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Abstract. The problem of robust fault detection using interval observers has
been mainly addressed checking if the measured behaviour is inside the region
of possible states. This task can be computationally expensive because the
interval observers can be affected by the wrapping effect. In this paper, a mixed
approach consisting in computing a computationally cheaper inner
approximation of the state region, based only on simulating vertices of
parameter uncertainty region (forward test), is combined with a backward
consistency check when the real measured behaviour falls outside this inner
solution (backward check). The backward check is implemented using interval
constraint satisfaction propagation algorithms which can perform efficiently in
deciding if the measured state is consistent with the interval model. The
classical alternative to this backward check will force to solve a global
optimization problem, or equivalently, a global consistency problem. Finally,
this approach will be tested on the DAMADICS FDI benchmark.

1 Introduction

Model-based fault detection is based on the use of mathematical models of the
monitored system. However, modelling errors and disturbances in complex
engineering systems are inevitable. Therefore, there is a need to develop robust fault
detection algorithms. The robustness of a fault detection system means that it must be
only sensitive to faults, even in the presence of model-reality differences (Chen and
Patton,1999). One of the approaches to robustness, known as active, is based on
generating residuals which are insensitive to uncertainty, while at the same time
sensitive to faults. This approach has been extensively developed these last years by
several researchers using different techniques: unknown input observers, robust parity
equations, H,, etc. (Chen and Patton, 1999). But, according to Gertler (1998), in case
of models with uncertainty located in the parameters, known as interval models,
perfect decoupling of the residuals from uncertainties is only possible in a limited
number of model parameters. In case of unlimited number of uncertain parameters,
there is a second approach, called passive, that enhances the robustness of the fault
detection system at the decision-making stage, mainly propagating the effect of the



parameter uncertainty to the residual that can be used as an adaptive threshold.
Actually, several research groups are following this approach, also known, as the
bounding-approach, because of the use of bounds to describe the parameter and
residual uncertainty (Puig, 2002). In general, computing an exact threshold is time
consuming due to the optimisation problem that must be solved at each time instant.
Moreover, considering the problems presented in Puig (2003b) when dealing with
interval observers (the wrapping effect, the interval function range evaluation, the
uncertain parameter time dependency), a new algorithm to detect faults based on
forward/backward test is presented in Section 3. Basically, this algorithm consists in
two steps: first a forward test based on checking if measurements belong to the inner
solution of the observation set and a backward test based on a consistency test
between measurements and the interval model. Forward test cannot assure that a fault
occurred when measurements are outside the inner solution computed by the vertex
simulation. To check whether or not this measure signals a fault, a consistency test
must be performed to verify if there are system parameters that can explain this output
value. This stage represents the backward test and is equivalent with a system
identification for one data.

Finally, the algorithm will be tested in order to detect faults on the DAMADICS
benchmark problem.

2. Problem formulation

2.1 Residual generation and robustness issues

A residual generator can be constructed by

r(k)=y(k)=y(k) @

where: r(k) is the vector of residuals, y(k) and p(k) are vectors of real and estimated

measures. ldeally, the residuals should only be affected by the faults. However, the
presence of disturbances, noise and modeling errors causes the residuals to become
nonzero and thus interferes with the detection of faults. Therefore, the fault detection
procedure must be robust in the face of these undesired effects. Robustness can be
achieved in the residual generation (active robustness) or in the decision making stage
(passive robustness) (Chen and Patton, 1999). The passive approach is based not in
avoiding the effect of uncertainty in the residual, but in propagating the effect of
uncertainty to the residual. If the residual

r(k) = y(k)=5(k)Ofeck ), (k)] @



no fault can be indicated, because the residual value can be due to the parameter
uncertainty.

2.2 Passive Robustness Based on Interval Observers

Instead of using directly the model of the monitored system, an observer for this
system will be considered. The non-linear interval observer equation without noise,
faults and disturbances is:

x(k +1) = g(x(k), u(k),0) + K (y(k) = y(k))

SR 3)
$(k) = h(z(k), u(k), 0)

The evaluation of the interval for estimated measurements provided by the interval

observer (3): &(k),;(k)g in order to evaluate the interval for residuals:

B;(k),;(k)g will be computed by means of a worst-case observation. It consists in

computing a region of confidence for system state set X ++1» Dased on the confidence
region for the system parameters @, the previous confidence region for the system
state set )A(k (in the case of one step algorithms), or the previous confidence regions
for the system state set )A(k,...,)A(k_L( in the case of sliding time window) and the
measures available.

The observer equation (3) can be reorganised as a system with one output and two
inputs, according to (4). Then, worst-case observation can be formulated as a worst-
case simulation

X(k+1)=g,(x(k)u,(k).0)

I (4)
Y(k)=h(x(k))

where: u,(k)=[u(k) p(k)|' and
o (X(k).uo (k).0) = g(x(k),u(k),8)+Ky (k) -Kh(x(k),u(k).6) is the observer
non-linear function.

3. Forward-Backward algorithm

Considering the problems and computational complexity that appears in interval
simulation/observation presented in Puig (2003b), when determining the interval for
estimated measurements, a new algorithm for fault detection is proposed. The aim of



this algorithm is not in computing the exact interval for estimated measurements but
instead on verifying if they are consistent with real measurements.

This algorithm is based on a two decision tests. First test checks if real measurements
are inside to inner approximation of the interval for estimated measurements
guaranteeing that free faulty situations are detected. Second test is activated when
measurements are outside the inner approximation of the interval for estimated
measurements. In this case, the measurement is used to invalidate the interval model
detecting the fault in case of invalidation is confirmed. This test guarantees that any
fault that invalidates the interval model is detected.

3.1 Forward test based on Vertex Simulation (Kolev’s algorithm, 1993)

The forward test requires an inner solution of the interval for estimated measurements.
The vertex simulation (Kolev’s algorithm) will produce an inner solution, i.e. a subset
of solutions when the interval system is non-monotonic respect all the states and the
exact solution in case of the monotonic systems (systems with isotony property
(Cuguerd, 2002)).

Kolev’s algorithm provides the inner solution for the interval observation problem
solving it approximately by determining the interval vector Y (k) = &(k),}(k)g for

the time interval [0,k]. This interval can be determined by solving the following global
optimisation problems:

y(k) =max f(k; A@), B(6)) and

—mi : (®)
y(k) =min f(k; A(6). B(6))

subject to: oave)

where: V(@) denotes all vertices of the parameter uncertain p-dimensional vector.
The interval vector ¥(k) provides an inner solution due to the fact that

», (k)= x; (k) (6)
¥, (k) < x:(k) (7)

for the time k, i = 1,..,n and oX (k) = %(k),;(k)H And moreover, ¥(k) = 0 V(X(k))

where: X (k) ={x(k) = f(k; A(0),B(0)):0 OV (@}

The inner solution coincides with the interval hull of the solution set for some
particular systems, for example, in the case of systems without the wrapping effect,



according to Nickel (1985). And, moreover, according to Kolev (1993), for a constant
input u(k)=u, the inner solution coincides over the time intervals /0,k;] and [k;, )
with the exact solution.

3.2 Backward Test based on Consistency Test (Identification) (Jaulin, 2001)

The consistency test is based on solving a constraint satisfaction problem (CSP) over
interval domains. Consistency techniques are very efficient to contract the domain for
the variables involved. Also, consistency techniques can be used with success in real
time for checking the consistency of the measured data with the system parameters.

The backward test is equivalent to check the measurements consistency with the
interval model. If a measurement coming from the sensor is outside the inner solution
the consistency test will be perform in order to check if this measurement is consistent
with the interval model. If is not consistent, then we can assure that a fault was
occurred. If there are consistency between the measurement and the interval model
then we cannot decide anything due to the local consistency was performed. In this
case a global consistency is needed (time consuming), or this consistency test must be
combined with another strategy in order to decide if the measurement represent a fault
or not. Intuitively, to illustrate the idea of this algorithm in the figure below is shown
that when a measurement falls outside the inner solution the consistency test will be
performed in order to validate or not the interval model.

envelopes of
inner solution

measurements

For the system (4) the consistency problem can be represented by a constraint
satisfaction problem, where the set of variables is:

V :{xl(O),...,xnx(O),xl(l),...,xnx(l),...,xl(k +1),...,x,,x(k +1)

6,,....0,0} ®)
the set of domains is:
D= {[xl](O), e [xnx](O), [xl](l), e [xnx](l), . [xl](k +l), e [xnx](k + 1) ©)
[61].....[6,6l}



and the set of constraints is:

C :{xl(l): .fi(xl(o)""’xnx(o)’ell'”lene)""’
X @) = £ (1 0)....x,,. (0).61.....6,),

(k)= filu(k-1)....x, (k=1).64,....6,6 ).,
xnx(k):.fnx(xl(k_l)"“’xnx(k_1)’611"'!9119)’
x(k+1)= £ (e (k) ... %, (K).61, ... 8,6 ).,
Yk +2) = £ (e (). ..., ()61, 0,6)

(10)

—_

where nx represent the number of system states, »6 represent the number of system
parameters and y,. (k +l) represent the measurement coming from the sensor for

system state x,, (k +1).

Also, the consistency can be tested using a time window L, instead of solving the CSP
with respect to the initial state, this modification reduce the computation time and it
allows to be useful in real time. The length of L has been studied in the context of
interval simulation (Puig, 2003b). When the time window is used, the set of
constraints will be:

C={qlt-1)=filu(k-L+1)....,x, (k- L+1)6,,....6,4)...,
Xk =L)= f. ek —L+1),....x, (k- L+1).6,,....0,5),
x (k)= file (k=2)...,x, (k =1).64,....0,9 ).,
X (k)= [ Gk =), %, (K =1).64,....0,6 ),
x(k+1)= £ (e (k). %, (k).61,..,0, ).,
ek +1)= (k) (k) 61, 6,6)

}

This constraint satisfaction problem is solved using “PR0OJ2D” (Massa Dao, 2003)
solver.

(11)

The solution of the above CSP, will provide 6,,,.s ( 6 consistent with y, . (k+1)).

If 6.4eniifica 15 €MPLY, it means that there are no system parameter consistent with the

measurement coming from the sensor and we can assure that a fault has occurred.
However, if 64,44 1S NOt empty, it means that there are parameters consistent with

the measurement. 6,;,,.4., 1S @ superset of solutions (i.e. an outer solution), then the



global consistency must be used in order to assure that the parameters interval indeed
are not empty.

3.3 Forward-Backward algorithm for Fault Detection

Finally, the proposed algorithm can be described as follows:

Step 1: Forward test (Vertex simulation)

The interval for the system states at time instant k+/ [xkﬂ] is obtained using
vertex simulation (see Section 3.1)

If 1 O[] then NO FAULT

If 1 O[x,.1] then GOTO Step 2

Step 2: Backward test (Parameter Consistency Check)
Brdensiica (1-€. the interval of 6 consistent with y,. (k+1)) is obtained applying the
algorithm from Section 3.2.
0 = O,isis N eidentiﬁed
If 6 =0 then FAULT
If 8 #0 then bisections until 8 =0 or 8 cannot be reduced more (global consistency

is needed) or the algorithm must be extended with another real-time strategy in order
to deal with this case.

4. Application

In this section the forward-backward algorithm will be tested using a real benchmark
problem, pinpointing the advantages and the drawbacks of the proposed algorithm.

The application example to test the forward-backward algorithm to robust fault
detection, deals with an industrial smart actuator consisting of a flow servo-valve
driven by a smart positioner, proposed as an FDI benchmark in the European
DAMADICS project. The smart actuator consists of a control valve, a pneumatic
servomotor and a smart positioner (Bartys, 2002). In this paper, we will focus on the
pneumatic servomotor and the electro-pneumatic transducer. The pneumatic
servomotor has a non-linear second order dynamic described by:

2 vr 2
d i{ __, 4
dt

m ~ky(k+X)=F, +4,P, +mg (12)

dr




affected by a hysteresis X =min(g,(X',D, ),H, ) and the vena contracta force F,,
(Bartys, 2002). The electro-pneumatic transducer has a non-linear dynamics described
by:

[dm, A, dxX
m, di Vy,+AX di

d
js=(Ps +E)( ) (13)
t

dm, B,cvPJP,-P, if CVP>0

with: =
dt %k,CVP\/P_S if CVP<0

(14)

A simplified non-linear model, without static non-linearities (hysteresis and vena
contracta force), for the servomotor that relates X (the servomotor’s rod displacement)
with CVP (the command presure) will be proposed to be used to detect faults. The air
mass variation in the equation (13) will be aproximated with

d
;n,ta =k, CVP\P. =P [, +k1CVP\/Efp2 (15)
1
Where:fpl :HW and pr :]_fpl (16)
e

in order to obtain a model that no depends of the input signal sign. In the continous
time state space the model is:

dx,

— 1t = x2

dt

dx, _

— = TayX; —apX; TaxX; tc,

dt

dx; x;+P 1 dx,

— = —ayx, = —+a;,——%(x; +P,) 17
dt Vy+A4,x, x, dt

d
% =k, CVP\P, =x3 1, +k1CVP\/x_yfp2

where x, =X (the rod displacement), x, :i—X, x; =P, (the pressure in the
t

servomotor’s chamber), x, =m, (the air mass).

An interval non-linear model for the servomotor that relates X (the servomotor’s rod
displacement) with CVP (the command presure) will be derived introducing some of
the system non-linearities in the structure of the model, and bounding the effect of the
rest (hysteresis and vena contracta force) as bounded uncertain parameters.



The non-linear interval model is obtained using the global consistency techniques in
fault-free scenario, as it was presented in the Section 3.2. Using the consistency
technique we check the parameters interval in a time horizont consistents with the
input-otput data used for identification.

The consistency identification problem deal with the following discrete time non-
linear interval model.

X, (k =x, (k) +0(6,x, (k) +6,)
xz( =x k + (—az,x, ) —5,X, (k) +a,3x;3 (k) +cz)

O x5 (k)+P, 1 x,(k)=x,(k-1) 0
x; (k + 5 (k) "'AE'%ZXZ , + 4,5, (K) taz, 0 A (x3 (k) +P, )E

x; (k+1) = x, (k) + 8(k, VP[P, =x; (k) £, +,CVP\x; (k)2
(18)
where 6, and 6, are aditional paramaters that was introduced in the model strucure in

order to improve the sistem aproximation, A is the step size. The bounded uncertain

parameters  will be 60[,.6H, 6,0, 6H . anOHy.axH, and

ayy D@zzﬁzzﬁ . The parameter b from equation (16) was calibrated in order to
obtain a good approximation for equation (14).

So, for this identification problem using consistency techniques, the set of constraints
will be:

x (k)= £ (3 (k=1).....x4 (k =1), 31 (k =1),6,,65, a1,a5)....,
x (k)= 14 (Xq_ (k=1),....xq (K =1),»4 (K —1),91,62,a21,a22),

+1) = £ (x (k),..., x4 (k)31 (k).61,6,,a50,a).....
x (k+1) =1, (x1(k) ,,,,, x4 (k). s (k)!611621a211a22)

(19)

=
—
~
H
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=
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with the following set of domains:



D={[5](0),.[x] O).[5] (). [ (U)o [ (k1) ... ] ( +1),

(20)
[el]initial [ 62] iitial [ a21] initial[ aZJ initial }
The consistency problem will provide the bounds for the parameteres

[el]identiﬁed ’[ 62] identified [ 612]] identiﬁed[ 612; identified S0 that n faUIt'free scenario the

model envelopes will contain the sistem output coming from the sensores.

This non-linear interval model suffer of the wrapping effect due to not fulfil the
isotony property (Cuguerd, 2002). For this non-isotonic systems the exact envelopes
computation is time-consuming due to the global optimisation problem that must be
solved, the one step-ahead algorithms fails very quickly providing an instable interval
simulation and the vertex simulation provide an inner solution.

Finally, this non-linear interval model will be used and the forward-backward
algorithm will be applied in order to detect faults.

In this example, a fault in the pneumatic servomotor is introduced. The fault consists
in servomotor’s diaphragm perforation caused by fatigue of diaphragm material
(named f;, in the DAMADICS benchmark). In the present experiments one fault
scenario will be used corresponding to the abrupt medium size (Bartys, 2002). The
fault appears at time instant =200 s. Due to integration reasons (Euler’s integration
algorithm) the step size was chosen A =0.0005 s .

In the figure 1 results applying forward-backward algorithm is presented. From initial
time =0 to =200 s forward test (Step 1 of the algorithm) was used. The pneumatic
servomotor non-linear behaviour is better approximated using a non-linear interval
model instead of the linear one. Due to this, the envelopes are less conservative in the
non-linear case than in the linear one (Puig, 2003a) and the system output falls outside
the envelopes very quickly when the fault has occurred.

When the system output falls outside the envelopes, the backward test (Step 2 of the
algorithm) will be used. This test performed an empty interval parameter consistent
with the measure and we can assure that the fault occurred.

This algorithm can provide an undecided zone when the fault is not permanent and the
fault size is very small (as we can see in the figure 2). In this case the measurement is
outside the inner solution but very close to inner solution and can belong between the
inner and unknown exact solution. In this case the local consistency test can provide a
non empty parameters interval consistent with the measurement, i.e. the measurement
does not invalidate the interval model. In this situation, due to the local consistency
used for backward test (superset of solutions) we cannot assure that there is a fault-
free scenario or not.

10
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Fig. 1 Fault detection (f;, medium size)
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Fig. 2 Undecided zone for a small size fault

5. Conclusions

Considering the problems that appear in interval simulation/observation using regions
or real trajectories, a new algorithm for fault detection was proposed. This algorithm
uses a vertex simulation to compute the envelopes due to its computational simplicity.
The consistency test must be used only when a measurement coming from the sensor
falls outside the inner solution. When this measurement belongs to the region between
the inner solution and the exact solution (unknown) the consistency test provides an

interval Bidemﬁed nonempty and we cannot decide that this measurement represents a

fault or a normal situation. When the measurement is outside the exact envelopes, the
consistency test provides very quickly an empty interval Bidemﬁed assuring that a fault

occurred.

11



Due to incompleteness of the solution, the forward test based on vertex simulation
only can assure that if the measurements coming from the sensors falls inside the inner
solution, then the system work properly. When a measurement falls outside we cannot
conclude anything about that. Using the consistency test (outer solution) for a

measurement we can assure that a fault occurred only when Bidemﬁed is an empty set.

There is an undecided zone between the inner solution and the exact solution
(unknown). In this case we only can say that a measurement represents a possible
fault.

In conclusion this forward-backward algorithm is developed in order to be applied in
fault detection applications where real-time operation is needed.

As a future work we want to minimize as much is possible this undecided zone, and to
combine the forward-backward algorithm with an intelligent test in order to decide
about the measurements that belongs to the undecided zone.
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