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Abstract: In this paper, we show that the problem of computing the smallest interval
submatrix of a given interval matrix [A] which contains all symmetric positive semi-
definite (PSD) matrices of [A], is a linear matriz inequality (LMI) problem, a convex
optimization problem over the cone of positive semidefinite matrices, that can be solved
in polynomial time. In a constraint viewpoint, this problem corresponds to projecting the
global constraint PSD(A) over its domain [A]. Projecting such a global constraint, in a
constraint propagation process, makes it possible to avoid the decomposition of the PSD
constraint into primitive constraints and thus increases the efficiency and the accuracy of

the resolution.
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1. Introduction

Many problems of estimation, control, robotics, ... can be represented by continuous
constraint satisfaction problems (CSP) [10, 17]. A CSP [13] is composed of a set of
variables V = {x,...,z,}, a set of constraints C = {¢;,...,¢,,} and a set of interval
domains {[z1],...,[z,]} . The aim of propagation techniques is to contract as much as
possible the domains for the variables without loosing any solution [3, 4, 20, 22]. Denote

by [x] the box defined by the Cartesian product of all domains and by [x]¢;, the smallest



box which contains all points in [x] that satisfy ¢;. The operator M will be called square
intersection. The principle generally used to contract the [x;]’s is arc consistency. Tt

consists in computing the box

((((([x]Pey) Meg) M) Mem) Mey) Meg) .. (1.1)
until a fixed point is reached.

When no algorithm is available for computing [x]Mc;, the constraint ¢; should be decom-
posed into constraints c;i,c;j,,... on which the square intersection M can be computed.
When such a decomposition is performed, the fixed point that is reached is generally

much bigger than the one that obtained without the decomposition.

Extending the class of constraints for which the square intersection ' can be computed

efficiently is an important task that should be considered in the constraint community.

In this paper, we consider the constraint positive semi-definite (PSD) for matrices, i.e.,
for a given interval matrix [A], we shall provide a polynomial algorithm which computes
the smallest interval matrix which contains all positive semi-definite matrices of [A]. The
PSD constraint often occurs in control theory (see e.g., [18, 16]) or in optimization (see
e.g. the non-convexity check in [8]), but, to our knowledge it has never been considered in
the constraint propagation community. The approach to be proposed is based on linear
matrix inequalities (LMI) briefly presented in Section 2. Some important notions and
properties of interval (symmetric) matrices are given in Section 3. Section 4 provides a

polynomial algorithm that solves our problem. An illustrative example is given in Section

o.

2. Linear matrix inequalities

This section presents some notions of linear matrix inequalities. A much more detailed
presentation can be found in [5]. Denote by M" the set of all matrices of R™*". M" is

a vector space with dimension n?. Its canonical basis is {E¥} n) > where E¥ is the

ige{l,
matrix with zeros everywhere except the (i, 7) entry which is equal to 1. The set

S"E{Ae M'A=A"}, (2.1)
of all symmetric matrices of M™ is a vector space isomorphic to R™5™ . The family
{EZSJ}jZi , where

E¢ = (EY + E") if i # j and E{ = E¥ otherwise (2.2)

is the canonical basis of S™.



Example 2.1. The canonical basis of S? is

1 0 01 0 0
El = El? = EZ = 2.3
S ( 0 0 ) ) S ( 1 0 ) ) S ( 0 1 ) ( >

Definition 2.2. A matrix A of 8" is positive semi-definite (PSD), denoted by A = 0, if

vz € R" z"Az > 0. (2.4)
Theorem 2.3. The set of PSD matrices ST £ {A € S"|A = 0} is a convex cone' of S™.

Proof: We have

ST = {AeS"VzeR",z'Az > 0} (2.5)
= (N {Aecs"|z"Az>0}. (2.6)
zeR™

Now, for a given z € R", we have the following equivalences

2 Az >0 & Zzizjaij >0 Zz?aii + 22 2205 > 0. (2.7)

i\ i 5>
Thus, ST is an intersection of an infinite number of half-spaces of R™5™ . Asa result,
ST is a cone of S" the vertex of which is zero. [ |

Definition 2.4. A linear matrix inequality (LMI) has the form

where x € R™ is a vector of variables and the matrices A; all belong to 8". An LMI set
is a subset of R™ which can be defined by an LMI.

The following theorem illustrates some well-known properties of LMI sets.

Theorem 2.5. An LMI set is convex and the intersection of two LMI sets is an LMI set.

LRecall that a cone of R™ with vertex Xo is a subset C of R” such that v € C = Ya > 0,xo+a (v — X¢) €
C.



Proof: The LMI set S 2 {x € R™"|Ag+21A1+ ...+ 2,A,, = 0} can be written as
S=f1 (Sﬁ) ,where

f:{Rm - M (2.9)

X — AO—I—I'lAl—I——I—I'mAm

is affine. Since the reciprocal set of a convex set by an affine function is convex, S is

convex.

A block diagonal matrix is PSD if and only if all its blocks are PSD. Thus, the intersection
Se NSy, of the two LMI sets

Sa = {X eR™ ’ AO + a:lAl + ...+ a:mAm t 0} (210>
is given by
A A mAn 0
x € R™ | 0t T AL AT =0
0 BO—I—atlBl—l——l—a:mBm
eR™ | Ao 0 Av 0 Am 0}
= <X x B 7o b
0 B, '\ 0 B 0 B,
which is an LMI set. |

We now give three examples of constraints that can be defined by LMIs.

Example 2.6. A constraint of the form x € [x] is an LMI. For instance, the constraint

x1 € [1,2]; 29 € [3,4] can be written in an LMI form as

xz—1 0 0 0
0 2 — 0 0
o >0, (2.12)
0 0 Tog — 3 0
0 0 0 4 — x4y
1Le.,

-1 0 0 0 1 0 00 000 0
0 2 0 0 0 -1 0 0 000 0
0 =3 0 0 0 00 001 0
0 4 0 0 0 0 00 —1



Example 2.7. A set of linear inequalities is an LMI. For instance

a11%1 + a9 +b; >0
a9171 + Q99Ts +by >0

is equivalent to the following LMI

b
( a11%1 + G129 + 01 0 ) ~ 0,

0 a9y + anxs + by

b
1 0 1 2 a1 0 1 2 a19 0 t 0.
0 by 0 an 0 ap

Example 2.8. An ellipsoid of R" is an LMI set. To get the LMI associated with an

ellipsoid, we can use the Schur complement theorem (see [2, 5]) which claims that, for any

lLe.,

matrices A, B, C with appropriated dimensions, the following equivalence:

C =0 A BT
T 1 & =0
A-B C'B 0 B C

is always true. Here, A > 0 means that all eigenvalues of A are all strictly positive. Note
that a constraint of the form A = 0 can be approximated by A > ¢ where ¢ > ( is as small
as desired. As an illustration, consider the ellipsoid defined by 3x? + 2z23 — 2x1x9 < 5. We

have
3z} + 222 — 2wy < 5

T
3 -1

s 5™ >0

To -1 2 Ty
T 1

I 21 I

& 1 > 0.
T 1 3 Ty

Using the Schur complement theorem with

A=1B= 1 and C = 21 ,
To 1 3

we get the LMI

1 x x4
z 2 1 =0,
zo 1 3
1Le.,
1 00 010 0 1
021 |+2:| 100 |+x22 000 | >0
01 3 0 00 1 00



Many other convex sets can be represented by LMIs. Even though the general problem
of knowing whether a given semialgebraic convex set admits an LMI formulation remains
open, the excellent textbooks [2, 5|, collect an impressive amount of LMI-representable
geometric sets (e.g., ellipses, parabolae or disks) or more general convex sets relevant to

control engineering, structural optimization or combinatorial optimization.

Following the seminal work of Karmarkar [11] presenting a polynomial-time algorithm
for solving linear programming problems, a lot of research activity focused on extend-
ing these results to more general convex optimization problems. This culminated in the
manuscript [14] where general interior-point methods are described that can be used to
solve LMI optimization problems (amongst others) in polynomial-time at any given accu-
racy. Since LMI problems are generalization of linear programming problems to the cone
of PSD matrices, LMI programming is generally referred to as semidefinite programming
in the technical literature. A projective method based on the results of [14] and having
worst-case complexity O <m3n log (%) ), where ¢ is the required relative accuracy, was first
implemented in the INRIA Scilab freeware [6], and then in the commercial LMI Toolbox
for Matlab [7]. Primal-dual interior-point algorithms were also designed for LMI problems,
see [21] for a survey and [19] for a high-quality solver called SeDuMi having worst-case
complexity O ((n3'5m + n?%m?) log (%)) In practice, most of the computational time is
spent solving Newton-like steps at each iteration, whereas numerical experiments tend to
show that the number of iterations of primal-dual methods is almost problem-independent

and oscillates between 10 and 50.

Corollary 2.9. The box-LMI problem, which consists in finding the smallest box [X]
which encloses a set S defined by an LMI constraint, has a polynomial complexity in the

worst-case.

Proof: Since

[x] = |minz;, maxx;| X ... X |minx,,, maxz,|, (2.14)
xX€ES xX€ES xX€ES x€S

computing [x] amounts to solving 2m LMI minimization problems, each of them having

a polynomial complexity in the worst-case. |

3. Interval matrices and interval symmetric matrices

In this section, we present some definitions related to interval matrices. Some of them are
slightly different from that of the literature [15] but the adaptation is needed to establish

some properties used by our algorithm presented in Section 4.
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An interval of R is a closed connected set of R. An interval matriz [A] is a set of matrices

in M" which can be written as
Al=¢AeM"| > ayEYa;€laylp= > |y EY (3.1)

where [a;;] are n? intervals. The set of all interval matrices will be denoted by ZM™. An

interval symmetric matriz [B] is a subset of M™ which can be written as

[B] = {B e M"| ZbijEéj;bij € [bz‘j]} = Z[bij]-Eéjv (3.2)

> >0

where [b;;] are @
by ZS". If A is a subset of M"™ and B is a subset of S™, then we define the two operators
hully, (A) = [{[A] € ZM" | AC [A]}, (3.3)

hulls, (B) = ({[B]€ZS" | BC [B]}. (3.4)

intervals. The set of all interval symmetric matrices will be denoted

With these notations, the problem to be solved in this paper is to compute the interval
matrix

hully,, ([AJNSY) | (3.5)
for a given [A] € ZM".

Figure 3.1 gives a graphical illustration of some properties of ZS™ and ZM". For instance,

e the set of symmetric matrices 8™ is a sub-vector space of M",

e the set of PSD matrices S¥ is a convex cone of S",

e if [A] is an interval matrix, [B] = [A] N 8" is an interval symmetric matrix,
e an interval symmetric matrix [B] is not necessarily an interval matrix,

e the intersection of an interval symmetric matrix with S% is not necessarily an interval

symmetric matrix.

Theorem 3.1. If [B] € ZS", B C 8", [A] € ZM", then
(i) hullss (B) = hully (B) N S™,
(i) hullyen o hullss (B) = hullye (B)
(i) [A]NS" = hulls~ ([A]NS™) =5, (lay] N az]) By,
(iv) hully, ([AJNSH) = hully,, (hulls, (([AJNS,) NSH)
(v) [BINS} is an LMI set of S",
(vi) hully- ([B]) = iji[bij]Bij + Zj<i[bji]Eij'

(3.6)



""""" e Sl
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Figure 3.1: In the set of n X n matrices M", the set of symmetric matrices S” is a vector
space, the set of positive semi-definite matrices S is a convex cone of S". If [A] is an

interval matrix, [B] = [A] N'S™ is an interval symmetric matrix . The axis correspond to

the coeflicients of the matrices.



Proof: IHere, we shall only prove properties (iii), (iv), (v) and (vi) that are useful to

understand the algorithm.

Proof of (iii): The set [A] N S™ is defined by

{A - Mn’ ZaijEij, CLZ'j - [aij],aij = ajl}

1%

= {A e M"| Z <aijEij + ajiEji> + Z a; B a;; € [ay], ai; = aﬁ}

i>i %

- {A e M"| Zaij (EY + E”) + ZaiiEii, a;; € [ai;] N [Clji]}

>4 i
= <AeM" ZaijEéj, ai; € [ag] N [%‘z‘]}
i>i

= > (layg] N [ay]) BY,

>

.

which is an interval symmetric matrix. Thus [A] N S™ =hullg~ ([A] N S™).
Proof of (iv): Since S} C S,,,

hully,, ([AJNS,) = hully,, (([AINS,) NS . (3.7)
From (ii), we get (iv). |
Proof of (v) : We have

B]NSH = {B €8 Y ;B = 0,y € [bij]} . (3.8)

Jjzi

Now, the constraint b;; € [b;;] which should be satisfied for all (i, j) such that j > is an
LMI (see Example 2.6) and the constraint » i>i bijEéj > 0 is also an LMI. Thus [B] NS,
is the intersection of two LMI sets. From Theorem 2.5 it is thus an LMI set. |

Proof of (vi): We have,

B] =) [b,JEF =) "[b] (B + E7) + > [b;,|BY. (3.9)

i i>i i=j

Now, from the subdistributivity property, we have the inclusion,

IS8" 3 [b,] (BY + E7) C [b;;]EY + [b;]E" € TM™. (3.10)



Thus, [B] is a subset of the interval matrix

> ([bi]EY + [b;]ET) +Z | EY (3.11)

>t

- S S e 12
i> (]

= ) [byJET 4+ [bi]EY. (3.13)
j>i j<i

Let us now show that the interval matrix [By] £ ZjZi[bij]Bij + Ej<i[bjl-]Eij is the
smallest which contain [B]. Consider an interval matrix [B}] = ZZ y [b;j]Bij included in
[By]. Then, from (iii)

Bulns =" (1,10 1)) . (3.14)

Jjzi

which is a subset of [B]. The inclusion is an equality, if for all (¢, 7) , j > 1, [b;j} N[] = [bis],
le., [b;j} = [by;] and [b};] = [by]. As a result, [By] is the smallest interval matrix which
satisfies [By] NS™ D [B.

4. Projection algorithm for the PSD constraint

This section proposes a polynomial algorithm for projecting the PSD constraint. To our

knowledge, no other algorithm can be found in the literature to perform this task.

From (iv) of Theorem 3.1, we have hully, ([A]NS,]) =hully,, (hulls, (([A]NS,) NS,H)).
Thus, the following set algorithm computes hully, ([A]NS,).

Algorithm PSD(in: [A] €ZM", out: [D] €ZM")
1 [B]:=[AINS,;

2 [C] = hulls, (B]NS));

3 D) = hully, (C]);

4 Return [D].

Step 1 computes [B] € ZS" which is the intersection between [A] € ZM" and S,.
According to Theorem 3.1 (iii), Step 1 is equivalent to the statement

for 4 € {1, Ce ,TL}, for j € {Z, Ce ,TL}, [b”] = [a”] M [CLJZ] (41>
Step 2 computes the smallest interval symmetric matrix [C] which encloses all matrices

10



of [B] that are PSD. This amounts to solving a box-LMI problem, where the LMI set is

{B €S"| Y byE = 0,by; € [bij]} : (4.2)

Jjzi

In our implementation, the n (n 4+ 1) LMI optimization problems are solved using the
SeDuMi solver which implements a primal-dual interior-point algorithm. It has a worst-

case complexity
O((n**m + n**m?)log (1)) where m =card({b;; | j > i}) = @

Step 3 generates the smallest matrix [D] € ZM" which encloses [C] € ZS™. From (vi)

of Theorem 3.1, this can be performed by the following statements

forie{1,... n},
fOI'j S {1772_1}7 [dZ]] = [C]Z]
fOI' j - {Z, Cee ,TL}, [d”] = [CZJ]
endfor 3.

(4.3)

Theorem 4.1. The algorithm PSD has a worst-case complexity of n®?® log (%), where &

is the relative required accuracy.

Proof: PSD needs the resolution of n (n + 1) LMI optimization problems. This task is
performed by SeDuMi which has a worst-case complexity O ((n3'5m + n25m?) log (%))

Since the number of variables of each LMI is m = @, the worst-case complexity of

PSD is O <n8'5 log (%)) [ |

Remark 1. The algorithm PSD can be used to test if the interval matrix [A] contains
at least one PSD matrix. Of course, only the first of n (n+ 1) optimization problems at
Step 2 has to be solved. Thus, an optimal (no pessimism exists) nonconvexity check can

be implemented with a complexity O (n%?).

5. Examples

Consider the interval matrix

Al=| [-4,2] [-8,3] [2,9] | =[-7,3.E" +[-1,4.E"”+... (5.1)

11



Step 1 of our algorithm computes the intersection [A]NS,. It generates the interval

symmetric matrix
[B] = O [-8,3 [2,6] | =[-73.E5 +[-1,2.EY +... (5.2)

The square symbol [J is used here to recall that [B] belongs to ZS™ and not to ZM".
Note that [B] should not be confused with

hully- (B)) = | [-1,2] [-8,3] [2.6 |- (5.3)
[_474] [27 ] [479]

which belongs to ZM™ and not to ZS". [B] is a set of symmetric matrices whereas

hull y» ([B]) contains matrices that are not symmetric.

Step 2 solves 2@ = 12 LMI problems in @ = 6 variables. The first one, which
computes the lowest possible value for by; such that B € ST N [B], is given by

cy; = minbyy
( 100 010 000
byl 0 0 0 |40 100 | +...4b3[ 000 |=0
st: 000 000 00 1

by € [=7,3],b1p € [—1,2],b13 € [—4, 4],
bys € [—8,3],bo3 € [2,6],b33 € [4,9]

\

(5.4)
After completion of the 12 LMI minimization problems, the resulting interval symmetric

matrix reads:

0.0000,3.0000] [—1.0000,2.0000] [—4.0000, 4.0000]
[C] = O [0.4444,3.0000]  [2.0000,5.1962] | . (5.5)
O O [4.0000, 9.0000]

This result has been obtained with the LMI solver SeDuMi [19] with the YALMIP [12]

Matlab interface in less than 3 seconds on a PC Pentium IV computer.

Step 3 generates [D] = hully, ([C]). The result obtained is

0.0000,3.0000]  [—1.0000, 2.0000] [—4.0000, 4.0000]
D] = | [-1.0000,2.0000] [0.4444,3.0000]  [2.0000,5.1962] | . (5.6)
[—4.0000,4.0000]  [2.0000,5.1962]  [4.0000,9.0000]

12



The corresponding source code is given below.

B = sdpvar(n,n);

Binf = [-7 -1 -5; -4 -8 2; -4 -1 4];

Bsup = [3 4 4; 23 9; 96 9];

Binf = max(Binf’,Binf); Bsup = min(Bsup’,Bsup)
Cinf = zeros(n); Csup = zeros(n);

L = 1mi(B>0);

for i = 1:n,for j = 1:1

L = L+1mi(B(4,j)>Binf(i,j))+1mi(B(i,j)<Bsup(i,j));
end, end

for i = 1:n,for j = 1:1

sol = solvesdp(L,[],B(i,j));
Cinf(i,j) = double(B(i,j)); Cinf(j,i)
sol = solvesdp(L,[1,-B(i,j));
Csup(i,j) = double(B(i,j)); Csup(j,i) = Csup(i,j);

Cinf(i,j);

end,end;

In order to show the efficiency of PSD with respect to the dimension n of [A], let us

generate n,,,, interval matrices
[A] =1, + -4, Al

where I, is the n x n identity matrix and A and Al are n x n matrices whose coefficients
are integer taken randomly inside the interval [0, n]. The logarithm of the computing times
T'(n) obtained by PSD on a PC Pentium IV are given on Figure 5.1. Note that for n = 30

o logio (T'(n) _ log,e (16996)

= 2.86.
logyn log,, 30

n

This i1s consistent with Theorem 4.1 that claims that lim,,_,., o, 1s a real number smaller

than &8.5.

6. Conclusion

In this paper, we have shown that LMI’s can be used to deal with global constraints
involving matrices. The approach has been illustrated on the unary constraint PSD
(Positive Semi-Definite) for a matrix. An algorithm which computes the smallest interval
matrix which contains all PSD matrices that belong to a given interval matrix has been

given.

13
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Figure 5.1: logyg (7' (n)) with respect to n, where T (n) is the computing time of PSD

This algorithm can be used in control theory if the constraint PSD naturally appears in
the problem to be considered. But is can also be used by global optimization algorithms
such as that of Hansen [8] or BB [1] to build a nonconvexity contractor. Recall that
when it is known that at the global minimum, the Hessian matrix is PSD, Hansen’s
algorithm or aBB try to test whether or not the interval Hessian matrix at the current
box may contain any PSD matrix (this is the non-convexity test). If it concludes that it
cannot, the corresponding box can be removed. A nonconvexity contractor based on the
algorithm PSD could be used to contract the current box, pruning parts of the box where
the Hessian cannot be PSD. This would make it possible to continue the propagation

process before bisection (which should always be considered as a last resort).

Also, to get validated results (to take into account the finite representation of numbers in
the computers), an LMI solver with outward rounding and other validated procedures (for
instance, based on the approach proposed in [9]) should be developed. To our knowledge,

such a solver does not exist yet.
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