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Boeing & Tupolew Collision

● Überlingen, July 1, 2002

● 21:33:03 

– Alarm from Traffic Collision 

Avoidance System (TCAS)

● 21:34:49

– Human air traffic controller 

command

● 21:34:56

– TCAS recommendation

● 21:35:32

– Collision

B757-200 TU154M

!
Official Inquiry Recommendation:

“pilots are to obey and 

follow TCAS advisories, 

regardless of whether 

contrary instruction is given”

 Requires high confidence design
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Join Maneuver [Tomlin et al.]

● Traffic Coordination Problem

– join paths at different speed
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– join with sufficient separation
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Join Maneuver [Tomlin et al.]

● Traffic Coordination Problem

– join paths at different speed

● Goals 

– avoid collision 

– join with sufficient separation

● Models

– Environment: Planes

– Software: Controller

• switches fast/slow

● Specification

– keep min. distance

disturbances
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Formal Verification

● Characteristics

– mathematical rigor (sound proofs & algorithms)

– exhaustive

● In this talk: Reachability Analysis

initial states

run (trajectory)
forbidden states

reachable states

= states on any run
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Join Maneuver [Tomlin et al.]

time

reachable states

yellow plane

reachable states

blue plane
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Join Maneuver [Tomlin et al.]

time

Possible collision!

reachable states

yellow plane

reachable states

blue plane
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Formal Verification

● Key Problems

– computable (decidable) only for simple dynamics

– computationally expensive

– representation of / computation with continuous sets
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Formal Verification

● Fighting complexity with overapproximations

– simplify dynamics

– set representations

– set computations

● Overapproximations should be

– conservative

– easy to derive and compute with

– accurate (not too many false positives)
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Outline

I. Hybrid Automata and Reachability

II. Reachability for Simple Dynamics

a) Linear Hybrid Automata

b) Piecewise Affine Hybrid Systems

III. Application to Complex Dynamics via Hybridization
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Formal Verification

Model of 

Physics

Model of

Software

Model of System

continuous dynamics discrete dynamics
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Modeling Hybrid Systems

● Example: Bouncing Ball

– ball with mass m and position x in free fall

– bounces when it hits the ground at x = 0

– initially at position x0 and at rest

x

0

Fg
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● Condition for Free Fall

– ball above ground:

● First Principles (physical laws)

Part I – Free Fall

x

0

Fg
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● Obtaining 1st Order ODE System

Part I – Free Fall

x

0

Fg
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Part II – Bouncing

● Conditions for “Bouncing”

● Action for “Bouncing”
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Combining Part I and II

● Free Fall

● Bouncing

continuous dynamics

discrete dynamics
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Hybrid Automaton Model

freefall

flow

location

invariant

discrete transition

guard

label

reset

initial conditions
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Hybrid Automata

● Defining Inhabited State Space:

– Locations

– Variables

• Valuation:

• State:

– Initial states

– Invariant



26

Hybrid Automata – Discrete Dynamics

● Defining Discrete Dynamics: Trans

● Semantics: Discrete Transition

– can jump from (l,x) to (l’, x’) if x 2 G and x’ 2 R(x)

G

R

(l,x)

(l’,R(x))
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Hybrid Automata – Cont. Dynamics

● Defining Continuous Dynamics: Flow

– for each location l differential inclusion

● Semantics: Time Elapse

– change state along x(t) as time elapses

– x(t) must be in invariant Inv

–
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Hybrid Automata – Cont. Dynamics

● Bouncing Ball:

– Flow: 
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Hybrid Automata - Semantics

● Run

– sequence of discrete transitions and time elapse 

● Execution

– run that starts in the initial states

x0(t)

x1(t)

x2(t)
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Execution of Bouncing Ball

time t

position x

x0(t)

x1(t)

x2(t)
x3(t)

x4(t)

±0 ±1 ±2 ±3 ±4

x0

0

…

time t

velocity v

v0(t)
v1(t)

v2(t)
v3(t)

v4(t)

±0 ±1 ±2 ±3 ±4

v0

0

…
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Execution of Bouncing Ball

● State-Space View (infinite time range)

position x

velocity v

discrete transition

x0

0

x0(t)

x1(t)

x2(t)
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Computing Reachable States

● Reachable states: Reach(S)

– any state encountered in a run starting in S

position x

velocity v0

S
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● Compute successor states

0

R0

Computing Reachable States

R1=Postc(R0)

R2=Postd(R1)

R3=Postc(R2)
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Computing Reachable States

● Fixpoint computation

● Problems

– in general termination not guaranteed

– time-elapse very hard to compute with sets
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Chapter Summary

● Why should we care?

– Reachability Analysis is a set-based computation that can 

answer many interesting questions about a system (safety, 

bounded liveness,…)

● What’s the problem?

– The hardest part is computing time elapse.

– Explicit solutions only for very simple dynamics.

● What’s the solution?

– First study simple dynamics.

– Then apply these techniques to complex dynamics.
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Outline

I. Hybrid Automata and Reachability

II. Reachability for Simple Dynamics

a) Linear Hybrid Automata

b) Piecewise Affine Hybrid Systems

III. Application to Complex Dynamics via Hybridization
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In this Chapter…

● A very simple class of hybrid systems 

● Exact computation of discrete transitions and time 

elapse

– Note: Reachability (and pretty much everything else) is 

nonetheless undecidable.

● A case study
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Linear Hybrid Automata

● Continuous Dynamics

= convex polyhedron over derivatives
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Linear Hybrid Automata

● Discrete Dynamics

= convex polyhedron over x and x’
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Linear Hybrid Automata

● Invariants, Initial States

= convex polyhedron over x
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Reachability with LHA

● Compute discrete successor states Postd(S)

– all x’ for which exists x 2 S s.t.

• x 2 G

• x’ 2 R(x) Å Inv

● Operations:

– existential quantification

– intersection

– standard operations on convex polyhedra
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Reachability with LHA

● Compute time elapse states Postc(S)

● Theorem [Alur et al.]

– Time elapse along arbitrary trajectory iff time elapse along 

straight line (convex invariant).

– time elapse along straight line can be computed as projection 

along cone [Halbwachs et al.]

Inv
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Reachability with LHA [Halbwachs, Henzinger, 93-97]

invariant

initial states

9

derivatives

successors

projection 
cone

1. get projection 

cone
2. time elapse by 

projection 3. compute 

successors of 

transitions
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Multi-Product Batch Plant

8
5
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Multi-Product Batch Plant 

● Cascade mixing process

– 3 educts via 3 reactors 

 2 products

● Verification Goals

– Invariants 

• overflow

• product tanks never empty

– Filling sequence

● Design of verified 

controller 

LIS
11

M

LIS
22

QIS
22

LIS
32

LIS
31

M

LIS
23

QIS
23

M

LIS
21

QIS
21

LIS
13

LIS
12
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Switched Buffer Network

● Buffers s1,…,sn

– store material  continuous level 
x1,…,xn

● Channels

– transport material from buffer to buffer 
 continuous throughput v(s,s’), 

nondeterministic inside interval

● Switching

– activate/deactivate channels 

discretely

x

vin

vout

x=xM

x=0

Buffer
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Continuous Dynamics

● Stationary throughput

– v  [a,b]

● Source buffer empty

– throughput may seize, v  [0,b]

– inflow of source = outflow of source

● Target buffer full 

– throughput may seize, v  [0,b]

– inflow of target = outflow of target
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Buffer Automaton Model

– tank levels = cont. variables xi

– incoming flow vin(s)=s’ v(s’,s)

– outgoing flow vout(s)=s’ v(s,s’)
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Channel Automaton Model

– throughput = algebraic variable (will be projected away)

this case study: 

omit saturation
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Production Schedule

– uses 3 reactors in parallel

– transfers of batches from one tank to another

– formally a control strategy: locations  cont. variables  locations
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Verification with PHAVer

● Controller automaton model

– 78 locations

– ASAP transitions

● Controller + Plant

– 266 locations, 823 transitions

(~150 reachable)

● Reachability over infinite time

– 120s—1243s, 260—600MB

– computation cost increases 

with nondeterminism

(intervals for throughputs, 

initial states)

Controller Controlled Plant
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Verification with PHAVer
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Outline

I. Hybrid Automata and Reachability

II. Reachability for Simple Dynamics

a) Linear Hybrid Automata

b) Piecewise Affine Hybrid Systems

III. Application to Complex Dynamics via Hybridization
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In this Chapter…

● Another class of (not quite so) simple dynamics 

– but things are getting serious (no explicit solution for sets)

● Exact Computation time elapse only at discrete 

points in time

– used to overapproximate continuous time

● Efficient data structures
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Piecewise Affine Hybrid Systems

● Affine dynamics

– Flow:

– For time elapse it’s enough to look at a single location.
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Linear Dynamics

● Let’s begin with “autonomous” part of the dynamics:

● Known solutions:

– analytic solution in continuous time

– explicit solution at discrete points in time 

(up to arbitrary accuracy)

● Approach for Reachability:

– Compute reachable states over finite time: Reach[0,T](XIni)

– Use time-discretization, but with care!
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Time-Discretization for an Initial Point

● Analytic solution:

● Explicit solution in discretized time (recursive):

2± 3±±0

x0
x1

x2

x3

t

x(t)

multiplication with const. matrix eA±

= linear transform
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Time-Discretization for an Initial Set

● Explicit solution in 

discretized time

● Acceptable solution for purely continuous systems

– x(t) is in ²(±)-neighborhood of some Xk

● Unacceptable for hybrid systems

– discrete transitions might ―fire‖ between sampling times

– if transitions are ―missed,‖ x(t) not in ²(±)-neighborhood 

2± 3±±0

X0

X1

X2

X3

t

Reach[0,3±](XIni)
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Bouncing Ball

– In other examples this error might not be as obvious…

X90 = ;
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● Goal:

– Compute sequence k over bounded time [0,N±] such that:

● Approach:

– Refine k by recurrence:

– Condition for 0:

Reachability by Time-Discretization

2± 3±±0 t

Reach[0,3±](XIni)

0

1

2
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Time-Discretization with Convex Hull

● Overapproximating Reach[0,±]:

0X

1X

)( 0],0[ XReach  ),( 10 XXConv )),(( 10 XXConvBloat
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Time-Discretization with Convex Hull

● Bouncing Ball:

0 

X0

X1

X0

X1

0 
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Nondeterministic Affine Dynamics

● Let’s include the effect of inputs:

– variables x1,…,xn, inputs u1,…,up

● Input u models nondeterminism
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Nondeterministic Affine Dynamics

● Analytic Solution

2± 3±±0 t

Reach[0,3±](XIni)

influence of inputs

autonomous

dynamics

influence of

inputs
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Nondeterministic Affine Dynamics

● How far can the input “push” the system in ± time?

● Minkowski Sum:
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Nondeterministic Affine Dynamics

2± 3±±0 t

0

1
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Implementing Reachability

● Find representation for continuous sets with

– linear transformation ( k+1 = © k )

– Minkowski Sum 

– intersection (with guards)
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Polyhedra

● Finite conjunction of linear constraints
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Operations on Polyhedra

● Linear Transformation

– transform matrix

– O(n3)

● Minkowski Sum

– need to compute vertices

– O(exp(n))

● Intersection

– join lists of constraints

– O(1)
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Zonotopes

● Central symmetric polyhedron

generators

center

center generators

zonotope

(2 dimensional)
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Operations on Zonotopes

● Linear Transformation

– transform generators

– O(mn2)

● Minkowski Sum

– join lists of generators

– O(n)

● Intersection

– Problem: intersection of zonotopes is not a zonotope

– overapproximate 
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Ellipsoids

● Quadratic form

– matrix or generator representation
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Operations on Ellipsoids

● Linear Transformation

– transform generators

– O(n2)

● Minkowski Sum

– Problem: result is not an ellipsoid

– overapproximate

● Intersection

– Problem: intersection of ellipsoids is not an ellipsoid

– overapproximate 



75

Implementing Reachability

● Complexity of 1 Step of Time Elapse:

– Polyhedra: O(exp(n))

– Zonotopes: O(mn2)

● Problem: With each iteration, i get more complex

– Minkowski sum increases number of 

• Polyhedra: constraints

• Zonotopes: generators
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Wrapping Effect

● Fight complexity by overapproximation

● Overapproximated Sequence

– accumulation of approximations ! Wrapping Effect

– exponential increase in approximation error!
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Wrapping Effect

● Exact vs. overapproximation

– dimension 5 for 600 time steps

– overapproximation with 100 generators
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Wrapping Effect

● How does error accumulate?

– linear transformation (scaling error up ! exp)

– V is added (adding some more error)
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Wrapping Effect
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Wrapping Effect
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Wrapping Effect
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Wrapping Effect

not  even 

touching!
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Fighting the Wrapping Effect

● Separate transformations and Minkowski sums:

● 4 Sequences:
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4-Sequence Algorithm

● Only transformations in Rk and Vk

– complexity independent of k

– no overapproximation necessary

● Only Minkowski sum in Sk and k

– growing number of generators, but no longer transformed

– O(Nn3) instead of O(N2n3)
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4-Sequence Algorithm

● Use overapproximation with

– bounding box, octagonal, etc.

● No accumulation of error:
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Fighting the Wrapping Effect

● Exact vs. overapproximation

– dimension 5 for 600 time steps

– overapproximation with bounding box
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Experimental Results

● Time and memory for 100 steps

4-Sequence Zonotopes

4-Sequence Box

Zonotope, 20 Gen.

4-Sequence Zonotopes

4-Sequence Box

Zonotope, 20 Gen.
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Outline

I. Hybrid Automata and Reachability

II. Reachability for Simple Dynamics

a) Linear Hybrid Automata

b) Piecewise Affine Hybrid Systems

III. Application to Complex Dynamics via Hybridization
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In this Chapter…

● Complex nonlinear dynamics

– and how to overapproximate them with simpler dynamics
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Hybridization

● Goal: Overapproximation of H with 

– simpler dynamics

– approximation error · ²

● Observation:

– approximation error depends on size of invariant in each location

● Approach:

– split locations until all invariants small enough

– overapproximate dynamics in each location
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Splitting Locations

● same behavior as before if

– ¿-transitions don’t change variables and are unobservable

– Inv1 [ Inv2 = Inv (and some details)

¿¿
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Overapproximating Dynamics

● same or more behavior as before if
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Some Approximation Results

● Reachable set of the hybridization overapproximates
the reachable set of H

● On bounded time interval [0,T] the approximation 
error is in O(² exp(T))

– approximation diverges on an unbounded time interval…

● Unless the system has a global attractor

– accumulation of approximation error  is compensated by 

contraction of the dynamics.

– reachable set on unbounded time interval can be approximated 

arbitrarily close
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● By definition x 2 Inv(l):

– overapproximation

● If B,Inv polyhedra

– C polyhedron

– O(exp(n))

From Affine to LHA-Dynamics
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From Affine to LHA-Dynamics
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Hybridization with LHA

● Bouncing Ball Dynamics

– dynamics of x are affine (depend on v).

● Invariant: x ¸ 0

– no restriction on v

– entire invariant reachable
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Hybridization with LHA

● Bouncing Ball Dynamics

● Split v–axis in K parts 

– on bounded subset v 2 [-2,2]

● Arbitrary accuracy for small enough K



98

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

1
.2

-2
.0

-1
.5

-1
.0

-0
.5 0

.0
0
.5

1
.0

1
.5

Hybridization with LHA

● Bouncing Ball – Reachable states for K=64:
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Tunnel Diode Oscillator

● What are good parameters?

– startup conditions

– parameter variations

– disturbances

Tunnel 

Diode

6

Vd

 

 inLCLL

LCdCC

VRIVI

IVIV

+

+

1

1 )(




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Tunnel Diode Oscillator

R=0.20  Oscillation

V
C

[V]

I
L

[mA]

Time [µs]

initial states

6
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Tunnel Diode Oscillator

R=0.24  Stable equilibrium

V
C

[V]

I
L

[mA]

Time [µs]

initial states

6
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V
C

[V]

I
L

[mA]

 

 inLCLL

LCdCC

VRIVI

IVIV

+

+

1

1 )(





Tunnel Diode Oscillator

Tunn

el 

Diode

• Oscillation

• Jitter

• …

Reachability Analysis

Formal Model

Analog/Mixed Signal Circuit

Guaranteed Safety Property
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Reachability Analysis

1. Hybridization

– Partition State Space

(on the fly)

– Switching between

 Hybrid System

V
C

[V]

I
L

[mA]

9
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Reachability Analysis

1. Hybridization

– Partition State Space

(on the fly)

– Switching between

 Hybrid System

2. Overapproximation

– Linear Hybrid Automata

 Polyhedral enclosure      

of actual trajectories

I
L

[mA]

V
C

[V]

vector field

9
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Reachability Analysis

● Efficiency through

– adapting partitions to 

dynamics

– overapproximation of 

complex polyhedra with 

simplified polyhedra

● Good performance

– Reachability with high 

accuracy in 72s, 127MB
V

C
[V]

I
L

[mA]

Partition depending
on dynamics

10
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Verification Tools for Hybrid Systems

● HyTech: LHA

– http://embedded.eecs.berkeley.edu/research/hytech/

● PHAVer: LHA + affine dynamics

– http://www-verimag.imag.fr/~frehse/

● d/dt: affine dynamics + controller synthesis

– http://www-verimag.imag.fr/~tdang/Tool-ddt/ddt.html

● Matisse Toolbox: zonotopes

– http://www.seas.upenn.edu/~agirard/Software/MATISSE/

● HSOLVER: nonlinear systems

– http://hsolver.sourceforge.net/
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http://www.seas.upenn.edu/~agirard/Software/MATISSE/
http://hsolver.sourceforge.net/

