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Abstract. This paper deals with an original simultaneous localisation and map 
building paradigm (SLAM) based on the one hand on the use of an 
omnidirectional stereoscopic vision system and on the other hand on an interval 
analysis formalism for the state estimation. The first part of our study is linked 
to the problem of building the sensorial model. The second part  is devoted to 
exploiting this sensorial model to localise the robot in the sense of interval 
analysis. The third part introduces the problem of map updating and deals with 
the matching problem of the stereo sensorial model with an environment map, 
(integrating all the previous primitive observations). The SLAM algorithm was 
tested on several large and structured environments and some experimental 
results will be presented. 

1. Introduction 

The stage of  incremental construction of the robot’s environmental map is 
preponderant for the increase of its autonomy (Guivant et al., 2000). It consists in 
managing a coherent update of the cartographic primitives’ state during the robots 
movement. This function is directly correlated to that of the localisation : the 
robustness of the cartographic primitives’ state estimation is linked to that of the 
estimation of the robot’s position. In this context it is necessary to take into account 
the interaction between both the localisation and the modelisation errors. The interval 
analysis formalism provides us with an answer to this problematic. Furthermore the 
soundness of the localisation’s paradigm and the simultaneous modelisation are 
tightly linked to the quantity and quality of the sensorial data. The omnidirectional 
vision sensor’s systems are, in this case, well adapted to this constraint, especially to a 
stereoscopic use.  

In background literature, we can distinguish two main groups of methods used to 
build the evolution field of a robot: the “metric” methods and the “topologic” ones. 

The first approach consists of managing the notion of distance and we can find 
principally two types of mapping paradigm in this context :  

- The first ones consist in managing the notion of distance, where the Extended 
Kalman Filtering (EKF) is used to build a Cartesian representation of the 
environment (Crowley, 1989).  
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- The second where the occupational grid notion is used to provide a metric 
representation. These occupancy grids manage the “occupation”, the “non-
occupation” or the “potential occupation” of the group of cells representing 
the environment. (Elfes, 1987) (Boreinstein et al, 1991). 

The second category of map representation is the topological one. This approach 
consists of determining and managing the location of significant places in the 
environment along with an order in which these places were visited by the robot. In 
the topological mapping step, the robot can generally observe whether or not it is at a 
significant place. The definition of significant places can be linked for example to the 
notion of “distinctive places” in the Spatial Semantic Hierarchy proposed in (Kuipers 
et al, 1991), and the notion of “meetpoints” in the use of Generalized Voronoi Graphs 
proposed in (Choset et al, 1995). This kind of method is interesting to use in 
complement with an occupancy grid, in order to take into account the semantic aspect. 

In this paper we will present an alternative method to the two main ones 
mentioned above. Owing to the interval analysis formalism, the presented method 
guarantees the environment’s representation. This way, the estimation of both the 
robot’s state and the landmarks is characterised by subpaving. 

2. Sensorial Model Building  

We have developed a perception system called SYCLOP, which is similar to the 
COPIS system used by Yagi (Yagi et al, 1990). Our system is used to achieve both 
the localisation and the modelisation of the environment, based on the co-operation 
between two sensors. The SYCLOP prototype measures 60 cm in height and is 
composed of a conical mirror and a CCD camera. This vision system allows us to 
detect vertical parts in the environment with a 2D projection onto the camera’s image 
plane (Delahoche et al 1997). 

2.1. The omnidirectional and stereoscopic perception system   

The idea behind this co-operation is that two image acquisitions are taken at two 
different positions separated by a known distance d. The translation between the two 
positions is achieved by two horizontal rails. These rails allow us to guarantee a 
known rigid in-line movement between these two previous positions (Figure 1). 
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Fig. 1.  Principal of the omnidirectional and stereoscopic sensor. 

In each acquisition, a vertical landmark of the world (doors, corners, edges, …) is 
characterised onto the image plane by a strongly contrasting radial straight line. 
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If the same radial straight line is matched in both conical images, it is quite simple 
to compute the location of the intersection point in the robot’s reference frame. This 
point corresponds to a vertical landmark. This can be extended to all pairs of matched 
radial straight lines (Figure 1). 

It is necessary to specify that the calibration of the vision system has been done 
before applying any sort of image processing. 

The reader can find further information about the complete calibration of the 
SYCLOP sensor in (Cauchois et al, 1999). 

2.2. The sensorial primitives calculation  

Our goal is to match the angular sectors of homogenous grey levels in the two 
images. These sectors are delimited by the radial straight lines mentioned above. 

All the radial straight lines in a conical image converge to a single point called O 
(the projection of the revolution axis of the cone onto the image plane). This means 
that only the angular reference determines a radial line in the image. Thus a 2D image 
processing can easily be reduced to a 1D computation.  

We therefore consider a concentric circle of a grey level on the image, centred on 
the previous point O. In order to obtain a maximal density of 1D signal information, 
this circle is designed on the periphery of the conical image. A 1D grey level signal is 
computed to characterise each image.  

We have applied a segmentation algorithm based on a derivative filtering of the 
1D grey level signal in order to proceed to the matching step. The reader can find 
more details on this method in (Drocourt et al, 1999). In our case, the matching phase 
consists in matching two by two all the detected grey level sectors of the two 
stereoscopic images. As the robustness of the matching is primordial, we will use 
several different complementary criteria. The criteria will be merged according to the 
Dempster-Shafer combination rules. 

As the viewpoint is different for the two images (shifted by the distance d), the 
landmarks in both images cannot be observed in the same way. We have retained four 
significant and robust criteria : 
- The inclination of the approximate lines corresponding to the set of sector grey 
level, 
- The average of the grey level of the sector 
- The standard deviation of the grey level of the sector. 
- The geometric constraints of the sector imposed by the view point ; which can be 
categorised as a “simplified epipolar geometry”  

We use the Dempster Shafer theory to perform the fusion (Dempster, 1967) 
(Shafer, 1976). The Dempster-Shafer method also enables us to function with partial 
knowledge. A final example of matching is given in Figure 2, where we can see that a 
large number of sectors are correctly matched (Drocourt et al, 1999). 
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Fig. 2. Segmentation and final matching of sectors for an acquisition 

Once the mutual matching of sectors has been achieved, all that we need to do is 
to calculate the co-ordinates of the segment points that they represent. We know the 
orientation angle of the two straight lines that border the sides of the angular sectors 
and the distance d that separates the two cones (the two images). The co-ordinates of 
all the points in the sensor’s reference frame (situated on the centre of cone O) are 
calculated through triangulation using the following formulas :  

)tan()tan(
)tan(dx
α−β

β×
=       

)tan()tan(
)tan()tan(dy

α−β
α×β×

=  (1) 

3. Localisation of a mobile robot using interval analysis 

When the imprecision is not taken into account, the localisation / modelisation 
process is rendered incomplete, and therefore the influence of the error of the robot’s 
position estimation on the estimation of the vertical landmarks’ parameters cannot be 
processed, whilst this is a main factor. There actually is an obvious interaction 
between the committed errors with regards to the robot’s position and those 
introduced by the calculation of the position of the landmarks. It is this interaction 
that – in the process of incremental construction – is at the origin of the cumulative 
errors. This is the reason why we wish to present an alternative that allows to 
integrate the imprecision notion as of the stage of localisation and therefore, we 
decided to use interval analysis method. 

3.1. Localisation of a mobile robot using SIVIA 

The SIVIA (Set Inversion Via Interval Analysis) algorithm was developed by Luc 
Jaulin and Eric Walter (Jaulin et al, 1997). It enables us to determine the solution of 
the set inversion problem via subpaving (rectangular-sub-sets). The subpaving gives 
an approximate but guaranteed solution. 

The algorithm consists in sub-dividing an initial box into two boxes. They are then 
both examined to determine if they are to be kept or disregarded. If a box is not valid, 
it is eliminated. If it is valid, it is re-divided into two and so on and so forth until the 
boxes are of the required precision. 

Our sensor works in the same way as a goniometre. In other words, sensorial data 

4 



represents the observation angles of the environment’s vertical landmarks. This means 
that they can not be linked to other elements on the map (such as horizontal 
landmarks). This is an advantage as it necessarily decreases the amount of matching 
combinations. 

The localisation of a mobile robot using the theory of interval analysis has, of 
course, already been achieved, e.g. with telemetric sensors (Leveque, 1998) (Kieffer 
et al, 2000). In a parametric sense, it is easy to see that our sensorial data are of the 
same nature as telemetric data used by M. Kieffer. Thus we have extrapolated the 
error model of Kieffer to our problem. This error model is characterised by both a 
distance and angular error. 
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Fig. 3. Error modelisation Approach.  

At this level, we assume that our sensor provides the positions of the 
environment’s vertical landmarks contaminated by an angular and a distance error. 
This forms an emission cone that resembles the one obtained by a telemetric sensor. 
The apex of this cone lies in the middle of the two images and on the axis that runs 
through their centre. As we know the angles α and β, we have the co-ordinates of the 
landmark, which enables us to calculate ϕ, the landmark’s observation angle, and l, 
the distance measured (Figure 3). 

If (xr, yr, θr) represents the robot’s position, l the distance measured and ϕ  the 
measured angle, then the computation of the co-ordinates of a point i on the map is 
calculated with the following formulas : 

( )
( )




×=′′
×=′′

iisi

iisi

ly
lx

ϕ
ϕ

sin
cos

 (2) 

We then apply a rotation in the robot’s reference frame that is equal to the 
orientation θr of the robot, followed by a switch from the robot’s reference frame to 
the world’s reference frame. Stating [li]=[l i -ε,l i +ε] and [ϕi]=[ ϕ i -ρ,ϕ i +ρ] and 
using the inclusion functions +, −, ×, ÷, cos() and sin() relative to the interval analysis, 
we obtain the following inclusion function: 
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It is this inclusion function that will be used with the SIVIA algorithm. 
First of all, once this box [Si] that corresponds to a sensorial data is found, we 

need to test if one of the map’s elements is actually in this box. Given the fact that we 
are trying to estimate the position of the environment’s vertical landmarks using a 
subpaving in order to obtain the imprecision, a landmark j of the environment is not 
represented by a point Pj, but by a subpaving made out of n boxes, that we note down 
as [  = {[T][ ]] jP r / 1 ≤ r ≤ n}. 

In order to obtain the Boolean inclusion function which will allow us to possess a 
global validity test, we apply this algorithm to the total of the sensorial data. The 
inclusion function used by SIVIA during this stage can be explained in the following 
way: For each localisation’s box, we calculate if there is an intersection between the 
considered observation and the rectangular-set to be tested. As soon as the 
intersection is non-void, the function returns the undetermined value. During the 
initialisation of the map, the algorithm is limited, because there is no box representing 
the robot’s localisation. Thus, we immediately have the subpaving that corresponds to 
the observation. 

This situation only represents the case where there are no aberrant data. As a 
matter of fact, the algorithm successively tests all the boxes associated to the sensorial 
data and if only one is not valid, neither is the robot’s position. Evidently, this 
situation presents several problems as it is quite common to have several aberrant data 
per acquisition.  

Our solution to the problem is the same as the one adopted by M. Kieffer. It 
implements the algorithm whilst taking into account that there are no aberrant data. If 
no solution is found, the algorithm is repeated with one aberrant data, then two, etc.. 
This solution gives a result no matter the ratio of “ aberrant data /valid data”. 

In this case, the boxes are always divided until the minimal size that is defined by 
the error has been attained. We solely have the exterior approximation of the robot’s 
position. Nevertheless it is the unique information that we are interested in for ulterior 
processing-computations that we will implement. 

When using SIVIA, the first step is the search for a solution from a box received 
as an argument that has to contain the real position of the robot. One solution is to 
initialise this root box using the dimensions of the environment. The problem we are 
faced with however, is that on the one hand the calculation time is higher and on the 
other hand, in relatively symmetrical environments, the solution can be multiple and 
may not even contain the real position of the robot. 

Bearing these facts in mind, we decided to use dead-reckoning information to 
refine the search for solutions. One method to use this information is based on the 
same principle as Kalman filtering, i.e. using successive phases of 
prediction/correction. This method works but needs specific algorithms that use 
subpaving and binary trees to compute the predicted state. Furthermore, modified 
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SIVIA versions need to be used to take these particularities into account. 
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Fig. 4. Intersection test used in the localisation algorithm  

Having the most precise prediction phase as possible is very useful when the 
number of boxes is relatively high, as in the case of use of telemetric sensors. In our 
case, sensorial data represent the vertical landmarks of the environment and therefore 
the imprecision will be smaller and the number of boxes will be relatively low (as can 
be seen from the experimental results). 

This is why we decided to only use dead-reckoning in order to initialise the initial 
box P0  that is used to start the search for the robot’s actual positions. From a 
rectangular-subpaving that results from a localisation process, we compute the 
minimal box that draws round the subpaving. This box is then increased with the 
maximum dead-reckoning error, which is a function of the distance covered. 

This method is purely an initialisation phase and as we raise the dead-reckoning 
error, this implies that the possible results, which are incompatible with the actual 
position of the robot do not need to be tested during the localisation process. 

3.2. Modelisation of the environment 

The representation of the data on the map is at the base of the SLAM paradigm. In 
our case, we need to focus on landmark's representation that is first of all compatible 
with the set interval analysis formalism and furthermore easy to use in an update 
phase. At this stage, the only solution that seems possible is a representation in 
subpaving. 

The result of the localisation stage being a subpaving [ ][ ]L , we can compute for 

each box [ ]  (element of [ ) and for each sensorial data gL [ ]L ] [ ]iϕ and [ ]il , the box 

resulting in  thanks to the inclusion function that was already 
used in the localisation algorithm. 

[ ] [ ]( ig
I L , ϕ [ ]il, )f
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Fig. 5. Representation of all the rectangular-sets characterising a sensorial data 

If we apply this inclusion function to the total of boxes rendered by the 
localisation stage, at the end of this process we obtain a set of boxes that correspond 
to each observation that can have a non-void mutual intersection and, therefore, do 
not constitute a subpaving (Figure 5). 

This problematic has already been broached by M.Kieffer. As a matter of fact, he 
developed the ImageSP algorithm, which auto-decomposes into three phases, just to 
be able to calculate the image of a subpaving : 
- Hashing : Calculates a regular subpaving [ ][ ]A of which all the boxes have a size 
that is inferior to ε, 
- Evaluation : Calculates the image of each of these boxes using the considered 
inclusion function f I,  
- Regularisation : Approximation of the union of these boxes [ ][ ]( )Af I using a new 

subpaving [ ]. [ ]B
The first phase (Hashing) is unnecessary, given the fact that the subpaving [ ] 

obtained during the localisation process is already made up solely of boxes that are 
smaller than the expected precision.  

[ ]L

Thanks to the former inclusion function, we can directly compute the resulting 
box for each of these boxes and for all the sensorial data in the evaluation phase.. 

Finally, the Regularisation consist in using the new algorithm SIVIA to obtain the 
desired subpaving. The representation that we chose to use is a set of boxes of 
identical size, equal to the fixed minimal precision that characterises the two 
preceding sets. The advantage of this representation is that no bisection will be 
necessary when we need to process such a set. The boxes will be either accepted or 
rejected, as they are all of an inferior size to the expected precision. Using this method 
simplifies the representation of data in the map, but also the calculations that will be 
applied in the following phases. Another method would be to use the exterior and 
interior approximation (Figure 6). 

We now need to determine the inclusion function that will be used by the SIVIA 
algorithm during the addition of a new landmark in the map. As we want to obtain the 
set of boxes of an inferior size to the expected precision, this function should never 
render anything but two values: “true” or “undetermined”. As a matter of fact, a 
“true” value rendered by this inclusion test would immediately stop the pending 
bisection of the box.  
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Fig. 6. Approximation of a set using the two former methods 

This inclusion function plays a double role because it will be used to initialise the 
environmental map using the data issued from the first acquisition but also each time 
a new landmark is added to the map. 

These two possibilities force us to differentiate between the two applications of 
this inclusion function. As a matter of fact, the robot's position is not a subpaving but 
a position during the initialisation phase, as it represents the origin of the map. 
However, when a new landmark is added the robot's position is defined by a set of 
boxes issued by the localisation phase. We will explain in detail our inclusion 
function in this second, more complicated case.  

Initial set of boxes
to estimate

Final subpaving
(estimation)

 
Fig. 7. Approximation of a set of rectangular-sets using SIVIA 

At this stage, we have to remind the reader that, of course, the direct observation 
image from a subpaving issued from the localisation phase provides a set of boxes, 
but not necessarily disjointed. This means that we need to estimate it, using a more 
practical and representative subpaving. Its only intersections' zones are the boxes' 
borders. In order to compute this set, we will again use the SIVIA algorithm: starting 
with an initial box, this will provide us the required subpaving. This will allow us to 
estimate each new landmark to be inserted in the map. Therefore, before running 
SIVIA, we need to compute an initial box. This can easily be done when calculating 
the minima and maxima from an observation for each box (Figure 7). 

3.3. Decision method for matching 

3.3.1 Determination of the belief put in each association 
We now need to determine which information will have to be merged and which 

will have to be added to the map as new primitives. The decision method used here 
consists in determining a belief for each association, using the Dempster-Shafer 
theory (Dempster, 1967) (Shafer, 1976). This part of the process is crucial and 
decisive in the localisation paradigm and the simultaneous modelisation. In fact, it is 
this stage that will condition the maintenance of the environmental map's coherence. 
A wrong choice between a new insertion or fusion will generally be at the root of an 
excess of primitives in the map, which will lead to cumulative errors and, hence, a 
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divergence in the algorithm. 
At the start of this phase, we have three imprecision's data at our disposal that will 

be uses: 
- An environmental map made up of subpaving each representing the imprecision 
associated to the modelled landmark. 
- A set of sensorial data characterised by information of the distance/angle type in the 
form of intervals, providing the imprecision in the measure, 
- A subpaving resulting from the localisation stage, representing the imprecision 
associated to the robot's position. 
We therefore have to resolve two principal problems:  
- Define and use the set resulting from the association of the localisation and the 
measure imprecision;  
- Find a comparison criteria that can be implemented to determine the belief attributed 
to the fusion of this set with a map's subpaving.  

These two problems are tightly linked and in order to know if an observation can 
indeed be associated to a mapped primitive, we need to find a comparison criteria 
between the two: the intersection of the two subpavings. In fact, the more the set 
associated to an observation contains the subpaving that represents a point on the 
map, the more certain we are that it represents the same information, which implies 
that they have to be merged.  

Given the fact that the set of boxes of an observation can overlap, several of them 
can have a non-void intersection with one of box representing a point on the map. 
This is why we cannot directly use the intersection notion between these different 
boxes to calculate the volume. In fact, if we were to consider the three sets A, B and C 
so that A∩B∩C ≠∅, we would obtain the following inequation: 

 Volume(A∩C) + Volume(B∩C) > Volume(A∩B∩C)  (4) 
This signifies that the volume that corresponds with the intersection of the sets A 

and B with C is counted twice in the left part of the inequation. The chosen solution is 
then the same as when adding a new observation to the map. In other words, we 
calculate the image of the subpaving issued from a localisation and then SIVIA is 
applied to obtain a subpaving associated to the observation that we note as [  = { 
[K]

[ ]] iS
q / 1 ≤ q ≤ m } with 1 ≤ i ≤ s and m representing the amount of boxes constituting 

the subpaving. 
Our comparison criterion is therefore base  on the value: d

[ ][ ]( ) [ ][ ] [ ][ ]( )( ) 100×∩−= ijj SPVolumePVolumeτ , (5) 

that represents the percentage of [ ][ ] jP included in [ ][ ] iS . 
The formalism used to determine the certainty associated to a fusion is based on 

the search of the maximum of belief compared to the application of the Dempster-
Shafer rules. We therefore have to determine our discernment-frame constituted out 
of two elements: Θ = {YES, NO} 
- "YES" the observation i needs to be merged with the element j on the map 
- "NO" the observation i should not be merged with the element j on the map 
 If the subpaving issued from an observation contains more than 50 % of the boxes 
that define a landmark, we consider that the belief must be the highest. Thus, we use 
the Basic Probability Assignment (B.P.A.) as represented in figure 8.  
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All we now need to do is to compute the intersection volume that exists between 
each subpaving  issued from an observation and each subpaving  that 
represents a landmark on the map. 

[ ][ ] iS [ ][ ] jP

0
0,1
0,2
0,3
0,4
0,5
0,6
0,7
0,8
0,9

1

100% 75% 50% 25% 0%

Overlapping percentage

B
.P

.A
. B.P.A. of YES

B.P.A. of doubt

B.P.A. of NO

 
Fig. 8. Matching functions for the fusion stage 

For an observation Si, we now have p triplets: 
mi,1( )  m1P i,1( 1P )  mi,1(Θ1) 

mi,2( )  m2P i,2( 2P )  mi,2(Θ2) 
…    …    … 
mi,p( )  mpP i,p( pP )  mi,p(Θp) 

We can now compute these p triplets for the s observations, which will give us s×p 
triplets. The problematic introduced at this level resides in the fusion of all the 
information, in order to be able to choose. We resolved this problem by using the 
generalisation of the combination operator of Dempster-Shafer introduced by D. 
Gruyer and V. Cherfaoui (Gruyer et al, 1999).  

3.3.2 Decisional Algorithm 
The decisional algorithm that we use is based on the maximum of the probability 

obtained in the Dempster-Shafer sense. The precedent phase allowed us to calculate 
for each observation, p triplets that correspond to the match with each element on the 
map. We can now apply the generalised Dempster-Shafer operator in order to obtain a 
matrix of belief with the dimensions s×(p+2). The hypothesis "*" signifies that the 
observation Si does not correspond with any element on the map. This means we work 
in a extended open world. 

The result of our matrix of belief provides a belief onto the singletons hypothesis, 
i.e. a rule of decision based on the maximum pignistic probability will not add 
anything here because this last one use a group of elements. Furthermore, the values 
of this matrix are directly credibilist measures. This is why we have based our 
decisional criterion on the maximum credibility of this matrix. 

The algorithm used is based on the search for the maximum value in the matrix 
previously built. The value that is found this way allows us to determine if the 
observed point is in relation with an existing point or if a new point has been created. 
In case of doubt (maximum credibility on "Θ"), we choose to create a new point 
defined by a subpaving. 

Once this match has been carried out, all the elements of the line that contain the 
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maximal value are put on 0, as well as those of the colon but only if this last one is 
different from "*"and from "Θ". In fact, the initialisation of all the elements of the 
line to 0 signifies that an observed element cannot be in relation to one single element 
on the map. The same applies for the colon that corresponds to the fact that several 
observations cannot be matched to the same point on the map. On the other hand, 
several observations can be new points ("*") just like the ignorance can be maximal in 
several ("Θ") observations. The algorithm is reiterated as long as there are positive 
values. 

Finally, this algorithm gives us two sets. The first is made up of observations that 
need to be merged with an element on the map. The second is made up of new 
landmarks that need to be added. The processing and management of these two sets 
will be presented in the next part.  

3.4. Incremental update of the environment's map 

The former decisional integration/fusion stage, has provided us with two sets of 
points: the first contains those that need to be merged and the second those that need 
to be added to the map. The integration of a new element on the environment's map 
has already been given previously. 

The last stage that needs to be processed is the fusion between an element from 
the map and an observation. Here, the data are defined by sets and as we find 
ourselves in a context of bounded error, the actual position of the landmark has to 
belong to the two sets. The result of the fusion of an observation with an element of a 
map is therefore the intersection of the two sets. 
 At this level we need to resolve a problem. In fact, each set is defined by several 
boxes. The one that represents the observation even contains boxes that can overlap. 
The calculation of the intersection is brought back to processing the problem of 
multiple intersections of disjointed boxes. It is far from a trivial problem.  
 In order to overcome this difficulty, we part from the following fact: as the 
solution belongs to both sets, one of the two can first be considered. Then, we can 
check if each box from the first set, is an element of the second set. If this is the case 
the box is kept, otherwise it is eliminated. The set of boxes most adapted to be the 
first set is then the one that represents the landmark on the map, as it is uniquely made 
of separate boxes, i.e. a subpaving (Figure 9). 

We can observe at this point that the result of our fusion method can only contain 
a reduction of subpaving representing the imprecision of a landmark on the map. No 
matter the set associated with the observation, after fusion there can only be an 
addition of information in the sense that the subpaving of the landmark cannot 
increase. 

 
Subpaving

of map
Set of boxes associated

with observation
Final

subpaving

 
Fig. 9. Example of fusion between observation and element on the map 
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In order to validate our approach, we present the experimental results in the next 
part. These results were obtained in two distinctive environments. 

3.5. Experimental results 

We have tested our SLAM method in two types of structured environments. 
The first series of 8 acquisitions has enabled us to validate our paradigm of 

localisation and simultaneous modelling in a small environment. 
The second series of measures contains 45 acquisitions realised during a trajectory 

consisting of a return trip. The distance covered is approximately fourteen meters. 
Here, we use dead-reckoning to reduce the size of the box that looks for the possible 
positions of the robot. We remind the reader that the dead-reckoning error is 
maximised in order to serve uniquely in the initialisation of the SIVIA algorithm. 

Certain elements of the map can be eliminated as we go along updating the 
localising. In fact, the filtering that we have developed and that we use here, allows us 
to keep the elements in the map that have already been observed several times. 

 
 
 
 

  

Real environnement 
(unknown by the robot 

Subpaving modelling 
a map element 

Estimation 
of robot’s 
position 

Robot 
trajectory 

Initial 
position 

Fig. 10. Results of the environment's modelling 

First, from a general viewpoint, the simultaneous process of localisation and 
modelling provides coherent results in terms of precision and in terms of robustness. 
Furthermore, we can see that the SLAM process does not diverge. In fact, the 45 
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acquisitions result in a coherent construction of the environmental map with no 
preliminary knowledge. 

From a localisation viewpoint, we can affirm that the absence of the preliminary 
knowledge had not effected the estimation phase of the robot’s configuration using  
interval analysis. The coherence of the localisation phase is also proved by the 
variation during the movement of the robot. We see that the subpaving decreases on 
the way back (in other words after the U-turn) than on the way there. From a 
modelling viewpoint, and still linked to the observations of a general order, we can 
affirm that the map generated is coherent in comparison with the actual terrain. The 
amount of cartographic integrated primitives is coherent, proving the validity of the 
fusion and integration process. 

The evolution of the subpavings during the incremental modelling process is 
robust and coherent. Two points can justify this statement: First of all, the 
contribution of sensorial data is accompanied by a reduction of the size of the error 
domain and by a convergence of subpaving to the actual position of landmarks. 
Secondly, the interaction between the localisation error and the modelling error is 
taken into account because the higher the localization precision, the more the  
subpavings on the cartographic primitives are significantly reduced. This decisive 
factor allows the process of simultaneous localisation and modelling not to diverge 
after a certain amount of acquisitions. This test on large environments is important as 
it is put forth by several works, such as those of Dieter Fox (Fox et al., 1999). 

Rather than an alternative, the interval analysis approach is proposed as a solution 
that allows us to integrate intrinsically the imprecision notion. The fact that we can 
manage the imprecision implies the possibility to take the interactions into account, 
which is not possible with other formalisms. It is this rigorous management of these 
interactions that leads to a successful outcome of the map process generation on long 
distances. 

4. Conclusion 

In this work, we have developed a method of localisation and simultaneous 
modelling (SLAM) of the environment based on the use of the interval analysis. This 
method is different from classical algorithms found in literature and that are generally 
probabilistic. The novelty of the proposed formalism resides in the fact that the 
obtained imprecision domains linked to the state’s estimation are equiprobable and 
guaranteed. 

We have given preference to the use of the Dempster-Shafer rules, that allow us to 
manage a belief in different cases that can appear in a map-generation process from 
each observation (fusion, insertion or rejection). 

The strategy to integrate primitives carried over is the reduction of the subpaving 
matched to the examined and mapped primitive. This technique processes rapidly but 
first needs all the elements to be inserted as subpavings reduced to the minimum. In 
other words, the size of each box has to be inferior to the expected precision. 

We have seen that the method developed provides excellent results. First of all the 
paradigm, validated on a trajectory in a long corridor, gives a high precision on the 
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localisation and the estimation of the landmarks’ position. Secondly, no localisation 
drift has been observed.  

Here we have a system that can simultaneously localise the robot from a non-
reliable map and at the same time incrementally model the robot's evolution in the 
environment in a relatively precise way. These two stages being intimately linked, the 
quality of the one depends on the precision of the other. The use of the interval 
analysis has allowed us to propagate the imprecision introduced during each stage of 
our method on the next phases. 
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