
1

Verification of Hybrid Systems

Antoine Girard

Université Grenoble 1, Laboratoire Jean Kuntzmann

- with work from Thao Dang, Goran Frehse and Colas Le Guernic -

Ecole des JDMACS, 19 mars, 2009

2

Acknowledgments

● Organizers: Luc Jaulin, Nacim Ramdani.

● Collaborators:

– Thao Dang,

– Goran Frehse,

– Colas Le Guernic.

● Special thanks to Goran Frehse for putting up

together the first version of the slides.

3

Boeing & Tupolew Collision

● Überlingen, July 1, 2002

● 21:33:03

– Alarm from Traffic Collision

Avoidance System (TCAS)

B757-200 TU154M

!

4

Boeing & Tupolew Collision

● Überlingen, July 1, 2002

● 21:33:03

– Alarm from Traffic Collision

Avoidance System (TCAS)

● 21:34:49

– Human air traffic controller

command

B757-200 TU154M

!

5

Boeing & Tupolew Collision

● Überlingen, July 1, 2002

● 21:33:03

– Alarm from Traffic Collision

Avoidance System (TCAS)

● 21:34:49

– Human air traffic controller

command

● 21:34:56

– TCAS recommendation

B757-200 TU154M

!

6

Boeing & Tupolew Collision

● Überlingen, July 1, 2002

● 21:33:03

– Alarm from Traffic Collision

Avoidance System (TCAS)

● 21:34:49

– Human air traffic controller

command

● 21:34:56

– TCAS recommendation

● 21:35:32

– Collision

B757-200 TU154M

!

http://www.emergency-management.net/pic_bodensee/gallery/bodensee_023.jpg

7

Boeing & Tupolew Collision

● Überlingen, July 1, 2002

● 21:33:03

– Alarm from Traffic Collision

Avoidance System (TCAS)

● 21:34:49

– Human air traffic controller

command

● 21:34:56

– TCAS recommendation

● 21:35:32

– Collision

B757-200 TU154M

!
Official Inquiry Recommendation:

“pilots are to obey and

follow TCAS advisories,

regardless of whether

contrary instruction is given”

 Requires high confidence design

2

http://www.emergency-management.net/pic_bodensee/gallery/bodensee_023.jpg

8

Incorrect /

Unknown

Revise

Design

Formal Verification

Model of

System

Formal

Specification

Correct

TCAS verified

in part
[Livadas, Lygeros,

Lynch, ’00]

Verification

(algorithmic)

9

Join Maneuver [Tomlin et al.]

● Traffic Coordination Problem

– join paths at different speed

● Goals

– avoid collision

– join with sufficient separation

10

Join Maneuver [Tomlin et al.]

● Traffic Coordination Problem

– join paths at different speed

● Goals

– avoid collision

– join with sufficient separation

● Models

– Environment: Planes

– Software: Controller

• switches fast/slow

● Specification

– keep min. distance

disturbances

11

Formal Verification

● Characteristics

– mathematical rigor (sound proofs & algorithms)

– exhaustive

● In this talk: Reachability Analysis

initial states

run (trajectory)
forbidden states

reachable states

= states on any run

12

Join Maneuver [Tomlin et al.]

time

reachable states

yellow plane

reachable states

blue plane

13

Join Maneuver [Tomlin et al.]

time

Possible collision!

reachable states

yellow plane

reachable states

blue plane

14

Formal Verification

● Key Problems

– computable (decidable) only for simple dynamics

– computationally expensive

– representation of / computation with continuous sets

15

Formal Verification

● Fighting complexity with overapproximations

– simplify dynamics

– set representations

– set computations

● Overapproximations should be

– conservative

– easy to derive and compute with

– accurate (not too many false positives)

16

Outline

I. Hybrid Automata and Reachability

II. Reachability for Simple Dynamics

a) Linear Hybrid Automata

b) Piecewise Affine Hybrid Systems

III. Application to Complex Dynamics via Hybridization

17

Incorrect /

Unknown

Revise

Design

Formal Verification

Model of

System

Formal

Specification

Correct

Verification

(algorithmic)

18

Formal Verification

Model of

Physics

Model of

Software

Model of System

continuous dynamics discrete dynamics

19

Modeling Hybrid Systems

● Example: Bouncing Ball

– ball with mass m and position x in free fall

– bounces when it hits the ground at x = 0

– initially at position x0 and at rest

x

0

Fg

20

● Condition for Free Fall

– ball above ground:

● First Principles (physical laws)

Part I – Free Fall

x

0

Fg

21

● Obtaining 1st Order ODE System

Part I – Free Fall

x

0

Fg

22

Part II – Bouncing

● Conditions for “Bouncing”

● Action for “Bouncing”

23

Combining Part I and II

● Free Fall

● Bouncing

continuous dynamics

discrete dynamics

24

Hybrid Automaton Model

freefall

flow

location

invariant

discrete transition

guard

label

reset

initial conditions

25

Hybrid Automata

● Defining Inhabited State Space:

– Locations

– Variables

• Valuation:

• State:

– Initial states

– Invariant

26

Hybrid Automata – Discrete Dynamics

● Defining Discrete Dynamics: Trans

● Semantics: Discrete Transition

– can jump from (l,x) to (l’, x’) if x 2 G and x’ 2 R(x)

G

R

(l,x)

(l’,R(x))

27

Hybrid Automata – Cont. Dynamics

● Defining Continuous Dynamics: Flow

– for each location l differential inclusion

● Semantics: Time Elapse

– change state along x(t) as time elapses

– x(t) must be in invariant Inv

–

28

Hybrid Automata – Cont. Dynamics

● Bouncing Ball:

– Flow:

29

Hybrid Automata - Semantics

● Run

– sequence of discrete transitions and time elapse

● Execution

– run that starts in the initial states

x0(t)

x1(t)

x2(t)

30

Execution of Bouncing Ball

time t

position x

x0(t)

x1(t)

x2(t)
x3(t)

x4(t)

±0 ±1 ±2 ±3 ±4

x0

0

…

time t

velocity v

v0(t)
v1(t)

v2(t)
v3(t)

v4(t)

±0 ±1 ±2 ±3 ±4

v0

0

…

31

Execution of Bouncing Ball

● State-Space View (infinite time range)

position x

velocity v

discrete transition

x0

0

x0(t)

x1(t)

x2(t)

32

Incorrect /

Unknown

Revise

Design

Formal Verification

Model of

System

Formal

Specification

Correct

Verification

(Reachability)

33

Computing Reachable States

● Reachable states: Reach(S)

– any state encountered in a run starting in S

position x

velocity v0

S

34

● Compute successor states

0

R0

Computing Reachable States

R1=Postc(R0)

R2=Postd(R1)

R3=Postc(R2)

35

Computing Reachable States

● Fixpoint computation

● Problems

– in general termination not guaranteed

– time-elapse very hard to compute with sets

36

Chapter Summary

● Why should we care?

– Reachability Analysis is a set-based computation that can

answer many interesting questions about a system (safety,

bounded liveness,…)

● What’s the problem?

– The hardest part is computing time elapse.

– Explicit solutions only for very simple dynamics.

● What’s the solution?

– First study simple dynamics.

– Then apply these techniques to complex dynamics.

37

Outline

I. Hybrid Automata and Reachability

II. Reachability for Simple Dynamics

a) Linear Hybrid Automata

b) Piecewise Affine Hybrid Systems

III. Application to Complex Dynamics via Hybridization

38

In this Chapter…

● A very simple class of hybrid systems

● Exact computation of discrete transitions and time

elapse

– Note: Reachability (and pretty much everything else) is

nonetheless undecidable.

● A case study

39

Linear Hybrid Automata

● Continuous Dynamics

= convex polyhedron over derivatives

40

Linear Hybrid Automata

● Discrete Dynamics

= convex polyhedron over x and x’

41

Linear Hybrid Automata

● Invariants, Initial States

= convex polyhedron over x

42

Reachability with LHA

● Compute discrete successor states Postd(S)

– all x’ for which exists x 2 S s.t.

• x 2 G

• x’ 2 R(x) Å Inv

● Operations:

– existential quantification

– intersection

– standard operations on convex polyhedra

43

Reachability with LHA

● Compute time elapse states Postc(S)

● Theorem [Alur et al.]

– Time elapse along arbitrary trajectory iff time elapse along

straight line (convex invariant).

– time elapse along straight line can be computed as projection

along cone [Halbwachs et al.]

Inv

44

Reachability with LHA [Halbwachs, Henzinger, 93-97]

invariant

initial states

9

derivatives

successors

projection
cone

1. get projection

cone
2. time elapse by

projection 3. compute

successors of

transitions

45

Multi-Product Batch Plant

8
5

46

Multi-Product Batch Plant

● Cascade mixing process

– 3 educts via 3 reactors

 2 products

● Verification Goals

– Invariants

• overflow

• product tanks never empty

– Filling sequence

● Design of verified

controller

LIS
11

M

LIS
22

QIS
22

LIS
32

LIS
31

M

LIS
23

QIS
23

M

LIS
21

QIS
21

LIS
13

LIS
12

47

Switched Buffer Network

● Buffers s1,…,sn

– store material  continuous level
x1,…,xn

● Channels

– transport material from buffer to buffer
 continuous throughput v(s,s’),

nondeterministic inside interval

● Switching

– activate/deactivate channels

discretely

x

vin

vout

x=xM

x=0

Buffer

48

Continuous Dynamics

● Stationary throughput

– v  [a,b]

● Source buffer empty

– throughput may seize, v  [0,b]

– inflow of source = outflow of source

● Target buffer full

– throughput may seize, v  [0,b]

– inflow of target = outflow of target

49

Buffer Automaton Model

– tank levels = cont. variables xi

– incoming flow vin(s)=s’ v(s’,s)

– outgoing flow vout(s)=s’ v(s,s’)

50

Channel Automaton Model

– throughput = algebraic variable (will be projected away)

this case study:

omit saturation

51

Production Schedule

– uses 3 reactors in parallel

– transfers of batches from one tank to another

– formally a control strategy: locations  cont. variables  locations

52

Verification with PHAVer

● Controller automaton model

– 78 locations

– ASAP transitions

● Controller + Plant

– 266 locations, 823 transitions

(~150 reachable)

● Reachability over infinite time

– 120s—1243s, 260—600MB

– computation cost increases

with nondeterminism

(intervals for throughputs,

initial states)

Controller Controlled Plant

53

Verification with PHAVer

54

Outline

I. Hybrid Automata and Reachability

II. Reachability for Simple Dynamics

a) Linear Hybrid Automata

b) Piecewise Affine Hybrid Systems

III. Application to Complex Dynamics via Hybridization

55

In this Chapter…

● Another class of (not quite so) simple dynamics

– but things are getting serious (no explicit solution for sets)

● Exact Computation time elapse only at discrete

points in time

– used to overapproximate continuous time

● Efficient data structures

56

Piecewise Affine Hybrid Systems

● Affine dynamics

– Flow:

– For time elapse it’s enough to look at a single location.

57

Linear Dynamics

● Let’s begin with “autonomous” part of the dynamics:

● Known solutions:

– analytic solution in continuous time

– explicit solution at discrete points in time

(up to arbitrary accuracy)

● Approach for Reachability:

– Compute reachable states over finite time: Reach[0,T](XIni)

– Use time-discretization, but with care!

58

Time-Discretization for an Initial Point

● Analytic solution:

● Explicit solution in discretized time (recursive):

2± 3±±0

x0
x1

x2

x3

t

x(t)

multiplication with const. matrix eA±

= linear transform

59

Time-Discretization for an Initial Set

● Explicit solution in

discretized time

● Acceptable solution for purely continuous systems

– x(t) is in ²(±)-neighborhood of some Xk

● Unacceptable for hybrid systems

– discrete transitions might ―fire‖ between sampling times

– if transitions are ―missed,‖ x(t) not in ²(±)-neighborhood

2± 3±±0

X0

X1

X2

X3

t

Reach[0,3±](XIni)

60

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1.
2

-2
.0

-1
.5

-1
.0

-0
.5 0.

0
0.
5

1.
0

1.
5

Bouncing Ball

– In other examples this error might not be as obvious…

X90 = ;

61

● Goal:

– Compute sequence k over bounded time [0,N±] such that:

● Approach:

– Refine k by recurrence:

– Condition for 0:

Reachability by Time-Discretization

2± 3±±0 t

Reach[0,3±](XIni)

0

1

2

62

Time-Discretization with Convex Hull

● Overapproximating Reach[0,±]:

0X

1X

)(0],0[XReach ),(10 XXConv)),((10 XXConvBloat

63

Time-Discretization with Convex Hull

● Bouncing Ball:

0

X0

X1

X0

X1

0

64

Nondeterministic Affine Dynamics

● Let’s include the effect of inputs:

– variables x1,…,xn, inputs u1,…,up

● Input u models nondeterminism

65

Nondeterministic Affine Dynamics

● Analytic Solution

2± 3±±0 t

Reach[0,3±](XIni)

influence of inputs

autonomous

dynamics

influence of

inputs

66

Nondeterministic Affine Dynamics

● How far can the input “push” the system in ± time?

● Minkowski Sum:

67

Nondeterministic Affine Dynamics

2± 3±±0 t

0

1

68

Implementing Reachability

● Find representation for continuous sets with

– linear transformation (k+1 = © k)

– Minkowski Sum

– intersection (with guards)

69

Polyhedra

● Finite conjunction of linear constraints

70

Operations on Polyhedra

● Linear Transformation

– transform matrix

– O(n3)

● Minkowski Sum

– need to compute vertices

– O(exp(n))

● Intersection

– join lists of constraints

– O(1)

71

Zonotopes

● Central symmetric polyhedron

generators

center

center generators

zonotope

(2 dimensional)

72

Operations on Zonotopes

● Linear Transformation

– transform generators

– O(mn2)

● Minkowski Sum

– join lists of generators

– O(n)

● Intersection

– Problem: intersection of zonotopes is not a zonotope

– overapproximate

73

Ellipsoids

● Quadratic form

– matrix or generator representation

74

Operations on Ellipsoids

● Linear Transformation

– transform generators

– O(n2)

● Minkowski Sum

– Problem: result is not an ellipsoid

– overapproximate

● Intersection

– Problem: intersection of ellipsoids is not an ellipsoid

– overapproximate

75

Implementing Reachability

● Complexity of 1 Step of Time Elapse:

– Polyhedra: O(exp(n))

– Zonotopes: O(mn2)

● Problem: With each iteration, i get more complex

– Minkowski sum increases number of

• Polyhedra: constraints

• Zonotopes: generators

76

Wrapping Effect

● Fight complexity by overapproximation

● Overapproximated Sequence

– accumulation of approximations ! Wrapping Effect

– exponential increase in approximation error!

77

Wrapping Effect

● Exact vs. overapproximation

– dimension 5 for 600 time steps

– overapproximation with 100 generators

78

Wrapping Effect

● How does error accumulate?

– linear transformation (scaling error up ! exp)

– V is added (adding some more error)

79

Wrapping Effect

80

Wrapping Effect

81

Wrapping Effect

82

Wrapping Effect

not even

touching!

83

Fighting the Wrapping Effect

● Separate transformations and Minkowski sums:

● 4 Sequences:

84

4-Sequence Algorithm

● Only transformations in Rk and Vk

– complexity independent of k

– no overapproximation necessary

● Only Minkowski sum in Sk and k

– growing number of generators, but no longer transformed

– O(Nn3) instead of O(N2n3)

85

4-Sequence Algorithm

● Use overapproximation with

– bounding box, octagonal, etc.

● No accumulation of error:

86

Fighting the Wrapping Effect

● Exact vs. overapproximation

– dimension 5 for 600 time steps

– overapproximation with bounding box

87

Experimental Results

● Time and memory for 100 steps

4-Sequence Zonotopes

4-Sequence Box

Zonotope, 20 Gen.

4-Sequence Zonotopes

4-Sequence Box

Zonotope, 20 Gen.

88

Outline

I. Hybrid Automata and Reachability

II. Reachability for Simple Dynamics

a) Linear Hybrid Automata

b) Piecewise Affine Hybrid Systems

III. Application to Complex Dynamics via Hybridization

89

In this Chapter…

● Complex nonlinear dynamics

– and how to overapproximate them with simpler dynamics

90

Hybridization

● Goal: Overapproximation of H with

– simpler dynamics

– approximation error · ²

● Observation:

– approximation error depends on size of invariant in each location

● Approach:

– split locations until all invariants small enough

– overapproximate dynamics in each location

91

Splitting Locations

● same behavior as before if

– ¿-transitions don’t change variables and are unobservable

– Inv1 [Inv2 = Inv (and some details)

¿¿

92

Overapproximating Dynamics

● same or more behavior as before if

93

Some Approximation Results

● Reachable set of the hybridization overapproximates
the reachable set of H

● On bounded time interval [0,T] the approximation
error is in O(² exp(T))

– approximation diverges on an unbounded time interval…

● Unless the system has a global attractor

– accumulation of approximation error is compensated by

contraction of the dynamics.

– reachable set on unbounded time interval can be approximated

arbitrarily close

94

● By definition x 2 Inv(l):

– overapproximation

● If B,Inv polyhedra

– C polyhedron

– O(exp(n))

From Affine to LHA-Dynamics

95

From Affine to LHA-Dynamics

96

Hybridization with LHA

● Bouncing Ball Dynamics

– dynamics of x are affine (depend on v).

● Invariant: x ¸ 0

– no restriction on v

– entire invariant reachable

97

Hybridization with LHA

● Bouncing Ball Dynamics

● Split v–axis in K parts

– on bounded subset v 2 [-2,2]

● Arbitrary accuracy for small enough K

98

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

1
.2

-2
.0

-1
.5

-1
.0

-0
.5 0

.0
0
.5

1
.0

1
.5

Hybridization with LHA

● Bouncing Ball – Reachable states for K=64:

99

Tunnel Diode Oscillator

● What are good parameters?

– startup conditions

– parameter variations

– disturbances

Tunnel

Diode

6

Vd

 

 inLCLL

LCdCC

VRIVI

IVIV

+

+

1

1)(





100

Tunnel Diode Oscillator

R=0.20  Oscillation

V
C

[V]

I
L

[mA]

Time [µs]

initial states

6

101

Tunnel Diode Oscillator

R=0.24  Stable equilibrium

V
C

[V]

I
L

[mA]

Time [µs]

initial states

6

102

V
C

[V]

I
L

[mA]

 

 inLCLL

LCdCC

VRIVI

IVIV

+

+

1

1)(





Tunnel Diode Oscillator

Tunn

el

Diode

• Oscillation

• Jitter

• …

Reachability Analysis

Formal Model

Analog/Mixed Signal Circuit

Guaranteed Safety Property

103

Reachability Analysis

1. Hybridization

– Partition State Space

(on the fly)

– Switching between

 Hybrid System

V
C

[V]

I
L

[mA]

9

104

Reachability Analysis

1. Hybridization

– Partition State Space

(on the fly)

– Switching between

 Hybrid System

2. Overapproximation

– Linear Hybrid Automata

 Polyhedral enclosure

of actual trajectories

I
L

[mA]

V
C

[V]

vector field

9

105

Reachability Analysis

● Efficiency through

– adapting partitions to

dynamics

– overapproximation of

complex polyhedra with

simplified polyhedra

● Good performance

– Reachability with high

accuracy in 72s, 127MB
V

C
[V]

I
L

[mA]

Partition depending
on dynamics

10

106

Bibliography

● Hybrid Systems Theory

– Rajeev Alur, Costas Courcoubetis, Nicolas Halbwachs, Thomas A. Henzinger, Pei-Hsin

Ho, Xavier Nicollin, Alfredo Olivero, Joseph Sifakis, and Sergio Yovine. The algorithmic

analysis of hybrid systems. Theoretical Computer Science 138:3-34, 1995

– Thomas A. Henzinger. The theory of hybrid automata. Proceedings of the 11th Annual

Symposium on Logic in Computer Science (LICS), IEEE Computer Society Press,

1996, pp. 278-292

● Linear Hybrid Automata

– Thomas A. Henzinger, Pei-Hsin Ho, and Howard Wong-Toi, HyTech: The next

generation. RTSS’95

– Goran Frehse. PHAVer: Algorithmic Verification of Hybrid Systems past HyTech.

HSCC’05

107

Bibliography

● Affine Dynamics

– E. Asarin, O. Bournez, T. Dang, and O. Maler. Approximate Reachability Analysis of

Piecewise-Linear Dynamical Systems. HSCC’00

– A. Girard, C. Le Guernic, and O. Maler. Efficient computation of reachable sets of linear

time-invariant systems with inputs. HSCC’06

● Hybridization and Nonlinear Dynamics

– Thomas A. Henzinger, Pei-Hsin Ho, and Howard Wong-Toi. Algorithmic analysis of

nonlinear hybrid systems. IEEE Transactions on Automatic Control 43:540-554, 1998

– E. Asarin, T. Dang, and A. Girard. Hybridization methods for the analysis of nonlinear

systems. Acta Informatica, 43(7):451-476, 2007

108

Verification Tools for Hybrid Systems

● HyTech: LHA

– http://embedded.eecs.berkeley.edu/research/hytech/

● PHAVer: LHA + affine dynamics

– http://www-verimag.imag.fr/~frehse/

● d/dt: affine dynamics + controller synthesis

– http://www-verimag.imag.fr/~tdang/Tool-ddt/ddt.html

● Matisse Toolbox: zonotopes

– http://www.seas.upenn.edu/~agirard/Software/MATISSE/

● HSOLVER: nonlinear systems

– http://hsolver.sourceforge.net/

http://embedded.eecs.berkeley.edu/research/hytech/
http://www-verimag.imag.fr/~frehse/
http://www-verimag.imag.fr/~frehse/
http://www-verimag.imag.fr/~frehse/
http://www-verimag.imag.fr/~tdang/Tool-ddt/ddt.html
http://www-verimag.imag.fr/~tdang/Tool-ddt/ddt.html
http://www-verimag.imag.fr/~tdang/Tool-ddt/ddt.html
http://www-verimag.imag.fr/~tdang/Tool-ddt/ddt.html
http://www-verimag.imag.fr/~tdang/Tool-ddt/ddt.html
http://www.seas.upenn.edu/~agirard/Software/MATISSE/
http://hsolver.sourceforge.net/

