the angle of the servomotor

– u1 : the input of the thruster

– u2 : the input of the servomotor

• Constants:

– kp : the motor constant that links the command to the induced force

– k1 and k2 (and K): are fluid friction constants dependent on the robot geometry

(1/2∗ρ∗S ∗Cx)

Then, we define the state vector and the horizontal evolution equation as:
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x=


x

y

v

ψ

 ; ẋ=


v ·cos(ψ)
v · sin(ψ)

kp ·u21 −k1 · v2−k2 · v2 ·cos(σ)
k2 · v · sin(σ)


And in the same time we have σ = u2

σ cannot be considered as a state variable as it is defined cinematically and not dynamically...

Explanation :
Using the Newton’s second law of motion we have :

∑Fxy = Fu+ f r (6)

With :

Fu the force induced by the motor Fu = kpu2

and f r the fluid frictions force f r =Kv2

For this control, we consider that a fraction of the fluid friction force f r is applied depending

only on the forward speed v of the robot and that the other part depends bothe on v and on

the angle of the servomotor σ. The first part is always applied in the opposite direction of the

thruster and the friction fraction is applied perpendicularly to the front module.

If we project the forces on the advancement direction and on the perpendicular direction,

we have :

Fu−k1v2−k2v2cos(σ) in the direction of advancement

and

k2v
2sin(σ) in the perpendicular direction

(7)

The second force generates a torque :

Lk2v
2cos(σ) with L the leverage (8)

Which leads to the following equation :

ψ̇ = k2 · v · sin(σ) (9)

In order to keep having a behaviour stable and close to the one considered here (among

other reasons), we limit the angle of the servomotor between −π/6 and π/6. (let’s note that

v would be more relevant here but we considered v so far so we’ll keep v)

9.3.2 Horizontal controller

To facilitate the guidance of the robot inside the karst, we want to provide a controller that

transforms the behaviour of the robot in the horizontal plane as if it was a dubins car.

To achieve this, we have to transform the actual inputs of the robots into a desired forward

velocity vtarget and a desired speed of rotation ωtarget .

To control the speed, we use a controller based on the error v1 = vtarget − vactual with

vactual estimated at all times using the equations of motion (which is relevant as the navigation
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is stable). The angle σ is also known at all times through the feedback of the servomotor. We

calculate the input u1 with the following formula :

u1 =
√
v1+k1 · v2+k2 · v2 ·cos(σ)/kp (10)

This controller may appear a bit complex but it showed better performances than a classic

proportional.

To control the speed of rotation, we use a different controller based on the special status

of σ (both an input and a geometrical parameter involved in the dynamic evolution). We

calculate the input u2 as so :{
u2 = arcsin(ωtarget/(k2 · v) i f v > |ωtarget/(k2 · v)|

u2 = σ+ δσ else

with δσ a small variation of angle in the direction we want to turn

Whereas this controller may seem not linear and unstable (because of the arcsin), in fact :

− the condition is just here to ensure that the forward velocity is enough to turn at the

target speed (ωtarget) while having σ bounded.

In reality it constitutes just a starting condition to avoid any instability at low speed.

− with σ in [−π/6,π/6] and a realistic speed (<10m/s), the arcsin is almost linear

− the only constraint that we have on v and ω is ω≤ (k2 ·v)/2 which not very constraining

as we should be able to rotate at at least π/3rad/s with a forward velocity of 1m/s.
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9.4 Hardware and Drivers

Work with groups Ballast and electronics All actuators must becontrolled by PWM signals.

We chose to generate them using an micro-controller ESP32. The control commands are

communicated to the ESP32 via a UART serial connection from the onboard computer

Raspberry Pi.

9.4.1 Raspberry Pi Configuration and ESP32 Configuration

The Raspberry Pi is configured with Ubuntu 22.04 server. ROS2 Humble Base is installed

and set up on it. To establish the serial connection, the Python Serial library is installed. An

ROS2 WORKSPACE is set up and source and follow the Control Architecture[figure 37].

9.4.2 Serial Link between Raspberry Pi and ESP32

To establish the serial connection, a ROS2 node was coded to retrieve the control commands

calculated by the regulators in the control node and send them to the ESP32. Hence, we encode

four floats in our connection. The ESP32 decodes these four floats at the beginning of its loop.

A serial link using UART (Universal Asynchronous Receiver/Transmitter) is a form of serial

communication commonly used in microcontrollers and computers. UART communication

involves two lines for transmitting data Tx and receiving data Rx. It’s asynchronous because

there is no shared clock signal between the two devices, which means they must agree on the

data rate (baud rate), data bits, stop bits, and parity beforehand to communicate properly.

Our UART link Configuration:

• Data Format: Each float is typically represented as a 32-bit binary number in most

systems. In UART communication, each of these bits would be sent sequentially along

with start, stop, and optional parity bits.

• Start and Stop Bits: Each packet of data starts with a start bit (0) to signal the

beginning of a new byte, followed by the data bits (in this case, the binary representation

of a float), and one stop bits (1) to signal the end of the byte.

• Baud Rate Synchronization: The Raspberry Pi and the ESP32 are configured to the

same baud rate (115200 bits per second) to understand each other.

Although the ESP32 can send data back to the Raspberry Pi, for the momemnt, it’s not

needed.
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Figure 44: Uart Diagramm

9.4.3 Servo Driver

The servo driver retrieves a command value for angle between 0 and 180 degree. It remaps

this to a pulse range between 1000 and 2000ms. The resolution is 16 bits, and the period is

20ms.

Figure 45: servomotor PWM

9.4.4 T200 Motor Driver

The T200 Motor Driver retrieves a command value for speed between -100 and 100 (speed

percentage). It remaps this to a pulse range between 1000 and 2000ms. The resolution is 16

bits, and the period is 20ms.

9.4.5 Motor Ballast Driver

Similar to the T200 motor driver, the Motor Ballast Driver accepts a command value for

speed within the range of -100 to 100, representing the speed percentage. The pulse width

modulation (PWM) signal have the same range with the T200 motor driver.

This approach ensures that both drivers can be integrated seamlessly into the control

system, providing a uniform method for manipulating the speeds of different motor types

within the system.
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Figure 46: T200 PWM Control Diagramm

9.5 Speed performance approximation

In this part we try to give order of magnitude of the robot max forward speed. Let’s consider

a 2D plane. If the robot is moving straight with no angles between the two parts, we can

approximate its dynamics saying it is subject to two forces : thrust given by the propeller and

drag resistance.

max = Thrust−
ρSCx
2

v2 (11)

with ρ= 1000 kg.m−3, S the surface area in front of fluid movement, here it is a circle :

S = πr2. And Cx the Drag coefficient which is around 0.5 for a circle (surface that faces the

fluid movement).

We have reached the max speed when the drag force compensate the thrust given by the

propeller, so when a = 0, which leads to :

Thrust−
ρSCx
2

v2max = 0 =⇒ vmax =

√
2∗Thrust
ρSCx

(12)

We use the T200 data sheet to have the thrust as a function of PWM sent, and we can

plot the max speed estimated for each PWM sent :
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Figure 47: Max reachable speed depending on PWM sent

9.6 Pilot test

We conducted a test to control all the actuators by sending them commands via the Raspberry

Pi. Here is the link to the test video https://www.youtube.com/watch?v=3rpy5u1xWQo.
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Figure 48: Pilot test
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10 Optical guidance

Students : Gabriel Betton, Hugo Hofmann, Kevin Ren

10.1 Objective and system integration

While the robot is equipped with sonars that will prove very useful to detect obstacles and

follow the tunnel, it is still wiser to use as much information as we have, and with this in mind

using the camera placed at the front of the robot is particularly interesting. The camera model

and its position on the robot have been meticulously discussed with the 3D reconstruction
group. In this section we will present two methods for visual guidance :

• using image segmentation

• using an optical flow method

These two approaches share the same goal, that is to compute the coordinates of the tunnel

center, which will then be used by the Guidance team to keep the robot centered along the

karst.

10.2 Image segmentation

To obtain the center of the karst using image segmentation, we follow theses steps for each

frame :

• Preprocessing : the image is converted to HSV (Hue Saturation Value), the best results

were obtained by converting the image into a gray scale of its saturation (Figure 49a).

Then the image is vectorized and sampled to keep 1/1000 of its values, the goal is to

lighten the processing time of the next operation.

• Segmentation : a bayesian gaussian mixture model is trained on the vectorized image to

split the image in clusters, the weights of the previous frame are used as the starting

point to ensure more continuous results (Figure 49b).

• Postprocessing : the segmented image is converted to blobs to unify the result, then the

largest one is kept (Figure 49c) to compute its centroid corresponding to the desired

center of the karst (Figure 49d).
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(a) Saturation (b) Segmented

(c) Largest blob (d) Result

After various optimization the results are consistent and the algorithm takes around 50ms

per frame (tested on a Ryzen 5 7530U, 6 cores, 2.0 Ghz). However, this method lacks reliability,

for certain geometry of karst or ligthnings, the results can be less precise.

10.3 Optical Flow

Figure 50: Optical flow node structure

Figure 51: Computed optical flow (right) from a karst video (left)

Now that the optical flow has been computed, we need to find a method to use the information

to compute the center of the karst as accurately and reliably as possible, which will then be

sent to the guidance team’s node. Several methods were developed and tested, of which we

will present here the two main ones.

10.3.1 Convolution method

Using the optical flow image, we would like to compute an estimation of the center of the

karst. Fortunately, videos tend to show that generally speaking the karst does keep a cylindrical
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shape, which yields a characteristic circular flow, as seen in Figure 51. This means that we

can use this general shape to determine where (or at least, in what direction) the center of

the tunnel is, defining a reference profile (or kernel) as seen in Figure 52. The chosen kernel

represents what we expect the camera to see when the robot is centered in the tunnel and

looking straight ahead. Using this, we can then compute an estimation of the center of the

karst using a 2D convolution on the image. The location of the maximum value within the

result of the convolution should correspond to the center (see Eq 13).

(a) x component of the reference kernel (b) Reference kernel

Figure 52: Karst reference kernel

(x0,y0) = argmaxx∈[0,w ],y∈[o,h],ϵi∈Di (T (x,y)∗P (x,y ,ϵ1, ..., ϵn)) (13)

Results can be seen in Figure 53 and here: https://youtu.be/E9AmsiBS_N0

Figure 53: Computed center (red circle) obtained with the convolution method

10.3.2 Depth Map

The aim of this part is to give a method for estimating the distance of a point in an image via

optical flow and the approach speed of the camera which are needed by the guidance team.

Let M be the point representing the AUV that can be controlled like a Dubins car and P a

point in the environment. This point P is visible with the robot’s camera. The robot advances

at a speed v which is tangent to its orientation (Dubins). By relativity, we can consider that it

is the point P which advances towards the robot. We then index by n the different positions

of point P at time n. We then obtain the following figure:
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Figure 54: Relative displacement of point P compared to M

Let
−−→
MPn =

(
xn

yn

)
, θn+1 = θn+dθ and d = ∥

−−→
MPn∥. Then xn = xn+1 and yn = yn+1+v dt.

We have :

tan(θn+dθ) =
xn

yn− vdt
(14)

vdt = yn−
xn

tan(θn+1)
(15)

= d

(
cos(θn)−

sin(θn)

tan(θn+1)

)
(16)

From here we are able to estimate the AUV’s velocity with sonars if other solutions do not

allow it by considering that P is the point targeted by the sonar:

v = 1
dt (yn−

xn
tan(θ+dθ)) (17)

Where ||
−−→
MPn|| is given by the sonar, θ represents the angle between the direction of the

robot and that of the sonar in the horizontal plane, which is known. The change in angle, dθ,

is inferred from the optical flow by subtracting θn = f (un) from θn+1 = f (un+1), where un
denotes the horizontal component of the pixel coordinate of point P (see Equation (19)).

Finally the distance d between the robot and a random point P on the image is given by :

d = vdt

cos(θn)− sin(θn)
tan(θn+1)

(18)

Let θn > 0. The point P is moving towards us, hence to the right, so θn+1 > θ. We can

restrict ourselves to θ < π
2 since the field of views (FOVs) of typical cameras are less than

180◦. Under these conditions, we can show that cos(θn)− sin(θn)
tan(θn+1)

> 0 and sin(θn)
tan(θn+1)

> 0.

Thus, cos(θn)− sin(θn)
tan(θn+1)

increases with θn+1. Consequently, d decreases with θn+1, which is

logical since a point that is closer moves faster. The same reasoning can be applied for θ < 0.
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Let’s now demonstrate the relationship between an angle θ and u. Let f be the focal

distance, i.e., the distance between the optical center and the image plane for the pinhole model.

We know there exists a constant k ∈ R such that u−cx = kf tan(θ) where cx corresponds to

the image center in pixels along the x-axis. Given the camera’s field of view (FOV) and the

width l in pixels of the image, we have l−cx
tan( FOV

2 )
= kf .

Finally :

θ = arctan
(
tan
(
FOV
2

) 2(u−cx )
l

)
(19)

By denoting (u(M),v(M)) as the coordinates of M in the image frame, we have:

u(Mn+1) = u(M)+
−−→
f lux(u(Mn),v(Mn)) ·−→eu

Thus, we can determine θn+1 from the optical flow with equations (18) and (19), which allows

us to conclude that for every pixel in the image where the optical flow is non-zero, we can

associate a distance d .

On figure 55 is presented above the image which was used for the optical flow. Below is

plotted the curve representing the distance of each of the pixels of the black line, drawn in

figure above, relative to the position of the camera. The distances have been capped. Which

means that all distances greater than dmax will be set to dmax . In particular the areas where

the distance calculated with the method described is infinite because the optical flow is zero

have been limited. In order to distinguish these dmax values from the real ones, these outlier

values were set to 0.9dmax instead. The result is rather satisfactory and seems to depict the

appearance of the karst quite well. The figure 56 shows the depth map of the image, the lighter

the color of a pixel, the farther away the pixel is. The result confirms the previous observation.

However, a discontinuity appears approximately in the middle of the image separating the

image in two. This discontinuity is also observed in figure 55. The cause of this phenomenon

has not yet been found.
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Figure 55: (a) Image used for optical flow (b) Normalized distance estimated for each pixel of

the black line drawn on (a) using the method presented

Figure 56: Estimated depth map; The lighter the color of a pixel, the farther away the pixel is
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11 Guidance

Students : Louis Roullier, Louis Ravain, Joachim Zaffrana, Virgile Pelle, Bastian
Garagnon

The goal of this part is to give optimal instructions to the robot in order to make it

navigate the karst. Our code outputs are a desired speed (along the longitudinal axis of the

robot), a desired rotation speed (around its z-axis) and a desired altitude. Subsequently, these

parameters are relayed to the node managed by the control team, which in turn translates

them into actionable instructions for the actuators. This phase operates within a simulated

environment, provided by the simulation team. Therefore, we don’t need a precise model for

the robot. Hence, we’ve elected to approximate our model to that of a Dubins car, enabling

the evaluation of various guidance models. This approach is viable due to the efforts of our

colleagues in the state equations team, who have established a seamless transition between

the Dubins car model and the Karstex model.

Our navigation strategy depends on two essential pieces of information: :

• the center of the karst, given by the vision guidance team, who utilize a camera to

pinpoint the central location of the karst landscape accurately.

• the distances given by the sonar, thanks to the work done by the echosounder team.

These measurements help us gauge distances to obstacles and features within the karst

environment.

By incorporating these inputs into our navigation framework, we equip our system with

the necessary guidance to traverse the karst terrain effectively.

11.1 Use of camera

In conjunction with the optical guidance team, we tried to formulate instructions utilizing

data from camera sensors. Within the simulation environment GAZEBO, our colleagues of the

simulation team managed to acquire images. Initially, the exploitation of these images was

difficult because the environment was too dark. To overcome this hurdle, a light was installed

on the robot, enabling the capture of usable images. An example of an exploitable image is

given on the following figure :
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Figure 57: Image provided by the simulation environment

This advancement allowed the optical guidance team to calculate the coordinates of

the pixel of the center of the karst, in the simulated environnment. With this foundation, we

proceed to issue instructions to the robot:

• Utilizing a conventional proportional controller, we compute the instruction as the

difference between our current linear speed (v) and the desired speed (vd), with vd
assumed constant in our scenario.

• Firstly, we acquire the center of the image through a ROS2 topic provided by the

simulation team. Subsequently, the optical guidance team employs image processing

techniques to determine a barycenter representing the center of the karst : the location

the robot should aim for within the image to continue exploring the karst. This process

involves calculating the optical flow between successive frames, allowing us to detect

significant changes in the scene and potential obstacles near the robot. The objective is

to guide the robot towards the position indicated by the ideal pixel. To achieve this, we

set a maximum angular velocity (ωmax ) and introduce a coefficient (Cω) defined by the

following formula:

Cω = imagecenterx−barycenterx
imageshapex

(20)

To ensure precise angular speed control, we utilize the horizontal dimension of the image

as the shape parameter and the x-coordinate for the numerator. The instruction for the

angular speed required to reach the goal is achieved by multiplying the maximum angular

velocity (ωmax ) by the coefficient (Cω). This approach facilitates dynamic adjustment of

the robot’s orientation, enabling it to accurately navigate towards the designated target

within the image. Therefore we have :

ωtarget,camera = Cω ∗ωmax (21)
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• For altitude control, we employ a similar process as before to determine the objective

pixel within the image. To attain the desired altitude, we directly assign the coefficient

(Cz ) as the instruction. However, in this case, we utilize the vertical coordinate of the

picture for the shape parameter and the y-coordinate of the objective pixel for the

numerator.

Cz =
imagecentery−barycentery

imageshapey
(22)

This approach ensures precise adjustment of the robot’s altitude, facilitating smooth

and accurate navigation within the karst environment. Therefore we have :

ztarget,camera = Cz (23)

11.2 Use of Sonars

In addition to the camera, our sensor suite includes three sonars. To ensure the relevance

of the data supplied by these sonars, we collaborated closely with the echosounder team.

Together, we strategized on how best to position them on the robot within the simulation

environment. The resulting arrangement is illustrated in the following figure:

Figure 58: disposition of the echosounders on the robot

Following the setup, our focus shifted to devising appropriate instructions based on the

information given by the sonars. Our objective was to consistently maximize the distance

measured by all three sonars, indicating that we are near the center of the available pathway.

To achieve optimal heading alignment, we employ the following formula:

ωtarget,sonar =K1∗ tanh(−3∗ (sonar1 ·cos
(
−
2π

3

)
+ sonar2 ·cos

(
−
π

3

)
)) (24)
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Moreover, for altitude control, we use the depth data given by the simulation team
(accessible through the topic /depth). Additionally, we harness information from the sonars.

Consequently, we can employ the following formula:

ztarget,sonar = depth+(sonar1 ∗ sin(7∗π/6)+ sonar2 ∗ sin(11∗π/6)+ sonar3) (25)

11.3 Global guidance

Combining all the precedings informations, we now possess :

• Three inputs from the exploitation of the camera: a linear speed, an angular speed, and

an altitude.

• Two inputs from the exploitation of the sonars: an angular speed and an altitude.

Our approach involves utilizing both sets of controllers concurrently. In essence, we compute

the average of the angular speed and altitude provided by our two controllers, weighted by

their reliability index (iw,sonar/image and iz,sonar/image). This integrated approach ensures a

comprehensive and balanced navigation strategy, leveraging the strengths of both sensor

modalities to guide the robot effectively through the karst environment.

The final ωtarget and ztarget are given by these formula : ztarget =
ztarget,sonar ∗iz,sonar+ztarget,camera∗iz,image

iz,sonar+iz,image

ωtarget =
ωtarget,sonar ∗iw,image+ωtarget,camera∗iw,sonar

iw,sonar+iw,image

11.4 ROS2 architecture

Now that we have our ωtarget and ztarget , we have to make them accessible to the other

teams, especially the control team. The following graph shows how and where we take our

inputs, and where we output the results of our node.

Figure 59: Graph of the ROS2 architecture
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12 Simulation

Students : Clara Gondot, Théo Massa, Ludovic Mustière, Etienne Roussel et Apolline de

Vaulchier

12.1 Simulation environment

In this type of robotic project, having a simulation that allows to do a first validation of

our architecture is essential. Simulating the AUV and its environment allows us to try models,

algorithms or the feasibility of the project before even having to try on a real submarine. Even

more if we consider the context of this project, which is to explore karsts, natural cavities that

are not easily accessible, especially around Brest.

In order to obtain a convincing simulation, we had several options. We could have done a

simulation using a simple language like Python, but we thought that simulating every sensor

and the interaction between the environment and the Karstex sensors was not going to be easy

in this language. Another option was to use a visual engine like Unreal Engine, but we have no

knowledge of how to use this kind of tools to recreate a virtual world. Finally we opted for

the common robotic way, which is to use Gazebo, a simulator widely used in robotics. This

simulator has the advantage of having many libraries that simplifies, in theory, the creation of

a virtual environment and, of course, a virtual robot.

With this in mind, we began to work on this simulation. For this, we had to work step-by-step.

The first one was to have the environment in which the AUV evolves implemented in the

simulator. Thanks to a mesh file of a karst’s cartography made during previous explorations,

we were able to have a simulated representation of a real karst in our simulated world.

Figure 60: Fontanilles’ karst 3D model

Once this was done, we had to create a virtual representation of the AUV’s body. For this

part, we worked in collaboration with the group that was in charge of modelling the robot and

its mechanic conception, also called the mechanics group. In order to be the closest to the

reality, the simulated AUV’s dimensions have to be close to the real one’s. In Gazebo, we have

to use what is called an URDF (Unified Robotics Description Format) file to describe the
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geometry of the robot. In this URDF file, we define a collection of parts and joints, describing

the geometry of the blocks, the joints between them, their type, limits, etc. To simplify the

processing cost of the simulator, the description relies on simple shapes to compute volume,

collision or inertia. In our case, the Karstix is just two cylinders linked with a revolute joint in

between.

Figure 61: Simple version of the AUV

In theory, just this simple version should already be enough to simulate a mission. However,

it is possible to add a visual layer to this simple but effective model. By using a stl file that

the mechanics group has given to us, we gave the simulated AUV a realistic aspect, except

for its color.

Figure 62: Visual version of the AUV

The next step is to implement the physics of the environment and the simulated AUV. This

part was the most challenging one. Indeed, Gazebo already has a physical engine in order to

simulate typical physical phenomenons (gravity, friction, actuators thrust etc). However, we

want to control fully our simulation and it is not especially a good idea to rely on the software

physics, considering we do not know fully what’s behind. Furthermore, Gazebo is good at

simulating robots that evolves on land or maybe in the air, but the libraries that allow to

manipulate underwater robots are not always working and are quite obscure. We then decided

to reimplement ourselves the physics of the AUV by creating a custom Gazebo Plugin that
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will give us full control on the physics. Writing a custom Gazebo Plugin is a task worthy of

the worst means of tortures, for which the documentation is really sparse or even non-existent.

However, after losing tears and blood, we managed to get functional physics for the simulation.

12.2 State evolution model

Having a functional dynamic model for the simulated Karstix is the main point of the

simulation. We have to make a compromise between the precision of the model (which

augment the cost of the simulation), and simplifying assumptions for the implementation that

still allow us to validate a model. The main challenge of this aspect is that it depends a lot of

the results given by the group in charge of state model. We had to work with them often,

in order to always have the last functional model. The problem is that we could have a full,

working and accurate enough model only near the end of the project, so not many tests could

have been done with this simulation.

One important aspect is that, in the simulation, we consider not related the state equations

concerning the ballast and the rest. It means that the karstex is supposed to stay horizontal

thanks to the pitch regulation so that the state model related to the linear movement of the

robot is simplified.

See Section 7: State equations to get the model state used in the simulation concerning

the movement in the plan.

See Section 8.3: Vertical regulator to get the model state used in the simulation concerning

the ballast.

In accordance with the two sections above mentioned, the Gazebo Plugin is subscribed to

4 ROS topics, each corresponding to a given control input. The 4 inputs control the thrust

of the motors, the rotation of the revolute joint linking the two parts of the Karstix and the

volume of water inside the body of the front or back ballasts. Thanks to those control inputs

and the state model, we are able to control the simulated model directly in speed, which allows

to avoid an integration step.

12.3 Architecture of the simulation

The simulation uses the ROS (Robot Operating System) framework. We first created a

package only focused on generating the simulated environment called mnt_fontanilles (mnt

stands for "Modèle Numérique de Terrain", which is the French name for a Digital Elevation

Model). This package contains the sdf file that describes the karst, the launch file that starts

the simulation and the world file that contains the description of the world in which the AUV

evolves. We chose to add a ground plane under the karst to avoid the AUV to fall indefinitely

if it goes too low.
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Figure 63: Package Architecture

The second package is called karstix. It contains the URDF file that describes the AUV,

the launch file that starts the simulation and launches the package mnt_fontanilles. It also

launches the Gazebo plugin that simulates the physics of the AUV. Inside the karstix package,

we have the urdf file that contains the structure of the AUV and all the sensors implementation.

It loads the meshes and textures of the AUV and the sensors and makes the link between the

Gazebo environment and the ROS environment.

Figure 64: Fontanilles’ karst 3D model and the AUV
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12.4 Simulating sensors

The sensors taken into account in the simulation are: the inertial measurement unit (IMU),

the barometer, the camera and the sonars. They are coded in the URDF file associated with

the AUV.

The inertial unit is simulated using the libgazebo_ros_imu_sensor.so plugin, and is located

in the center of the AUV’s front body. It publishes the angles, linear accelerations and angular

speeds of the robot on the /sensors/imu/imu_data topic, simulating 3-axes magnetometers,

accelerometers and gyrometers. Gaussian noise was added for each measurement to simulate

the noise of the real sensors.

The barometer is not simulated with a plugin unlike the other sensors. We use it to obtain

the depth of the AUV. Thus, the AUV height is retrieved directly in the Gazebo Plugin used

to compute the state evolution (described in the last section), then Gaussian noise is added to

reproduce the noise of a real sensor to finally publish it on the /sensors/pressure_sensor/depth.

The camera is RGB-D for depth information. It is simulated using the gazebo plugin

libgazebo_ros_camera.so and is located at the front, as on the real AUV. It publishes

the disparity map and the corresponding point cloud on the /sensors/camera/image and

/sensors/camera/depth_map topics. In reality, the disparity map and point cloud would be

computed using computer vision first, and a lamp would be paired with the camera to light

up the scene. In the simulation, we have chosen to illuminate the entire karst to take this

lighting into account, but the texture and contrasts seen by the camera are still too low to

use computer vision. We tried to setup the virtual camera with parameters coherent with the

one that will be used on the real AUV, thanks the information given by the group in charge
of 3D reconstruction.

There are three sonars. The choice of their position, orientation and range was discussed

with the group in charge of the echosounders to match the actual AUV. The Gazebo

plugin used is libgazebo_ros_ray_sensor.so and they publish the distance associated with

each sensor on the /sensors/sonar/sonar1, /sensors/sonar/sonar2 and /sensors/sonar/sonar3

topics.
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(a) RVIZ

(b) Gazebo

Figure 65: Visualization of sonar and camera simulation on RVIZ (a) and Gazebo (b)

As can be seen from the figure 65, the sonars are positioned well forward with three different

orientations. The RVIZ image 65a shows the point cloud (shaded in front of the AUV) obtained

by the depth camera corresponding to the karst walls. The red block visible on the RVIZ image

corresponds to the IMU. The AUV and the shadows of the karst walls can be seen thanks to

the light added to the simultaion.

The final product of the simulation was made available to the other groups, especially the

ones in charge of the control and guidance of the Karstix, along with how to retrieve every

sensor’s data and how to control the robot.
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13 3D Reconstruction

Students : Rizk Catherine, Betton Gabriel, Goux-Gateau Adam, Garde Guillaume, Bellot Victor

13.1 The stereo camera

The purpose of the 3d reconstruction is to enable the spatial environment of the karst to be

viewed once the exploration of the karst has been completed. To reconstruct this space in three

dimensions, we needed to estimate the distance from the karst to each of the surrounding walls.

The camera best suited to this type of reconstruction is the stereo camera, which enables us

to obtain these distances and thus easily reconstruct a 3d environment. The choice of camera

is an important one. As it has to be mounted on the robot, it must be able to operate without

a graphics card in the system. Our choice is therefore the Intel RealSense D435, which has an

integrated graphics card and is suitable for on-board use.

Figure 66: RealSense camera

Setting up the camera involved initially connecting it to a computer using a USB-C cable,

with the ultimate goal of integrating it with a Raspberry Pi 4 to transform the camera into

an embedded sensor. However, we encountered some difficulties during this process. Despite

successfully fitting it into a Blue Robotics waterproof tube and connecting it to the Raspberry

Pi, we faced software compatibility issues when running it on the Ubuntu configured in the

embedded computer. Even with a Raspbian environment (this tutorial describes the main steps

: Raspberry Pi 4 and Intel RealSense D435), we encountered the same problem.

Here is an image depicting the device installed within the tube:

13.2 Reconstruction of the environment

The principle of this reconstruction is based on the creation of a point cloud in PLY format,

which can then be visualized using tools such as MeshLab. PLY, or Polygon File Format, is

a format for storing an object in the form of a list of polygons. It can also store numerous

properties such as color, transparency and texture.
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Figure 67: Camera in the Blue Robotics waterproof tube

We have tried a number of different approaches, using different software and different

methods, to generate this point cloud. Although there are many 3D reconstruction software

packages available today, many of them are expensive or time-consuming to run. We therefore

turned to the RealSense camera library, which features functions for generating this point cloud,

which we then save as a PLY file. This PLY file is generated by our camera_node.py file. A

Python module named open3d provides several useful functions to treat the PointCloud2

data published.

Once the point cloud has been saved, all that remains is to display it. To do this, we used

MeshLab software, which can open a PLY file and display it in 3D.

Figure 68: 3D reconstruction of a corridor performed by the camera
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Figure 69: 3D reconstruction of the point cloud representing a corridor in MeshLab

In this way, we can generate point clouds at any time during our AUV’s underwater

exploration of the karst, so that we can view them after the exploration.

13.3 ROS2 architecture

As we are using ROS2, we required the Intel SDK to assist us in publishing and subscribing to

topics. It can be found at : https://github.com/IntelRealSense/realsense-ros.

We followed the provided instructions in the Git to configure the camera to publish a

PointCloud2 message. To do so, we just need to launch the ROS2 node :

$ l a u n c h r o s2 l a u n c h r ea l s en s e2_came ra r s_ l aunch . py a l i g n_dep t h := t rue
p o i n t c l o u d . enab le := t rue

We will not get into details for each possible topic, but we will provide a scheme to illustrate

the architecture of our code :

Figure 70: Basic publisher/subscriber architecture for the camera

There are a lot of different topics on which we can subscribe, but the most useful one

is /camera/camera/depth/color/points : we obtain directly our PointCloud2 from which

we can extract all the information.
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13.4 A quick look at an older but efficient way using ROS

For the sake of this project’s coherence, the work on 3D vision was performed under ROS2. It

must nonetheless be known that 3D reconstruction as well as visual simultaneous localization

and mapping (SLAM) with ROS (that is, ROS 1 here) have been well explored. Here follows a

list of useful packages that can perform such a task together:

• realsense2_camera

• imu_filter_madgwick

• rtabmap_ros

• robot_localization

The important point here is that the realsense library provides all the tools needed. A

simple command can launch the process:

$ r o s l a u n c h r ea l s en s e2_came ra op en s ou r c e_t r a c k i n g . l a u n c h

It is then possible to play a rosbag and export the 3D point cloud associated with the

mission (the RealSense D435i is equipped with its own IMU and GPU).

The difficult part here was to use ROS with our ROS2-equiped computers. For practical

reasons, we chose to use Docker to containerize our application. The troubleshooting part

was to enable the container to have access to the host’s ports and to its displaying functions.

We have found a way to do it properly, and we have managed to launch our command. RViz

opens, and it is then possible to see the point cloud.

Figure 71: RViz displaying the point-cloud

It takes a little additional configuration to then be able to have a 3D reconstruction.
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Figure 72: 3D reconstruction with rtabmap

The only thing left to do is figure out a way to save and export the 3D map of the scene

with Docker. The main constraint is that it is impossible to send a second command to

the container while the ROS process is working. The idea, then, is to work from a second

container.

69



14 GitLab and Software Architecture

Students: Martin Galliot, Guillaume Garde, and Théo Massa

You can find the Git here

14.1 Git Organization

The use of Git has proven to be an essential tool for effective code management and coordi-

nation among different groups. Each group was responsible for a specific part of the project,

corresponding to a dedicated folder in the Git repository.

Each group followed a well-defined development methodology, particularly regarding the

use of Git branches. Each group worked on its own namesake branch.

With this setup, members of each group could work in parallel on their respective tasks

without fearing interference with the work of other teams. Features were developed, tested,

and validated independently before being first integrated into the develop branch and then

into the main branch.

This also allowed for simplified review of each group’s work, except for groups where the

use of Git was not relevant. A solution of logbooks was proposed to track the progress of each

group throughout the sessions, but this solution was ultimately not adopted.

Finally, the overall work was merged into the workspace branch in the ws_karstex folder.

More details are provided in the "Software Architecture" section below.

14.2 Pipeline

This configuration file enables the automatic building of ROS2 packages across different

branches of the GitLab repository using GitLab CI/CD. It defines three build jobs that execute

under various conditions based on the commit branch name or the pipeline source:

• develop: This job runs when the commit branch name is "develop" or when the pipeline

source is a merge request event. It tests the validity of the ROS2 project workspace

build.

• main: This job runs when the commit branch name is "main" or when the pipeline source

is a merge request event. It performs the same tasks as the preceding job but for the

main branch.

This setup allows for flexibility by only executing jobs for the main and develop branches.

Consequently, developers can freely create branches to develop new features. Job verification

of the workspace’s proper functioning will, therefore, be performed only for the most significant

branches that consolidate common work.

However, it was not utilized to its full potential because the creation of a common workspace

was carried out late in the project.
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14.3 Software Architecture

Since each group coded separately, it was important to agree on the names of the ROS2

topics used.

They were defined as follows:

• Sensors: /sensors/sensor_name/data

• Processing: /processing/type/data

Each group developed its own package, which was then imported into the ws_karstex

workspace defined above.

Here is a general diagram summarizing the software architecture of the robot:

Figure 73: Software Architecture

71



15 Results

15.1 Deliverable

We have created:

• State and Hydrodynamic Equations: We have modeled Karstex with equations applied

to our mechanical architecture.

• ROS2 Drivers for: stereo camera, echosounders, thrusters, servomotors. You can find

them on our Git. We have included the exact component for which these drivers work

and how to launch ROS2 Nodes. All these drivers are used in the software part.

• Electronic Architecture: The overall architecture, data and power flow study, and PCB

design have been completed.

• Mechanical Architecture (CAD): The complete CAD of Karstex can be found on our Git.

The mechanical system has been designed to meet the requirements of the underwater

environment, electronics (sensor placement, communication between components of

two distinct tubes), and hydrodynamic equations.

• Software Architecture: The overall architecture we have created enables each of the

software parts, drivers, and intelligence to work together smoothly for seamless assembly.

We have also standardized the names of ROS2 topics for project consistency.

• Gazebo Simulation of Karstex: We have also performed a Gazebo simulation of our robot

to demonstrate the functionality of the software part. It moves in a 3D representation

of the Fontanilles Karst and simulates the sensors we have on the real robot. It reflects

the overall system architecture, the drivers created for each component, and relies on

the defined state equations.

15.2 To go further...

To progress with this project, the mechanical assembly, as presented in the CAD, needs to be

completed, followed by real-world testing of the robot’s performance. Initial testing can be

conducted in the robotics laboratory pool at ENSTA Bretagne, followed by trials in actual

karst environments, such as the Fontanilles karst.

Initially, our project aimed to deliver a physical robot equipped with all implemented

components and codes for testing in real karst conditions. However, achieving this goal within

a 60-hour timeframe for creating an autonomous underwater robot exploring an unknown and

irregular environment seems overly ambitious. Nevertheless, we take pride in our collaborative

efforts throughout this project, which have yielded a viable mechanical, electronic, and software

solution for exploring such challenging environments.

15.3 Conclusion

Each member’s contribution forms a block that seamlessly integrates with the work of other

team members, resulting in a cohesive whole. The mechanical architecture enables us to

incorporate all initially chosen components for karst exploration and reconstruction.
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Our work is entirely reusable for future projects. The modular nature of our approach

allows for easy integration with other components, and the simulation confirms the feasibility

of our technical solution for exploring underwater karst caves.
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16 Annexe

Organisation des étudiants dans les différents groupes

Figure 74: Tableau à double entrée de la répartition des élèves
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Figure 75: Organisation des étudiants dans les différents groupes
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