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Introduction

A mobile robot can be de�ned as a mechanical system capable of moving in its environment in

an autonomous manner. For that purpose, it must be equipped with:

� sensors that will collect knowledge of its surroundings (which it is more or less aware of) and

determine its location ;

� actuators which will allow it to move ;

� an intelligence (or algorithm, regulator), which will allow it to compute, based on the data

gathered by the sensors, the commands to send to the actuators in order to perform a given

task.

Finally, to this we must add the surroundings of the robot which correspond to the world in which

it evolves and its mission which is the task it has to accomplish. Mobile robots are constantly

evolving, mainly from the beginning of the 2000s, in military domains (airborne drones, underwater

robots [1], etc.), and even in medical and agricultural �elds. They are in particularly high demand

for performing tasks considered to be painful or dangerous to humans. This is the case for instance

in mine-clearing operations, the search for black boxes of damaged aircraft on the ocean bed and

planetary exploration. Arti�cial satellites, launchers (such as Ariane V), driverless subways and

elevators are examples of mobile robots. Airliners, trains and cars evolve in a continuous fashion

towards more and more autonomous systems and will very probably become mobile robots in the

following decades.

Mobile robotics is the discipline which looks at the design of mobile robots. It is based on other

disciplines such as automatic control, signal processing, mechanics, computing and electronics. The

aim of this book is to give an overview of the tools and methods of robotics which will aid in the

design of mobile robots. The robots will be modeled by state equations, i.e., �rst order (mostly non-

linear) di�erential equations. These state equations can be obtained by using the laws of mechanics.

It is not in our objectives to teach, in detail, the methods of robot modeling (refer to [2] and [3] for

more details on the subject), merely to recall its principles. By modeling, we mean obtaining the

state equations. This step is essential for simulating robots as well as designing controllers.

Control and guidance methods require good knowledge of the state variables of the system, such

as those which de�ne the position of the robot. These position variables are the most di�cult to

�nd and Chapter 6 focuses on the problem of positioning. It introduces the classical non-linear

approaches that have been used for a very long time by humans for positioning, such as observing
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beacons, stars, using the compass or counting steps. Although positing can be viewed as a particular

case of state observation, the speci�c methods derived from it warrant a separate chapter. Chapter

1 on identi�cation focuses on �nding, with a certain precision, non-measured quantities (parameters,

position) from other, measured ones. In order to perform this identi�cation, we will mainly be

looking at the so-called least squares approach which consists of �nding the vector of variables that

minimizes the sum of the squares of the errors. Chapter 5 presents the Kalman �lter. This �lter

can be seen as a state observer for dynamic linear systems with Gaussian noise with coe�cients that

vary in time. A generalization of the Kalman �lter to the case where the functions are nonlinear and

the noise is non Gaussian is provided in Chapter 8. The resulting observer, will is called the Bayes

�lter, computes the probability density function of the state vector at each time.

By increasing the level of abstraction, the Bayes �lter will allow us to have a better understanding

of the Kalman �lter, and some proofs become easier and more intuitive
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Chapter 1

Least-square method

The aim of identi�cation is to estimate unmeasured quantities from other measured values,

with high precision. In the particular case in which the quantity to estimate is the state vector

of an invariant linear system, state observers using pole placement (or Luenberger observers) can be

considered e�cient tools for identi�cation. In this chapter, we will present several basic concepts

of estimation, with the aim of introducing Kalman �ltering in the next chapter. In summary, this

�ltering can be seen as state observation for dynamic linear systems with time-variable coe�cients.

However, in contrast to more standard observers using a pole placement method, Kalman �ltering

uses the probabilistic properties of signals. Here we will consider the static (as opposed to the

dynamic) case. The unknowns to estimate are all stored in a vector of parameters p while the

measurements are stored in a vector of measurements y. In order to perform this estimation, we will

mainly look at the so-called least squares approach which seeks to �nd the vector p that minimizes

the sum of the squares of the errors.

1.1 Quadratic functions

In the case in which the dependency between the vectors p and y is linear, the least squares

method is used to minimize a quadratic function. This paragraph recalls several concepts attached

to these functions, which are of a particular nature.

1.1.1 De�nition

A quadratic function f : Rn → R is a function of the form:

f (x) = xT ·Q · x+ Lx+ c

where Q is a symmetric matrix. This de�nition is equivalent to stating that f(x) is a linear

combination of a constant c, of the xi, of their squares x
2
i and of the cross products xixj where

i ̸= j. For instance, the function f(x1, x2) = 2x21 − 6x1x2 + x22 − 2x1 + x2 +1 is a quadratic function.

7
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We have:

f (x) = (x1 x2)

(
2 −3

−3 1

)(
x1
x2

)
+ (−2 1)

(
x1
x2

)
+ 1. (1.1)

We will show below that the derivative of f at point x is an a�ne function. In our example, the

derivative of f at point x is given by:

df
dx
(x) =

(
∂f
∂x1

(x) ∂f
∂x2

(x)
)

= (4x1 − 6x2 − 2 − 6x1 + 2x2 + 1)

This is an a�ne function in x. The function x 7→ xTQx which composes f(x) has terms only in xixj
and in x2i . Such a function is called a quadratic form.

1.1.2 Derivative of a quadratic form

Let us consider the following quadratic form:

f(x) = xTQ x.

The �rst-order Taylor development of f at point x in the neighborhood of x yields:

f(x+ δx) = f(x) +
df

dx
(x) · δx+ o (||δx||)

where o (||δx||) means negligible compared to ||δx||, when δx is in�nitely small. Of course, here df
dx

(x)

will be represented by a 1× n matrix since, just like the function we are linearizing, it goes from Rn

to R. However:

f (x+ δx) = (x+ δx)T ·Q · (x+ δx)

= xT ·Q · x+ xT ·Q · δx+ δxT ·Q · x+ δxT ·Q · δx
= xT ·Q · x+ 2xT ·Q · δx+ o (||δx||)

since Q is symmetric and δxT · Q · δx = o (||δx||). By uniqueness of the Taylor development and

given the expressions for f (x+ δx), we have:

df

dx
(x) =

(
∂f

∂x1
(x), . . . ,

∂f

∂xn
(x)

)
= 2xTQ.

For instance, the derivative of the quadratic function (1.1) is:

2 (x1 x2)

(
2 −3

−3 1

)
+ (−2 1) =

(
4x1 − 6x2 − 2 −6x1 + 2x2 + 1

)
.
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1.1.3 Eigenvalues of a quadratic function

These are the eigenvalues of Q. The eigenvalues are all real and the eigenvectors are all orthogonal

two-by-two. The contour lines of a quadratic function f (x) = α are of the form: s

xTQx+ Lx = α− c

and are called quadrics. These are ellipsoid if all the eigenvalues have the same sign or hyperboloid

if they have di�erent signs. If all the eigenvalues of Q are positive, we say that the quadratic form

xTQx is positive. If they are all non-zero, we say that the quadratic form is de�nite. If they are all

strictly positive, we say that the quadratic form is positive de�nite. The quadratic function f has

one and only one minimizer if and only if its associated quadratic form is positive de�nite.

1.1.4 Minimizing a quadratic function

Theorem 1. If Q is positive de�nite, the function f (x) = xTQx + Lx + c has one and only one

minimizer x∗ given by

x∗ = −1

2
Q−1LT

and the minimum is f(x∗) = −1
4
LQ−1LT + c.

Proof. The function f is convex and di�erentiable. At the minimizer x∗, we have

df

dx
(x∗) = 2x∗TQ+ L = 0.

Thus x∗ = −1
2
Q−1LT. The corresponding minimum is given by:

f(x∗) =

(
−1

2
Q−1LT

)T

Q

(
−1

2
Q−1LT

)
+ L

(
−1

2
Q−1LT

)
+ c

=
1

4
LQ−1LT − 1

2
LQ−1LT + c

= −1

4
LQ−1LT + c.

Example. The quadratic function:

f (x) = (x1 x2)

(
2 −1

−1 1

)(
x1
x2

)
+
(
3 4

)( x1
x2

)
+ 5

has a minimum since the matrix of its quadratic form Q is positive de�nite (its eigenvalues 3
2
± 1

2

√
5
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are both positive). The function has the following vector as minimizer:

x∗ = −1

2

(
2 −1

−1 1

)−1(
3

4

)
=

(
−7

2

−11
2

)
.

Its minimum is:

f(x∗) = −1

4

(
3 4

)( 2 −1

−1 1

)−1(
3

4

)
+ 5 = −45

4
.

Example. The function f (x) = 3x2 + 6x + 7 has a minimum since the matrix of its quadratic

form (which here corresponds to the scalar 3) is positive de�nite (since 3 > 0). Its minimizer is the

scalar:

x∗ = −1

2
· 1
3
· 6 = −1

and its minimum is f (x∗) = 3− 6 + 7 = 4.

1.2 The least squares method

Estimating means obtaining an order of magnitude for certain quantities of a system from

measurements of other quantities of the same system. The estimation problem we will consider

in this chapter is the following. Consider a system for which we have made various measurements

y = (y1, . . . , yp) and a model M(p) depending on a vector of parameters p. We need to estimate p

such that the outputs f(p) generated by M(p) resemble y as much as possible.

1.2.1 Linear case

Let us assume that the vector of the outputs can be written in the form:

f(p) = Mp.

The model is then referred to as linear with respect to the parameters. We would like to have:

f(p) = y

but this is generally not possible due to the presence of noise and the fact that the number of

measurements is generally higher than the number of parameters (i.e., dim(y) > dim(p)). We will

therefore try to �nd the best p, i.e. the one that minimizes the so-called least squares criterion:

j(p) = ||f (p)− y||2,
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We have:

j(p) = ||f(p)− y||2 = ||Mp− y||2

= (Mp− y)T (Mp− y) =
(
pTMT − yT

)
(Mp− y)

= pTMTMp− pTMTy − yTMp+ yTy

= pTMTMp− 2yTMp+ yTy.

However, MTM is symmetric (since
(
MTM

)T
= MTM). We therefore have a quadratic function.

Moreover, all the eigenvalues of MTM are positive or zero. The minimizer p̂ is obtained as follows:

dj
dp

(p̂) = 0 ⇔ 2p̂TMTM− 2yTM = 0 ⇔ p̂TMTM = yTM

⇔ MTMp̂ = MTy ⇔ p̂ =
(
MTM

)−1
MTy

The matrix:

K =
(
MTM

)−1
MT

is called the generalized inverse of the rectangular matrix M. The vector p̂ is called the least squares

estimate. The function:

y 7→ Ky

is called the estimator. Note that this estimator is linear since the model function f is also linear.

The vector:

ŷ = Mp̂ = MKy

is the vector of the �ltered measurements and the quantity:

r = ŷ − y = (MK− I)y

is called the vector of residuals. The norm of this vector represents the distance between y and

the hyperplane f (Rn). If this norm is large, it often means that there is an error in the model or

inaccuracies in the data.
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Exercises

Exercise 1.� Representation of a quadratic function

See the correction video at https://youtu.be/8xgIbnlRZ8s

Consider the quadratic function f(x, y) = x · y.
1) Find the gradient of f at point (x0, y0) .

2) Put f in the form (x y) ·Q · (x y)T + L (x y)T + c, where Q is a symmetric matrix. Verify

that the gradient found in question 1) is given by 2 (x y)Q. Draw the vector �eld associated with

this gradient. Discuss.

3) Draw the contour lines of f then draw the graph of f . Does f have a minimum ?

4) Restart this exercise with the function g(x, y) = 2x2 + xy + 4y2 + y − x+ 3.

Exercise 2.� Identi�cation of a parabola

See the correction video at https://youtu.be/NXLx02n2PJs

We would like to �nd a parabola p1t
2 + p2t+ p3 that passes through n points given by:

t −3 −1 0 2 3 6

y 17 3 1 5 11 46

1) Give a least squares estimation of the parameters p1, p2, p3.

2) What are the corresponding �ltered measurements ? Give the vector of residuals.

Exercise 3.� Identifying the parameters of a DC motor

See the correction video at https://youtu.be/UQzDMr2VGbY

The angular speed Ω of a DC motor in permanent regime depends linearly on the supply voltage

U and the resistive torque Tr:

Ω = p1U + p2Tr.
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We perform a series of experiments on a particular motor. We measure:

U(V) 4 10 10 13 15

Tr(Nm) 0 1 5 5 3

Ω(rad/ sec) 5 10 8 14 17

1) Give a least squares estimation of the parameters p1, p2. Give the �ltered measurements and

the corresponding vector of residuals.

2) Deduce from the above an estimation of the angular speed of the motor U = 20V and Tr =

10Nm.

Exercise 4.� Estimation of a transfer function

See the correction video at https://youtu.be/88BnsOpVZOk

Consider the system described by the recurrence equations:

y(k) + a1y(k − 1) + a0y(k − 2) = b1u(k − 1) + b0u(k − 2).

We perform noisy measurements on the input u(k) and output y(k) of this system for k varying from

0 to 7. We obtain:

k 0 1 2 3 4 5 6 7

u(k) 1 −1 1 −1 1 −1 1 −1

y(k) 0 −1 −2 3 7 11 16 36

Estimate the vector of parameters p = (a1, a0, b1, b0) by the least squares method. Discuss.
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Chapter 2

Parameter estimation

Estimation theory deals with estimating the values of parameters based on measured empirical

data. An estimator attempts to approximate the unknown parameters using the measurements.

2.1 Principle

Denote by y is the vector of measurements and by p the vector of parameters to be estimated.

If f (p) is the output generated by a model, where f : Rn → Rp is nonlinear, then the least squares

estimate is de�ned by:

p̂ = arg min
p∈Rn

||f(p)− y||2.

When f(p) is linear with respect to p, i.e., f(p) = Mp then the vector of parameters p̂ estimated

using the least squares method is p̂ =
(
MTM

)−1
MTy and the vector of the �ltered measurements

is ŷ = M
(
MTM

)−1
MTy. In general, and even when f(p) is nonlinear, we can have the following

geometric interpretation (see Figure 2.1):

� The vector of the �ltered measurements ŷ represents the projection of y on the set f (Rn) ;

� The vector estimated using the least squares method p̂ represents the inverse image of the

vector of the �ltered measurements y by f (.).

When f(p) is nonlinear, we can use a local optimization algorithm to try to obtain p̂. We

propose now two di�erent approaches to perform a local minimization: the Newton method and the

Monte-Carlo algorithm.

15
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f

Figure 2.1: Illustration of the least squares method in the nonlinear case

2.2 Newton method

In order to minimize j(p) = ||f (p) − y||2, the Newton method assumes that an approximation

p0 of the minimizer is available. Around p0, we have:

f (p) ≃ f (p0) +
df

dp
(p0) · (p− p0).

Therefore

j(p) = ||f (p)− y||2

≃ ||f (p0) +
df

dp
(p0)︸ ︷︷ ︸

=M

· (p− p0)− y||2

= ||M · p+ f (p0)−M · p0 − y︸ ︷︷ ︸
=−z

||2

= ||M · p− z||2

The minimizer is

p1 =
(
MTM

)−1
MT︸ ︷︷ ︸

=K

· z

= K · (y − f (p0) +M · p0)

= p0 +K · (y − f(p0))

which is expected to be closer to the solution than p0. We apply the procedure several times and we

get the following Newton algorithm.

Algorithm Newton (in : p0,y)
1 for k = 0 to kmax

2 M = df
dp
(pk)

3 K =
(
MTM

)−1
MT

4 pk+1 = pk +K · (y − f(pk))
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The Newton algorithm is illustrated by Figure 2.2. In the left �gure, the sequence is represented

on the p-y space. We observe that we converge to the point p̂ which satis�es f(p̂) = y but this

is mainly due to the fact that we have a two dimensional representation. In practice we only have

||f (p)− y||2 ≃ 0. On the right �gure, the representation is made on the p-j space.

Unfortunately, even if the solution of our minimization problem is unique, the Newton algorithm

may diverge or converge to a point which is not the solution of our problem.

Figure 2.2: Illustration of the Newton method to minimize ||f(p)− y||2

2.3 Monte-Carlo method

When we have no reliable prior estimation of the parameter vector p to be estimated, the Newton

method may be trapped by a local minimized. Random based minimization method may be used

to �nd the global minimizer. The following algorithm proposes a simple version of a Monte-Carlo

algorithm:

AlgorithmMinimize(input: p)
1 take a random movement d
2 q = p+ d
3 if j (q) < j(p) then p = q
4 go to 1

This algorithm is expected to converge toward a local optimum of the criterion j(p) = ||f(p)−y||2.
The quantity d is the step that represents a small vector taken randomly from Rn. In the case of

the simulated annealing method, the amplitude of this step decreases with the iterations in function

of a parameter called temperature which decreases with time. If the initial temperature, is high

enough and if the temperature decreases su�ciently slowly, then we generally converge to the global

minimum.
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Exercises

Exercise 5.� Newton method for localization

See the correction video at https://youtu.be/f4ID4iyEEZc

We consider a robot which is at unknown position p = (p1, p2). It measures distances to 4

landmarks at position

m(1) =

(
−1

1

)
, m(2) =

(
1

2

)
, m(3) =

(
3

2

)
, m(4) =

(
4

5

)
.

as illustrated by Figure 2.3.

1) Assume that the robot is at position p, give an expression for the vector f(p) ∈ R4 of all

distances to the landmarks. Compute f(p) for p = (2,−3).

Figure 2.3: The robot measures the distances to the four landmarks

2) Assume that the distance to the landmarks that have been measured are given by the vector

y = (4, 5, 5, 8).

To estimate the position of the robot, we propose to use a least-square approach. For this, we build

19
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the criterion

j(p) = ∥f(p)− y∥2.

Draw the level curves for j(p). Discuss.

3) Using a Newton minimization method, provide a least-square estimation of p. The initial point

will be chosen as p(0)=(4, 3).

Exercise 6.� Monte-Carlo method

See the correction video at https://youtu.be/K6PeWq1AYwM

Consider the discrete-time system given by its state representation: x(k + 1) =

(
1 0

a 0.3

)
x(k) +

(
b

1− b

)
u(k)

y(k) =
(
1 1

)
x(k)

where a, b are two parameters to be estimated. The initial state is given by x(0) = (0, 0) and u(k) = 1.

We collect six measurements:

(y(0), · · · , y(5)) =
(
0, 1, 2.5, 4.1, 5.8, 7.5

)
.

Let us note that these values were obtained for the values a∗ = 0.9 and b∗ = 0.75, but we are not

supposed to know them. We will only assume that a ∈ [0, 2] and b ∈ [0, 2] .

1) Write a program that estimates the parameters a and b using a Monte Carlo method. For this,

generate a cloud of vectors p = (a, b) using a uniform random law. Then, by simulating the state

equations, calculate for all the p the corresponding outputs ym(p,k). Draw on the screen the vectors

p such that for each k ∈ {0, . . . , 5}, |ym(k)− y(k)| < ε, where ε is a small positive number.

2) Calculate the transfer function of the system in function of a and b.

3) Let us assume that the real values a∗ = 0.9 and b∗ = 0.75 for a and b are known. Calculate

the set of all pairs (a, b) that generate the same transfer function as the pair (a∗, b∗). Deduce from

this an interpretation of the results obtained in question 1).

Exercise 7.� Localization by simulated annealing

See the correction video at https://youtu.be/oHbTrxpnOHo

The localization problem that we will now consider is inspired from [4]. The robot, represented

on Figure 2.4, is equipped with eight laser telemeters capable of measuring its distance from the walls

for angles equal to kπ
4
, k ∈ {0, . . . , 7}. We assume that the obstacles are composed of n segments

[aibi] , i = 1, . . . , n, where the coordinates of ai and bi are known. The eight distances are stored in

the vector y and the localization problem amounts to estimating the position and orientation of the
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robot from y.

Figure 2.4: Robot equipped with eight telemeters trying to localize itself

1) Let m, a, b be three points of R2 and −→u a unit vector. Show that the ray E
(
m,−→u

)
intersects

the segment [ab] if and only if:{
det
(
a−m,−→u

)
· det

(
b−m,−→u

)
≤ 0

det(a−m,b− a) · det(−→u ,b− a) ≥ 0

If this condition is veri�ed, show that the distance from m to [ab] following −→u is:

d =
det(a−m,b− a)

det(−→u ,b− a)
.

2) Design a simulator f (p) that calculates the directional distances between the pose p = (x, y, θ)

and the walls.

3) Using a global simulated annealing-type optimization method, design a program that gives a

least squares estimation p̂ of the pose p from y. For the segments [ai,bi] of the room and for the

vector of the measured distances, take the following quantities:

A =

(
0 7 7 9 9 7 7 4 2 0 5 6 6 5

0 0 2 2 4 4 7 7 5 5 2 2 3 3

)
B =

(
7 7 9 9 7 7 4 2 0 0 6 6 5 5

0 2 2 4 4 7 7 5 5 0 2 3 3 2

)
y = (6.4, 3.6, 2.3, 2.1, 1.7, 1.6, 3.0, 3.1)T

Page 21 of 99



Luc Jaulin Mobile robotics: Kalman �lter

Page 22 of 99



Chapter 3

Covariance matrices

The Kalman �lter is mainly based on the concept of covariance matrix which is important to

grasp in order to understand the design and the utilization of the observer. This section recalls the

fundamental concepts surrounding covariance matrices.

3.1 De�nitions and interpretations

Let us consider two random vectors x ∈ Rn and y ∈ Rm. The mathematical expectations of x

and y are denoted by x̄ = E (x), ȳ = E (y). Let us de�ne the variations of x and y by x̃ = x − x̄

and ỹ = y − ȳ. The covariance matrix is given by:

Γxy = E
(
x̃ · ỹT

)
= E

(
(x− x̄) (y − ȳ)T

)
.

The covariance matrix for x is de�ned by:

Γx = Γxx = E
(
x̃ · x̃T

)
= E

(
(x− x̄) (x− x̄)T

)
.

The one for y is:

Γy = Γyy = E
(
ỹ · ỹT

)
= E

(
(y − ȳ) (y − ȳ)T

)
.

Let us note that x, y, x̃, ỹ are random vectors whereas x̄, ȳ,Γx,Γy,Γxy are deterministic. A

covariance matrix Γx of a random vector x is always positive de�nite (we will write Γx ≻ 0), except

in the degenerate case. In a computer, a random vector can be represented by a cloud of points

associated with realizations. Let us consider the following program:
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1 N := 1000; x := 2 · 1N×1 + randnN×1

2 y := 2 ·

 x21
...
x2N

+ randnN×1

3 x̄ := 1
N

∑
i xi; ȳ = 1

N

∑
i yi

4 x̃ := x− x̄ · 1N×1; ỹ = y − ȳ · 1N×1

5

(
Γx Γxy

Γxy Γy

)
:= 1

N
·
( ∑

i x̃
2
i

∑
i x̃iỹi∑

i x̃iỹi
∑

i ỹ
2
i

)
This yields Figure 3.1, which gives us a representation of the random variables x, y (on the left)

and of x̃, ỹ (on the right). The program also gives us the estimations:

x̄ ≃ 1.99, ȳ ≃ 9.983,Γx ≃ 1.003,Γy ≃ 74.03,Γxy ≃ 8.082.

210-1-2-3-4

50

40

30

20

10

0

-10

-20
343210-1-2

60

50

40

30

20

10

0

-10
5

Figure 3.1: Cloud of points that represents a pair of two random variables

Two random vectors x and y are linearly independent (or non-correlated or orthogonal) if Γxy = 0.

On Figure 3.2, the two clouds of points correspond to non-correlated variables. Only the �gure on

the right corresponds to independent variables.

1.00.50.0-0.5-1.0-1.5

1.5

1.0

0.5

0.0

-0.5

-1.0

-1.5
1.51050-5-10-15

15
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0

-5

-10

-15
15

Figure 3.2: Left : dependent but non-correlated variables (x, y) ; Right : independent variables

The �gure on the left was generated by:
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1 N := 2000;
2 ρ := 10 · 1N×1 + randnN×1

3 θ := 2π · randN×1

4 x :=

 ρ1 sin θ1
...

ρN sin θN

; y :=

 ρ1 cos θ1
...

ρN cos θN


And the �gure on the right was generated by:

1 N := 2000;
2 x := atan(2 · randnN×1)
3 y := atan(2 · randnN×1)

Whiteness. A random vector x is called white if all of its components xi are independent from

one another. In such a case, the covariance vector Γx of x is diagonal.

3.2 Properties

Covariance matrices are symmetric and positive, i.e., all of their eigenvalues are real and positive.

The set of all covariance matrices of Rn×n will be denoted by S+ (Rn).

Decomposition. Every symmetric matrix Γ can be put into a diagonal form and has an

orthonormal eigenvector basis. We may therefore write:

Γ = R ·D ·R−1

where R is a rotation matrix (i.e. RTR = I and detR = 1). The matrix R corresponds to the

eigenvectors and D is a diagonal matrix whose elements are the eigenvalues. For the matrices of

S+ (Rn), these eigenvalues are positive.

Square root. Every matrix Γ of S+ (Rn) has a square root in S+ (Rn). This square root will

be denoted by Γ
1
2 . Following the eigenvalue correspondence theorem, the eigenvalues of Γ

1
2 are the

square roots of those of the eigenvalues of Γ.

Example. Consider the following script:

1 A := rand3×3;S1 := A ·AT

2 [R,D] := eig(S1); S2 := R ·D ·RT

3 A2 := S
1
2
2 ; S3 := A2 ·AT

2

The matrix D is diagonal and the matrix R is a rotation matrix that contains the eigenvectors

of S1. The three matrices S1,S2,S3 are equal. This is not the case for matrices A and A2 since only

A2 is symmetric. Note that A2 is a covariance matrix.
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Order. If Γ1 and Γ2 belong to S+ (Rn), then Γ = α1Γ1 +α2Γ2 also belongs to S+ (Rn) if α1 ≥ 0

and α2 ≥ 0. This is equivalent to saying that S+ (Rn) is a convex cone of Rn×n. Let us de�ne the

order relation:

Γ1 ≤ Γ2 ⇔ Γ2 − Γ1 ∈ S+ (Rn) .

It can be easily veri�ed that it is re�exive, antisymmetric and transitive. If Γ1 ≤ Γ2 then the a-level

con�dence ellipse (see following paragraph) of Γ1 is (in general) included in the one that corresponds

to Γ2. The smaller the covariance matrix (in the sense of this order relation), the more precise it is.

3.3 Linear transformation

The following result shows how a covariance matrix can easily be propagated through any linear

(or a�ne) transformation.

Theorem 2. If x,α and y are three random vectors connected by the relation y = Ax+α + b

(where A and b are deterministic), and assuming that x,α are independent and that α is centered,

we have:

ȳ = Ax̄+ b

Γy = A · Γx ·AT + Γα
(3.1)

Proof. We have:

ȳ = E (Ax+α+ b) = AE (x) + E (α) + b = Ax̄+ b

Moreover:

Γy = E
(
(y − ȳ) (y − ȳ)T

)
= E

(
(Ax+α+ b−Ax̄− b) (Ax+α+ b−Ax̄− b)T

)
= E

(
(Ax̃+α) · (Ax̃+α)T

)
= A · E

(
x̃ · x̃T

)︸ ︷︷ ︸
=Γx

·AT +A · E
(
x̃ ·αT

)︸ ︷︷ ︸
=0

+ E
(
α · x̃T

)︸ ︷︷ ︸
=0

·AT + E
(
α ·αT

)︸ ︷︷ ︸
=Γα

= A · Γx ·AT + Γα

which concludes the proof.

3.4 Generating Gaussian random vectors

In this section we show, how to generate samples of a random vector y of Rn with an expectation

ȳ and covariance matrix Γy. From Theorem 2, if x is a standard normal random vector (i.e., x̄ = 0
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and Γx = I), we can generate a normal vector y : N (ȳ,Γy) as follows:
y = Ax+ b

ȳ = b

Γy = A ·AT

by choosing A = Γ
1
2
y and b = ȳ. Indeed, we get that the random vector y = Ax + b will have an

expectation of ȳ and a covariance matrix equal to Γy (see Figure 3.3). The right side of Figure 3.3

was thus obtained by the script:

1 N := 1000; Γy :=

(
3 2
2 3

)
; ȳ =

(
2
3

)
; X := randn2×n

2 Y := ȳ + Γ
1
2
y ·X

3 plot(Y)

Figure 3.3: The Gaussian random vector y : (ȳ,Γy) is the image by an a�ne application of a unit
Gaussian white random vector x

3.5 Con�dence ellipse

We de�ne the con�dence region of the random vector p of Rn as the minimal volume set which

contains p with a given probability, say η. If p is Gaussian, the probability distribution function

can be fully characterized by the pair (p̄,Γp). The associated con�dence region is an ellipsoid of

Rn. In practice, for purely graphical reasons, we often only look at two components y = (pi, pj) of

p (a computer screen is indeed two-dimensional). The average ȳ can be directly deduced from p̄ by

extracting the ith and jth components. The covariance matrix Γy ∈ S+ (R2) can also be obtained

from Γp ∈ S+ (Rn) by extracting the ith and jth lines and columns. This is why in this section

we consider a two dimensional Gaussian vector and we show how to get the con�dence ellipse of

probability η.
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3.5.1 Standard normal random vector

Consider �rst the standard normal random vector x represented in Figure 3.3 left. Equivalently,

x is a standard normal random vector. The con�dence ellipse of probability η is a disk of radius a.

To compute the relation between η and a, consider the random variable z = xTx. It follows a χ2

law. In 2 dimensions, the corresponding probability density is given by:

πz(z) =

{
1
2
exp

(
− z

2

)
if z ≥ 0

0 otherwise

We have:

η = prob (∥x∥ ≤ a) =prob
(
xTx ≤ a2

)
= prob

(
z ≤ a2

)
=

∫ a2

0

1

2
exp

(
−z
2

)
dz = 1− e−

1
2
a2 .

Therefore:

a =
√

−2 ln (1− η).

Figure 3.4 illustrates this relation. On the left �gure, since η = 0.5, half of the samples are inside

the disk. On the right, since η = 0.9, 90% of the samples are inside the disk. Note that when η

increases, the radius a increases also.

Figure 3.4: Left: con�dence disk associated with the standard normal random vector x with η = 0.5.
Right: the same with η = 0.9.

3.5.2 General case

Since a Gaussian vector random y can be generated a linear transformation y := ȳ + Γ
1
2
y · x of

a standard normal random vector x, we can easily get the con�dence ellipse. This is illustrated by
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Figure 3.5 which reconsiders the example of Figure 3.3.

Figure 3.5: Left: con�dence ellipse associated with y for η = 0.5. Right: the same for η = 0.9.

As a consequence, the con�dence ellipse of probability η associated with the Gaussian vector y

of R2 is described by:

Ey = {y|∃x, ∥x∥ ≤ a,y = ȳ + Γ
1
2
y · x}

= {y|∃s, ∥s∥ ≤ 1,y = ȳ + Γ
1
2
y · as}

where a =
√

−2 ln (1− η). This means that, Ey can be de�ned as the image of the unit disk by the

a�ne function s 7→ y = ȳ + Γ
1
2
y · as.

As illustrated by Figure 3.6, the following function draws the ellipse Ey which contains the

Gaussian random vector y with a given probability η.

Function DrawEllipse (ȳ,Γy, η)

1 s =

(
cos 0 cos 0.1 · · · cos 2π
sin 0 sin 0.1 · · · sin 2π

)
2 y = ȳ + Γ

1
2
y ·
√

−2 ln (1− η) · s
3 plot(y)
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Figure 3.6: Procedure to draw a con�dence ellipse of a normal random vector in R2

Note also that the ellipse Ey can also be expresses as an inequality. Indeed,

Ey = {y|∃x, ∥x∥ ≤ a,x = Γ
− 1

2
y (y − ȳ)}

= {y|∃x,xTx ≤ a2,x = Γ
− 1

2
y (y − ȳ)}

= {y|(y − ȳ)TΓ
− 1

2
y Γ

− 1
2

y (y − ȳ) ≤ a2}

Thus

Ey : (y − ȳ)TΓ−1
y (y − ȳ) ≤ −2 ln (1− η) .

Since y is a Gaussian random vector, this ellipse corresponds to a contour line of the probability

density for y.
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Exercises

Exercise 8.� Gaussian distribution

See the correction video at https://youtu.be/IZBcA8xzH0c

The probability distribution of a random Gaussian vector x is fully characterized by its

expectation x̄ and its covariance matrix Γx. More precisely, it is given by:

πx(x) =
1√

(2π)n det(Γx)
· exp

(
−1

2
(x− x̄)T · Γ−1

x · (x− x̄)

)
.

1) Draw the graph and the contour lines of πx with:

x̄ =

(
1

2

)
and Γx =

(
1 0

0 1

)
.

2) We de�ne the random vector:

y =

(
cos π

6
− sin π

6

sin π
6

cos π
6

)(
1 0

0 3

)
x+

(
2

−5

)
.

Draw the graph and the contour lines of πy. Discuss.

Exercise 9.� Con�dence ellipses

See the correction video at https://youtu.be/jfQnFSmfKT8

Let us generate six covariance matrices as follows:

A1 =

(
1 0

0 3

)
A2 =

(
cos π

4
− sin π

4

sin π
4

cos π
4

)
Γ1 = I2×2 Γ2 = 3Γ1 Γ3 = A1 · Γ2 ·AT

1 + Γ1

Γ4 = A2 · Γ3 ·AT
2 Γ5 = Γ4 + Γ3 Γ6 = A2 · Γ5 ·AT

2

Here, A2 corresponds to a rotation matrix of angle π
4
. Then, we draw the six con�dence ellipses

at 90 % associated with these matrices by centering them around 0. We thus obtain Figure 3.7.
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Figure 3.7: Con�dence ellipses associated with the six covariance matrices

1) Associate each covariance matrix with its con�dence ellipse on the �gure.

2) Verify the result by regenerating these ellipses.

Exercise 10.� Con�dence ellipse: prediction

See the correction video at https://youtu.be/yHG1GlvuZ7E

1) Generate a cloud of N = 1000 points representing a random Gaussian vector centered at R2

whose covariance matrix is the identity matrix. Deduce from the latter a cloud of points for the

random vector x such that:

x̄ =

(
1

2

)
and Γx =

(
4 3

3 3

)
Use a two-lines, n-columns matrix X to store the cloud.

2) Assuming we know x̄ and Γx draw the con�dence ellipses for the probabilities η ∈
{0.9, 0.99, 0.999}. Show graphically the consistency with the cloud X.

3) Find an estimation of x̄ and Γx from the cloud X.

4) This distribution represents the knowledge we have of the initial conditions of a system (a

robot, for instance) described by state equations of the form:

ẋ =

(
0 1

−1 0

)
x+

(
2

3

)
u

where the input u (t) = sin t is known. Write a program that illustrates the evolution of this particle

cloud with time. Use a sampling period of dt = 0.01. For the discretization, we take an Euler
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integration:

x(k + 1) = x(k) + dt

((
0 1

−1 0

)
x+

(
2

3

)
u(k)

)
+α(k)

where α(k) : N (0, dt · I2) is a white Gaussian noise. Draw the cloud for t ∈ {0, 1, 2, 3, 4, 5}.
5) Represent this evolution using only a Kalman prediction. Compare the resulting con�dence

ellipses with the cloud computed at Question 4.

Exercise 11.� Brownian noise

See the correction video at https://youtu.be/mFzoloe8hT8

We consider a random stationary, discretized, white and centered random signal. This signal is

denoted by x (tk) with k ∈ N. More precisely, for every tk = kδ the random variables x (tk) with

variance σ2
x are independent of one other. A Brownian noise is de�ned as the integral of a white

noise. In our case, we form the Brownian noise as follows:

y (tk) = δ ·
k∑

i=0

x (tk) .

1) Calculate, in function of time, the variance σ2
y (tk) of the signal y (tk). How does the standard

deviation σy (tk) evolve in function of δ and in function of tk ? Discuss. Validate the result with a

simulation.

2) We now tend δ towards 0. What standard deviation σx do we have to choose in function of

δ in order for the variances σ2
y (tk) to remain unchanged ? Illustrate this program that generates

Brownian noises y (t) that are insensitive to sampling period changes.
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Chapter 4

Unbiased orthogonal estimator

Let us consider two random vectors x ∈ Rn and y ∈ Rm. The vector y corresponds to the

measurement vector which is a random vector. Later, when the measurements will have been made,

it will become deterministic. The random vector x is the vector we need to estimate. An estimator

is a function ϕ (y) that gives us an estimation of x given the knowledge of the measurement y. In

this chapter, we propose a linear estimator which provides a minimal covariance for the estimation

error.

4.1 Linear estimator

Figure 4.1 shows a nonlinear estimator corresponding to E (x|y).

Figure 4.1: Nonlinear estimator E(x|y)

However, obtaining an analytic expression for such an estimator is generally not a simple task

and it is preferable to limit ourselves to linear estimators. A linear estimator is a linear function of
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Rm → Rn of the form:

x̂ = Ky + b (4.1)

where K ∈ Rn×m and b ∈ Rn. In this section, we will propose a method capable of �nding a good K

and a good b from the sole knowledge of the �rst-order moments x̄, ȳ and the second-order moments

Γx,Γx,Γxy. The estimation error is:

ε = x̂− x

Figure 4.2: Biased linear estimator

The estimator is said to be unbiased if E (ε) = 0. It is orthogonal if E
(
εỹT

)
= 0. This

naming comes from the fact that the space of random variables of R can be equipped with a scalar

product de�ned by ⟨a, b⟩ = E
(
(a− ā)

(
b− b̄

))
and that if this scalar product is zero, the two random

variables a and b are called orthogonal. In the vector case (which is that of our paragraph since ε

and ỹ are vectors), we say that the two random vectors a and b are orthogonal if their components

are, i.e., E
(
(ai − āi)

(
bj − b̄j

))
= 0 for all (i, j), or equivalently E

(
(a− ā)

(
b− b̄

)T)
= 0. Figure

4.2 represents the contour lines of a probability law for the pair (x, y). The line illustrates a linear

estimator. Let us randomly pick a pair (x, y) while respecting its probability law. It is clear that

the probability to be above the line is high, i.e., the probability to have x̂ < x is high, or even that

E (ε) < 0. The estimator is thus biased. Figure 4.3 represents four di�erent linear estimators. For

estimator (a), E(ε) < 0 and for estimator (c), E(ε) > 0. For estimators (b) and (d), E(ε) = 0 and

therefore the two estimators are unbiased. However, it is evident that estimator (b) is better. What

di�erentiates these two is orthogonality. For (d), we have E (εỹ) < 0 (if ỹ > 0, ε tends to be negative

whereas if ỹ < 0, ε tends to be positive).
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Figure 4.3: Among these four linear estimators, estimator (b), which is unbiased and orthogonal,
seems to be the best

Theorem 3. Consider two random vectors x and y. A unique unbiased orthogonal estimator exists.

It is given by:

x̂ = x̄+K · (y − ȳ) (4.2)

where:

K = ΓxyΓ
−1
y (4.3)

is referred to as the Kalman gain.

Example. Let us consider once again the example in Section 3.1. We obtain:

x̂ = x̄+ ΓxyΓ
−1
y · (y − ȳ) = 2 + 0.1 · (y − 10) .

The corresponding estimator is illustrated on Figure 4.4.
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Figure 4.4: Unbiased orthogonal linear estimator

Proof. We have:

E (ε) = E (x̂− x)
(4.1)
= E (Ky + b− x)

= KE (y) + b− E (x)

= Kȳ + b− x̄

The estimator is unbiased if E (ε) = 0, i.e.:

b = x̄−Kȳ, (4.4)

which gives us (4.2). In this case:

ε = x̂− x
(4.2)
= x̄+K · (y − ȳ)− x = Kỹ − x̃. (4.5)

The estimator is orthogonal if:

E
(
ε · ỹT

)
= 0

(4.5)⇔ E
(
(Kỹ − x̃) · ỹT

)
= 0

⇔ E
(
KỹỹT − x̃ỹT

)
= 0

⇔ KΓy − Γxy = 0

⇔ K = Γxy · Γ−1
y

which concludes the proof.

Theorem 4. The covariance matrix of the error associated with the unbiased orthogonal linear

estimator is:

Γε = Γx −K · Γyx. (4.6)
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Proof. The covariance matrix of ε in the unbiased case is written as:

Γε = E
(
ε · εT

) (4.5)
= E

(
(Kỹ − x̃) · (Kỹ − x̃)T

)
= E

(
(Kỹ − x̃) ·

(
ỹTKT − x̃T

))
= E

(
KỹỹTKT − x̃ỹTKT −Kỹx̃T + x̃x̃T

)
.

Using the linearity of the expectation operator, we get

Γε = (KΓy − Γxy︸ ︷︷ ︸)
(4.3)
= 0

KT −KΓyx + Γx. (4.7)

4.2 Optimality

We will now present a theorem that shows that the unbiased orthogonal linear estimator is the

best among all unbiased estimators. In order to understand this concept of best, we need to recall

the inequalities on the covariance matrices, which tells us that Γ1 ≤ Γ2 if and only if ∆ = Γ2 − Γ1

is a covariance matrix.

Theorem 5. No unbiased linear estimator exists allowing to obtain a smaller covariance matrix on

the error Γε than the one given by the orthogonal estimator.

Proof. Every possible matrix K for our unbiased linear estimator is written in the form K = K0+∆

with K0 = ΓxyΓ
−1
y and ∆ being an arbitrary matrix. Following (4.7), the covariance matrix for the

error is:

Γε = ((K0 +∆)Γy − Γxy) (K0 +∆)T − (K0 +∆)Γyx + Γx

= (K0 +∆) (ΓyK
T
0︸ ︷︷ ︸

=Γyx

+ Γy∆
T)− (ΓxyK

T
0︸ ︷︷ ︸

=K0Γyx

+ Γxy∆
T)− (K0Γyx +∆Γyx) + Γx

= K0Γyx +∆Γyx +K0Γy︸ ︷︷ ︸
=Γxy

∆T +∆Γy∆
T −K0Γyx − Γxy∆

T −K0Γyx −∆Γyx + Γx

= −K0Γyx +∆Γy∆
T + Γx.

Since ∆Γy∆
T is always positive symmetric, the covariance matrix Γε is minimal for ∆ = 0, i.e.

for K = ΓxyΓ
−1
y , which corresponds to the orthogonal unbiased estimator.
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4.3 Application to linear estimation

Let us assume that x and y are related by the relation

y = Cx+ β

where β is a centered random vector non-correlated with x. The covariance matrices of x and β are

denoted by Γx and Γβ. Let us use the results obtained in the previous section in order to �nd the

best unbiased linear estimator for x (refer to [5] for more details on linear estimation).

We have:

ȳ = Cx̄+ β̄ = Cx̄

Γy
(3.1)
= CΓxC

T + Γβ

Γxy = E
(
x̃ · ỹT

)
= E

(
x̃ ·
(
Cx̃+ β̃

)T)
= E

(
x̃ · x̃TCT + x̃ · β̃

T
)

= E
(
x̃ · x̃T

)
CT + E

(
x̃ · β̃

T
)

︸ ︷︷ ︸
= 0

= ΓxC
T.

(4.8)

Consequently, the best unbiased estimator for x and covariance matrix of the error can be obtained

from Γx,Γβ,C, x̄ by using the following formulas:

(i) x̂
(4.2)
= x̄+Kỹ (estimation)

(ii) Γε
(4.6)
= Γx −KCΓx (covariance of the error)

(iii) ỹ
(4.8)
= y −Cx̄ (innovation)

(iv) Γy
(4.8)
= CΓxC

T + Γβ (covariance of the innovation)

(v) K
(4.3,4.8)
= ΓxC

TΓ−1
y (Kalman gain)

(4.9)

Remark. Figure 4.1 illustrates a situation in which it could be advantageous not to use a linear

estimator. Here, the chosen estimator corresponds to x̂ = E (x|y). In the particular case where the

pair (x,y) is Gaussian, the estimator x̂ = E (x|y) corresponds to the unbiased orthogonal estimator.
In this case, we have, following (4.9):

E (x|y) = x̄+ ΓxyΓ
−1
y (y − ȳ)

E
(
ε · εT|y

)
= E

(
(x̂− x) (x̂− x)T |y

)
= Γx −KCΓx

= Γx − ΓxyΓ
−1
y Γyx
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Exercises

Exercise 12.� Con�dence ellipse: correction

See the correction video at https://youtu.be/Rmx7nIEwpBg

1) Generate a Gaussian point cloud of n = 1 000 points associated with the random vector x

with:

x̄ =

(
1

2

)
and Γx =

(
3 1

1 3

)
.

Use a two-line, n-column matrix to store the clouds.

2) Find an unbiased and orthogonal linear estimator which allows to �nd x1 from x2. Draw this

estimator.

3) Same question as above, but one that allows to �nd x2 from x1. Draw the estimator and

discuss the di�erence with the previous question.

Exercise 13.� Covariance matrix propagation

See the correction video at https://youtu.be/e0iRudPE8-Y

Consider three centered random vectors a,b, c with covariance matrices equal to the identity

matrix. These three vectors are independent of each other. Let x,y be two random vectors de�ned

as follows:

x = A · a− b

y = C · x+ c

where A,C are matrices that are known.

1) Give the expression of the mathematical expectations x̄, ȳ and of the covariance matrices

Γx,Γy of these two vectors, in function of A and C.

2) We form the vector v = (x , y). Calculate the mathematical expectation v̄ and the covariance

matrix Γv for v.

3) Deduce from the previous question the covariance matrix of the random vector z = y−x. We

assume that x and y have same dimension.
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4) We measure y, which means that now the random vector y becomes deterministic and is

well-known. Give an estimation x̂ for x using an unbiased and orthogonal linear estimator.

Exercise 14.� Solving three equations using a linear estimator

See the correction video at https://youtu.be/Rst52D2GXM0

The linear estimator can be used to solve problems that can be translated as linear equations.

Let us consider as an illustration the system:
2x1 + 3x2 = 8

3x1 + 2x2 = 7

x1 − x2 = 0

Since we have more equations than unknowns, the linear estimator must �nd some sort of compromise

between all of these equations. Let us assume that the errors εi over the i
th equation are centered

and with variances : σ2
1 = 1, σ2

2 = 4 and σ2
3 = 4. Solve the system by using a linear estimator and

�nd the associated covariance matrix.

Exercise 15.� Estimating the parameters of an electric motor using a linear estimator

See the correction video at https://youtu.be/vCCbSvANT7M

Let us consider a DC motor whose parameters have been estimated with a least squares method

(see Exercise 3). Recall that in that example, the angular speed Ω of a DC motor veri�es the relation:

Ω = x1U + x2Tr

where U is the input voltage, Tr is the resistive torque and x = (x1, x2) is the vector of parameters

that we need to estimate. The following table recalls the measurements made on the motor for

various experimental conditions:

U(V) 4 10 10 13 15

Tr(Nm) 0 1 5 5 3

Ω(rad/ sec) 5 10 8 14 17

We assume that the variance of the measurement error is equal to 9 and does not depend on the

experimental conditions. Moreover, we assume that we know a priori that x1 ≃ 1 and x2 ≃ −1 with

a variance of 4. Estimate the parameters of the motor and �nd the associated covariance matrix.

Exercise 16.� Trochoid

See the correction video at https://youtu.be/tzkliJQQj7g
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A point mass (placed on a wheel) is moving following a trochoid of the form:{
x (t) = p1t− p2 sin t

y (t) = p1 − p2 cos t

where x corresponds to the abscissa and y to the altitude of the mass. We measure y for various

instants t:

t(sec) 1 2 3 7

y(m) 0.38 3.25 4.97 −0.26

The measurement errors have a standard deviation of 10 cm.

1) Using an unbiased orthogonal �lter, compute an estimation for p1 and p2.

2) Draw the estimated path of the mass.
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Chapter 5

Kalman �lter

When we control a system, such as a robot, we generally assume that the state vector was

completely known. However, this is not the case in practice. This vector must be estimated from

sensor measurements. In the case where the only unknown variables are associated with the position

of the robot, Chapter 6 gives guidelines to �nd them. In the more general case, �ltering or state

observation seeks to reconstruct this state vector as well as possible from all the data measured on

the robot throughout time by taking into account the state equations. The aim of this chapter is

to show how such reconstruction is performed, within a stochastic context in which the system to

observe is assumed to be linear. This is the purpose of the Kalman �lter [6] which will be developed

in this chapter. The Kalman �lter is used in numerous mobile robotics applications, even though the

robots in question are strongly nonlinear. For such applications, the initial conditions are assumed

to be relatively well known in order to allow a reliable linearization.

5.1 Equations of the Kalman �lter

This paragraph presents the Kalman �lter (refer to [7] for more details). Let us consider the

system described by the following state equations:{
xk+1 = Akxk + uk +αk

yk = Ckxk + βk

where αk and βk are random, independent Gaussian noises white in time. By white in time we mean

that the vectors αk1 and αk2 (or βk1 and βk2) are independent of one another if k1 ̸= k2. The Kalman

�lter alternates between two phases: correction and prediction. To understand the mechanism of the

�lter, let us position ourselves at time k and assume that we have already processed the measurements

y0,y1, . . . ,yk−1. At this stage, the state vector is a random vector that we will denote by xk|k−1 (since

we are at time k and the measurements have been processed until k − 1). This random vector is

represented by an estimation denoted by x̂k|k−1 and a covariance matrix Γk|k−1.

Correction. Let us take the measurement yk. The random vector representing the state is now

xk|k, which is di�erent than xk|k−1 since xk|k has knowledge of the measurement y. The expectation
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x̂k|k and the covariance matrix Γk|k associated to xk|k are given by Equations (4.9). We therefore

have:

(i) x̂k|k = x̂k|k−1 +Kk · ỹk (corrected estimation)

(ii) Γk|k = Γk|k−1 −Kk ·CkΓk|k−1 (corrected covariance)

(iii) ỹk = yk −Ckx̂k|k−1 (innovation)

(iv) Sk = CkΓk|k−1C
T
k + Γβk

(covariance of the innovation)

(v) Kk = Γk|k−1C
T
kS

−1
k (Kalman gain)

(5.1)

Prediction. Given the measurements y0,y1, . . . ,yk, the random vector representing the state is

now xk+1|k. Let us calculate its expectation x̂k+1|k and its covariance matrix Γk+1|k. Since

xk+1 = Akxk + uk +αk,

we have, following (3.1):

x̂k+1|k = Akx̂k|k + uk (5.2)

and

Γk+1|k = Ak · Γk|k ·AT
k + Γαk

. (5.3)

Kalman �lter. The complete Kalman �lter is given by the following equations :

x̂k+1|k
(5.2)
= Akx̂k|k + uk (predicted estimation)

Γk+1|k
(5.3)
= Ak · Γk|k ·AT

k + Γαk
(predicted covariance)

x̂k|k
(4.9,i)
= x̂k|k−1+Kk · ỹk (corrected estimation)

Γk|k
(4.9,ii)
= (I−KkCk)Γk|k−1 (corrected covariance)

ỹk
(4.9,iii)
= yk −Ckx̂k|k−1 (innovation)

Sk
(4.9,iv)
= CkΓk|k−1C

T
k + Γβk

(covariance of the innovation)

Kk
(4.9,v)
= Γk|k−1C

T
kS

−1
k . (Kalman gain)

Figure 5.1 illustrates the fact that the Kalman �lter stores the vector x̂k+1|k and the matrix Γk+1|k.

Its inputs are yk, uk, Ak, Ck, Γαk
and Γβk

. The quantities x̂k|k, Γk|k, ỹk, Sk, Kk are auxiliary

variables. The delay is activated by a clock and when activated, k is incremented by 1.
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Figure 5.1: The Kalman �lter is composed of a corrector followed by a predictor

The function Kalman below implements the Kalman �lter and returns x̂k+1|k,Γk+1|k. In this

program, we have the following correspondences: x̂pred ↔ x̂k|k−1, Γ
pred ↔ Γk|k−1 , x̂up ↔ x̂k|k,

Γup ↔ Γk|k (the term up refers to update, i.e., correction).

Function Kalman (x̂pred,Γpred,u,y,Γα,Γβ,A,C)

1 S := C · Γpred ·CT + Γβ

2 K := Γpred ·CT · S−1

3 ỹ := y −C · x̂pred

4 x̂up := x̂pred+K · ỹ
5 Γup := (I−K ·C)Γpred

6 x̂pred := A · x̂up + u
7 Γpred := A · Γup ·AT + Γα

8 Return
(
x̂pred,Γpred

)

Positivity lost. Due to numerical problems, the covariance of the innovation Sk can sometimes loose

its positivity. If such a problem arises, it is preferable to replace the corrected covariance equation

by :

Γk|k :=
√
(I−KkCk)Γk|k−1Γ

T
k|k−1 (I−KkCk)

T

which will always be positive de�nite, even when the matrix Γk|k−1 is not. The Kalman �lter equations

will then be more stable in the sense that a slight error on the positive character of the covariance

matrices is removed at the next iteration.

Predictor. When no measurement is available, the Kalman �lter operates in predictor mode. In

order to be able to use the Kalman function, y, Γβ,C have to become empty quantities. However,

they have to have correct dimensions in order to perform matrix operations.
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Initialization : Most of the time, we have no idea of the initial state x0. In this case, we

generally set

x̂0 = (0, 0, . . . , 0) et Γx(0) =


1
ε2

0 0

0 1
ε2

0
. . . 0

0 1
ε2

 ,

where ε in a small positive number (for instance 0.001). More or less, this assumption amounts to

say that x0 is inside a sphere centered in zero and a radius 1
ε
.

Stationary case. For time independent systems Γk+1|k converges to a matrix Γ. For large k ,

Γ = Γk+1|k = Γk|k−1. Thus:

Γk+1|k = A · Γk|k ·AT + Γα

= A · (I−KkC)Γk|k−1 ·AT + Γα

= A ·
(
I−

(
Γk|k−1C

TS−1
)
C
)
Γk|k−1 ·AT + Γα

= A ·
(
I−

(
Γk|k−1C

T
(
CΓk|k−1C

T + Γβ

)−1
)
C
)
Γk|k−1 ·AT + Γα

Therefore, for large k,

Γ = A ·
(
Γ− Γ ·CT ·

(
C · Γ ·CT + Γβ

)−1 ·C · Γ
)
·AT + Γα

which is an equation of Ricatti in Γ. It can be solved by the sequence

Γ(k + 1)=A ·
(
Γ(k)− Γ(k) ·CT ·

(
C · Γ(k) ·CT + Γβ

)−1 ·C · Γ(k)
)
·AT + Γα

up to the equilibrium and starting with Γ(0) large (e.g. 1010 · I). This computation can be done

before the implementation of the �lter, which allows us to avoid unnecessary real time computation

of Γk+1|k. The corresponding stationary Kalman �lter is thus :

x̂k+1|k = Ax̂k|k−1+AK ·
(
yk −Cx̂k|k−1

)
+ uk

with K = ΓCT
(
CΓCT + Γ

)−1
.
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Exercises

Exercise 17.� Solving three equations using a Kalman �lter

See the correction video at https://youtu.be/Z8x7b1Owdko

Let us consider once again the linear equations of Exercise 14:
2x1 + 3x2 = 8 + β1
3x1 + 2x2 = 7 + β2
x1 − x2 = 0 + β3

where β1, β2, β3 are three independent, centered random variables with respective variances 1, 4, 4.

1) Solve this system by calling the Kalman �lter three times. Give an estimation of the solution

and �nd the covariance matrix of the error.

2) Draw the con�dence ellipses associated with each call.

3) Compare these with the results obtained for Exercise 14.

Exercise 18.� Three-step Kalman �lter

See the correction video at https://youtu.be/beIEAc2QI4s

Let us consider the discrete-time system:{
xk+1 = Akxk + uk +αk

yk = Ckxk + βk

with k ∈ {0, 1, 2}. The values for the quantities Ak,Ck,uk, yk are given by:

k Ak uk Ck yk

0

(
0.5 0

0 1

) (
8

16

) (
1 1

)
7

1

(
1 −1

1 1

) (
−6

−18

) (
1 1

)
30

2

(
1 −1

1 1

) (
32

−8

) (
1 1

)
−6
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Let us assume that the signals αk and βk are white Gaussian signals with a unitary covariance matrix.

We have

Γα =

(
1 0

0 1

)
and Γβ = 1.

The initial state vector is unknown and is represented by an estimation x̂0|−1 and a covariance matrix

Γ0|−1. We will take:

x̂0|−1 =

(
0

0

)
, Γ0|−1 =

(
100 0

0 100

)
.

Draw the η = 0.9 con�dence ellipses with center x̂k|k and covariance matrix Γk|k obtained by the

Kalman �lter.

Exercise 19.� Estimating the parameters of an electric motor

See the correction video at https://youtu.be/_05sBBiw3ac

Let us consider once more the DC motor with angular speed Ω (see Exercises 3 to 15). We have:

Ω = x1U + x2Tr

where U is the input voltage, Tr is the resistive torque and x = (x1, x2) is the vector of parameters

to estimate. The following table presents the measurements obtained for various experimental

conditions:

k 0 1 2 3 4

U(V) 4 10 10 13 15

Tr(Nm) 0 1 5 5 3

Ω(rad/ sec) 5 10 11 14 17

We still assume that the variance of the measurement error is equal to 9 and that x1 ≃ 1 and x2 ≃ −1

with a variance of 4. Using the Kalman �lter, calculate an estimation of the parameters x1, x2 and

give the associated covariance matrix.

Exercise 20.� Temperature estimation

See the correction video at https://youtu.be/6sTAJvH3PO8

The temperature in a room has to verify (after temporal discretization) the state equation:{
xk+1 = xk + αk

yk = xk + βk
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We assume that the state noise αk and the measurement noise βk are independent and Gaussian with

covariance Γα = 4 and Γβ = 3.

1) Give the expression of the Kalman �lter that allows to estimate the temperature xk from the

measurement yk. From this deduce an expression of x̂k+1|k and Γk+1|k in function of x̂k|k−1,Γk|k−1,yk.

2) For large enough k, we may assume that Γk+1|k = Γk|k−1 = Γ∞. We then obtain the so-called

asymptotic Kalman �lter. Give the expression of the asymptotic Kalman �lter. How would you

characterize the precision of this �lter ?

3) Going back to the non-asymptotic case, but now assuming that Γαk
= 0, what is the value of

Γ∞ ? Discuss.
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Chapter 6

Localization

Localization consists of �nding the position of the robot (i.e., the coordinates of its center as

well as its orientation), or more generally all its degrees of freedom. This problem is encountered

in navigation, where we need to approximate the position, orientation and speed of the robot. The

problem of localization is often considered to be a particular case of state estimation, which will

be presented in the following chapters. However, in the case where an accurate state model is not

available for our robot, an instantaneous localization often remains possible and may be su�cient

for making a decision. Let us take for instance the situation in which we are aboard a ship and

have just detected a lighthouse whose absolute position and height are known. By measuring the

perceived height of the lighthouse and its angle relative to the ship, we may deduce the position

of the ship using a compass and this, without using a state model for the ship. Instantaneous, or

model-free localization is an approach to localization that does not utilize the evolution equation

of the robot, i.e., it does not seek to make the measures coherent through time. This localization

mainly consists of solving equations of geometric nature which are often nonlinear. The variables

involved may be position variables or kinematic variables such as speed or accelerations. Since these

localization methods are speci�c and quite far from state estimation methods, we will devote an

entire chapter to them. After introducing the main sensors used for localization, we will present

goniometric localization (in which the robot uses the angles of perception of landmarks) followed by

multilateration which uses distances between the robot and the landmarks.

6.1 Sensors

The robots are equipped with numerous sensors that are used for their localization. We will now

present some of these.

Compass. It measures the magnetic �eld of its environment. If no magnetic disturbance exists,

we get the magnetic north. In practice magnetic disturbances exists in the robot and a calibration

procedure is required to compensate the hard-iron and soft-iron disturbances.

Odometers. Robots with wheels are generally equipped with odometers that measure the

angular movements of the wheels. Given only the odometers, it is possible to calculate an estimation
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of the position of the robot. The precision of such a localization is very low given the systematic

integration of the estimation error. We say that the estimation is drifting.

Doppler log.This type of sensor, mainly used in underwater robotics, allows to calculate the

speed of the robot. A Doppler log emits ultrasounds that are re�ected by the ocean bed. Since the

ocean bed is immobile, the sensor is able to estimate the speed of the robot by using the Doppler

e�ect with a very high precision (around 0.1 m/s).

Accelerometers. These sensors provide measurements of the instantaneous forward acceleration.

The principle of the axis-based accelerometer is illustrated on Figure 6.1. Generally, three

accelerometers are used by the robot. Due to gravity, the value measured according to the vertical

axis must be compensated.

Figure 6.1: Operating principle of an accelerometer

Gyros. A gyro provides measurements of the instantaneous rotation speed. There are three

types of gyros: the Coriolis vibratory gyro, the mechanical gyro and the optical gyro. The principle

of the Coriolis vibratory gyro is illustrated on the left of Figure 6.2. A vertical rod placed on a

horizontal disk vibrates from left to right. As a result of the Coriolis force, if the disk rotates there is

an angular vibration following the axis of the rod whose amplitude allows to get the rotation speed

of the disk. If the disk is not rotating, there is a forward rotation, but it is not angular. Piezoelectric

gyros, very widely used for low-cost robotics, form a subclass of Coriolis vibratory gyroscopes. These

gyros exploit the variation of the amplitude of a piezoelectric oscillator induced by the Coriolis force,

due to the rotation applied to the sensor. Mechanical gyros make use of the fact that a rotating

body tends to preserve its rotational axis if no torque is subjected to it. A well-known example is

the gimbal gyroscope invented by Foucault, represented on the right side of Figure 6.2. A �ywheel

at the center rotates with high speed. If the base of the gyroscope moves, the two gimbal angles ψ, θ

will change, but the rotation axis of the �ywheel will not. From the values of ψ, θ, ψ̇, θ̇, we can �nd

the rotation speed of the base (which is �xed on the robot). If the rotation axis of the �ywheel is

initialized correctly, and in a perfect situation in which no torque is exerted on this �ywheel, such

a system would theoretically give us the orientation of the robot. Unfortunately, there is always a

small drift and only the rotation speed can be given in a reliable and drift-free way.
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Figure 6.2: Coriolis vibratory gyroscope and gimbal gyroscope

More recent, optical gyroscopes can be as precise as mechanical ones. They make use of the

Sagnac e�ect (for a circular optical path, the time taken by light to make a complete lap depends on

the direction of the path) and have a precision of around 0.001 deg/s. Their principle is illustrated

in Figure 6.3. On �gure (a), the laser leaves the light source represented by the black disk. On �gure

(b), the beam splitter creates two other beams which travel in opposite directions in the optical loop.

After rebounding several times on the three mirrors represented in grey, the two beams meet. Since

the beams intersect on the left, the gyro rotates in the opposite trigonometric direction (c). The

beams are separated again on �gure (d). The two beams that arrive at the receiver are not in phase.

Their phase o�set allows to �nd the rotation speed of the gyro, which is �xed on the robot.

IMU. An inertial measurement unit associates a gyro and an accelerometer in order to increase

the precision of the estimation. More recent ones merge other types of information such as the

estimated speed or even take into account Earth's rotation. Thus, they may deduce the direction

of the Earth's North-South axis in the robot's coordinate system. Knowing this direction gives us

two equations involving the Euler angles of the robot which are the bank ϕ, the elevation θ and the

heading ψ of the robot, expressed in a local coordinate system. Due to the accelerometer included in

the unit, it is possible to deduce the gravity vector from the above and thus to generate an additional

equation which will allow to calculate the three Euler angles. Let us note that the accelerometers

also give us the accelerations in all directions (the surge in the direction of the robot, the heave (in

the vertical direction), the sway for lateral accelerations). The knowledge of the gravity vector and

the axis of rotation theoretically allows, using a simple scalar product, to �nd the latitude of the

robot. However, the obtained precision is too low to be taken into account in localization.
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Figure 6.3: Principle of the Sagnac e�ect for optical gyroscopes

Barometer. It measures pressure. In the case of underwater robots, it allows to deduce the

depth of the robot with a precision of 1 cm. For indoor �ying robots, the barometer is used to

measure the altitude with a precision of around one meter.

GPS (Global Positioning System) or GNSS (Global Navigation Satellite System) is a satellite

navigation system that provides a geolocalization service covering the entire world. Nowadays,

the American NAVSTAR system (NAVigation System by Timing And Ranging) and the Russian

GLONASS system (GLObalnaya NAvigazionnaya Sputnikovaya Sistema) are operational. Two other

systems are being developed: the Chinese Compass system and the European Galileo system. In

practice, our mobile robots will use the American system, operational since 1995, that we will refer to

as GNSS. Originally designed for exclusive military use, the precision of civil applications was limited

to several hundreds of meters by a deliberate degradation of civil signals. The deactivation of this

degradation in 2000 allowed the precision to increase to about ten meters. Given that electromagnetic

waves (here around 1.2 MHz) do not propagate under water or across walls, the GNSS does not work

within buildings or in water. Thus, during a diving experiment, an underwater robot can only be

localized by GNSS when it begins its dive or when it resurfaces. When a georeferenced station is

near the robot and advises it about the errors in distance calculated for each satellite, a localization

with a precision of ±1 m is possible. This operating mode forms the so-called di�erential GPS or

DGPS. Finally, by using the phase, it us possible to achieve even a centimeter precision. This is the

principle of the kinematic GPS . A detailed and educational presentation of the GNSS can be found

in the thesis of Vincent Drevelle [8]. In practice, a GNSS gives us a longitude ℓx and a latitude ℓy and

it is often comfortable to convert it to Cartesian coordinates in a local coordinate system (o, i, j,k)

�xed within the area in which the robot is evolving. Let us denote by ℓ0x and ℓ0y the longitude and

the latitude expressed in radians at the origin o of this coordinate system. We will assume that the

vector i indicates the North, j indicates the East and k is oriented towards the center of the Earth.

Let p = (px, py, pz) be the coordinates of the robot expressed in the coordinate system (o, i, j,k).

From the latitude and longitude given by the GNSS, we can deduce the �rst two coordinates of the

robot, expressed in meters in the local coordinate system, by using the following relation:(
px
py

)
= ρ

(
0 1

cos ℓy 0

)(
ℓx − ℓ0x
ℓy − ℓ0y

)
=

(
ρ
(
ℓy − ℓ0y

)
ρ cos ℓy · (ℓx − ℓ0x)

)
where ρ corresponds to the distance between o and the center of the Earth (ρ ≃ 6 371 km, if o is
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not too far from sea level). This formula is valid everywhere on Earth, if we assume that the Earth

is spherical and if the robot is in the neighborhood of the origin o (let us say a distance inferior

to 100 km). In order to understand this formula, we must note that ρ cos (ℓy) corresponds to the

distance between o and the rotational axis of the Earth. Thus, if a robot is moving on a latitude

parallel ℓy, by modifying its longitude by an angle α > 0, it will have traveled αρ cos ℓy meters.

Similarly, if this robot is moving on a meridian with an angle β in latitude, it will have traveled βρ

meters.

Radar or sonar. The robot emits electromagnetic or ultrasound waves. It recovers their echoes

and builds an image that it interprets in order to map its surroundings. The radar is mainly used by

surface or �ying robots. The sonar is used as a low-cost range�nder by robots with wheels as well as

in underwater robotics.

Lidar. It composed of an emitter, projecting laser beams, and a receiver measuring the time-of-

�ight. Underwater, green lasers are used to get a lower absorption.

Cameras. Cameras are low-cost sensors used for the recognition of objects. They are also used

as goniometers by �nding angles relative to landmarks that will then be used for localization.

6.2 Goniometric localization

6.2.1 Formulation of the problem

The problem consists of using angles measured between the robot and the landmarks, whose

position as a function of time is known, for localization. Let us consider the robot in Figure 6.4

moving on a plane. We call bearing the angle αi between the axis of the robot and the vector pointing

towards the landmark. These angles could have been obtained, for instance, using a camera.

Figure 6.4: A robot moving on a plane, measures the angles in order to locate itself

Recall that two vectors u,v of R2 are collinear if their determinant is zero, i.e., if det (u,v) = 0.
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Thus, for each landmark, we have the relation:

det

((
xi − x

yi − y

)
,

(
cos (θ + αi)

sin (θ + αi)

))
= 0 ,

i.e.,

(xi − x) sin (θ + αi)− (yi − y) cos (θ + αi) = 0, (6.1)

where (xi, yi) are the coordinates of the landmark ai and θ is the robot's heading.

6.2.2 Inscribed angles

Theorem 6. (Inscribed Angle) Consider a triangle abm as represented on Figure 6.5. Let us

denote by c the center of the circle circumscribed to this triangle ( i.e., c is at the intersection of the

three perpendicular bisectors). Let α = âmc, β = ĉmb, γ = âcb. We have the angular relation:

γ = 2 (α + β) .

Figure 6.5: Illustration of the Inscribed Angle Theorem

Proof. Since the two triangles amc and cmb are isosceles. We thus �nd the angles α and β as shown

on the �gure. By going around the point c we obtain:

γ + (π − 2β) + (π − 2α) = 2π.

Thus γ = 2α + 2β.

A consequence of this theorem is that if m moves on the circle, the angle α + β will not move.
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Inscribed arcs. Let us consider two points a1 and a2. The set of points m such that the

angle â1ma2 is equal to α is a circle arc, referred to as an inscribed arc. We can show this from

Relations (6.1) or from the Inscribed Angle Theorem. Goniometric localization often breaks down

to intersecting arcs. Figure 6.6 illustrates the concept of an inscribed arc.

Figure 6.6: The three cars perceive the landmarks with the same angle

6.2.3 Static triangulation of a plane robot

6.2.3.1 Two landmarks and a compass

In the case where we have two landmarks and a compass, we have, following (6.1), the two

relations:{
(x1 − x) sin (θ + α1)− (y1 − y) cos (θ + α1) = 0

(x2 − x) sin (θ + α2)− (y2 − y) cos (θ + α2) = 0

Or equivalently(
sin (θ + α1) − cos (θ + α1)

sin (θ + α2) − cos (θ + α2)

)
︸ ︷︷ ︸

A(θ,α1,α2)

(
x

y

)
=

(
x1 sin (θ + α1)− y1 cos (θ + α1)

x2 sin (θ + α2)− y2 cos (θ + α2)

)
︸ ︷︷ ︸

b(θ,α1,α2,x1,y1,x2,y2)

i.e., (
x

y

)
= A−1 (θ, α1, α2) · b (θ, α1, α2, x1, y1, x2, y2) .
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The problem of localization is therefore a linear one, which can be solved analytically. We have an

identi�ability problem if the matrix to invert has zero determinant, i.e.,

sin (θ + α1) cos (θ + α2) = cos (θ + α1) sin (θ + α2)

⇔ tan (θ + α2) = tan (θ + α1)

⇔ θ + α2 = θ + α1 + kπ, k ∈ N
⇔ α2 = α1 + kπ, k ∈ N

This corresponds to a situation in which the two landmarks and the robot are aligned.

6.2.3.2 Three landmarks

If we no longer have a compass, we need at least three landmarks. We then need to solve the system

of three equations and three unknowns:

(xi − x) sin (θ + αi)− (yi − y) cos (θ + αi) = 0, i ∈ {1, 2, 3}.

It can be shown that this system always has a unique solution, except when the robot is located on

the circle that passes through all three landmarks. Indeed, in such a case the inscribed angles are

superimposed.

6.2.4 Dynamic triangulation

6.2.4.1 One landmark, a compass, several odometers

In the case of dynamic state observation, we are looking for the relation that connects the position

of the robot to the derivatives of the values measured. For localization, we will assume that a single

landmark is available to us. We will use the equations:{
ẋ = v cos θ

ẏ = v sin θ
(6.2)

where v represents the speed of the robot measured by the odometer and θ its heading measured

by the compass. These equations, which are kinematic in nature, are not supposed to describe the

behavior of a particular robot with the aim of controlling it. The inputs v and θ are not necessarily

the real inputs of the system that we can act on. These equations have to be understood as a simple

di�erential relation between the variables of a plane robot. By di�erentiating Relation (6.1), we

obtain:

(ẋi − ẋ) sin (θ + αi) + (xi − x)
(
θ̇ + α̇i

)
cos (θ + αi)

− (ẏi − ẏ) cos (θ + αi) + (yi − y)
(
θ̇ + α̇i

)
sin (θ + αi) = 0

(6.3)

Page 60 of 99



Luc Jaulin Mobile robotics: Kalman �lter

Let us take the relations (6.1) and (6.3) for i = 1. By isolating x and y, we obtain:(
x

y

)
=

(
sin (θ + α1) cos (θ + α1)

− cos (θ + α1) sin (θ + α1)

)
·

(
−y1 x1

x1 − ẏ1−v sin θ

θ̇+α̇1

ẋ1−v cos θ

θ̇+α̇1
+ y1

)(
cos (θ + α1)

sin (θ + α1)

) (6.4)

This relation can allow us to be located using a single mobile or �xed landmark and other

proprioceptive sensors. For instance, in the case where we have a compass and several odometers

(for a robot on wheels), we are able to measure the heading θ using the compass, the speed v and

θ̇ using the odometers. Relation (6.4) then allows us to calculate the position x and y at the given

moment in time.

6.2.4.2 One landmark, no compass

In the situation where the compass is not present, we are missing an equation. We either need to

add a second landmark, or di�erentiate again. Let us remain with a single landmark and di�erentiate

Relation (6.3), we obtain:

(ẍ1 − ẍ) sin (θ + α1)− (ÿ1 − ÿ) cos (θ + α1)

+ (x1 − x)
(
θ̈ + α̈1

)
cos (θ + α1) + (y1 − y)

(
θ̈ + α̈1

)
sin (θ + α1)

+2 (ẋ1 − ẋ)
(
θ̇ + α̇1

)
cos (θ + α1) + 2 (ẏ1 − ẏ)

(
θ̇ + α̇1

)
sin (θ + α1)

− (x1 − x)
(
θ̇ + α̇1

)2
sin (θ + α1) + (y1 − y)

(
θ̇ + α̇1

)2
cos (θ + α1) = 0

Moreover:{
ẍ = v̇ cos θ − vθ̇ sin θ

ÿ = v̇ sin θ + vθ̇ cos θ

We thus obtain a system of three equations with three unknowns x, y, θ:

(x1 − x) sin (θ + α1)− (y1 − y) cos (θ + α1) = 0

(ẋ1 − v cos θ) sin (θ + α1) + (x1 − x)
(
θ̇ + α̇1

)
cos (θ + α1)

− (ẏ1 − v sin θ) cos (θ + α1) + (y1 − y)
(
θ̇ + α̇1

)
sin (θ + α1) = 0(

ẍ1 − v̇ cos θ + vθ̇ sin θ
)
sin (θ + α1)−

(
ÿ1 − v̇ sin θ − vθ̇ cos θ

)
cos (θ + α1)

+ (x1 − x)
(
θ̈ + α̈1

)
cos (θ + α1) + (y1 − y)

(
θ̈ + α̈1

)
sin (θ + α1)

+2 (ẋ1 − v cos θ)
(
θ̇ + α̇1

)
cos (θ + α1) + 2 (ẏ1 − v sin θ)

(
θ̇ + α̇1

)
sin (θ + α1)

− (x1 − x)
(
θ̇ + α̇1

)2
sin (θ + α1) + (y1 − y)

(
θ̇ + α̇1

)2
cos (θ + α1) = 0
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The quantities x1, y1, ẋ1, ẏ1, ẍ1, ÿ1 are calculated from the path of landmark 1, for which we know an

analytic expression. The quantities α1, α̇1, α̈1 are assumed to be measured. The quantities θ̇, θ̈ can

be obtained using a gyro. The speed v can be measured using odometers. It is clear that this system

is not easy to solve analytically and does not always admit a unique solution. For instance, if the

landmark is �xed, by rotational symmetry we can see that we will not be able to �nd the angle θ.

In such a case, we need at least two landmarks for localization.

6.3 Multilateration

Multilateration is a localization technique based on measuring the di�erence of the distances

between the robot and the landmarks. Indeed, in a number of situations (such as in GNSS

localization), the clocks between the landmarks and the robot are not synchronized and we can

not therefore directly measure the absolute distance between the landmarks and the robot (by the

propagation time of air- or soundwaves), but we can measure the di�erence between these distances.

We will now give the principles of this technique.

Four landmarks emit a brief signal at the same time t0 which propagates with a speed c. Each

emitted signal contains the identi�er of the landmark, its position and the emission time t0. The

robot (which does not have an accurate clock, only an accurate chronometer) receives the four signals

at times ti. From this it easily deduces the o�sets between the reception times τ2 = t2−t1, τ3 = t3−t1,
τ4 = t4 − t1 (see Figure 6.7). We thus obtain the four equations:√

(x− x1)
2 + (y − y1)

2 + (z − z1)
2 = c(t1 − t0)√

(x− x2)
2 + (y − y2)

2 + (z − z2)
2 = c(τ2 + t1 − t0)√

(x− x3)
2 + (y − y3)

2 + (z − z3)
2 = c(τ3 + t1 − t0)√

(x− x4)
2 + (y − y4)

2 + (z − z4)
2 = c(τ4 + t1 − t0)

where the parameters, whose values are known with high precision, are c,t0,x1, y1, z1, . . . ,x4, y4, z4,

τ2,τ3,τ4. The four unknowns are x, y, z, t1. Solving this system allows it to be localized and also to

readjust its clock (through t1). In the case of the GNSS, the landmarks are mobile. They use a

similar principle to be localized and synchronized, from �xed landmarks on the ground.

Figure 6.7: The emission time t0 and the o�sets between the arrival times τ2, τ3, τ4 are known
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Exercises

Exercise 21.� Localization from wall distance measurements

See the correction video at https://youtu.be/A6dYrlsGl8k

Figure 6.8: The robot must locate itself by measuring its distance to the three walls

Consider a punctual robot positioned at x = (x1, x2). This robot measures its distance to the

three walls, as shown in Figure 6.8. The ith wall corresponds to a line de�ned by two points a (i)

and b (i). The distance to the ith wall is:

d (i) = det (u (i) ,x− a (i)) + βi

with u (i) = b(i)−a(i)
∥b(i)−a(i)∥ . Each distance is measured with a centered error βi with variance 1 and all

the errors are independent of one other. Before taking any measurements, the robot assumes it is

in position x̄ = (1, 2) with the associated covariance matrix given by 100 · I where I is the identity

matrix.

1) Give, in function of the a (i) ,b (i) , d (i), an estimation of the robot's position as well as the

covariance matrix for the error. For this you can use the expression of the unbiased orthogonal linear

estimator or equivalently the expression of the Kalman �lter in correction mode.
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2) The coordinates of the points as well as the distances are given by:

i 1 2 3

a (i)

(
2

1

) (
15

5

) (
3

12

)
b (i)

(
15

5

) (
3

12

) (
2

1

)
d(i) 2 5 4

Write a program that gives us the required estimation.

Exercise 22.� Blind walker

See the correction video at https://youtu.be/MAkBZiEyt3I

We consider a blind walker moving on a horizontal line. Its movement is described by the

discretized state equation:{
x1 (k + 1) = x1 (k) + x2 (k) · u (k)
x2 (k + 1) = x2 (k) + α2 (k)

where x1 (k) is the position of the walker, x2 (k) is the length of a step (referred to as scale factor)

and u (k) is the number of steps per time unit. We measure the quantity u (k). Thus, at each unit

of time, the walker moves a distance of x2 (k) · u (k). At the initial moment, we know that x1 is zero

and that x2 is close to 1. x2 (0) will be represented by a Gaussian distribution whose mean is equal

to 1 and whose standard deviation is 0.02. The scale factor x2 evolves slowly by means of α2 (k) that

we will assume to be centered, white and of standard deviation 0.01.

1) We apply an input u (k) = 1 for k = 0, . . . , 9 and u (k) = −1 for k = 10, . . . , 19. Write a

program that implements a predictive Kalman �lter capable of estimating the position x1 (k).

2) Draw the con�dence ellipses associated with the probability η = 0.99. How does the uncertainty

evolve for x1 in function of k ?

3) Draw the determinant of the covariance matrix Γx with respect to k. Discuss.

Exercise 23.� Dead reckoning

See the correction video at https://youtu.be/Zumje1wUOJg

Dead reckoning corresponds to the problem of localization in which only proprioceptive sensors are

available. This type of navigation was used by early navigators who were trying to locate themselves

during long journeys. They were able to do this in a very approximate way by measuring the heading

of the boat, the speed at various instants and integrating all the corresponding variations in position

over the entire journey. In a more general context, we may consider that using a state observer in

prediction mode and without correction (in the particular case in which the state is the position of
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the robot) corresponds to dead reckoning. Let us consider the robot represented on Figure 6.9 and

whose state equations are:
ẋ

ẏ

θ̇

v̇

δ̇

 =


v cos δ cos θ

v cos δ sin θ
v sin δ

3
+ αθ

u1 + αv

u2 + αδ


where αθ, αv, αδ are independent continuous-time Gaussian white noises. In a more rigorous way,

these are random distributions with in�nite power, but once they are discretized, the mathematical

di�culties disappear.

Figure 6.9: Dead reckoning for a tricycle robot

The robot is equipped with a compass that returns θ with high precision and an angle sensor

that returns the angle δ of the front wheel.

1) Discretize this system with an Euler method. Simulate this system for an arbitrary input u (t)

and initial vector. For the variance of the discretized noises αθ, αv, αδ we will take 0.01 · dt, where dt
is the discretization step.

2) Express this localization problem in a linear and discretized form.

3) Using a Kalman �lter, predict the position of the robot as well as the associated covariance

matrix.

4) How does the localization program change if we assume that, using odometers, the robot is

capable of measuring its speed v with a variance of 0.01 ?

Exercise 24.� Goniometric localization

See the correction video at https://youtu.be/kIhSORI2cwg
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Let u&s consider once again a robot vehicle described by the state equations:
ẋ1
ẋ2
ẋ3
ẋ4
ẋ5

 =


x4 cosx5 cosx3
x4 cosx5 sinx3

x4 sinx5
3

u1
u2


The vector (x1, x2) represents the coordinates of the center of the robot, x3 is the heading of the

robot, x4 its speed and x5 the angle of its front wheels. The robot is surrounded by point landmarks

m(1),m(2), . . . whose positions are known. The robot can only detect these landmarks m(i) if the

distance to them is su�ciently small (smaller than 15 m). In such a case, the robot measures the

bearing angle δi with high precision. We will also assume that the robot knows the angles x3 and x5
at all times, without any error. Finally, it measures its speed x4 with an error of variance 1. Figure

6.10 illustrates a situation in which two landmarks m(1) and m(2) are detected by the robot.

Figure 6.10: Goniometric localization

In order for the robot to locate itself, we would like to use a Kalman �lter. For this, we need

linear equations, which we do not have here. Since x3 and x5 are known, the nonlinearity can be

based on a temporal dependency. Let us take for this z = (x1, x2, x4).

1) Show that z satis�es a linear state evolution equation. Find the associated observation

equation.

2) Find a discretization for the evolution of z in order to feed a Kalman �lter.

3) Implement a simulator with the robot surrounded by the following four landmarks:

a (1) =

(
0

25

)
, a (2) =

(
15

30

)
, a (3) =

(
30

15

)
, a (4) =

(
15

20

)
As stated above, the robot can only goniometrically detect landmarks once they are close.

Page 66 of 99



Luc Jaulin Mobile robotics: Kalman �lter

4) Implement a Kalman �lter for the localization. The initial state will be assumed unknown.

5) We now have two robots Ra and Rb capable of communicating wirelessly while measuring

the landmark angles (see Figure 6.11). When the distances are small (i.e. smaller than 20 m), the

robots can measure the angles φa and φb with high precision using cameras (see �gure). Suggest a

centralized Kalman �lter for the localization of the two robots.

Figure 6.11: Goniometric localization for two communicating robots

Exercise 25.� Localization by lidar

See the correction video at https://youtu.be/V0hOejnwNEo

Here we are interested in developing a fast and robust localization method for a robot using a

rotating laser range�nder, or lidar (light radar) of type Hokuyo. The robot has no compass and in

located inside a rectangular room whose length and width are unknown. More precisely, we want to

localize the walls of the rectangular room in the robot frame.

1) Let a1, . . . , anp be points of R2 located on the same line. Find this line using a least squares

method. Represent this line in normal form:

x cosα + y sinα = d, with d ≥ 0

where α, d are the parameters of the line.

2) The lidar of the robot has an aperture angle of 180 degrees. It returns n = 512 points (xi, yi),

in the robot frame as represented by Figure 6.12. These points correspond to real data and can be

found in the �le lidar_data.csv. In the world frame, most of the points, say 70%, are supposed

to belong to the rectangle representing our room.
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Figure 6.12: Data collected by the lidar

Take them in groups of ten (i.e., 51 groups) and try to �nd the line that passes the best through

each group using the least squares method. Keep only the groups with a small residue. You should

thus obtain m lines, represented by m points of the form (βj, dj) , j ∈ {1, . . . , n} in the so-called

Hough space. A pair (βj, dj) is called an alignment. Write a program which draw all alignments with

a small residue.

3) Find the four possible directions for walls of our room (knowing that it is rectangular).

4) Associate one wall to each aligment (βj, dj).

5) Write a program which localizes the walls of the room in the robot frame from the data set

given in the �le lidar_data.csv.
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Chapter 7

Observers

7.1 Kalman-Bucy

We now consider the linear continuous time system described by{
ẋt = Atxt + ut +αt

yt = Ctxt + βt

where ut and yt are known for all t. The noise αt and βt are assumed to be white and Gaussian.

For a better understanding, the order of the quantities that will be used with respect to dt (assumed

to be in�nitely small) are recalled below

Size Order Random Deterministic

In�nitely small O (dt) αk Kt,uk

Medium O (1) xt,xk Γα,Γβ,Kb,ut,At,Ct

In�nitely Large O
(

1
dt

)
αt,βt,βk, ẋt,yt Γαt ,Γβt

The covariance matrices Γαt ,Γβt
for αt et βt and are in�nite (O

(
1
dt

)
) and we write Γαt =

1
dt
·Γα

and Γβt
= 1

dt
· Γβ.

Remark. The fact that ẋt,yt are considered as in�nite, due to the fact the noises αt,βt are also

in�nite. If all would have been �nite, the state could have been found in a in�nitely small time. To

be able to deal properly with these in�nitely large quantities, distribution theory is needed. Here, we

will not use these di�cult notions and consider classical notions from signal processing. Note that

this type of simpli�cation is usually made in physics, as for instance when we assimilate the Dirac

distribution to the Dirac function δ0 (t) .

Since we have

xt+dt = xt +
∫ t+dt

t
ẋτdτ

= xt +
∫ t+dt

t
(Aτxτ + uτ +ατ ) dτ

xt + dt · (Atxt + ut) +
∫ t+dt

t
ατdτ
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a discretization with a sampling time dt is
xt+dt︸︷︷︸
xk+1

= (I+ dt ·At)︸ ︷︷ ︸
Ak

· xt︸︷︷︸
xk

+dt · ut︸ ︷︷ ︸
uk

+

∫ t+dt

t

ατdτ︸ ︷︷ ︸
αk

yt︸︷︷︸
yk

= Ct︸︷︷︸
Ck

· xt︸︷︷︸
xk

+ βt︸︷︷︸
βk

.

Note that, as explained in Exercise 11, the covariance for the state noise αk increases linearly with

dt. More precisely,

Γαk
= dt · Γα.

This means that when dt is in�nitely small, αk is in�nitely small, whereas αt is in�nitely large

(otherwise αk would be equal to zero). The measurement yk represents a fusion of all measurement

yt with t ∈ [t, t+ dt]. As for βt, its covariance matrix is

Γβk
=

1

dt
· Γβ.

We now have a linear discrete-time system, and we can apply the classical Kalman �lter given at

Section 5.1. We have the following correspondences.

Ak → (I+ dtAt) uk → dt · ut αk →
∫ t+dt

t
ατdτ

x̂k+1|k → x̂t+dt x̂k|k−1 → x̂t x̂k|k → x̊t

Γk+1|k → Γt+dt Γk|k−1 → Γt Γk|k → Γ̊t

Γαk
→ dt · Γα Γβk

→ 1
dt
· Γβ

The Kalman �lter becomes



x̂t+dt = (I+ dtAt)̊xt + dt · ut

Γt+dt = (I+ dtAt) · Γ̊t · (I+ dtAt)
T + dtΓα

x̊t = x̂t+Kt · ỹt

Γ̊t = (I−KtCt) · Γt

ỹt = yt −Ctx̂t

St = CtΓtC
T
t + 1

dt
· Γβ

Kt = ΓtC
T
t S

−1
t

Taking into account the fact that CtΓtC
T
t is small (line (vi)) compared to 1

dt
·Γβ (which is in�nitely

large) and we can simplify it, i.e., St =
1
dt
·Γβ (t), We conclude that St is huge (= O(1/dt)) and thus
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that S−1
t at line (viii) is small (= O(dt)). The Kalman �lter becomes

x̂t+dt = (I+ dtAt) (x̂t+Kt · (yt −Ctx̂t)) + dt · ut

Γt+dt = (I+ dtAt) · (I−KtCt)Γt · (I+ dtAt)
T + dtΓα

Kt = dtΓtC
T
t Γ

−1
β .

Since Kt is small (= O(dt)), it is more convenient to introduce the Kalman-Bucy gain given by

Kb = ΓtC
T
t Γ

−1
β which is O(1), i.e., neither in�nitely small nor in�nitely large. We have

x̂t+dt = (I+ dtAt) (x̂t + dtKb · (yt −Ctx̂t))︸ ︷︷ ︸
=(I+dtAt)x̂t+dtKb·(yt−Ctx̂t)+O(dt)2

+ dt · ut

Γt+dt = (I+ dtAt) · (I− dtKbCt)Γt · (I+ dtAt)
T︸ ︷︷ ︸

=Γt+dt(AtΓt−KbCtΓt+ΓtAT
t )+O(dt)2

+ dtΓα

Kb = ΓtC
T
t Γ

−1
β

Or equivalently
x̂t+dt−x̂t

dt
= Atx̂t +Kb · (yt −Ctx̂t) + ut

Γt+dt−Γt

dt
=

(
AtΓt −KbCtΓt + ΓtA

T
t

)
+ Γα

Kb = ΓtC
T
t Γ

−1
β .

Now, CtΓt =
(
ΓtC

T
t

)T
= (KbΓβ)

T = ΓβK
T
b . Therefore, we get the Kalman-Bucy �lter:

d
dt
x̂t = Atx̂t +Kb (yt −Ctx̂t) + ut

d
dt
Γt = AtΓt + Γt ·AT

t −KbΓβK
T
b + Γα

Kb = ΓtC
T
t Γ

−1
β .

The advantage of the latter formulation compared to the former is that the product KbΓβK
T
b is more

stable thanKbCtΓt, since it preserves the symmetry of the resulting matrix. This Kalman-Bucy �lter

corresponds to a continuous version of the Kalman �lter. In its formulation all quantities that are

O (1) and thus no more in�nitely small (O(dt)) or in�nitely large (O
(

1
dt

)
) quantities appear.

Remark. The Kalman-Bucy allows us to understand some e�ects that occur when the discrete-

time Kalman �lter is used for continuous time systems, such as a robot described by{
ẋ = fc(x,u)

y = g(x)

To perform a simulation, we discretize it, for instance using an Euler integration. We get{
xk+1 = f(xk,uk) +αk

yk = g(xk) + βk

where f(xk,uk) = xk + dt · fc(xk,uk) and where αk,βk is the noise. Now, a good tuning for the
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covariances matrices Γα,Γβ at a given sampling time dt, should still be consistent if we change dt.

For have this property, the Kalman-Bucy �lter tells us that the covariance matrices should depend

on dt as follows:

Γα = dt · Γ0
α

Γβ = 1
dt
· Γ0

β

In such a case, the behavior of the simulated system will not be a�ected by a change of dt. As

consequence, if we change dt→ 2 ·dt (for instance to make the simulation goes twice faster), we need
to multiply the noises noise αk,βk, by

√
2, 1√

2
, respectively.

7.2 Extended Kalman Filter

As we have seen in previous chapters, a robot is described by continuous state equations of the

form

{
ẋ = fc(x,u)

y = g(x)

which are nonlinear. A Kalman �lter can still be used to estimate the state vector x, but we need to

discretize the system and to linearize it. A possible discretization can be performed with an Euler

method. We get{
xk+1 = xk + dt · fc(xk,uk) = f(xk,uk)

yk = g(xk).

To linearize the system, we assume that we have an estimation x̂k of the state vector. Therefore,{
xk+1 ≃ f(x̂k,uk) +

∂f(x̂k,uk)
∂x

· (xk − x̂k)

yk ≃ g(x̂k) +
dg(x̂k)

dx
· (xk − x̂k) .

If we set

Ak =
∂f(x̂k,uk)

∂x
and Ck =

dg(x̂k)

dx

we get,
xk+1 ≃ Ak · xk + (f(x̂k,uk)−Ak · x̂k)︸ ︷︷ ︸

vk

(yk − g(x̂k) +Ck · x̂k)︸ ︷︷ ︸
zk

≃ Ck · xk.
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This approximation can be written as{
xk+1 = Akxk + vk +αk

zk = Ckxk + βk.

The noises αk and βk are non Gaussian and are not white, since they include some linearization

errors. A classical Kalman �lter can be used (with vk and zk, which are known, take the role of uk

and yk) but its behavior is not reliable anymore. If we are lucky, the results will not be so bad even

if they are too optimistic in general. But very often, we are not lucky and the �lter provides wrong

results. Moreover, it is di�cult to quantify the linearization errors in order to deduce covariance

matrices for the noises.

In our context, x̂k corresponds to x̂k|k−1, the estimation we have for the state xk, taking into

account all the past measurements. But it can also correspond to x̂k|k, when available. Therefore,

the linearized Kalman �lter, called the extended Kalman �lter, is

Ak =
∂f(x̂k|k,uk)

∂x
(evolution matrix)

Ck =
dg(x̂k|k−1)

dx
(observation matrix)

x̂k+1|k = Akx̂k|k +
(
f(x̂k|k,uk)−Ak · x̂k|k

)︸ ︷︷ ︸
vk

= f(x̂k|k,uk) (predicted estimation)

Γk+1|k = Ak · Γk|k ·AT
k + Γαk

(predicted covariance)

x̂k|k = x̂k|k−1+Kk · z̃k (corrected estimation)

Γk|k = (I−KkCk)Γk|k−1 (corrected covariance)

z̃k =
(
yk − g(x̂k|k−1) +Ck · x̂k|k−1

)︸ ︷︷ ︸
zk

−Ckx̂k|k−1 = yk − g(x̂k|k−1) (innovation)

Sk = CkΓk|k−1C
T
k + Γβk

(covariance of the innovation)

Kk = Γk|k−1C
T
kS

−1
k (Kalman gain)

The extended Kalman �lter takes as inputs x̂k|k−1 , Γk|k−1, yk, uk and returns x̂k+1|k and Γk+1|k.
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Exercises

Exercise 26.� State estimation of the inverted rod pendulum

See the correction video at https://youtu.be/wuwmIOaj7Fc

We consider an inverted rod pendulum whose state equations are given by:


ẋ1
ẋ2
ẋ3
ẋ4

 =


x3
x4

mr sinx2(g cosx2 − ℓx24) + u
mc +mr sin

2 x2
sinx2((mc +mr)g −mrℓx

2
4 cosx2) + cos x2u

ℓ(mc +mr sin
2 x2)

 and y =

(
x1
x2

)

Here, we have taken as state vector x =
(
s, θ, ṡ, θ̇

)
, where the input u is the force exerted on the cart

of mass mc, s is the position of the cart and θ is the angle between the pendulum and the vertical

direction. We will assume here that only the position of the cart s and the angle θ of the pendulum

are measured.

1) Linearize this system around the state x = 0.

2) Suggest a state feedback controller of the form u = −K ·x+h w that stabilizes the system. Use

a pole placement method to achieve this. All the poles will be equal to −2. For the precompensator

h, take a setpoint w that corresponds to the desired position for the cart. Following [3], we must

take:

h = −
(
E · (A−B ·K)−1 ·B

)−1

where E is the setpoint matrix given by:

E = ( 1 0 0 0 ).

Simulate the system controlled by this state feedback.

3) In order to perform an output-based feedback, we need an estimation x̂ of the state vector x.

For this, we will use a Kalman �lter (see Figure 7.1):
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Figure 7.1: Kalman �lter used to estimate the state of the inverted rod pendulum

Discretize the system using steps of dt = 0.1 sec, then propose a Kalman �lter for observing the

state.

4) Implement this �lter and study the robustness of the Kalman observer when the measurement

noise is increased.

5) An extended Kalman �lter can be obtained by replacing, in the prediction step of the Kalman

�lter, the statement:

x̂k+1|k = Akx̂k|k +Bkuk

by:

x̂k+1|k = x̂k|k + f
(
x̂k|k,uk

)
· dt.

Here we have replaced the prediction performed on the linearized model by a prediction performed

on the initial nonlinear model that is closer to reality. Propose an implementation of this extended

Kalman �lter on the inverted rod pendulum.

Exercise 27.� Following a boat with two radars

See the correction video at https://youtu.be/FQSud487xIE

The movement of a boat that we are seeking to localize is described by the state equations:
px (k + 1) = px (k) + dt · vx (k)
vx (k + 1) = vx (k)− dt · vx (k) + αx (k)

py (k + 1) = py (k) + dt · vy (k)
vy (k + 1) = vy (k)− dt · vy (k) + αy (k)

where dt = 0.01 and αx and αy are Gaussian white noises with variance matrix dt. The state vector

is therefore x = (px, vx, py, vy).

1) Write a program that simulates the boat.
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2) Two radars placed at a : (ax, ay) = (0, 0) and b : (bx, by) = (1, 0) measure the square of the

distance to the boat. The observation equation is:

yk =

(
(px (k)− ax)

2 + (py (k)− ay)
2

(px (k)− bx)
2 + (py (k)− by)

2

)
︸ ︷︷ ︸

g(xk)

+ βk

where β1 (k) and β2 (k) are independent Gaussian white noises with a variance equal to 1
dt
· 10−2.

Adjust the simulation in order to visualize the radars and generate the measurement vector y (k).

3) Linearize this observation equation around the current estimation x̂k of the state vector xk.

Deduce from this an equation of the form zk = Ckxk where zk = h (yk, x̂k) takes the role of the

measurement taken at time k.

4) Implement a Kalman �lter that allows the localization of the boat.

Exercise 28.� Robot localization in a pool

See the correction video at https://youtu.be/U3X52L9quvE

Consider an underwater robot moving within a rectangular pool of length 2Ry and width 2Rx. A

sonar placed at the center of the robot rotates with a constant angular speed δ̇. The depth is easily

obtained using a barometer and we will therefore assume this quantity to be known. The robot is

weighted in such a way that the bank and elevation angles may be assumed to be zero. We want to

estimate the coordinates (x, y) of the robot. The origin of the coordinate system is in middle of the

pool. For this localization, we will assume that the angle δ of the sonar is known perfectly relative

to the body of the robot and the heading angle θ is measured with a compass. The sonar illuminates

the environment inside an emission cone with an angle ±π
4
, as illustrated by Figure 7.2.

Figure 7.2: In the pool, the rotating sonar measures the distance to one of the wall

The tangential acceleration a is measured with an accelerometer. Every dt = 0.05s, the sonar
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returns the distance ℓ to the wall in front of it. As illustrated by Figure 7.3 the number w of the wall

involved in the distance measurement (called the hit wall) only depends on the angle θ + δ and not

on the position of the robot. In the con�guration (a) of Figure 7.3 right, the sonar in on the right of

the robot and since θ + δ ≃ π
2
, Wall 1 is hit. In the con�guration (b), the sonar is on the left of the

robot and since θ + δ ≃ π, Wall 2 is hit.

Figure 7.3: The sonar returns the distance ℓ to the wth wall where w depends on the orientation
θ + δ of the sonar

We want the build a Kalman �lter which estimates the position (x, y) from the measurements

ak, ℓk, θk, δk at time tk = dt · k.

Figure 7.4: The Kalman �lter estimates the position of the robot in the pool from the measurements
collected by the sensors
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The Kalman �lter will be built on the following cinematic model
ẋ = v · cos θ
ẏ = v · sin θ
v̇ = a

The state vector is z = (x, y, v) and the input is a.

1) The Kalman �lter assumes the following linear state equations

zk+1 = Ak · zk +Bk · ak +αk

rk = Ck · zk + βk

where αk and βk are white Gaussian noises. Give the expressions for Ak,Bk and Ck we should take

to have the estimations x̂, ŷ, v̂ of the variables x, y, v. Explain how the quantity rk should be chosen

from the measurements.

2) Simulate a robot in the pool. Its motion will obey to the state equation

ẋ = v · cos θ
ẏ = v · sin θ
θ̇ = u1
v̇ = u2
δ̇ = u3

The initial state vector x0 and the constant input u are given by

x0 =


10

−10

1

3

0

 and u =

 0.2

0

2



Illustrate the behavior of the Kalman �lter. To avoid outliers, we will assume that the distance ℓ is

reliable only when the sonar beam is orthogonal to the hit wall.

Exercise 29.� Instantaneous state estimation

See the correction video at https://youtu.be/-JIQb_0CEI4

Localization consists of �nding the position and the orientation of the robot. This problem can

sometimes be reduced to a state estimation problem, if the state model for our robot is available.

In this exercise, we will give a method that is sometimes used for the state estimation of nonlinear
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systems. Let us consider the tricycle described by the state equations:
ẋ

ẏ

θ̇

v̇

δ̇

 =


v cos δ cos θ

v cos δ sin θ

v sin δ

u1
u2



Figure 7.5: Tricycle for which we want to reconstruct the state

We measure the positions x and y with such high precision that we may assume that ẋ, ẏ, ẍ, ÿ are

known. Express the other state variables θ, v, δ in function of x,y,ẋ,ẏ,ẍ,ÿ.
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Chapter 8

Bayes �lter

8.1 Introduction

This chapter proposes to generalize the Kalman �lter to the case where the functions are nonlinear

and the noise is non Gaussian. The resulting observer will be called the Bayes �lter. Instead of

computing for each time k the covariance and the estimate of the state, the Bayes �lter directly

computes the probability density function of the state vector. As for the Kalman �lter, it consists

of two parts: the prediction and the correction. In the linear and Gaussian case, the Bayes �lter is

equivalent to the Kalman �lter.

By increasing the level of abstraction, the Bayes �lter will allow us to have a better understanding

of the Kalman �lter, and some proofs become easier and more intuitive. As an illustration we will

consider the smoothing problem where the estimation is made more accurate by taking all future

measurements, when available. Of course, the smoothing is mainly used for o�ine applications.

8.2 Basic notions on probabilities

Marginal density. If x ∈ Rn and y ∈ Rm are two random vectors with a joint probability

density function π(x,y). Note that π(x,y) is a function which associates to (x̃, ỹ) ∈ Rn × Rm an

element of R+ denoted by π(x = x̃,y = ỹ). The marginal density for x is

π(x) =

∫
π(x,y) · dy. (8.1)

Note that, to be rigorous, we should have written

π(x = x̃) =

∫
ỹ∈Rm

π(x = x̃,y = ỹ) · dỹ,
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but this notation would become too heavy for our applications. In the same manner, the marginal

density for y is

π(y) =

∫
π(x,y) · dx.

The two random vectors x and y are independent if

π(x,y) = π(x) · π(y).

Conditional density. The conditional density for x given y is

π(x|y) = π(x,y)

π(y)
. (8.2)

Again, the quantity π(x|y) is a function which associates with the pair (x̃, ỹ) ∈ Rn × Rm a positive

real number. But, y has not the same role: it is a parameter of the density for x. We also have

π(y|x) = π(x,y)

π(x)
. (8.3)

Bayes rule. Combining the two equations (8.2) and (8.3), we get

π(x,y) = π(y|x) · π(x) = π(x|y) · π(y).

The Bayes rule obtained from the previous equation:

π(x|y) = π(y|x) · π(x)
π(y)

= η · π(y|x) · π(x). (8.4)

The quantity η = 1
π(y)

called the normalizer allows to have an integral for x equal to one. Sometimes,

we use the following notation

π(x|y) ∝ π(y|x) · π(x)

to indicate that the two functions π(x|y) and π(y|x) · π(x) are proportional for a given y.

Total probability law. The marginal density for x is

π(x)
(8.1,8.2)
=

∫
π(x|y) · π(y) · dy. (8.5)

This corresponds to the law of total probability.

Parametric case. If z is a parameter (which can be random vector and any other deterministic
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quantity), the parametric total probability law is given by

π(x|z) (8.5)
=

∫
π(x|y,z) · π(y|z) · dy (8.6)

and the parametric Bayes rule is

π(x|y, z) (8.4)
=

π(y|x,z) · π(x|z)
π(y|z)

. (8.7)

Bayes network. A Bayes network is a probabilistic graphical model that represents a set of

random vectors and their conditional dependencies. Formally, Bayes networks are directed acyclic

graph whose nodes represent random vectors. Arcs represent dependencies. More precisely the

two vectors x,y are connected by an arc there exists a relation linking them. Nodes that are not

connected (there is no path from one of the variables to the other in the Bayes network) represent

variables that are independent. To have a better understanding, consider �ve vectors a,b, c,d, e

that are linked by the relations

b = a+α1

e = a+ 2b+α2

c = e+α3

d = 3c+α4

where the αi are all independent vectors with a known density, for instance N (0, 1), which means

Gaussian centered with a unit variance. It is clear that if we know a density π(a) for a, we can

compute the probabilities for all other vectors. Equivalently, we can easily write a program which

generates the generates some realizations for all the vectors. For instance in the scalar case, if

π(a) = N (1, 9), the program could be:

1 a := 1+randn(9)
2 b := a+ randn(1)
3 e := a+ 2 · b+ randn(1)
4 c := e+ randn(1);
5 d := 3 · c+ randn(1)

From this program, we easily see that π(c|a, e,b) = π(c|e), which means that given e, the

vector c is independent of a and b. The corresponding network is depicted on Figure 8.1 (left).

The network will help us to simplify conditional densities. For instance, from the network we can

conclude that π(c|a, e,b) = π(c|e), since all paths from a to c and all paths from b to c have to

go through e. Equivalently, this means that if we know e, the knowledge of a and b does not bring

any new information on c. This reasoning can be formalized and generalized under the form of the

Hammersley�Cli�ord theorem.
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Consider 3 vectors x,y, z that are linked by the relations

y = 2x+α1

z = 3y +α2

x = 4z+α3

where the αi are all independent vectors. The graph (see Figure 8.1 (right) has a cycle and is

not considered as a Bayes network anymore. It is now much more di�cult (or even impossible) to

compute the marginal densities or to build a program that generates a cloud of points consistent

with the probabilistic assumptions.

Figure 8.1: Left: a Bayes network; Right, the graph has a cycle and thus is not a Bayes network

8.3 Bayes �lter

Consider a system described by the following state equations{
xk+1 = fk(xk) +αk

yk = gk(xk) + βk

(8.8)

where αk and βk are random vectors white and mutually independent. The dependency with respect

to some known inputs uk is taken into account via the functions fk and gk. We have here a random

process which satis�es the Markov assumptions which tells us that the future of the system only

depends of the past through the state at the current time t. This can be written as:

π(yk|xk,y0:k−1) = π(yk|xk)

π(xk+1|xk,y0:k) = π(xk+1|xk).
(8.9)

The notation y0:k has to be understood as follows

y0:k = (y0,y1, . . . ,yk) .

This is illustrated by the Bayes network of Figure 8.2. An arc of this graph corresponds to a

dependency. For instance, the arc between xk and xk+1 corresponds to the knowledge that xk+1 −
fk(xk) has a density which corresponds to that of αk.
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Figure 8.2: Bayes network associated with the state equation

Theorem 7. The two densities

pred(xk)
def
= π(xk|y0:k−1)

bel(xk)
def
= π(xk|y0:k).

(8.10)

satisfy

(i) pred (xk+1) =
∫
π (xk+1|xk) · bel (xk) · dxk (prediction)

(ii) bel (xk) = π(yk|xk)·pred(xk)
π(yk|y0:k−1)

. (correction)
(8.11)

These relations correspond to a Bayes observer or Bayes �lter. The prediction equation is known

as the equation of Chapman-Kolmogorov.

Proof. Let us prove relation (ii). We have

bel (xk)
(8.10)
= π (xk|y0:k)

= π (xk|yk,y0:k−1)
(8.7)
= 1

π(yk|y0:k−1)
· π(yk|xk,y0:k−1)︸ ︷︷ ︸

(8.9)
= π(yk|xk)

· π(xk|y0:k−1)︸ ︷︷ ︸
(8.10)
= pred(xk)

{
π(x|y, z) = π(y|x,z)·π(x|z)

π(y|z)

}

Let us now prove (i). From the total probability rule (8.6), we get

pred (xk+1)
(8.10)
= π (xk+1|y0:k)

(8.6)
=

∫
π(xk+1|xk,y0:k)︸ ︷︷ ︸
(8.9)
= π(xk+1|xk)

· π(xk|y0:k)︸ ︷︷ ︸
(8.10)
= bel (xk)

dxk
{ π(x|z) =∫

π(x|y, z) · π(y|z) · dy }

This corresponds to relation (i).

Remark. From (8.11, ii), we have∫
bel (xk) · dxk︸ ︷︷ ︸

=1

=

∫
π(yk|xk) · pred (xk)

π (yk|y0:k−1)
· dxk.
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Thus

π (yk|y0:k−1) =

∫
π(yk|xk) · pred (xk) · dxk

is a normalizer coe�cient which can be computed directly from π(yk|xk) and pred(xk) .

The relations (8.11) can be interpreted as an algorithm where the variables pred(xk) and bel(xk)

are densities, i.e., functions from Rn → R. Such an algorithm cannot be implemented in a computer

in the general case, and can only be poorly approximated. In practice di�erent approaches can be

used to implement a Bayes �lter.

� If the random vector x is discrete, the process can be represented by a Markov chain and the

densities pred(xk) and bel(xk) can be represented by a vector of Rn. The Bayes �lter can be

implemented exactly.

� If the densities pred(xk) and bel(xk) are Gaussian, they can be represented exactly by their

expectation and their covariance matrices. We get the Kalman �lter [6].

� We can approximate pred(xk) and bel(xk) by cloud of points (called particles) with di�erent

weights. The corresponding observer is called Particle �lter.

� We can represent the densities pred(xk) and bel(xk) with a subset of Rn which contains the

support of the density. We obtain an observer called set-membership �lter.

8.4 Bayes smoother

A �lter is causal. This means that the estimation x̂k|k−1 only takes into account the past. The

smoothing process consists of a state estimation when all the measurements (future, present and past)

are available. Let us denote by N the maximum time k. This time can correspond, for instance, to

the end date of a mission performed by the robot and for which we are trying to estimate its path.

In order to perform smoothing, we simply need to run once more a Kalman �lter in the backward

direction and merge, for each k, the information from the future with that of the past.

Theorem 8. The three densities

pred (xk)
def
= π (xk|y0:k−1)

bel (xk)
def
= π (xk|y0:k) .

back (xk)
def
= π (xk|y0:N)

(8.12)

can be de�ned recursively as follows

(i) pred (xk) =
∫
π (xk|xk−1) · bel (xk−1) · dxk−1 (prediction)

(ii) bel (xk) = π(yk|xk)·pred(xk)
π(yk|y0:k−1)

(correction)

(iii) back (xk) = bel (xk)
∫ π(xk+1|xk)·back(xk+1)

pred(xk+1)
· dxk+1 (smoother)

(8.13)
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Proof. The prediction equation (i) and the correction equation (ii) have already been proven. It

remains to prove (iii). We have

back (xk)

= π (xk|y0:N)
(8.6)
=

∫
π (xk|xk+1,y0:N)︸ ︷︷ ︸

||

·π (xk+1|y0:N) · dxk+1

{
π(a|c) =

∫
π(a|b, c) · π(b|c) · db

}
(Markov)

=
∫ ︷ ︸︸ ︷
π (xk|xk+1,y0:k)︸ ︷︷ ︸

||

·back (xk+1) · dxk+1

(Bayes)
=

∫ ︷ ︸︸ ︷
π (xk+1|xk,y0:k) · π (xk|y0:k)

π (xk+1|y0:k)
·back (xk+1) · dxk+1

{
π(a|b, c) = π(b|a, c) · π(a|c)

π(b|c)

}
(Markov)

=
∫ π(xk+1|xk)·π(xk|y0:k)

pred(xk+1)
· back (xk+1) · dxk+1

= π (xk|y0:k)︸ ︷︷ ︸
bel(xk)

∫ π(xk+1|xk)

pred(xk+1)
· back (xk+1) · dxk+1

8.5 Kalman smoother

8.5.1 Equations of the Kalman smoother

Consider a linear discrete time system described by the state equation.{
xk+1 = Akxk + uk +αk

yk = Ckxk + βk

where αk and βk are Gaussian, white and independent.

An optimized version of the Bayes smoother, in the case where all densities are Gaussian and all

functions are linear is referred to as Kalman smoother (or Rauch-Tung-Striebel Smoother). It can

then be applied by adding the smoothing equation of the following theorem to those of the Kalman

�lter.

Theorem 9. he smoothing density is

back (xk) = π (xk|y0:N) = N
(
xk

∥∥x̂k|N ,Γk|N
)

where

Jk = Γk|k ·AT
k · Γ−1

k+1|k
x̂k|N = x̂k|k + Jk ·

(
x̂k+1|N − x̂k+1|k

)
Γk|N = Γk|k − Jk ·

(
Γk+1|k − Γk+1|N

)
· JT

k .

(8.14)
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Proof. See exercise 35 on page 93.

8.5.2 Implementation

In order to perform the smoothing process, we �rst need to run the Kalman �lter for k ranging

from 0 to N , then run Equations (8.14) backwards for k ranging form N to 0. Note that all the

quantities x̂k+1|k, x̂k|k,Γk+1|k,Γk|k, x̂k|N are stored in the lists x̂pred

k ,x̂up

k ,x̂back
k ,Γpred

k ,Γup

k ,Γback
k , where

pred, up, back respectively mean prediction, update, backward. The quantities u(k),y(k),Γαk
,Γβk

,Ak

are also stored in lists. The direct, or forward part of the smoother is given by the algorithm Filter

below. It uses the Kalman function given page 47.

Function Filter (x̂pred
0 ,Γpred

0 ,u(k),y(k),Γαk
,Γβk

,Ak,Ck, k = 0, . . . , N)
1 For k = 0 to N

2
(
x̂pred
k+1 ,Γ

pred
k+1 , x̂

up
k ,Γ

up
k

)
=

3 Kalman

(
x̂pred
k ,Γpred

k ,u(k),y(k),Γαk
,Γβk

,Ak,Ck

)
4 Return

(
x̂pred
k+1 ,Γ

pred
k+1 , x̂

up
k ,Γ

up
k , k = 0, . . . , N

)
The backward part of the smoother, this is given by the following Algorithm Smoother .

Function Smoother (x̂pred
k+1 ,Γ

pred
k+1 , x̂

up
k ,Γ

up
k ,Ak, k = 0, . . . , N)

1 x̂back
N = x̂up

N

2 Γback
N = Γup

N

3 For k = N − 1 downto 0

4 J = Γup
k ·AT

k ·
(
Γpred

k+1

)−1

5 x̂back
k = x̂up

k + J ·
(
x̂back
k+1 − x̂pred

k+1

)
6 Γback

k = Γup
k − J ·

(
Γpred

k+1 − Γback
k+1

)
· JT

7 Return
(
x̂back
k ,Γback

k , k = 0, . . . , N
)
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Exercises

Exercise 30.� Conditional and marginal densities

See the correction video at https://youtu.be/joN7hHLz3oU

Consider two random variables x, y which belong to the set {1, 2, 3} . The table below gives π(x, y).

π(x, y) x = 1 x = 2 x = 3

y = 1 0.1 0.2 0

y = 2 0.1 0.3 0.1

y = 3 0 0.1 0.1

1) Compute the marginal densities π(x) and π(y) for x and y.

2) Compute the conditional densities π(x|y) and π(y|x).

Exercise 31.� Weather forecast

See the correction video at https://youtu.be/Qa8nkC7Hdeg

Markov chain. A Markov chain is a sequence of discrete random variables x0, x1, . . . , xk, . . . ,

called the state variables, where k is time such that the future of the system only depends on the

present state. More precisely, if the current state is known precisely, a full knowledge of the past will

not bring any new information to predict the future. We can write the Markov property as

π (xk+1 = j| xk = ik, xk−1 = ik−1, . . . ) = π (xk+1 = j| xk = ik) .

The set of all feasible values for xk is the state space. This probabilistic de�nition is totally consistent

with all the notions of state space used in this book. Markov chains can be described by an oriented

graph the label of which corresponds to the probability to go from one state to another. To each k

we associate the vector pk the i
th component of which is de�ned by

pk,i = π(xk = i).

Note that all components of pk are positive and that their sum is equal to 1.

Weather forecast. In the town of Brest, two kinds of weather are possible: sunny coded by 1

and rainy coded by 2. And the weather does not change during the day. Denote by xk the weather
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at the day k. We assume that the state xk corresponds to a Markov chain the conditional density

π(xk+1|xk) of which is given by

π(xk+1|xk) xk = 1 xk = 2

xk+1 = 1 0.9 0.5

xk+1 = 2 0.1 0.5

This can be represented by Figure 8.3.

Figure 8.3: Markov chain describing the evolution of the weather in Brest

1) We represent π(xk) by a vector pk of dimension 2. Using a Bayes �lter, show that the evolution

of pk can be represented by a state equation of the form pk+1 = A · pk.

2) At day k, the weather is sunny. What is the probability to be sunny the day k + ℓ.

3) What about this probability when ℓ tends to in�nity?

Exercise 32.� Door robot

See the correction video at https://youtu.be/J_0_-KTGpfM

In this exercise, we illustrate the Bayes �lter in a system with a state x ∈ {0, 1}. It corresponds
[9] to a door which can be closed (x = 0) or open (x = 1) and an actuator to open and close. The

system has also a sensor to measure the state. The input u, can be u = −1, 0 or 1 which mean

'close', 'do nothing' or 'open'. The require input may fail (for instance, if someone stops the door).

We can represent the in�uence an u on the state evolution by the following table

π(xk+1|xk, uk) uk = −1, uk = 0 uk = 1

xk = 0 δ0 δ0 0.2 δ0 + 0.8 δ1
xk = 1 0.8 δ0 + 0.2 δ1 δ1 δ1

For simplicity, the dependencies of the δi with respect to xk+1 is omitted. When we read in the table

π(xk+1|xk = 0, uk = 1) = 0.2 δ0 + 0.8 δ1,

it means that if xk = 0, there is a probability of 0.8 to be at state 1 at time k + 1, if we apply the

input uk = 1. The sensor which gives us the state of the door is also uncertain. This is represented
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by the following conditional density

π(yk|xk) xk = 0 xk = 1

yk = 0 0.8 0.4

yk = 1 0.2 0.6

The system can be represented by the graph of Figure 8.4.

Figure 8.4: Graph representing the evolution and the observation of the door robot

1) Assume that the belief at time k = 0 is given by bel(x0) = 0.5 · δ0 + 0.5 · δ1 and that u0 = 1,

compute pred(x1).

2) At time 1 we measure y1 = 1. Compute bel(x1) .

3) If ppred
k and pbel

k are the stochastic vectors associated to pred(xk) et bel(xk). Give the state

equation for the Bayes �lter.

Exercise 33.� Robot in the forest

See the correction video at https://youtu.be/C443JFbwBvg

The objective of this exercise if to give a graphical interpretation of the Bayes �lter. We recall

that the Bayes �lter is given by the following equations

pred (xk+1) =
∫
π (xk+1|xk,uk) · bel (xk) · dxk

bel (xk) = π(yk|xk)·pred(xk)∫
π(yk|xk)·pred(xk)·dxk

.

Figure 8.5 represents a robot with a scalar state x which corresponds to its position on a horizontal

line.
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Figure 8.5: Illustration of the Bayes �lter

Step k. We assume that at time k, we know from the past the prediction pred(xk), which is

uniform on a large interval. The robot knows that in its environment, there exists three trees that are

identical. Now, at time k, the robot sees a tree in front of it. This corresponds the measurement yk.

It deduces the likelyhood π (yk|xk) of x. The belief bel(xk) can thus be obtained simple multiplication
of the density pred(xk) and the likelyhood π (yk|xk), followed by a normalization.

Step k+1. The robot moves forward of few meters and the counter k increases by 1. From the

belief at time k and the knowledge of the motion, we can predict, via pred(xk+1), the state at time

k + 1. To get bel(xk+1) in the same way as previously at time k.

Step k+2. Assume now that the robot moves forward again of few meters but does not see any

tree. Draw pred(xk+2), π (yk+2|xk+2) and bel(xk+2) .

Exercise 34.� Bayes rule with Kalman

See the correction video at https://youtu.be/aAM1nMhOKcw

Consider two Gaussian random variables x ∼ N (1, 1) and b ∼ N (0, 1), i.e. the expectations

of x,b are x̄ = 1, b̄ = 0 and the variances (i.e, the covariance matrix in the scalar case) of x, b are

σ2
x = 1, σ2

b = 1.

1) De�ne y = x+ b. Give the expression of probability density function of y.

2) We collect the following measurement y = 3. Using the correction equations of the Kalman

�lter, compute the posterior density for x.

3) Provide the link with the Bayes rule.
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Exercise 35.� Derivation of the Kalman smoother

See the correction video at https://youtu.be/aJKNEstmIfU

1) Consider two normal vectors a and b. Show that

π(a) = N (a ∥â,Γa )

π(b|a) = N (b ∥Ja+ u,R)

}
=⇒ π(b) = N

(
b
∥∥Jâ+ u,R+ J · Γa · JT

)
. (8.15)

2) Consider a linear discrete time system described by the state equation.{
xk+1 = Akxk + uk +αk

yk = Ckxk + βk

where αk and βk are Gaussian, white and independent. Using the equations of the Kalman �lter,

show that

π (xk|xk+1,y0:N) = N
(
xk

∥∥x̂k|k + Jk

(
xk+1 − x̂k+1|k

)
,Γk|k − Jk · Γk+1|k · JT

k

)
(8.16)

where

Jk = Γk|k ·AT
k · Γ−1

k+1|k.

3) From the two previous questions, show that the smoothing density is

back (xk) = π (xk|y0:N) = N
(
xk

∥∥x̂k|N ,Γk|N
)

where

x̂k|N = x̂k|k + Jk ·
(
x̂k+1|N − x̂k+1|k

)
Γk|N = Γk|k − Jk ·

(
Γk+1|k − Γk+1|N

)
· JT

k .

Exercise 36.� SLAM

See the correction video at http://youtu.be/KHkP4vf_th0

The Redermor (underwater robot built by GESMA, Brest) performed a two-hour mission in the

Douarnenez bay (see Figure 8.6). During its mission, it collected data from its inertial unit (which

gives us the Euler angles ϕ, θ, ψ), its Doppler log (which gives us the robot's speed vr in the robot's

coordinate system), its pressure sensor (which gives us the robot's depth pz) and its altitude sensor

(sonar that gives us the altitude a), with a sampling period of dt = 0.1 sec. This data can be found

in the �le slam_data.txt. The �le is composed of 59 996 lines (one line per sampling period) and

9 columns which are respectively:

(t, φ, θ, ψ, vx, vy, vz, pz, a)
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where pz is the depth of the robot and a is its altitude (i.e., its distance to the seabed).

Figure 8.6: The Redermor, built by GESMA (Groupe d'Etude Sous-Marine de l'Atlantique), right
before diving into the water

1) Given that the robot started from a position p = (0, 0, 0), at time t = 0, and using an Euler

method, deduce an estimation for the path. Use for this the state equation:

ṗ(t) = R(φ (t) , θ (t) , ψ (t)) · vr(t)

with R(φ, θ, ψ) the Euler matrix given by:

R(φ, θ, ψ) =

 cosψ − sinψ 0

sinψ cosψ 0

0 0 1

 cos θ 0 sin θ

0 1 0

− sin θ 0 cos θ

 1 0 0

0 cosφ − sinφ

0 sinφ cosφ


2) The angles φ, θ, ψ are measured with a standard deviation of (2× 10−4, 2× 10−4, 5× 10−3). The

components of vr are measured every dt seconds with a variance of σ2
v =1m2s−2. We may assume

that the robot satis�es the equation:

pk+1 = pk + (dt ·R(k)) · v̄r(k) +αk

where αk is a white noise and v̄r(k) is a measurement of the average speed over the corresponding
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sampling period. Show that a realistic covariance matrix for αk is:

Γα = dt2σ2
v ·

 1 0 0

0 1 0

0 0 1

 .

Remark. We are not in the situation described in Section 7.1 or in Exercise 11 where the covariance

for the state noise should have the same order as 1
dt
. Here, our system in not a discretisation of a

continuous random process, the behavior of which should be independent of dt. On the contrary, dt

is a sampling time of the velocity sensor. Smaller is dt, more accurate will be the integration.

3) Using the Kalman �lter as predictor, calculate the precision with which the robot knows its

position at each moment t = k · dt. Give, in function of t, the standard deviation of the error over

the position. What will this become after an hour ? After two hours ? Verify your calculations

experimentally by implementing a Kalman predictor.

4) During its mission, the robot may detect several landmarks with its lateral sonar (here these

will be mines). When the robot detects a landmark, it will be on its right side and in a plane

perpendicular to the robot. The seabed is assumed to be �at and horizontal. The following table

shows the detection times, the numbers i of the landmarks and the distance ri between the robot

and the landmark:

t 1054 1092 1374 1748 3038 3688 4024 4817 5172 5232 5279 5688

i 1 2 1 0 1 5 4 3 3 4 5 1

ri(t) 52.4 12.47 54.4 52.7 27.73 27.0 37.9 36.7 37.37 31.03 33.5 15.05

SLAM (Simultaneous Localization And Mapping) seeks to use these repeated detections to improve

the precision of the estimation of its path. For this, we form a large state vector x, of dimension

3 + 2 · 6 = 15 that contains the position of the robot p as well as the vector q of dimension 12

containing the coordinates (as x and y) of the six landmarks. Let us note that since the landmarks are

immobile, we have q̇ = 0. Give the function (y,Ck,Γβ) = g (k) that corresponds to the observation.

This function returns the measurement vector y, the matrix C(k) and the covariance matrix of the

measurement noise. As for the standard deviation of the measurement noise βk, we will take 0.1 for

that of the depth and 1 for that of the robot-landmark distance.

5) Using a Kalman �lter, �nd the position of the landmarks together with the associated

uncertainty. Show how the robot was able to readjust its position.

6) Use the Kalman smoother to improve the precision over the landmark positions by taking into

account the past as well as the future.

Exercise 37.� Particle �lter

See the correction video at https://youtu.be/xKaX�5yzwI

We consider a robot at position x = (x1, x2) that has to be localized. The robot is equipped with

a compass, so that we can assume that its heading θ is known. We describe the evolution of the
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robot by the relation

xk+1 = xk + dt ·
(

cos θk
sin θk

)
+αk

where the sampling time is taken as dt, where αk is the state noise. The covariance matrix for αk is

taken as

Γα = 0.1 ·
(
dt 0

0 dt

)
.

In the environment, we have 3 landmarks at position:

j 1 2 3

m(j)

(
3

8

) (
2

6

) (
4

11

)
At each time tk = k · dt, the robot measures its distance to each landmark with an error. The

corresponding observation equation is

yk =

 ∥x−m(1)∥
∥x−m(2)∥
∥x−m(3)∥

+ βk

where the components for βk are all independent with a variance of 1. All noises αk, βk are white,

stationary, centered and Gaussian. In this exercise, we want to estimate the probability density

functions

pred(xk) = π(xk|y0:k−1)

bel(xk) = π(xk|y0:k).

by a weighted set of N samples, called the cloud,

(P ,W)(k) =
{
(w

(1)
k ,x

(1)
k ), . . . , (w

(N)
k ,x

(N)
k )

}
,

where
∑

ℓw
(ℓ)
k = 1. The weight w

(ℓ)
k is an approximation of the probability for the state x(k) to be

equal to x
(ℓ)
k . We de�ne the set of particles P and the set of of weights W as

P =
{
x
(1)
k , . . . ,x

(N)
k

}
W =

{
w

(1)
k , . . . , w

(N)
k

}
.

For the simulations, we will take x(0) = (0, 0), θ(t) = 0.2 · t, tk = k · dt, dt = 0.1 and N = 2000.

1) Assume that at time k = 0, we know that pred(xk) is uniformly distributed inside the box

[−15, 15]× [−15, 15]. Generate the corresponding cloud (P ,W) and draw the particles with a width

proportional to their weights.
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2) At time t = 0, the robot at position x(0) measures y0 that you should generate from the

observation equation. Using the rule

bel(xk) =
π(yk|xk) · pred(xk)

π(yk|y0:k−1)

update the weights W to get an estimation of bel(x0). An illustration of the cloud you should obtain

is given by Figure 8.7(b).

3) Generate a resampled cloud (P ′,W ′) from the previous one (P ,W) which also represents

bel(x0). Now, with the resampled cloud, all weights should be equal to 1
N
, as illustrated by Figure

8.7(c).

4) Using the prediction equation

pred(xk+1) =

∫
π(xk+1|xk) · bel(xk) · dxk

Generate a cloud (P ′′,W ′′) which approximates pred(x1) from the resampled cloud (P ′,W ′). See

Figure 8.7(d).

5) Write a program which simulates the robot for t ∈ [0, 5]. Propose a particle �lter for localizing

the robot. Show the evolution of the cloud associated with pred(xk).
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Figure 8.7: (a) pred(x0); (b) bel(x0): the particles have di�erent weights; (c) bel(x0) after resampling:
all particles have the same weight; (d) pred(x1) : the robot has moved forward
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