State Estimation
Probabilistic and Bounded-error approaches

Michel Kieffer
L2S - CNRS - SUPELEC - Univ Paris-Sud
kieffer@lss.supelec.fr

Thursday 20 march 2009
1 Introduction

State estimation = generalization of parameter estimation.

State : set of quantity that characterize the status of a system at a given time instant (ex : position and speed of a ball).

State estimation = Estimation of the state from measurements on the system.
State may evolve with time.

\textit{A priori} information assumed available

\begin{itemize}
\item on the way the state evolves (\textit{dynamical equation})
\item on the way measurements are obtained on the system (\textit{measurement equation})
\end{itemize}

Hypotheses made

\begin{itemize}
\item on the measurement noise,
\item state perturbations
\end{itemize}

will determine the choice for the tools used for state estimation.
2 Outline

- Discrete-time models
 - Assumptions
 - Probabilistic approach
 - Bounded-error approach
- Joint parameter and state estimation
- Continuous-time models
 - Assumptions
 - Bounded-error approach
3 Discrete-time models

Consider a system described by the discrete-time state equation

\[x_{k+1} = f_k(x_k, w_k), \quad k = 0, 1, \ldots, \]

(1)

where

- \(f_k \) is a known function (possibly nonlinear and time-varying),
- \(x_k \) is the unknown state vector at time \(k \),
- \(w_k \) is some unknown state perturbation vector.

Measurements satisfy

\[y_\ell = h_\ell(x_\ell, v_\ell), \quad \ell = 1, \ldots, k, \]

(2)

where

- \(h_\ell \) is a known function (also possibly nonlinear and time-varying),
- \(y_\ell \) is the measurement vector at time \(\ell \),
- \(v_\ell \) is some unknown measurement noise vector.
Depending on the nature of f_k and h_ℓ

and

on the information assumed available about

the state perturbation and measurement noise

various types of state estimators are available.
4 Probabilistic approach

4.1 Assumptions

– \(\{w_k, k \in \mathbb{N}\} \) and \(\{v_k, k \in \mathbb{N}\} \) are i.i.d. sequences with known pdfs,
– pdf of \(x_0 \) based on no measurement is known.

Recursive computation of

\[p(x_k|y_{1:k}), \]

posterior pdf of \(x_k \) based on \(k \) first measurements, possible at least in principle.

Optimal solution of the state estimation problem in a Bayesian sense.
4.2 Recursive algorithm

Alternates

- *predictions*, prior pdf \(p(x_k|y_{1:k-1}) \) computed via the Chapman-Kolgomorov equation

\[
p (x_k|y_{1:k-1}) = \int p (x_k|x_{k-1}) p (x_{k-1}|y_{1:k-1}) \, dx_{k-1}
\]

\(\hat{\rightarrow} \) involves the state equation

\[
x_{k+1} = f_k (x_k, w_k), \quad k = 0, 1, ...
\]
- corrections, new measurement y_k taken into account to update the prior pdf into the posterior pdf $p(x_k|y_k)$ via Bayes’ rule

$$p(x_k|y_{1:k}) = \frac{p(y_k|x_k)p(x_k|y_{1:k-1})}{p(y_k|y_{1:k-1})}.$$ \hspace{1cm} (4)

\leftrightarrow involves the measurement equation

$$y_\ell = h_\ell(x_\ell, v_\ell), \quad \ell = 1, \ldots, k,$$

Usually, \((3)\) and \((4)\) very difficult to evaluate.

Approached solutions have to be derived.
4.3 Linear-Gaussian case

When

- f_k and h_ℓ are linear,
- the pdfs of
 - x_0,
 - the state perturbations
 - the measurement noise
- are Gaussian with known mean and covariance matrix

Kalman filter is the optimal solution (Sorenson, 1985).
4.4 Non-linear-Gaussian case

When

- f_k and h_ℓ are non-linear,
- the pdfs of
 - x_0,
 - the state perturbations
 - the measurement noise

are Gaussian with known mean and covariance matrix
Extended Kalman filter (Gelb, 1974; Anderson and Moore, 1979)

\rightarrow linearization of the state and measurement equations

\rightarrow Gaussian approximation of all pdfs

⊕ Simple implementation

⊖ Actual state may get lost

Unscented Kalman filter (Julier and Uhlmann, 2004)

\rightarrow linearization of the state and measurement equations

\rightarrow approximation of the a priori pdf by some well-selected points

⊕ Simple implementation

⊕ Performs better than the Extended Kalman filter

⊖ Actual state may still get lost
Grid-based approach (Terwiesch and Agarwal, 1995; Burgard et al., 1996)

→ discretisation of the state-space using a fixed grid
⊕ Non-linear treatment
⊕ Integrals replaced by discrete sums more easily evaluated
⊙ Accuracy depends on the size of the grid
⊖ Complexity depends on the size of the grid and dimension of the state
⊖ Actual state may still get lost
Particle filtering approach (Gordon et al., 1993; Kitagawa, 1996; Pitt and Shephard, 1999; Arulampalam et al., 2002)

→ approximation of the pdfs using clouds of points

⊕ Non-linear treatment
⊕ Integrals replaced by discrete sums more easily evaluated
⊙ Accuracy depends on the number of points
⊕ Rather complex management of the cloud
⊕ Actual state may still get lost
5 Bounded-error approach

5.1 Assumptions

Supports with known shapes are available for w_k, v_k and x_0

- $w_k \in W_k, k \in \mathbb{N}$ with known $\{W_k, k \in \mathbb{N}\}$,
- $v_k \in V_k, k \in \mathbb{N}$ with known $\{V_k, k \in \mathbb{N}\}$,
- $x_0 \in X_0$, known.

Recursive computation of the set

$$X_{k|1:k}$$

of all state vectors that are compatible with

- the supports,
- the measurements,
- the models.
5.2 Recursive algorithm

Alternates

– *predictions*, set $\mathbf{X}_{k|1:k}$ assumed available, predicted set

$$\mathbf{X}_{k+1|1:k} = \mathbf{f}_k (\mathbf{X}_{k|1:k}, \mathbf{V}_k)$$ \hspace{1cm} (5)

\hookrightarrow involves the state equation.

– *corrections*, new measurement \mathbf{y}_{k+1} taken into account to update $\mathbf{X}_{k+1|1:k}$, corrected set

$$\mathbf{X}_{k+1|1:k+1} = \{ \mathbf{x} \in \mathbf{X}_{k+1|1:k} : \mathbf{y}_{k+1} \in \mathbf{h}_{k+1} (\mathbf{X}_{k+1|1:k}, \mathbf{W}_{k+1}) \}.$$ \hspace{1cm} (6)

\hookrightarrow involves the measurement equation.
When the hypotheses about the support are not violated
↓
Guaranteed state estimator
(no compatible state vector may get lost)
BUT

Implementation very difficult in general

\[\downarrow \]

Approximate characterization of \(X_{k|1:k} \) using boxes, ellipsoids...

Algorithms still guaranteed, provided that approximation \(\hat{X}_{k|1:k} \) of \(X_{k|1:k} \) satisfies

\[X_{k|1:k} \subset \hat{X}_{k|1:k}, \ k = 1, \ldots \]
5.3 Linear case

When

- f_k and h_ℓ are linear,
- state perturbation and measurement noise are
 - additive,
 - with ellipsoidal support

Ellipsoidal approximation for $\hat{X}_{k|1:k}$, see e.g., (Schweppe, 1968; Bertsekas and Rhodes, 1971; Schwepppe, 1973) and (Durieu et al., 1996; Durieu et al., 2001).

Weaker hypotheses on f_k (perturbations) may be considered (Chernousko and Rokityanskii, 2000; Calafiore and El Ghaoui, 2004; Polyak et al., 2004).

More details in the talk by S. Lesecq.
When

- f_k and h_ℓ are linear,
- state perturbation and measurement noise are
 - additive,
 - with boxes as support

Parallelotopic approximation for $\hat{X}_{k|1:k}$,
see e.g., (Chisci et al., 1996).

Exact polytopic description for $X_{k|1:k}$,
(Shamma and Tu, 1999).
5.4 Non-linear case

When f_k and h_ℓ are non-linear, $X_{k|1:k}$ may be

- non-convex
- non-connected.

When

- h_ℓ is linear
- State perturbation and measurement noise are
 - additive,
 - with boxes as support

Parallelotopic approximation for $\hat{X}_{k|1:k}$,

(Shamma and Tu, 1997).
When

- f_k and h_ℓ are non-linear,
- state perturbation and measurement noise are
 - with boxes or subpavings as support

Subpaving approximation for $\hat{X}_{k|1:k}$,

(Kieffer et al., 1998; Kieffer et al., 2002).
6 Joint parameter and state estimation

Assume that

\[x_{k+1} = f_k(x_k, p_k, w_k), \quad k = 0, 1, \ldots, \]

(7)

and

\[y_\ell = h_\ell(x_\ell, p_k, v_\ell), \quad \ell = 1, \ldots, k, \]

(8)

where

- \(f_k \) and \(h_\ell \) are known functions (possibly nonlinear and time-varying),
- \(x_k \) is the unknown state vector at time \(k \),
- \(p_k \) is some unknown parameter vector
- \(w_k \) and \(v_\ell \) are some unknown state perturbation and measurement vectors.
Joint estimation of x_k and p_k possible by defining and extended state vector

$$x^e_k = (x^T_k, p^T_k)^T$$
Assumptions are required for the variations of p_k with time

- constant

$$p'_k = 0$$

and the following extended state equation may be defined

$$x^e_{k+1} = \begin{pmatrix} f_k (x^e_k, w_k) \\ 0 \end{pmatrix} \quad k = 0, 1, \ldots,$$

- slowly varying

$$p'_k = w^p_\ell$$

and the following extended state equation may be defined

$$x^e_{k+1} = \begin{pmatrix} f_k (x^e_k, w_k) \\ w^p_\ell \end{pmatrix} \quad k = 0, 1, \ldots,$$

- ...
7 Continuous-time models

Assume now that the dynamical equation is continuous-time

$$\dot{x} = \frac{dx}{dt} = f(x(t), v(t), t),$$ \hspace{1cm} (9)

and that discrete-time measurements are available

$$y(t_k) = h(x(t_k), w(t_k), t_k).$$ \hspace{1cm} (10)

- Continuous-time extensions of the Kalman filter
- Algebraic estimation techniques
7.1 Bounded-error context

When f and h are linear,

Ellipsoidal bounding still possible,
see (Schweppe, 1968) and (Bertsekas and Rhodes, 1971).

When f and h are non-linear,

Box approximation,
see the interval observer
(Alcaraz-González et al., 1999; Gouzé et al., 2000; Rapaport and Gouzé, 2003) and (Moisan et al., 2009)
(Raissi et al., 2004; Meslem et al., 2008)

Subpaving approximation
(Jaulin, 2002; Kieffer and Walter, 2005; Kieffer and Walter, 2006).
Most of these techniques require for the prediction step, guaranteed numerical integration of the state equation, see, e.g., (Moore, 1966; Berz and Makino, 1998; Nedialkov and Jackson, 2001).

Correction step implemented as in the discrete-time case.
Références

Kieffer, M. and E. Walter (2005). Interval analysis for guaranteed nonlinear parameter
and state estimation. *Mathematical and Computer Modelling of Dynamic Systems*

continuous–time dynamical models from discrete–time measurements. In : *Preprints
of the 5th IFAC Symposium on Robust Control Design*.

Kieffer, M., L. Jaulin and E. Walter (1998). Guaranteed recursive nonlinear state
estimation using interval analysis. In : *Proceedings of the 37th IEEE Conference on
Decision and Control*. Tampa, FL. pp. 3966–3971.

Kieffer, M., L. Jaulin and E. Walter (2002). Guaranteed recursive nonlinear state
bounding using interval analysis. *International Journal of Adaptive Control and

for uncertain non linear continuous systems using hybrid automata. In : *Proc. IFAC
International Conference on Informatics in Control, Automation Robotics*. Funchal,
Madeira.

Bounded-error State Estimation
Interval approach

Michel Kieffer

March 18, 2009
Content

• Bounded-error state estimation using interval analysis
 – Discrete-time
 – Continuous-time
1 Discrete-time state estimation

1.1 Introduction

Discrete-time state equation:

\[x_{k+1} = f_k (x_k, w_k, u_k) . \]

Observation equation:

\[y_k = h_k (x_k) + v_k, \quad k = 1, \ldots, N. \]

Problem:

Evaluate state \(x_k \) using all available information.
1.2 Recursive nonlinear state estimation in a bounded-error context

Hypotheses:

- at $k = 0$, $x_0 \in [x_0]$,
- $w_k \in [\underline{w}_k, \overline{w}_k]$, known for all past k,
- $v_k \in [\underline{v}_k, \overline{v}_k]$, known for all past k,
- u_k, known for all past k.

Problem:

Characterize set $\mathcal{X}_{k|k}$ of all x_k compatible with hypotheses.
1.3 Idealized recursive state estimation

Prediction and correction steps alternate
1.4 Correction step

Set-inversion problem:
Find
\[\mathcal{X}^O_{k+1|k+1} = h_{k+1}^{-1} (y_{k+1} - [v_{k+1}]) . \]

Solution provided by SIVIA.
(similar to parameter estimation problem with one measurement)
1.5 Prediction step

With discrete-time state equation

\[x_{k+1} = f_k(x_k, w_k, u_k). \]

\[\implies \text{IMAGE} \text{Sp} \]
1.6 Simple example: bouncing ball

Ball bouncing on floor, mass m, radius r

State

$$\mathbf{x} = (x, \dot{x})^T$$

Sampling period $T = 0.1$ s

No friction, rigid ball

Observation:

$$y_{k+1} = (1 \ 0) \mathbf{x}_k + [-0.2, 0.2]$$

Prediction:

$$\mathbf{x}_{k+1} = \mathbf{f}_k (\mathbf{x}_k)$$

obtained by exact discretisation.

Nonlinear equations due to the bounce

$$\dot{x} \rightarrow -\dot{x}$$
Actual initial state (unknown)

\[x_0 = 5.2 \text{ m}, 0 \text{ m.s}^{-1} \]

Initial search box

\[[x_0] = [3, 6] \times [-3, 3] \]
$k = 1$, prediction
$k = 1$, correction
\[k = 1 \ldots 20, \]

Takes 0.2 s on a AMD K6 at 1.5 GHz
2 Continuous-time state estimation

2.1 Introduction

Continuous-time state equation:
\[x' = \frac{dx}{dt} = f(x, w, u). \]

Observation equation:
\[y(t_i) = h(x(t_i)) + v(t_i), \quad i = 1, \ldots, N. \]

Problem:
Evaluate state \(x \) using all available information.
2.2 Recursive nonlinear state estimation in a bounded-error context

Hypotheses:

- at t_0, $x(t_0) \in [x_0]$,
- $w(t) \in [\underline{w}(t), \overline{w}(t)]$, known for all past t,
- $v(t_i) \in [\underline{v}(t_i), \overline{v}(t_i)]$, known for all past t_i,
- $u(t)$, known for all past t.

Problem:

Characterize set $\mathcal{X}(t)$ of all $x(t)$ compatible with hypotheses.
Previous results

- (Kieffer et al., CDC, 98):
 - discrete-time,
 - set description with subpavings.

- (Gouze et al., J. Ecol. Mod., 00):
 - continuous-time,
 - uncertain state equation,
 - cooperative uncertain state equation bounded between cooperative systems,
 - set description with boxes.

- (Jaulin, Automatica, 02):
 - continuous-time,
 - no state perturbations,
 - guaranteed numerical integration of non-punctual boxes,
 - set description with subpavings.

- (Raissi et al., Automatica, 04)
 - continuous-time,
 - no state perturbations,
 - improved guaranteed numerical integration of non-punctual boxes,
 - set description with boxes.
Present context

- continuous-time,
- state perturbations,
- uncertain state equations bounded between point dynamical systems,
- set description with subpavings,
2.3 Idealized recursive state estimation
Idealized recursive state estimation
Idealized recursive state estimation
Idealized recursive state estimation

\[x(t) \to \phi \to x(t+1) \]

\[y_1(t+1) \to h \to y_1(t+1) \]

\[y_2(t+1) \to h \to y_2(t+1) \]
Idealized recursive state estimation

Prediction and correction steps alternate
2.4 Correction step

Set-inversion problem:
Find
\[x^O(t_i) = h^{-1}(y(t_i) - [v(t_i)]) . \]

Solution provided by SIVIA.
(similar to the discrete-time case)
2.5 Prediction step

Flow ϕ difficult to obtain in general.
Situation much simpler with discrete-time state equation

$$\mathbf{x}(k+1) = \mathbf{f}_k(\mathbf{x}_k, \mathbf{w}, \mathbf{u}_k).$$

$$\implies \text{IMAGESp}$$

(a) initial subpaving (b) minced subpaving
(c) image boxes (d) image subpaving
Guaranteed numerical integration of continuous-time state equation

\[x' = \frac{dx}{dt} = f(x, w, u) \]

combined with IMAGESp.

When state equation/initial conditions not well known
\[\implies \text{no accurate box enclosures} \]
Enclosure of state equation between two cooperative systems
+ Guaranteed numerical integration of the cooperative systems

Guaranteed version of Gouzé’s interval observer
Accurate box enclosure
Enclosure of uncertain state equation between punctual dynamical systems

+ Guaranteed numerical integration of the punctual systems

+ IMAGESp
2.6 Bounding the uncertain state equations

Using a reformulation of Müller’s theorems (Muller, 1926).

Theorem 1 (Existence) Assume that the function $f(x, p, w, t)$ is continuous on a domain

$$\mathbb{T} : \begin{cases} a \leq t \leq b \\ \omega(t) \leq x \leq \Omega(t) \\ p_0 \leq p \leq p_0 \\ w \leq w(t) \leq \bar{w} \end{cases}$$

where $\omega_i(t)$ and $\Omega_i(t)$, $i = 1\ldots n_x$, are continuous on $[a, b]$ and such that

1. $\omega(a) = x_0$ and $\Omega(a) = x_0$,
2. for $i = 1\ldots n_x$,

$$D^\pm \omega_i(t) \leq \min_{\mathbb{T}_i(t)} f_i(x, p, w, t) \text{ and } D^\pm \Omega_i(t) \geq \max_{\mathbb{T}_i(t)} f_i(x, p, w, t).$$
where $T_i(t)$ and $\overline{T_i}(t)$ are subsets of \mathbb{T} defined by

\[
\begin{align*}
T_i(t) : & \quad \begin{cases}
t = t, \\
x_i = \omega_i(t), \\
\omega_j(t) \leq x_j \leq \Omega_j(t), \ j \neq i, \\
p_0 \leq p \leq p_0, \\
w \leq w(t) \leq \bar{w},
\end{cases} \\
\overline{T_i}(t) : & \quad \begin{cases}
t = t, \\
x_i = \Omega_i(t), \\
\omega_j(t) \leq x_j \leq \Omega_j(t), \ j \neq i, \\
p_0 \leq p \leq p_0, \\
w \leq w(t) \leq \bar{w}.
\end{cases}
\end{align*}
\]

Then, for any $x(0) \in [x_0, \overline{x}_0]$, $p \in [p_0, \overline{p}_0]$ and $w(t)$ a solution to the dynamical system exists, which remains in

\[
\mathbb{E} : \quad \begin{cases}
a \leq t \leq b \\
\omega(t) \leq x \leq \Omega(t)
\end{cases}
\]

and equals $x(0)$ at $t = 0$. \hfill \Diamond
Theorem 2 (Uniqueness) Moreover, if for any $p \in [p_0, \overline{p}_0]$ and $w(t)$ satisfying $\underline{w} \leq w(t) \leq \overline{w}$ at any $t \in [a, b]$,

$$f(x, p, w, t)$$ is Lipschitz with respect to x over \mathbb{D},

then for any given $x(0)$, p and $w(t)$, this solution is unique. \diamond
Specific version when $f(x, p, w, t)$ satisfies condition close to cooperativity.

Theorem 3 (cooperative) Assume that the function $f(x, p, w, t)$ is continuous on a domain \mathbb{T}' that is the same as \mathbb{T} in Theorem 1 where $\omega_i(t)$ and $\Omega_i(t)$ are continuous over $[a, b]$ for $i = 1 \ldots n_x$ and such that

1. $\omega(a) = x_0$ and $\Omega(a) = \bar{x}_0$,
2. for $i = 1 \ldots n_x$,

\[
D^\pm \omega_i(t) \leq \min_{\mathbb{T}'_i(t)} f_i(x, p, v, t) \quad \text{and} \quad D^\pm \Omega_i(t) \geq \max_{\mathbb{T}'_i(t)} f_i(x, p, v, t),
\]

where $\mathbb{T}'_i(t)$ and $\mathbb{T}'_i(t)$ are subsets of \mathbb{T} defined by

\[
\mathbb{T}'_i(t) = \{\omega(t)\} \times [p_0, \bar{p}_0] \times [w, \bar{w}] \times \{t\}
\]

\[
\mathbb{T}'_i(t) = \{\Omega(t)\} \times [p_0, \bar{p}_0] \times [w, \bar{w}] \times \{t\}.
\]
Assume that, if for all $t \in [a, b]$ and $(x, y) \in [\omega(t), \Omega(t)] \times 2$,

$$x_i \leq y_i, i = 1 \ldots n_x, i \neq j$$

$$\Downarrow$$

$$f_j (x, p, w, t) \leq f_j (y, p, w, t), j = 1 \ldots n_x$$

for all $p \in [\underline{p}_0, \overline{p}_0], w \in [\underline{w}, \overline{w}]$.

Then, for any $x(0) \in [x_0, x_0], p \in [\underline{p}_0, \overline{p}_0]$ and $w(t)$, the solution of the dynamical system exists and remains in E and equals $x(0)$ at $t = 0$.

The uniqueness conditions are the same as in Theorem 1. ✷
Inclusion function for $\phi(t)$:

$$[\phi](t) = [\omega(t), \Omega(t)].$$
2.7 Obtaining $\omega(t)$ and $\Omega(t)$

- No cooperativity conditions.

Build a system

\[
\begin{align*}
\dot{x}' &= g_1(x, x, p_0, \overline{p}_0, w(t), \overline{w}(t), t), \quad x(0) = x_0, \\
\dot{x}' &= g_1(x, x, p_0, \overline{p}_0, w(t), \overline{w}(t), t), \quad x(0) = \overline{x}_0,
\end{align*}
\]

the solution \((\omega_1^T(t), \Omega_1^T(t))^T\) of which satisfies the requirements of Theorem 1.
• Cooperativity conditions.

Build two systems

\[
\begin{align*}
\dot{x}' &= \mathbf{g}_2 \left(x, p_0, \bar{p}_0, w(t), \bar{w}(t), t \right), \quad x(0) = x_0 \\
\bar{x}' &= \mathbf{\bar{g}}_2 \left(\bar{x}, \bar{p}_0, \bar{p}_0, w(t), \bar{w}(t), t \right), \quad \bar{x}(0) = \bar{x}_0
\end{align*}
\]

such that for all \(t \in [a, b] \), \(x \in \mathbb{D} \), \(p \in [p_0, \bar{p}_0] \) and \(w \in [w(t), \bar{w}(t)] \) one has

\[
\mathbf{g}_2 \left(x, p_0, \bar{p}_0, w(t), \bar{w}(t), t \right) \leq f(x, p, w, t) \tag{1}
\]

and

\[
\mathbf{\bar{g}}_2 \left(x, \bar{p}_0, \bar{p}_0, w(t), \bar{w}(t), t \right) \geq f(x, p, w, t). \tag{2}
\]

Then the solutions \(\omega_2(t) \) and \(\Omega_2(t) \) of these two EDOs satisfy the conditions required by Theorem 3.
Example 1 When state equation can be written as

\[x' = f_0(x,p,t) + w(t) \]

and when the components \(f_{0,i}(x,p,t) \), \(i = 1 \ldots n_x \) of \(f_0(x,p,t) \) are monotonic with respect to \(x, p \) and \(v \), except to \(x_i \), the functions \(g_1, g_1, g_2 \) and \(\overline{g}_2 \) are easy to define. For example, to build \(g_{1,i} \) in the formal expression of \(f_{0,i}(x,p,t) \), replace

1. \(x_i \) by \(\overline{x}_i \),
2. for \(j \neq i \), \(x_j \) by \(\overline{x}_j \) if \(\frac{\partial f_{0,i}}{\partial x_j} \leq 0 \) and by \(x_j \) if \(\frac{\partial f_{0,i}}{\partial x_j} \geq 0 \) for all \(t \in [a,b] \), \(x \in \mathbb{D} \) and \(p \in [p_0, \overline{p}_0] \),
3. for \(k = 1 \ldots n_p \), \(p_k \) by \(\overline{p}_k \) if \(\frac{\partial f_{0,i}}{\partial p_k} \leq 0 \) for all \(t \in [a,b] \), \(x \in \mathbb{D} \) and \(p \in [p_0, \overline{p}_0] \) and by \(p_k \) if \(\frac{\partial f_{0,i}}{\partial p_k} \geq 0 \) for all \(t \in [a,b] \), \(x \in \mathbb{D} \) and \(p \in [p_0, \overline{p}_0] \).

At last, add \(w_i(t) \) to the obtained expression. A similar construction of \(\overline{g}_{1,i} \) may be performed, but with reversed monotonicity conditions.
2.8 Examples

Figure 1: Two-compartment model

Parameters k_{12} and k_{21} constant. Parameter k_{01} depends nonlinearly of the quantity of material present in first compartment

$$k_{01} = \frac{p_1}{p_2 + x_1}.$$

Then

$$\mathbf{p} = (p_1, p_2, k_{12}, k_{21})^T.$$

Quantities of material in both compartments evolve according to

$$\mathbf{x}' = \begin{pmatrix} -p_4 x_1 - \frac{p_1 x_1}{1 + p_2 x_1} + p_3 x_2 + u \\ p_4 x_1 - p_3 x_2 \end{pmatrix}$$
Initial state vector $\mathbf{x}_0 = (1, 0)$, assumed to be known.

For all $t \geq 0$, $u(t) = 0$.

No state perturbation is considered.

p is only assumed to belong to

$$[p_0] = [0.9, 1.1] \times [1.1, 1.3] \times [0.45, 0.55] \times [0.2, 0.3].$$

Only content of second compartment is measured,

$$y_m (t_k) = x_2 (t_k) + v (t_k).$$

The evolution of the state of (3) is studied for $t \in [0, 10]$.
2.8.1 Using only prediction

State equation is cooperative:

Lower dynamical system

\[
\dot{x}' = g_c \left(x, p_0, \bar{p}_0, t \right), \quad x(0) = x_0
\]

(4)

with

\[
g_c(\cdot) = \begin{pmatrix}
-\bar{p}_4 x_1 - \frac{\bar{p}_1 x_1}{1 + \bar{p}_2 x_1} + p_3 x_2 + u \\
p_4 x_1 - \bar{p}_3 x_2
\end{pmatrix}
\]

Upper dynamical system

\[
\bar{x}' = \bar{g}_c \left(\bar{x}, \bar{p}_0, \bar{p}_0, t \right), \quad \bar{x}(0) = \bar{x}_0
\]

(5)

with

\[
\bar{g}_c(\cdot) = \begin{pmatrix}
-p_4 \bar{x}_1 - \frac{p_1 \bar{x}_1}{1 + p_2 \bar{x}_1} + \bar{p}_3 \bar{x}_2 + u \\
\bar{p}_4 \bar{x}_1 - p_3 \bar{x}_2
\end{pmatrix}
\]

With \(x_0 = \bar{x}_0 = \bar{x}_0 \), Müller’s theorem is satisfied.
Figure 2: Evolution of the state estimate using prediction only: direct numerical integration (dotted lines) and using cooperativity or its variant of Theorem 3 (bold lines)
2.8.2 Taking measurements into account

Measurements are now available.
Data taken every 2 s, corrupted by an additive noise in $[-0.05, 0.05]$.
$[v_k] = [-0.05, 0.05]$.

Table 1: Noisy data used for state estimation

<table>
<thead>
<tr>
<th>t_k</th>
<th>2</th>
<th>4</th>
<th>6</th>
<th>8</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>$y(t_k)$</td>
<td>0.323</td>
<td>0.278</td>
<td>0.145</td>
<td>0.186</td>
<td>0.079</td>
</tr>
</tbody>
</table>
Figure 3: Comparison of two state estimation algorithm: SE-DNI (dotted lines) and SE-MY (bold line)

Computing times:

- 70 s for SE-DNI (direct numerical integration)
- 10 s for SE-MT (Müller’s theorem)
2.8.3 Joint parameter and state estimation

Now p_4 added to the state vector x

$$x_e = (x^T, p_4)^T.$$

Assume p_4 constant: extended dynamic

$$x'_e = \begin{pmatrix} -x_e x_1 - \frac{p_1 x_1}{1 + p_2 x_1} + p_3 x_2 + u \\ x_e x_1 - p_3 x_2 \\ 0 \end{pmatrix}$$ (6)

with $x_{e,0}^T = (x_0^T, p_4)$ and $\bar{x}_{e,0}^T = (\bar{x}_0^T, \bar{p}_4)$.

New parameter vector

$$q = (p_1, p_2, p_3)^T \in ([p_1], [p_2], [p_3])^T.$$
Extended state equation not cooperative:

Coupled pair of dynamical systems

\[
\begin{align*}
\dot{x}_e' &= g_{nc} \left(x_e, x_e, q_0, q_0, t \right), \quad x_e(0) = x_{e,0}, \\
\bar{x}_e' &= \bar{g}_{nc} \left(x_e, x_e, q_0, q_0, t \right), \quad \bar{x}_e(0) = \bar{x}_{e,0},
\end{align*}
\]

with

\[
g_{nc} (\cdot) = \begin{pmatrix}
-x_3 x_1 - \frac{p_1 x_1}{1 + p_2 x_1} + p_3 x_2 + u \\
x_3 x_1 - \bar{p}_3 x_2 \\
0
\end{pmatrix}
\]

and

\[
\bar{g}_{nc} (\cdot) = \begin{pmatrix}
-x_3 \bar{x}_1 - \frac{p_1 \bar{x}_1}{1 + \bar{p}_2 \bar{x}_1} + \bar{p}_3 \bar{x}_2 + u \\
\bar{x}_3 \bar{x}_1 - \bar{p}_3 \bar{x}_2 \\
0
\end{pmatrix}
\]

have solutions satisfying Theorem 1.
Data simulated on the same nominal system as before. Noise corrupting the measurement in $[-0.005, 0.005]$. All parameters (except p_4) assumed perfectly known. At $t = 0$, p_4 is only known to belong to $[0.1, 0.5]$.

Takes 40 s on an Athlon at 1.5 GHz.
2.9 Summary of results

1. Recursive state estimation algorithm for continuous-time systems
2. Enclosure of uncertain dynamical system between two point dynamical systems
3. Uncertain parameters or state equations can be considered.
4. Computational complexity compatible with systems of large time constants such as those encountered in biology, pharmacokinetics...
Distributed parameter and state estimation in a network of sensors

Michel Kieffer

L2S - CNRS - SUPELEC - Univ Paris-Sud

March 18, 2009
Wireless sensor networks?

Spatially distributed autonomous devices using sensors connected via a wireless network.

Sensors may be for

- pressure
- temperature
- sound
- vibration
- motion
- ...

Initially developped for military applications (battlefield surveillance)
Now, many civilian applications
(environment monitoring, home automation, traffic control)

[KM04, Hae06]
Applications suggest of many research topics

- protocols for communication between sensors,
- position and localization,
- data compression and aggregation,
- security,
- ...

Constraints on WSN

- limited computing capabilities,
- limited communication capacity,
- power consumption restricted.
Example: WSN for source tracking

Applications

- mobile phone localization and tracking
- computer localization in an ad-hoc network
- co-localisation in a team of robots
- speaker localization
- ...
Usual methods based on

• Time of arrival
 \(\rightarrow\) requires good clock synchronization

• Time difference of arrival
 \(\rightarrow\) sensors cannot work independently

• Angle of arrival
 \(\rightarrow\) difficult to obtain

• Readings of signal strength (RSS)
 \(\rightarrow\) cheap, but not accurate
Two localization approaches using RSS

- **Centralized**
 → all measurements are processed by a **unique** processing unit

- **Distributed**
 → measurements are processed by **each sensor**

Context:

- **bounded-error distributed estimation**
- **interval analysis**
Distributed state estimation

Consider a system described by a discrete-time model

\[x_k = f_k(x_{k-1}, w_k, u_k), \]

where

- \(x_k \) state of model at time instant \(k \) (sampling period \(T \))
- \(w_k \) state perturbations, assumed bounded in known \([w]\),
- \(u_k \) input vector, assumed known.

At \(k = 0 \), \(x_0 \) assumed to belong to a set \(X_0 \), known.
Assume that each sensor $\ell = 1 \ldots L$ of a WSN has access to a measurement

$$y^\ell_k = g^\ell_k (x^\ell_k, v^\ell_k),$$

(2)

where

- y^ℓ_k noisy measurement,
- v^ℓ_k measurement noise, assumed bounded in known $[\nu],$

(1) and (2) are the dynamic and observation equations of the model

Usual measurement equations

$$g^\ell_k (x^\ell_k, v^\ell_k) = h^\ell_k (x^\ell_k) + v^\ell_k$$

$$g^\ell_k (x^\ell_k, v^\ell_k) = h^\ell_k (x^\ell_k) . v^\ell_k$$
Back to centralized discrete-time state estimation

When all measurements at time k are available at central processing unit, one gets

$$x_k = f_k(x_{k-1}, w_k, u_k),$$

$$y_k = g_k(x_k, v_k),$$

with $y_k^T = \left((y_{k1}^T, \ldots, y_{kL}^T)\right)$ and $v_k^T = \left((v_{k1}^T, \ldots, v_{kL}^T)\right)$.

Standard (centralized) state estimation problem.
Information available at time k

$$\mathcal{I}_k = \left\{ X_0, \{[w_j]\}_{j=1}^k, \{[v_j]\}_{j=1}^k, \{[y_j]\}_{j=1}^k \right\}.$$

Centralized bounded-error state estimate at time k:

set $X_{k|k}$ of all values of x_k that are consistent with (1), (2) and \mathcal{I}_k.

Idealized algorithm

1. **Prediction** step

$$X_{k|k-1} = \left\{ f_k(x, w, u_k) \mid x \in X_{k-1|k-1}, \ w \in [w] \right\}$$

2. **Correction** step

$$X_{k|k} = \left\{ x \in X_{k|k-1} \mid y_k = g_k(x, v), \ v \in [v]^L \right\}.$$
Distributed state estimation

Ideally, any sensor ℓ of the WSN should provide

$$x_{k|k}^{\ell} = x_{k|k}.$$

Previous work on this topic

- distributed Kalman filtering [Spe79]
 - linear models, gaussian noise, instantaneous communications
- application to distributed estimation in power systems [LC05]
- distributed estimation in WSN [RGR06]
Hypotheses

Sensor network is entirely connected (necessary condition to have $X^\ell_{k|k} = X^s_{k|k}$)

At time k

- each sensor processes own measurement y^ℓ_k.

Between time k and $k + 1$

- each sensor ℓ broadcasts estimates $X^{\ell,r}_{k|k}$
- each sensor ℓ receives and processes $X^{s,1}_{k|k}$, $s \in C(\ell)$ where $C(\ell)$ set of indices of sensors connected to ℓ
 Process may be repeated (several roundtrips).

Before $k + 1$,

- each sensor ℓ builds an estimate $X^\ell_{k|k}$.
Proposed idealized algorithm

For sensor ℓ

At time k:

\[X_{k|k-1}^\ell = \left\{ f_k(x, w, u_k) \mid x \in X_{k-1|k-1}^\ell, \; w \in [w] \right\}. \]

\[X_{k|k}^{\ell,0} = \left\{ x \in X_{k|k-1}^\ell \mid y_k^\ell = g_k^\ell(x, v), \; v \in [v] \right\}. \]

Between k and $k + 1$, for $r = 1$ to R_{max} (number of roundtrips)

\[X_{k|k}^{\ell, r} = \bigcap_{s \in C(\ell)} X_{k|k}^{s, r-1}. \]

Just before $k + 1$

\[X_{k|k}^\ell = X_{k|k}^{\ell, R_{\text{max}}}. \]
One may easily prove that
\[
X_{k|k} \subset X_{\ell|k}.\]

Non-trivial conditions to have
\[
X_{k|k} = X_{\ell|k}
\]
are more difficult to obtain. Involve

- network connectivity
- largest distance (in links) between sensors
- ...

Problem studied in [Yok01, BFV^+05].
Practical algorithm

Implementation issues:

- Boxes or subpavings used to represent sets,
- Basic interval evaluation or IMAGESp [KJW02] for prediction step,
- Interval constraint propagation or SIVIA [JW93] for correction step
Application: Static source localization

Known sensor locations

$$\mathbf{r}_\ell \in \mathbb{R}^2, \ell = 1 \ldots L$$

Unknown source location

$$\mathbf{\theta} = (\theta_1, \theta_2) \in \mathbb{R}^2$$

Source (o) and sensors (x)
Mean power $\overline{P} (d_\ell)$ (in dBm) received by ℓ-th sensor described by
Okumura-Hata model

$$\overline{P}_{\text{dB}} (d_\ell) = P_0 - 10n_p \log \frac{d_\ell}{d_0},$$

(3)

where

• n_p is the path-loss exponent (unknown, but constant)

• $d_\ell = |r_\ell - \theta|$.

Received power assumed to remain within some known bounds (here)

$$P_{\text{dB}} (d) \in \left[P_0 - 10n_p \log \frac{d}{d_0} - e, P_0 - 10n_p \log \frac{d}{d_0} + e \right],$$

(4)

where e is assumed known

\rightarrow bounded-error approach.
Bounded-error parameter estimation

RSS by sensor $\ell = 1 \ldots L$

\[y_\ell = h_\ell (\theta, A, n_p) v_\ell \]

with

\[h_\ell (\theta, A, n_p) = \frac{A}{|r_\ell - \theta|^n_p}, \quad A = 10^{P_0/10} d_0^{n_p}, \]

and

\[v_\ell \in [v] = \left[10^{-e/10}, 10^{e/10} \right]. \]

Constant state vector to be estimated

\[x = (A, n_p, \theta_1, \theta_2) \]
Distributed approach: interval constraint propagation

At sensor ℓ,

- $y_\ell \in [y_\ell]$, measured
- $\theta \in [\theta]$, obtained from neighbors
- $A \in [A]$, obtained from neighbors
- $n_p \in [n_p]$, obtained from neighbors.

Variables must satisfy constraint provided by RSS model

$$y_\ell - \frac{A}{|r_\ell - \theta|^{n_p}} = 0.$$ \hspace{1cm} (6)

Interval constraint propagation:
reduce the domains for the variables using the constraints
Contracted domains may be written as

\[
[y'_\ell] = [y_\ell] \cap \frac{[A]}{|r_\ell - [\theta]|^{n_p}},
\]

\[
[A'] = [A] \cap [y'_\ell] |r_\ell - [\theta]|^{n_p},
\]

\[
[n'_p] = [n_p] \cap (\log ([A']) - \log ([y'_\ell])) / \log (|r_\ell - [\theta]|),
\]

\[
[\theta'_1] = [\theta_1] \cap \left(r_{\ell,1} \pm \sqrt{([A'] / [y'_\ell])^{2/n'_p} - (r_{\ell,2} - [\theta_2])^2} \right),
\]

\[
[\theta'_2] = [\theta_2] \cap \left(r_{\ell,2} \pm \sqrt{([A'] / [y'_\ell])^{2/n'_p} - (r_{\ell,1} - [\theta_1])^2} \right).
\]

Contracted domains still contains all solutions
Results

Networks of $L = 2000$ sensors randomly distributed

Field of $100 \text{ m} \times 100 \text{ m}$.

Source

- placed at $\theta^* = (50 \text{ m}, 50 \text{ m})$
- $P_0 = 20 \text{ dBm}$
- $d_0 = 1 \text{ m}$
- $n_p = 2$ (constant over the field)

Measurement noise such that $e = 4 \text{ dBm}$.
Example of measurements

<table>
<thead>
<tr>
<th>Sensor</th>
<th>68</th>
<th>741</th>
<th>954</th>
<th>...</th>
</tr>
</thead>
<tbody>
<tr>
<td>Measurement [9.303, 58.698]</td>
<td>[17.856, 112.664]</td>
<td>[18.644, 117.640]</td>
<td>...</td>
<td></td>
</tr>
</tbody>
</table>

Initial search box (Unknown source amplitude)

$$[\theta] \times [A] \times [n_p] = [0, 100] \times [0, 100] \times [50, 250] \times [2, 4]$$

Initial search box (Known source amplitude)

$$[\theta] \times [A] \times [n_p] = [0, 100] \times [0, 100] \times [100, 100] \times [2, 4]$$
Unknown source amplitude

Known source amplitude

Projection of the solution on the (θ_1, θ_2)-plane
Zoom on the solution
Results – continued

Histograms of estimation error for θ (100 realizations of sensor field)
Application: Source tracking

Assume now that the source is moving. A and n_p assumed to be known.

New state vector

$$x_k = (\theta_{1,k}, \theta_{2,k}, \phi_{1,k}, \phi_{2,k}, \theta_{1,k-1}, \theta_{2,k-1}, \phi_{1,k-1}, \phi_{2,k-1})^T$$

This long state vector allows to estimate $(\phi_{1,k}, \phi_{2,k})$.
State vector evolves according to

\[
\begin{pmatrix}
\theta_{1,k} \\
\theta_{2,k} \\
\phi_{1,k} \\
\phi_{2,k} \\
\theta_{1,k-1} \\
\theta_{2,k-1} \\
\phi_{1,k-1} \\
\phi_{2,k-1}
\end{pmatrix}
=
\begin{pmatrix}
I_4 & 0_4 \\
0_4 & I_4
\end{pmatrix}
\begin{pmatrix}
\theta_{1,k-1} \\
\theta_{2,k-1} \\
\phi_{1,k-1} \\
\phi_{2,k-1} \\
\theta_{1,k-2} \\
\theta_{2,k-2} \\
\phi_{1,k-2} \\
\phi_{2,k-2}
\end{pmatrix}
+ T.
\begin{pmatrix}
\phi_{1,k-1} \\
\phi_{2,k-1} \\
w_1 \\
w_2
\end{pmatrix},
\]

with \(w_1 \in [w] \) and \(w_2 \in [w] \).
Contracted domains

\[
\begin{align*}
[y'_{\ell,k}] &= [y_{\ell,k}] \cap \frac{A}{|r_{\ell} - [\theta_k]|^{n_p}}, \\
[\theta'_{1,k}] &= [\theta_{1,k}] \cap \left(r_{\ell,1} \pm \sqrt{\frac{A}{[y'_{\ell,k}]}} \right)^{2/n_p} - (r_{\ell,2} - [\theta_{2,k}]^2), \\
[\theta'_{2,k}] &= [\theta_{2,k}] \cap \left(r_{\ell,2} \pm \sqrt{\frac{A}{[y'_{\ell,k}]}} \right)^{2/n_p} - (r_{\ell,1} - [\theta_{1,k}]^2), \\
[\phi'_{1,k}] &= [\phi_{1,k}] \cap \left(\frac{[\theta'_{1,k}] - [\theta_{1,k}]}{T} + T[w] \right), \\
[\phi'_{2,k}] &= [\phi_{2,k}] \cap \left(\frac{[\theta'_{2,k}] - [\theta_{2,k}]}{T} + T[w] \right).
\end{align*}
\]
Results

Field of 50 m × 50 m (origin at center)

Networks of $L = 25$ sensors (communication range of 15 m)

Source

- placed at $\theta^* = (5 \text{ m}, 5 \text{ m})$
- $P_0 = 20 \text{ dBm}$
- $d_0 = 1 \text{ m}$
- $n_p = 2$ (constant over the field)
- $[w] = [-0.5, 0.5] \text{ m.s}^{-2}$
- $T = 0.5 \text{ s}$

Measurement noise such that $e = 4 \text{ dBm}$.
Evolution of the source in the WSN
Localization error and width of the box $[\theta_{1,k}] \times [\theta_{2,k}]$

First iteration

Convergence quite fast
Localization error and width of the box $[\theta_{1,k}] \times [\theta_{2,k}]$

Third iteration

Convergence quite fast
Conclusions

• Distributed source localization

• Estimation in a bounded-error context
 \rightarrow guaranteed results (provided hypotheses satisfied)

Further work

• Large space for improvements (compute subpavings and send boxes)

• Robustness to outliers in a distributed context

• Sensor colocalisation (team of robots)

• ...

Work partly supported by NoE NEWCOM++
Overview of the components of the Embedded Sensor Board (ESB) from the FU-Berlin (picture from [Hae06]).
References

