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Introduction

A mobile robot can be de�ned as a mechanical system capable of moving in its environment in

an autonomous manner. For that purpose, it must be equipped with:

� sensors that will collect knowledge of its surroundings (which it is more or less aware of) and

determine its location ;

� actuators which will allow it to move ;

� an intelligence (or algorithm, regulator), which will allow it to compute, based on the data

gathered by the sensors, the commands to send to the actuators in order to perform a given

task.

Finally, to this we must add the surroundings of the robot which correspond to the world in which it

evolves and its mission which is the task it has to accomplish. Mobile robots are constantly evolving,

mainly from the beginning of the 2000s, in military domains (airborne drones [1], underwater robots

[2], etc.), and even in medical and agricultural �elds. They are in particularly high demand for

performing tasks considered to be painful or dangerous to humans. This is the case for instance

in mine-clearing operations, the search for black boxes of damaged aircraft on the ocean bed and

planetary exploration. Arti�cial satellites, launchers (such as Ariane V), driverless subways and

elevators are examples of mobile robots. Airliners, trains and cars evolve in a continuous fashion

towards more and more autonomous systems and will very probably become mobile robots in the

following decades.

Mobile robotics is the discipline which looks at the design of mobile robots [3]. It is based on

other disciplines such as automatic control, signal processing, mechanics, computing and electronics.

The aim of this book is to give an overview of the tools and methods of robotics which will aid in the

design of mobile robots. The robots will be modeled by state equations, i.e., �rst order (mostly non-

linear) di�erential equations. These state equations can be obtained by using the laws of mechanics.

It is not in our objectives to teach, in detail, the methods of robot modeling (refer to [4] and [5] for

more information on the subject), merely to recall its principles. By modeling, we mean obtaining

the state equations. This step is essential for simulating robots as well as designing controllers. In

this book, we will provide the principle and the tools for three-dimensional modeling of a solid (non-

articulated) robot modeling in three-dimension such as an airplane, a quadcopter, a submarine, and

so forth.
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Through this modeling we will introduce a number of fundamental concepts in robotics such as

state representation, rotation matrices and Euler angles. The robots we will consider are assumed

to be put into a state representation form:{
ẋ(t) = f(x(t),u(t))

y(t) = g(x(t),u(t))

where x is the state vector, u the input vector and y the vector of measurements [4]. We will call

modeling the step which consists of �nding a more or less accurate state representation of the robot.

In general, constant parameters may appear in the state equations (such as the mass and the moment

of inertia of a body, viscosity, etc.). In such cases, an identi�cation step might prove to be necessary.

We will assume that all of the parameters are known. Of course, there is no systematic methodology

that can be applied for modeling a mobile robot. We will present the tools which allow to reach

a state representation of three-dimensional solid robots in order for the reader to acquire a certain

experience which will be helpful when modeling his/her own robots. This modeling will also allow

us to recall a number of important concepts in Euclidean geometry, which are fundamental in mobile

robotics.

Page 6 of 84



Chapter 1

Set a rigid body in a 3D space

This chapter recalls a number of important concepts in kinematics which will be useful for the

modeling in three dimensions.

1.1 Rotation matrices

For three-dimensional modeling, it is essential to have a good understanding of the concepts

related to rotation matrices, which are recalled in this section. It is by using this tool that we will

perform our coordinate system transformations and position our objects in space.

Let us recall that the jth column of the matrix of a linear application of Rn → Rn represents the

image of the jth vector ej of the standard basis (see Figure 1.1). Thus, the expression of a rotation

matrix of angle θ in the plane R2 is given by:

R =

(
cos θ − sin θ

sin θ cos θ

)
.

Figure 1.1: Rotation of angle θ in a plane

Concerning rotations in the space R3 (see Figure 1.2), it is important to specify the axis of

rotation. We distinguish three main rotations: the rotation around the Ox axis, the one around the

Oy axis and the one around the Oz axis.

7



Luc Jaulin Mobile robotics: Inertial

Figure 1.2: Rotations in R3 following various viewing angles

The associated matrices are respectively given by:

Rx =

 1 0 0

0 cos θx − sin θx
0 sin θx cos θx

 , Ry =

 cos θy 0 sin θy
0 1 0

− sin θy 0 cos θy

 , Rz =

 cos θz − sin θz 0

sin θz cos θz 0

0 0 1

 .

Let us recall the formal de�nition of a rotation. A rotation is a linear application which is an isometry

(i.e., it preserves the scalar product) which is direct (it does not change the orientation in space).

Theorem 1. A matrix R is a rotation matrix if and only if :

RT ·R = I and detR = 1.

Proof. The scalar product is preserved by R if, for any u and v in Rn, we have :

(Ru)T · (Rv) = uT ·RTR · v = uTv.

Therefore RTR = I. The symmetries relative to a plane, as well as all the other improper isometries

(isometries that change the orientation of space, such as a mirror), also verify the property RTR = I.

The condition detR = 1 allows us to be limited to the isometries which are direct.

1.2 Lie group

The set of rotation matrices of Rn forms a group with respect to the multiplication [6]. It is referred

to as a special orthogonal group (special because detR = 1, orthogonal because RT·R = I) and

denoted by SO(n). It is trivial to check that (SO(n), ·) is a group where I is the neutral element.

Moreover, the multiplication and the inversion are both smooth. This makes SO(n) a Lie group

which is a manifold of the set of matrices Rn×n.

The set Rn×n of n×n-matrices is of dimension n2. Since the matrix RT ·R is always symmetric,

the matrix equation RT · R = I can be decomposed into n(n+1)
2

independent scalar equations. For

instance, for n = 2, we have 2(2+1)
2

= 3 scalar equations:

(
a b

c d

)
·
(
a b

c d

)T

=

(
1 0

0 1

)
⇔


a2 + b2 = 1

ac+ bd = 0

c2 + d2 = 1

As a consequence, the set SO(n) forms a manifold of dimension d = n2 − n(n+1)
2

.
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� For n = 1, we get d = 0. The set SO(1) is a singleton which contains a single rotation matrix:

R = 1.

� For n = 2, we get d = 1. We need a unique parameter (or angle) to represent the rotations of

SO(2) .

� For n = 3, we get d = 3. We need 3 parameters (or angles) to represent SO(3).

1.3 Lie algebra

An algebra is an algebraic structure (A,+,×, ·) over the �eld R, if

� (i) (A,+, ·) is a vector space over R ;

� (ii) the multiplication rule × of A×A → A is left- and right-distributive with respect to +

� (iii) for all α, β ∈ R, and for all x, y ∈ A, α · x× β · y = (αβ) · (x× y).

Note that in general, an algebra is non-commutative (x×y ̸= y×x) and non-associative ((x× y)×z ̸=
x× (y × z)). A Lie algebra (G,+, [ ] , ·) is a non-commutative and non-associative algebra in which

multiplication, denoted by a so-called Lie bracket, veri�es (i) [·, ·] that is bilinear, i.e., linear with
respect to each variable ; (ii) [x, y] = −[y, x] (antisymmetry) and (iii) [x, [y, z]]+[y, [z, x]]+[z, [x, y]] =

0 (Jacobi relation).

For Lie groups we can de�ne the associated Lie algebras [6]. Lie algebras allow us to consider

in�nitesimal motions around a given element (i.e., a rotation matrix) in order to use derivatives or

di�erential methods.

Consider the rotation matrix I of SO (n) corresponding to the identity. If we move I by adding

a small matrix say A · dt of Rn×n, we generally do not obtain a rotation matrix. We are interested

by matrices A such that I+A · dt ∈ SO(n). We have

(I+A · dt)T · (I+A · dt) = I

i.e., A · dt + AT · dt = 0 + o(dt). Therefore, A should be skew-symmetric. It means that we are

able to move in SO(n) around I by adding in�nitesimal skew-symmetric matrices A · dt that are not
elements of SO(n). This corresponds to a new operation in SO(n) which is not the multiplication

we already had. Formally, we de�ne the Lie algebra associated to SO(n) as follows

Lie (SO(n)) =
{
A ∈ Rn×n | I+A · dt ∈ SO(n)

}
and it corresponds skew-symmetric matrices of Rn×n.

If now we want to move around any matrix R of SO(n), we generate a rotation matrix around I

and we transport it to R. We get R (I+A · dt) where A is skew-symmetric. It means that we add

to R the matrix R ·A · dt.
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In robotics, Lie groups are often used to describe transformations (such as translation or

rotations). The Lie algebra corresponds to velocities or equivalently to in�nitesimal transformations.

Lie group theory is useful, but requires some non trivial mathematical backgrounds that are beyond

the scope of this book. We will try to focus on SO(3) or use more classical tools such as Euler angles,

rotation vectors, which are probably less general but su�cient for control purposes.

1.4 Rotation vector

Consider a rotation matrix R depending on time t. By di�erentiating the relation RRT = I, we

get

Ṙ ·RT +R · ṘT = 0.

Thus, the matrix Ṙ · RT is a skew-symmetric matrix (i.e., it satis�es AT = −A and therefore its

diagonal contains only zeros, and for each element of A, we have aij = −aji). We may therefore

write, in the case where R is of dimension 3× 3:

Ṙ ·RT =

 0 −ωz ωy
ωz 0 −ωx
−ωy ωx 0

 . (1.1)

The vector ω = (ωx, ωy, ωz) is called the rotation vector or Euler vector associated with the pair(
R, Ṙ

)
. It must be noted that Ṙ is not a matrix with good properties (such as for instance the

fact of being skew-symmetric). On the other hand, the matrix Ṙ ·RT has the structure of Equation

(1.1) since it allows to be positioned within the coordinate system in which the rotation is performed

and this, due to the change of basis performed by RT. We will de�ne the cross product between two

vectors ω and x ∈ R3 as follows:

ω ∧ x =

 ωx
ωy
ωz

∧

 x1
x2
x3

 =

 x3ωy − x2ωz
x1ωz − x3ωx
x2ωx − x1ωy

 =

 0 −ωz ωy
ωz 0 −ωx
−ωy ωx 0

 x1
x2
x3

 .

For each vector ω = (ωx, ωy, ωz), we may associate the skew-symmetric matrix:

∧ (ω) =

 0 −ωz ωy
ωz 0 −ωx
−ωy ωx 0


which can be interpreted as the matrix associated with a cross product by the vector ω. The matrix

∧ (ω) is also written ω∧. It is also called the small adjoint of ω and denoted by ad(ω). It should

not be confused with the large adjoint Ad(R) also used in this context, but not here in this book.

Proposition 2. If R(t) is a rotation matrix that depends on time, its rotation vector is given by:

ω = ∧−1
(
Ṙ ·RT

)
. (1.2)
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Proof. This relation is a direct consequence of Equation (1.1).

Proposition 3. If R is a rotation matrix in R3 and if a is a vector of R3, we have:

∧ (R · a) = R · ∧ (a) ·RT. (1.3)

Remark 4. We sometimes de�ne the capitalized Adjoint in SO(3) as

AdR :
so(3) 7→ so(3)

a∧ 7→ R · (a∧) ·RT

This operation is linear in a. We can thus de�ne the Adjoint Matrix AdR:

AdR(a) = AdR · a.

Since

AdR · a = AdR(a) = ∧−1(R · (a∧) ·RT)

we have

AdR · a = ∧−1(R · (a∧) ·RT) = ∧−1(∧ (R · a)) = R · a

Thus here AdR = R. Therefore, whereas the Adjoint is an important tool in general Lie group, it

is not essential if we limit ourselves to the Lie group SO(3) as in this book. This is why it will not

mentioned anymore.

Proof. Let x be a vector of R3. We have:

∧ (R · a) · x = (R · a) ∧ x = (R · a) ∧
(
R ·RTx

)
= R ·

(
a ∧RT · x

)
= R · ∧ (a) ·RT · x.

Proposition 5. (duality). We have:

RTṘ = ∧
(
RTω

)
. (1.4)

This relation expresses the fact that the matrix RTṘ is associated with the rotation vector ω but

expressed in the coordinate system of R whereas Ṙ ·RT is associated to the same vector, expressed

in the coordinate system of the standard basis.

Proof. We have:

RTṘ = RT
(
Ṙ ·RT

)
R

(1.2)
= RT · ∧ (ω) ·R (1.3)

= ∧
(
RTω

)
.
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1.5 Rodrigues rotation formulas

Matrix exponential. Given a square matrix M of dimension n, its exponential can be de�ned

as:

eM = In +M+
1

2!
M2 +

1

3!
M3 + · · · =

∞∑
i=0

1

i!
Mi

where In is the identity matrix of dimension n. It is clear that eM is of the same dimension as M.

Here are some of the important properties concerning the exponentials of matrices. If 0n is the zero

matrix of n× n and if M and N are two matrices n× n, then:

e0n = In
eM · eN = eM+N (if the matrices commute)
d
dt

(
eMt

)
= M · eMt

Matrix logarithm. Given a matrix M of dimension n, the matrix L is said to be a matrix

logarithm of M if eL = M. As for complex numbers, the exponential function is not a one-to-

one function and matrices may have more than one logarithm. Using power series, we de�ne the

logarithm of a square matrix as

logM =
∞∑
i=1

(−1)i+1

i
(M− In)

i .

The sum is convergent if M is close to identity.

Rodrigues formulas. A rotation matrix R has an axis represented by a unit vector n and

an angle α with respect to this axis. From n and α we can also generate the matrix R. The link

R ↔ (n, α) is made by the following Rodrigues formulas

(i) R = eαn∧

(ii) αn = Log(R)
(1.5)

where

Log(R) = ∧−1(logR)

Equation (ii) is the reciprocal of (i). In these formulas, αn∧ is a notation to represent the matrix

∧ (αn). As it will be shown in the exercise,

R = eαn∧ = exp(αn∧) = Exp(αn)

is a rotation matrix and n is an eigenvector associated with the eigenvalue 1 of R. The capitalized

version Exp, Log for exp, log can be seen as shortcuts to avoid using the ∧ operator [7][8]. This is

illustrated by Figure 1.3.
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Figure 1.3: Correspondences between the Lie group SO(3) and the Lie algebra so(3)

The following proposition provides an analytical expression for Log and Exp in the case of SO(3).

Proposition 6. Given a rotation matrix R of SO(3), its logarithm (which is a vector of so(3)) is

given by

LogR = α
2 sinα

· ∧−1
(
R−RT

)
α = acos( tr(R)−1

2
)

(1.6)

Given a vector of ω ∈ so(3), its exponential (which is a rotation matrix) is given by

Expω = I+ sinα
α

· ω ∧+1−cosα
α2 · (ω∧)2

α = ∥ω∥
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Proof. We only prove (1.6). Take a rotation matrix R = eαn∧ with eigen values 1, λ1, λ2 and eigen

vectors n,v1,v2. Consider the generalized polynomial f (x) = x−x−1, where x is the indeterminate.

From the correspondence theorem of eigen values/vectors, the eigen values of f (R) = R −R−1 =

R−RT are f (1) = 0, f(λ2), f(λ3) and the eigen vectors are still n,v1,v2. Now,

(i) f (R) is skew symmetric (fT (R) + f (R) = RT −R+R−RT = 0)

(ii) f (R) · n = 0 (n is the eigen vector of f (R) associated to 0)
(1.7)

Thus, the two matrices f (R) and (n∧) are proportional. As a consequence ∧−1 (f (R)) provides us

the axis of R.

To �nd the angle α, we use the property that the trace of a matrix is similarity-invariant, which

means that for any invertible matrix P, we have tr(R) = tr(P−1 ·R ·P). Indeed

tr((P−1 ·R) ·P) = tr(P · (P−1 ·R)) = tr(R)

Take P as the rotation matrix with transforms R into a rotation along the �rst axis. We get

tr(R) = tr

 1 0 0

0 cosα − sinα

0 sinα cosα

 = 1 + 2 cosα,

which provides us the angle of the rotation.

1.6 Evolution of the rotation matrix

Proposition 7. The evolution of the rotation matrix R(t) of a rigid body follows the integration

scheme:

R(t+ dt) = R(t) · Exp(dt · ωr(t)). (1.8)

where ωr = RTω is the rotation vector of the body expressed in its own frame.

Proof. Since RT(t)Ṙ(t) = (ωr(t)∧) (see 1.4), we have

Ṙ(t) = R(t) · (ωr(t)∧).

If dt is in�nitely small, we get

R(t+ dt) = R(t) + dt · Ṙ(t) + o(dt)

= R(t) + dt ·R(t) · (ωr(t)∧) + o(dt)

= R(t) · (I+ dt · (ωr(t)∧) + o(dt))

= R(t) · exp (dt · ωr(t)∧) + o(dt)

= R(t) · Exp (dt · ωr(t)) + o(dt)
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For numerical reasons, when we integrate for a long time, the matrix R(t) may loose the property

R ·RT = I. To avoid this, at each iteration, a normalization step is needed, i.e., the current matrix R

should be projected on to SO(3). For this, we can perform a QR factorization. A QR-decomposition

of a square matrix M provides two matrices Q,R such that M = Q ·R where Q is a rotation matrix

and R is triangular. When M is almost a rotation matrix, then R is almost diagonal and also almost

a rotation, i.e., on the diagonal of R the entries are approximately ±1 and outside the entries are

almost zeros. The following Python code performs the projection of M on SO(3) and generates

the rotation matrix M2.

Q,R = numpy.linalg.qr(M)

v=diag(sign(R))

M2=Q@diag(v)

1.7 Interpolation

Consider a Lie group G (for instance, the rotations), with two elements elements a, b ∈ G. We

would like to interpolate between these elements, according to a parameter t ∈ [0, 1]. An interpolation

from a to b is a function such that:

f : G×G× R → G

f(a, b, 0) = a

f(a, b, 1) = b

A possible interpolation is:

f(a, b, t) = exp
(
t · log

(
b · a−1

))
· a

or equivalently

f(a, b, t) = bt · a1−t.

Note f(a, b, t) is always on G, due to the properties of the exponential map. The resulting path is

along a geodesic of the manifold G.

1.8 Coordinate system change

Let R0 : (o0, i0, j0,k0) and R1 : (o1, i1, j1,k1) be two coordinate systems and let u be a vector of

R3 (refer to Figure 1.4). We have the following relation:

u = x0i0 + y0j0 + z0k0

= x1i1 + y1j1 + z1k1

where (x0, y0, z0) and (x1, y1, z1) are the coordinates of u in R0 and R1, respectively.
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Figure 1.4: Changing the coordinate system R0 to the system R1

Thus, for any vector v we have:

⟨x0i0 + y0j0 + z0k0,v⟩ = ⟨x1i1 + y1j1 + z1k1,v⟩ .

By taking respectively v = i0, j0,k0, we obtain the following three relations:
⟨x0i0 + y0j0 + z0k0, i0⟩ = ⟨x1i1 + y1j1 + z1k1, i0⟩
⟨x0i0 + y0j0 + z0k0, j0⟩ = ⟨x1i1 + y1j1 + z1k1, j0⟩
⟨x0i0 + y0j0 + z0k0,k0⟩ = ⟨x1i1 + y1j1 + z1k1,k0⟩

However, since the basis (i0, j0,k0) of R0 is orthonormal, ⟨i0, i0⟩ = ⟨j0, j0⟩ = ⟨k0,k0⟩ = 1 and

⟨i0, j0⟩ = ⟨j0,k0⟩ = ⟨i0,k0⟩ = 0. Thus, these three relations become:
x0 = x1 · ⟨i1, i0⟩+ y1 · ⟨j1, i0⟩+ z1 · ⟨k1, i0⟩
y0 = x1 · ⟨i1, j0⟩+ y1 · ⟨j1, j0⟩+ z1 · ⟨k1, j0⟩
z0 = x1 · ⟨i1,k0⟩+ y1 · ⟨j1,k0⟩+ z1 · ⟨k1,k0⟩

Or in matrix form: x0
y0
z0


︸ ︷︷ ︸

=u|R0

=

 ⟨i1, i0⟩ ⟨j1, i0⟩ ⟨k1, i0⟩
⟨i1, j0⟩ ⟨j1, j0⟩ ⟨k1, j0⟩
⟨i1,k0⟩ ⟨j1,k0⟩ ⟨k1,k0⟩


︸ ︷︷ ︸

=R
R1
R0

·

 x1
y1
z1


︸ ︷︷ ︸

=u|R1

(1.9)

We can see a rotation matrix RR1
R0

whose columns are the coordinates of i1, j1,k1 expressed in the

absolute system R0. Thus

RR1
R0

=


∣∣∣∣∣∣∣∣∣
i1|R0

∣∣∣∣∣∣∣∣∣
j1|R0

∣∣∣∣∣∣∣∣∣
k1|R0

∣∣∣∣∣∣∣∣∣


This matrix depends on time and links the frame R1 to R0. The matrix RR1

R0
is often referred to as

a direction cosine matrix since its components involve the direction cosines of the basis vectors of
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Figure 1.5: Composition of rotations

the two coordinate systems. Likewise, if we would have several systems R0, . . . ,Rn (see Figure 1.5),

we would have:

u|R0
= RR1

R0
·RR2

R1
· . . . ·RRn

Rn−1
· u|Rn

.

Dead Reckoning. Let us consider the situation of a robot moving in a three-dimensional

environment. Let us call R0 : (o0, i0, j0,k0) its reference frame (for example, the frame of the robot

at an initial time). The position of the robot is represented by the vector p(t) expressed in R0 and

its attitude (i.e., its orientation) by the rotation matrix R(t) which represents the coordinates of the

vectors i1, j1,k1 of the coordinate system R1 of the robot expressed in the coordinate system R0, at

time t. It follows that:

R(t) =

∣∣∣∣∣∣ i1|R0

∣∣∣∣∣∣ j1|R0

∣∣∣∣∣∣ k1|R0

∣∣∣∣∣∣
 = RR1

R0
(t).

This matrix can be returned by a precise attitude unit positioned on the robot. If the robot

is also equipped with a Doppler Velocity Log (or DVL) which provides it with its speed vector vr
relative to the ground or the seabed, expressed in the coordinate system R1 of the robot, then the

speed vector v of the robot satis�es:

v|R0︸︷︷︸
ṗ(t)

(1.9)
= RR1

R0︸︷︷︸
R(t)

· v|R1︸︷︷︸
vr(t)

Or equivalently

ṗ (t) = R(t) · vr(t). (1.10)

Dead reckoning consists of integrating this state equation from the knowledge of R(t) and vr(t).
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Exercises

Exercise 1.� Properties of the matrix ω∧

See the correction video at https://youtu.be/D3DbfurFWXo

Let us consider the vector ω = (ωx, ωy, ωz) and its associated skew symmetric matrix

∧ (ω) =

 0 −ωz ωy
ωz 0 −ωx
−ωy ωx 0


.

1) Show that the eigenvalues of ∧ (ω) are {0, ∥ω∥ · i,−∥ω∥ · i}. Give an eigenvector associated

with 0. Discuss.

2) Show that the vector ∧ (ω) x = ω ∧ x is a vector perpendicular to ω and x, such that the

trihedron (ω,x,ω ∧ x) is direct.

3) Show that the norm of ω ∧ x is the surface of the parallelogram A mediated by ω and x.

Exercise 2.� Jacobi identity

See the correction video at https://youtu.be/gD04pW7iYBw

The Jacobi identity for the vector product in R3 is written as:

a ∧ (b ∧ c) + c ∧ (a ∧ b) + b ∧ (c ∧ a) = 0.

1) Show that this identity is equivalent to:

∧ (a ∧ b) = ∧ (a) · ∧ (b)− ∧ (b) · ∧ (a)

where ∧ (ω) is the skew symmetric matrix associated to the vector ω ∈ R3.

2) In the space of skew-symmetric matrices, the Lie bracket is de�ned as follows:

[A,B] = A ·B−B ·A.

Show that :

∧ (a ∧ b) = [∧ (a) ,∧ (b)].
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3) Recall that the in�nitesimal rotation following the skew symmetric matrix A is exp (A · dt) ≃
I + A · dt + A2

2
· dt2 + ◦(dt2). Consider two skew-symmetric matrices A,B and de�ne the two

in�nitesimal rotation matrices

Ra = eA·dt and Rb = eB·dt.

Compute a Taylor expansion of second order associated to the rotation given by

R−1
a R−1

b RaRb.

From this result, give on interpretation of the Lie bracket [A,B] = AB−BA.

4) Verify that the set (R3,+,∧, ·) forms a Lie algebra.

Exercise 3.� Varignon's formula

See the correction video at https://youtu.be/dMhwZLTA_cA

Let us consider a solid body whose center of gravity remains at the origin of a Galilean coordinate

system and is rotating around an axis ∆ with a rotation vector of ω. Give the equation of the

trajectory of a point x of the body.

Exercise 4.� Quaternions

See the correction video at https://youtu.be/d5dRd_SjDTU

Quaternion were discovered by W. R. Hamilton are also used to represent a rotation in a 3-

dimensional space (see, e.g., [9]). Quaternions can be seen as an extension of the complex numbers.

A quaternion q̊ corresponds to a scalar s plus a vector v of R3. We use the equivalent following

notations:

q̊ = s+ v1i+ v2j + v3k = s+ < v1, v2, v3 >= s+ < v >,

where

i2 = j2 = k2 = ijk = −1.

1) From these relations, �ll the following multiplication table:

· 1 i j k

1 1 i j k

i i ? ? ?

j j ? ? ?

k k ? ? ?
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2) A unit-quaternion q̊ is a quaternion with a unit magnitude:

|̊q|2 = s2 + v21 + v22 + v23 = 1.

Consider the rotation obtained by a rotation around the unit vector v with an angle θ. From the

Rodrigues formula, we know that the corresponding rotation matrix is exp(θ · v∧). To this rotation,
we associate the quaternion:

q̊ = cos(
θ

2
) + sin(

θ

2
)· < v > .

Check that this quaternion has a unit magnitude.

3) Show that the quaternion q̊ and its opposite −q̊, both correspond to the same rotation in R3.

4) Assuming that the composition of rotations corresponds to a multiplication of quaternions,

show that

(s+ < v >)−1 = s+ < −v > .

5) We consider a rotation R composed of 3 rotations. The �rst rotation is along i with an angle

φ = π
2
, the second rotation is along j with an angle θ = π

2
, the third rotation is along k with an

angle ψ = π
2
. The transformation R corresponds to a rotation around the unit vector v with an angle

α. Give the values of v and α using 3 methods: the geometrical method (using hands only), the

matrices and the quaternions.

Exercise 5.� (Lie group SE(2))

See the correction video at https://youtu.be/vQWkOBpBdhk

The group of 2D rigid transformations of the plane is named SE(2). The classical matrix

representation is the following:

P =

 cos p3 − sin p3 p1
sin p3 cos p3 p2
0 0 1

 =

(
R t

0 1

)

where t = (p1, p2) is the translation and p3 is the angle for the rotation R.

1) Show that SE(2) as de�ned above is a Lie group.

2) Using the derivatives at p = 0, �nd the associated Lie algebra.

3) We consider the Dubins car
ẋ1 = u1 · cosx3
ẋ2 = u1 · sinx3
ẋ3 = u2

The state vector x = (x1, x2, x3) is a pose and can be represented by an element of P ∈ SE(2). For

the integration, we should apply a formula similar to R(t+ dt) = R(t) ·Exp(dt ·ωr(t)) (see equation

1.8) we had in SO(3). Give the corresponding formula for SE(2).
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4) Assume that

u1(t) = 1

u2(t) = 1

x(0) = (1, 0, π
2
)T

Write a program which integrates the trajectory with three di�erent approaches: exact, Euler

and the exponential integration scheme and compare. We will take t ∈ [0, 6] and a sampling time

equal to dt = 0.5.

5) Using the interpolation formula, �nd a path P(t), t ∈ [0, 1] in SE(2) such that P(0) =

P0,P(1) = P1, where P0 and P1 are the pose matrices associated to x(0) = (−1,−1,−1)T and

x(1) = (1, 1, 1)T, respectively.

Exercise 6.� Amphisbaena

See the correction video at https://youtu.be/DFAZUytmTk0

The real projective space, denoted by RPn, is the topological space of lines passing through the

origin 0 in Rn+1. The set RP1 is thus the set space of lines of the plane passing through 0 (see Figure

1.6). To reach line, we can associate the angle θ with the positive x-axis.

Figure 1.6: The product of the red line with the blue line corresponds to the green line

1) Show that a matrix representation for RP1 is:

P(θ) =

(
cos 2θ − sin 2θ

sin 2θ cos 2θ

)
where the parameter θ ∈]− π

2
, π
2
] is the angle of the line.

2) Show that RP1 is a Lie group for the matrix multiplication.

3) Using the derivatives at θ = 0, �nd the associated Lie algebra.
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4) We consider the amphisbaena robot represented by the �gure below. It is fully symmetric,

which means that if we rotate the robot by π, we get exactly the same robot. Its state θ is thus a

pose which can be represented by an element of P ∈ RP1. The parameter θ should is an element

of the interval ] − π
2
, π
2
]. We assume that the robot's dynamics is described by θ̇ = u. Propose a

simulation for the system. The integration has to be done in the Lie group.

5) Give a proportional controller so that our system points toward a speci�c direction θ̄ (see

Figure 1.7). Illustrate the behavior of the controller by a simulation.

Figure 1.7: The amphisbaena robot has two heads. It has to look toward the target θ̄ (red point)

with its nearest head

Exercise 7.� Car on the sphere

See the correction video at https://youtu.be/ipgs4DBQosk

Consider a car moving in the plane described by the state equations:


ẋ1 = x4 cosx3
ẋ2 = x4 sinx3
ẋ3 = u1
ẋ4 = u2

where (x1, x2, x3) is the pose of the car, x4 is the speed, u1 is the rotation rate and u2 is the

acceleration (see 1.8, left).
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Figure 1.8: Left: car on the plane; Right: car on the sphere

For the input, we choose

u =

(
0.1 · cos(0.1 · t) + 0.02

1− x4

)
and for the initial state, we take x = (0, 0, 0, 0).

1) What is the shape of the manifold corresponding to the state space. Simulate the system for

t ∈ [0, 200].

2) We take the same car, with the same input u. But now, the car moves on a sphere with radius

r = 20 as illustrated by Figure 1.8, right. What is the shape of the state-space?

3) Provide a simulation of the car moving on the sphere. The simulation should avoid the

singularities.
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Chapter 2

Euler angles

2.1 De�nition

In related literature, the angles proposed by Euler in 1770 to represent the orientation of solid

bodies in space are not uniquely de�ned. We mainly distinguish between the roll-yaw-roll, roll-pitch-

roll and roll-pitch-yaw formulations. It is the latter that we will choose since it is imposed in the

mobile robotics. Within this roll-pitch-yaw formulation, the Euler angles are sometimes referred to

as Cardan angles. Any rotation matrix of R3 can be expressed in the form of the product of three

matrices as follows:

R (φ, θ, ψ) = eψk∧︸ ︷︷ ︸
Rψ

· eθj∧︸︷︷︸
Rθ

· eφi∧︸︷︷︸
Rφ

where i = (1, 0, 0)T, j = (0, 1, 0)T, k = (0, 0, 1)T. In developed form, we get: cos θ cosψ

cos θ sinψ

− sin θ

− cosφ sinψ + sin θ cosψ sinφ

cosψ cosφ+ sin θ sinψ sinφ

cos θ sinφ

sinψ sinφ+ sin θ cosψ cosφ

− cosψ sinφ+ sin θ cosφ sinψ

cos θ cosφ


︸ ︷︷ ︸

i1|R0

︸ ︷︷ ︸
j1|R0

︸ ︷︷ ︸
k1|R0

(2.1)

We obtained this expression using the following Sympy script:

from sympy import *

def Reuler(φ,θ,ψ):

Rφ = Matrix([[1,0,0],[0,cos(φ),-sin(φ)],[0,sin(φ),cos(φ)]])

Rθ = Matrix([[cos(θ),0,sin(θ)],[0,1,0],[-sin(θ),0,cos(θ)]])

Rψ = Matrix([[cos(ψ),-sin(ψ),0],[sin(ψ),cos(ψ),0],[0,0,1]])

return Rψ*Rθ*Rφ

φ,θ,ψ= symbols('φ θ ψ')

print(Reuler(φ,θ,ψ))
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The angles φ, θ, ψ are the Euler angles and are respectively called the bank, the elevation and the

heading. The terms roll, pitch, yaw are often employed, although they correspond, respectively, to

variations of bank, elevation and heading.

2.2 Gimbal lock

When θ = π
2
(the same e�ect happens as soon as cos θ= 0), we have

R (φ, θ, ψ) =

 cosψ − sinψ 0

sinψ cosψ 0

0 0 1

 ·

 0 0 1

0 1 0

−1 0 0

 ·

 1 0 0

0 cosφ − sinφ

0 sinφ cosφ


︸ ︷︷ ︸

=


0 sinφ cosφ

0 cosφ − sinφ

−1 0 0



=

 cosψ − sinψ 0

sinψ cosψ 0

0 0 1

 ·

︷ ︸︸ ︷ cosφ sinφ 0

− sinφ cosφ 0

0 0 1

 ·

 0 0 1

0 1 0

−1 0 0


=

 cos (ψ − φ) − sin (ψ − φ) 0

sin (ψ − φ) cos (ψ − φ) 0

0 0 1

 0 0 1

0 1 0

−1 0 0


=

 0 − sin (ψ − φ) cos (ψ − φ)

0 cos (ψ − φ) sin (ψ − φ)

−1 0 0


and thus,

dR

dψ
= −dR

dφ
.

This corresponds to a singularity which tells us that when θ = π
2
, we cannot move on the manifold

of rotation matrices SO(3), in all directions using the Euler angles. Equivalently, this means that

some trajectories R(t) cannot be followed by Euler angles.

2.3 Rotation matrix to Euler angles

Given a rotation matrixR, we can easily �nd the three Euler angles by solving, following Equation

(2.1), the equations:
− sin θ = r31
cos θ sinφ = r32 cos θ cosφ = r33
cos θ cosψ = r11 cos θ sinψ = r21
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By imposing θ ∈ [−π
2
, π
2
], φ ∈ [−π, π], ψ ∈ [−π, π], we �nd:

φ = atan2(r32, r33)

θ = − arcsin r31
ψ = atan2(r21, r11)

(2.2)

Here atan2 is the two-argument arctangent function de�ned by

α = atan2 (y, x) ⇔ α ∈]− π, π] and ∃r > 0 |
{
x = r cosα

y = r sinα
(2.3)

Application

Assume that we have a robot, for instance a boat, which is assumed to be static as represented

by Figure 2.1. The world frame R0 is such that Ox is oriented toward the North and Oz toward the

sky. We want to estimate the Euler angles φ, θ, ψ of the robot from the magnetic �eld y1 and its

acceleration a1, both measured in the robot frame R1 (see Figure 2.1).

Figure 2.1: The boat has to �nd its Euler angles from the accelerometer and the magnetometer

For simplicity, we assume that y and a have been normalized, i.e., their norm are both equal to

1. The frame R0 is de�ned by the three vectors. i, j,k. If we express these vector in R0, we get:

i0 =

 1

0

0

 , j0 =

 0

1

0

 , k0 =

 0

0

1


In R0, we have

y0 =

 cos I

0

− sin I

 , a0 = k0 =

 0

0

1


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where I is the magnetic dip (or inclination), i.e., the angle between the magnetic �eld and the

vertical. From the knowledge of a and y we can build the vectors i, j,k. Indeed

i = y−(yTa)·a
∥y−(yTa)·a∥

j = k ∧ i = a ∧ y−(yTa)·a
∥y−(yTa)·a∥

k = a

Denote by R the orientation matrix of the robot. We have(
i0 | j0 | k0

)
= R ·

(
i1 | j1 | k1

)
,

i.e.,

R =
(
i1 | j1 | k1

)T
.

The orientation matrix of the robot is thus

R =

(
y1 − (yT

1 a1) · a1

∥y1 − (yT
1 a1) · a1∥

∣∣∣∣ a1 ∧ y1−(yT1 a1)·a1

∥y1−(yT1 a1)·a1∥

∣∣∣ a1

)T

From (2.2), we get the Euler angles.

2.4 Rotation vector of a moving Euler matrix

Figure 2.2: The coordinate system R1 : (o1, i1, j1,k1) attached to the robot

Let us consider a solid body moving in a coordinate system R0 and a coordinate system

R1 attached to this body (refer to Figure 2.2). The conventions chosen here are those of the

SNAME (Society of Naval and Marine Engineers). The two coordinate systems are assumed to

be orthonormal. Let R(t) = R(φ(t), θ(t), ψ(t)) be the rotation matrix that links the two systems.

We need to �nd the instantaneous rotation vector ω of the solid body relative to R0 in function of

φ, θ, ψ, φ̇, θ̇, ψ̇.

We have

ωr = ω|R1 = ∧−1
(
RT · Ṙ

)
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where R = Reuler (φ, θ, ψ) is given by (2.1). Set q = (φ, θ, ψ). We have

ωr(q, q̇) = ∧−1
(
R(q)T · d

dt
R(q)

)
= ∧−1

(
R(q)T · ∂R(q)

∂q
· q̇

)
Note that ωr depends linearly of q̇, i.e, it as the form

ωr(q, q̇) = A(q) · q̇

By di�erentiating with respect to q̇, we get

∂ωr(q, q̇)

∂q̇
= A(q).

Thus we have

ωr(q, q̇) =
∂ωr(q, q̇)

∂q̇
· q̇

or equivalently,

q̇ =
(
∂ωr(q,q̇)

∂q̇

)−1

· ωr

=
(
∂
∂q̇

(
∧−1

(
R(q)T · ∂R(q)

∂q
· q̇

)))−1

· ωr

.

Taking into account the expression of R(q) = Reuler (φ, θ, ψ), given by (2.1), we get φ̇

θ̇

ψ̇


︸ ︷︷ ︸

q̇

=

 1 tan θ sinφ tan θ cosφ

0 cosφ − sinφ

0 sinφ
cos θ

cosφ
cos θ


︸ ︷︷ ︸

( ∂ωr∂q̇ )
−1

· ωr.
(2.4)

The expression for
(
∂ωr
∂q̇

)−1

in (2.4) could be obtained using Sympy by the following script:

t = symbols('t')

φ,θ,ψ = Function('φ')('t'),Function('θ')('t'),Function('ψ')('t')

dψ,dθ,dφ = Function('dψ')('t'),Function('dθ')('t'),Function('dφ')('t')

R=Reuler(φ,θ,ψ)

W=Transpose(R)*diff(R,t)

wr=Matrix([[-W[1,2]],[W[0,2]],[-W[0,1]]])

wr=wr.subs({diff(φ,t):dφ,diff(θ,t):dθ,diff(ψ,t):dψ})

wr=simplify(wr)

dq=[dφ,dθ,dψ]

print(simplify(wr.jacobian(dq).inv()))

We observe a singularity if cos θ = 0. We will therefore take care to never have an elevation θ equal

to ±π
2
, to avoid the gimbal lock.
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Exercises

Exercise 8.� Heading of a boat

See the correction video at https://youtu.be/riJZseoavFk

We consider a boat moving in the waves. We want to estimate the Euler angles (and more

particularly the heading) from a magnetometer and an accelerometer. The accelerometer yields the

vertical. The magnetic dip (or inclination) is the angle I between the magnetic �eld and the vertical.

The range of dip is from −π
2
rad (at the South Magnetic Pole) and π

2
rad (at the North Magnetic Pole).

It is given approximately given by the formula

I = arctan(2tanλ)

where λ is the latitude. For instance, in Brest, we have λ = 48.39°. Thus we get I = 66° = 1.15rad.

We consider a boat near Brest which is assumed to be static as represented by Figure 2.3. The world

frame R0 we consider is centered in Brest and is such that Ox is oriented toward the North and Oz

toward the sky.

Assume that the boat has the orientation φ, θ, ψ that are unknown. These Euler angles have to

be estimated from the magnetic �eld y1 and its acceleration a1, both given in the boat frame.

Figure 2.3: The boat has to �nd its heading from the accelerometer and the magnetometer

For simplicity, we assume that y and a have been normalized, i.e., their norm are both equal to
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1. In R0, we have

y0 =

 cos I

0

− sin I

 , a0 =

 0

0

1



This means that when the orientation R of the boat corresponds to identity, the magnetometer

measures the �eld y0 and the accelerometer returns a0.

1) From a1, give an estimation of the bank θ (pitch angle) and the elevation φ (roll angle).

2) Compute the rotation which leads our boat to the nearest horizontal orientation.

3) Provide an estimation ψ̂ of the heading angle ψ.

4) Using a simulation, check that the Euler angles are well estimated in case of small angles.

Exercise 9.� Immersion

See the correction video at https://youtu.be/E-XX52wbBQ8

Consider the pendulum described by the state equations:

{ (
θ̇

ω̇

)
=

(
ω

− sin θ − 1
2
ω

)

1) Considering that the two states (θ, ω) and (θ + 2kπ, ω), k ∈ Z, are identical, show that the

state space corresponds to a cylinder.

2) We want to represent the cylinder which is a two-dimensional manifold in the larger dimensional

Cartesian space R3. We call this representation an immersion. Set x1 = cos θ, x2 = sin θ, x3 = ω.

Give the state equations in the x-space. Which constraint should satisfy x?

3) Provide a Runge-Kutta simulation on the x-space of the system. The initial vector is chosen

as (−1, 0, 6). Draw the corresponding trajectory and interpret.

Exercise 10.� Car on the torus

See the correction video at https://youtu.be/TcZ0f1iVB-A

Consider a car moving on the torus, parameterized by the two radius r1, r2, as illustrated by

Figure 2.4. The pose of the car is represented by 3 angles x1, x2, x3. The speed of the car is always

equal to 1. The car has a single input u corresponding to its rotation rate with respect to the ground.
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Figure 2.4: Representation of the pose of the car on the torus

1) What is the shape of the manifold corresponding to the state space. Give the state equations

of the system.

2) Simulate the system for r1 = 10, r2 = 6 and t ∈ [0, 100]. The initial state is taken as

x1 = x2 = x3 = 0. For the control, we choose u = 0.1.

Exercise 11.� Manipulator robot

See the correction video at http://youtu.be/TPlHx0PE6P4

A manipulator robot, such as Staubli represented on Figure 2.5, is composed of several rigid

arms. We retrieve the coordinates of the end e�ector, at the extremity of the robot, using a series

of geometric transformations. We can show that a parametrization with four degrees of freedom

allows to represent these transformations. There are several possible parametrizations, each with its

own advantages and disadvantages. The most widely used one is probably the Denavit-Hartenberg

parametrization. In the case where the articulations are rotational joints (as is the case of the Staubli

robot where the joins can turn), the parametrization represented by the �gure might prove to be

practical since it makes drawing the robot easier. This transformation is the composition of four

elementary transformations: (i) a translation of length r following z ; (ii) a translation of length d

following x ; (iii) a rotation of α around y and (iv) a rotation of θ (the variable activated around z.

Using the �gure for drawing the arms and the photo for the robot, perform a realistic simulation of

the robot's movement.
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Figure 2.5: Parametrization for the direct geometric model of a manipulator robot
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Chapter 3

Inertial unit

Assume that we are enclosed inside a box near to the Earth without any possibility to see the

environment outside. Inside the box we may perform some inertial experiments such as observing

bodies translating or rotating. These experiments allow us to measure indirectly the accelerations and

the angular speed of the box in its own frame. The principle of an inertial unit is to estimate the pose

(position and orientation) of the box from these inertial measurements only (called proprioceptive

measurements), assuming that the initial pose is known.

3.1 Mechanization equations

For this purpose, we will describe the motion of our box by a kinematic model the inputs of which

are the accelerations and the angular speeds these are directly measurable in the coordinate system

of the box. The state vector is composed of

� the vector p = (px, py, pz) that gives the coordinates of the center of the box expressed in the

absolute inertial coordinate system R0,

� the orientation (which can either be given by the three Euler angles (φ, θ, ψ) or a rotation

matrix R) and

� the speed vector vr of the box expressed in its own coordinate system R1.

The inputs of the system are

� the acceleration ar = aR1 of the center of the box also given in R1 and

� the vector ωr = ωR1/R0|R1 = (ωx, ωy, ωz) corresponding to the rotation vector of the box

relative to R0 expressed in R1.

We have indeed to express a, ω in the coordinate system of the box since these quantities are generally

measured via the sensors attached on it. The �rst state equation is:

ṗ
(1.10)
= R (φ, θ, ψ) · vr.

35



Luc Jaulin Mobile robotics: Inertial

Let us di�erentiate this equation. We obtain:

p̈ = Ṙ · vr +R · v̇r

with R = R (φ, θ, ψ). From this equation, we isolate v̇r to get

v̇r = RT · p̈︸ ︷︷ ︸
ar

−RTṘ · vr
(1.4)
= ar − ωr ∧ vr.

which constitutes the second state equation. Figure 3.1 shows a situation where a robot has a

constant speed and follows a circle. The speed vector vr is a constant whereas ar is di�erent from

zero.

Figure 3.1: Illustration of the formula v̇r = ar − ωr ∧ vr when v̇r = 0. Left: the robot follows a

circle; right: representation of the vectors in the robot frame.

We obtain the navigation mechanization equations [10]:

ṗ = R (φ, θ, ψ) · vr φ̇

θ̇

ψ̇

 (2.4)
=

 1 tan θ sinφ tan θ cosφ

0 cosφ − sinφ

0 sinφ
cos θ

cosφ
cos θ

 · ωr

v̇r = ar − ωr ∧ vr

(3.1)

Using rotation matrix instead of Euler angles. From Equation (1.4), we have RTṘ =

∧
(
RTω

)
. Thus, the navigation mechanization equations can be written without any Euler angles

as 
ṗ = R · vr
Ṙ = R · (ωr ∧ )

v̇r = ar − ωr ∧ vr

(3.2)

The main advantage of this representation is that we do not have the singularity that exists in (2.4)

for cos θ = 0. But instead, we have redundancies, since R of dimension 9 replaces the 3 Euler angles.
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3.2 With gravity

In case where there exists a gravity g (p) which depends on p, the actual acceleration ar
corresponds to the gravity plus the measured acceleration amesr . In this case, the inertial unit can be

described by the following state equations
ṗ = R · vr
Ṙ = R · (ωr ∧ )

v̇r = RT · g (p) + amesr − ωr ∧ vr

(3.3)

In this case, the input of the system are amesr and ωr which are obtained by the accelerometers and

the gyroscope [11]. To integrate this state equation for localization purpose, we need to know the

initial state and a gravity map g (p) .

3.3 Integration scheme

A pure inertial unit (without hybridization and without taking into account Earth's gravity)

represents the robot by the kinematic model of Figure 3.2, which itself uses mechanization equations.

The input vector u = (ar,ωr) corresponds to the measured inertial inputs (accelerations and rotation

speeds viewed by an observer on the ground, but expressed in the frame of the robot).

Figure 3.2: Mechanization equations

We may use a numerical integration method such the Euler method:

x(t+ dt) := x(t) + dt · f (x (t) ,R (t) ,u (t))

R(t+ dt) := R(t) · edt·ωr(t)

with

x = (p,vr)

f(x,R,u) =

(
R · vr

RT · g (p) + amesr − ωr ∧ vr

)
If we use a Runge-Kutta midpoint integration scheme instead, we get

x(t+ dt) := x(t) + dt ·
(
f
(
x(t) + dt

2
f (x(t),R(t),u(t)) ,R(t) · e dt2 ·ωr(t),u(t)

))
R(t+ dt) := R(t) · edt·ωr(t)
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as illustrated by Figure 3.3.

Figure 3.3: Runge Kutta midpoint method for integrating the mechanization equations

3.4 Dead reckoning

For dead reckoning (i.e., localization without external sensors) there are generally extremely

precise laser gyrometers (around 0.001 deg/s.). These make use of the Sagnac e�ect (in a circular

optical �ber turning around itself, the time taken by light to travel an entire round-trip depends

on the path direction). Using three �bers, these gyrometers generate the vector ωr = (ωx, ωy, ωz).

There are also accelerometers capable of measuring the acceleration ar with a very high degree of

precision. In pure inertial mode, we determine our position by integration of Equations (3.3) only

using the acceleration ar and the rotation speed ωr, both expressed in the coordinate system of

the box. In the case where we are measuring the quantity vr (also expressed in the frame of the

inertial unit attached to the robot) with a Doppler velocity log, we only need to integrate the �rst

and the last of these three equations. Finally, when the robot is a correctly ballasted submarine or a

terrestrial robot moving on a relatively plane ground, we know a priori that on average the bank and
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the elevation are equal to zero. We may therefore incorporate this information through a Kalman

�lter in order to limit the drift in positioning. An e�cient inertial unit integrates an amalgamation

of all the available information.
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Exercises

Exercise 12.� Foucault pendulum

See the correction video at https://youtu.be/eRb-�0DqX8

The Foucault pendulum is a simple device, introduced in 1851 by the French physicist Léon

Foucault, to provide an evidence of the Earth's rotation. It consists of a long and heavy pendulum

suspended from the high roof above a circular area. Over an extended time period, we observe that

the plane of oscillation rotates. The goal of the exercise is to compute the associated oscillation

period.

1) A car drives with a speed v on a �at circular road of radius r, as illustrated by Figure 3.4.

Attached to this car, a pendulum oscillates without friction in a plane, called the oscillation plane.

The ratio r
v
is assumed to be large enough to have an oscillation plane continuously vertical. Give

an expression of the period Tp to which the oscillation plane rotates.

Figure 3.4: A car driving on a circular road with center c. The oscillation plane (gray) remains

vertical

2) Consider a non-rotating Earth of radius r0 with our car at the surface going at speed v. The

pendulum is still oscillating in a vertical oscillation plane in the car's frame. If the car goes straight,

it will follow a geodesic, as represented by the green trajectory of Figure 3.5. For the sphere, these

geodesics are circles with center o and the oscillation plane remains static in the car frame. Consider
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now the situation where the car drives along a parallel toward East. If the car is in the North

hemisphere, it has to turn left to stay on the parallel, as illustrated by the red trajectory. Similarly,

if the car is in the South hemisphere, it has to turn right to follow the parallel. Compute the rotation

rate of pendulum oscillation plane with respect to v and its the latitude θ of the parallel.

Figure 3.5: The car turns around a static Earth

3) Consider the Earth of radius r0 rotating at a period of TE = 24h. The car is now static with

respect to the Earth and always encloses the pendulum inside. Compute the period Tp of the rotation

of the oscillation plane.

Exercise 13.� Schuler oscillations in an inertial unit

See the correction video at https://youtu.be/9vsZCnPXCPo

Consider the Earth which is considered as static, without rotation, with a gravity �eld directed

toward the center and with a magnitude g = 9.81ms−2. An inertial unit is �xed in a robot R1 at the

surface or the Earth of radius r. Its position is with p = (r, 0, 0) and its orientation R corresponds

to the identity matrix, as in Figure 3.6. The robot R1 will always be static in the exercise.

1) Give the values for amesr and ωr collected by the inertial unit of R1.
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Figure 3.6: Blue the actual robot which is static. Red the fake position though by the inertial unit

2) We now want to lure the inertial unit by initializing the robot at some other place, say R2 at

the neighborhood of R1 , and �nding a trajectory so that the unit believes that it is �xed in R1.

More precisely, we want to �nd a motion p(t) = (x(t), y(t), z(t)) for R2 so that the inertial unit

senses exactly the inputs amesr ,ωr of R1. For this, we assume that at time t = 0, the orientation R

for R2 is the same as for R1, i.e., it is the identity matrix. For simplicity, we also assume that R2

remains in the plane y = 0. Simplify the state equations for R2 in our speci�c case.

3) Provide a simulation of the trajectory of R2, initialized at p(0) = (r, 0, 1)T. Interpret.

4) Linearize the state equation for R2 at the state vector corresponding to R1. Compute the

eigen values and give an interpretation.

5) Assuming that the inertial unit is not perfectly initialized, what can you conclude for the

corresponding error propagation.

Exercise 14.� 3D robot graphics

See the correction video at https://youtu.be/t4ay2KENg-k

Drawing two- or three-dimensional robots or objects on the screen is widely used for simulation

in robotics. The classic method (used by OpenGL) relies on modeling the posture of objects using

a series of a�ne transformations (rotations, translations, homotheties) of the form:

fi :
Rn → Rn

x 7→ Aix+ bi

with n = 2 or 3. However, the manipulation of compositions of a�ne functions is less simple than that

of linear applications. The idea of the transformation in homogeneous coordinates is to transform a

system of a�ne equations into a system of linear equations. Notice �rst of all that an a�ne equation

of the type y = Ax+ b can be written as:(
y

1

)
=

(
A b

0 1

)(
x

1

)
.
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We will thus de�ne the homogeneous transformation of a vector as follows:

x 7→ xh =

(
x

1

)
.

Thus, an equation of the type

y = A3 (A2 (A1x+ b1) + b2) + b3

involving the composition of three a�ne transformations, can be written as:

yh =

(
A3 b3

0 1

)(
A2 b2

0 1

)(
A1 b1

0 1

)
xh.

A sketch is a matrix with two or three rows (depending on the object being in the plane or in space)

and n columns representing the n vertices of a rigid polygon embodying the object. It is important

that the union of all the segments formed by two consecutive points of the sketch forms all the

vertices of the polygon that we wish to represent.

1) Let us consider the underwater robot (or AUV for Autonomous Underwater Vehicle) whose

sketch matrix in homogeneous coordinates is :

M =


0 0 10 0 0 10 0 0

−1 1 0 −1 −0.2 0 0.2 1

0 0 0 0 1 0 1 0

1 1 1 1 1 1 1 1

 .

Draw this sketch in perspective view on a piece of paper.

2) The state equations of the robot are the following:

ṗ =

 v cos θ cosψ

v cos θ sinψ

−v sin θ


v̇ = u1 φ̇

θ̇

ψ̇

 =

 1 tan θ sinφ tan θ cosφ

0 cosφ − sinφ

0 sinφ
cos θ

cosφ
cos θ

 ·

 −0.1 sinφ · cos θ
v · u2
v · u3


where (φ, θ, ψ) are the three Euler angles. The inputs of the system are the tangential acceleration

u1, the pitch rudder u2 and the yaw rudder u3. The state corresponds to (p, v, φ, θ, ψ). Program

a function able to draw the robot in 3D together with its shadow, in the plane x-y. Verify that

the drawing is correct by moving the six degrees of freedom of the robot one by one. Obtain a

three-dimensional representation such as the one illustrated in Figure 3.7.
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Figure 3.7: 3D representation of the robot together with its shadow in the horizontal plane

3) Simulate the robot in various conditions. In the simulation, draw the instantaneous rotation

vector of the robot.

4) Provide a model and a simulation which uses a rotation matrix for the orientation instead of

the Euler angles. Compare with the simulation made previously.
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Chapter 4

Dynamic modeling

4.1 Principle

A robot (airplane, submarine, boat) can often be considered as a solid body whose inputs are the

(tangential and angular) accelerations. These quantities are analytic functions of the forces that are

at the origin of the robot's movement. For the dynamic modeling of a submarine the reference work

is the book of Fossen [12], but the related notions can also be used for other types of solid robots

such as planes, boats or quadrotors. In order to obtain a dynamic model, it is su�cient to take

the kinematic equations and to consider that the angular and tangential accelerations are caused by

forces and torques which become the new inputs of our system. The link between the accelerations

and the forces is done by Newton's second law (or the fundamental principle of dynamics). Thus,

for instance if f is the external force expressed in the inertial frame and m is the mass of the robot,

we have

mp̈ = f .

Since the speed and accelerations are generally measured by sensors embedded in the system, we

generally prefer to express the speed and accelerations in the frame of the robot:

mar = fr,

where fr is the applied forces vector expressed in the robot frame. The same type of relation, known

as the Euler's rotation equation, exists for rotations. It is given by

Iω̇r + ωr ∧ (Iωr) = τ r (4.1)

where τ r is the applied torque and ωr is the rotation vector both expressed in the robot frame. The

inertia matrix I is attached to the robot (i.e., computed in the robot frame) and we generally choose

the robot frame to make I diagonal. Recall that the inertia matrix of a solid body occupying the

volume V is

I =

∫
V

ρ(x, y, z)

 y2 + z2 −xy −xz
−xy x2 + z2 −yz
−xz −yz x2 + y2

 dx dy dz
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where ρ(x, y, z) is the density.

Relation 4.1 is a consequence of the Euler's second law which states that in an inertial frame,

the time derivative of the angular momentum L = R · I ·RT ·ω equals the applied torque τ . In the

inertial frame, this can be expressed as

d
dt
L = τ

⇔ d
dt
(R · I · ωr) = R · τ r

⇔ ṘI · ωr +R · I · ω̇r = R · τ r
⇔ RTṘI · ωr + I · ω̇r = τ r
⇔ ωr ∧ (Iωr) + Iω̇r = τ r.

4.2 Equation of a 3D robot

The state equations for a 3-dimensional rigid robot are given by
ṗ = R · vr (i)

Ṙ = R · (ωr ∧ ) (ii)

v̇r = RT · g + 1
m
· fr − ωr ∧ vr (iii)

ω̇r = I−1 · (τ r − ωr ∧ I · ωr) (iv)

(4.2)

where p is the position, R is the orientation matrix of the robot, vr the speed in the robot frame,

ωr the rotation vector in the robot frame and g = (0, 0, g) is the gravity. The three �rst equations

(i), (ii), (iii) correspond to the kinematic equations and have already been derived (see Equation

3.3). Note that in Equation (iii), the acceleration ar (expressed in the robot frame) comes from

the Newton's second law where fr is the resultant. Equation (iv) comes from the Euler's rotation

equation (4.1) where τ r is the torque vector.

The motion of the robot is thus mainly governed by forces which create the resultant fr and the

torque, the τ r. Assume for simplicity that we have only one force with origin q which produces a

force f in the direction given by the unit vector d. Both q and d are given in the body frame. The

force contributes to the resultant on the robot as fr = d · f and to the torque as

τ r = q ∧ d · f. (4.3)

.

The forces can be actuated or not. For example:

1. For an underwater robot, the Archimedes force is an upward buoyant force that is exerted on

a body which is equal to the weight of the water that the body displaces.

2. The propeller of torpedo generates a controlled force oriented forward.

The torque τ r can be actuated or not. Let us give few examples.

Page 48 of 84



Luc Jaulin Mobile robotics: Inertial

1. Static restoring torque. Consider an underwater vehicle and denote by q the vector between

the center gravity of and the center of buoyancy then the water yields a torque given (in the

robot frame) by (see 4.3)

τ r = q ∧RT ·

 0

0

−g

 · ρV

where V is the immersed volume and ρ is the density of the water. It is called the restoring

torque.

2. Dynamic restoring torque. A robot, such as an aircraft or a torpedo, may rotate about its

center of mass. The resultant of the aerodynamic forces acts on a point, the center of pressure,

which is not the center of gravity. In this case a small yaw or pitch motions, aerodynamic

forces occur. The stability exists when the corresponding torque tends to restore the system

to its initial orientation. The stability is obtained when the center of gravity is in front of the

center of pressure.

3. Damping torque. When robot rotates, it will create a friction that slows down the robot. A

linear approximation is

τ r = −D · ωr

where D is the damping matrix.

4.3 Modeling a quadrotor

As an illustration, we consider a quadrotor (see Figure 4.2) for which we want a dynamic model.

The robot has four propellers that can be tuned independently. This will allow us to control the

attitude and position of the robot by changing the speeds of the motors. The drone matrice 600

represented on Figure 4.1 has 6 propellers but can also be considered has a quadrotor since all its

propellers have a vertical orientation.

Figure 4.1: Matrice 600 of ENSTA-Bretagne
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Figure 4.2: Quadrotor

We distinguish the front/rear propellers (blue and black), rotating clockwise and right/left

propellers (red and green), rotating counterclockwise. The value of the force generated by the ith

propeller is proportional to the squared speeds of the rotors, i.e., is equal to β · ωi · |ωi|, where β is

the thrust factor. Denote by δ the drag factor and ℓ the distance between any rotor and the center

of the robot. The forces and torques generated on the robot are
τ0
τ1
τ2
τ3

 =


β β β β

−βℓ 0 βℓ 0

0 −βℓ 0 βℓ

−δ δ −δ δ

 ·


ω1 · |ω1|
ω2 · |ω2|
ω3 · |ω3|
ω4 · |ω4|


where τ0 is the total thrust generated by the rotors and τ1, τ2, τ3 are the torques generated by

di�erences in the rotor speeds.

Since the resultant and the torque are given by

fr =

 0

0

−τ0

 and τ r =

 τ1
τ2
τ3

 ,

from (4.2), we get that the state equations for the quadrotor are given by

ṗ = R · vr
Ṙ = R · (ωr ∧ )

v̇r = RT · g +

 0

0

− τ0
m

− ωr ∧ vr

ω̇r = I−1 · (τ r − ωr ∧ (I · ωr))

where p is the position and R is the orientation matrix of the robot.
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4.4 Euler-Lagrange method

To �nd the state equations of a more general complex mechanical system with articulations or

constraints with the environment, a Lagrangian method is often used. When dealing with Lagrangian

mechanics, we generally spot the mechanical system at each time by the vector of the n degrees

of freedom q = (q1, . . . , qn)
T. The qi's are called the generalized coordinates. The vector of the

generalized speeds is q̇ = (q̇1, . . . , q̇n)
T. We de�ne the Lagrangian as

L(q, q̇) = T (q, q̇)− V (q),

where T (q, q̇) is the kinetic energy and V (q) is the potential energy. The quantity T (q, q̇) can

generally be written as :

T (q, q̇) =
1

2
q̇TM(q)q̇,

where M(q) is called the inertia matrix. It is a n × n symmetric and positive de�nite. The Euler-

Lagrange equations are given by

d

dt

∂L

∂q̇i
− ∂L

∂qi
= ui, i = 1, . . . , n. (4.4)

where ui are called the generalized forces associated to qi. It corresponds to a force (if qi is a length)

or to a torque (if qi is an angle). The generalized forces are external to the system and do not derive

from a potential. The Euler-Lagrange equations form a system of n di�erential equations of second

order:

M(q)q̈+C(q, q̇)q̇+ g(q) = u,

where g(q) is the gravity, C(q, q̇)q̇ is the vector of Coriolis and centrifugal forces. We thus get the

state equations:

d

dt

(
q

q̇

)
=

(
q̇

M−1(q)· (u−C(q, q̇)q̇− g(q))

)
.

4.5 Proof of the Euler-Lagrange-equations

We will now give a simple proof for the Euler-Lagrange equations (4.4) which is based on the

second Newton law. What is surprising is that only the kinetic and potential energies of the system

are involved in these equations. Expressions for internal forces have completely disappeared.

For simplicity's sake, we will assume that the mechanical system under consideration is made up

of a set of elementary particles (the system's atoms, for example) of mass mk. De�ne

� rk (q) : the position vector for each particle. It is a function of the generalized coordinates q

of the system.
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� vk(q, q̇) : is the velocity vector for each particle.

The kinetic energy of the system is

T (q, q̇) =
1

2

∑
k

mkv
T
k vk.

Assume move qi maintaining all other generalized coordinates constant. Let us compute d
dt
∂T
∂q̇i

− ∂T
∂qi

.

First,

∂
∂qi
T (q, q̇) = 1

2

∑
kmk

∂
∂qi

(
vT
k vk

)
= 1

2

∑
kmk

(
vT
k
∂vk
∂qi

+
∂vTk
∂qi

vk

)
=

∑
kmkv

T
k
∂vk
∂qi
.

(4.5)

and

d
dt

∂
∂q̇i
T (q, q̇) = d

dt
∂
∂q̇i

(
1
2

∑
kmkv

T
k vk

)
=

∑
k

1
2
mk

d
dt

(
∂
∂q̇i

(
vT
k vk

))
=

∑
k

1
2
mk

d
dt

(
∂vTk
∂q̇i

vk + vT
k
∂vk
∂q̇i

)
=

∑
kmk

d
dt

(
vT
k
∂vk
∂q̇i

)
=

∑
kmk

(
dvTk
dt

· ∂vk
∂q̇i

+ vT
k · d

dt

(
∂vk
∂q̇i

))
.

(4.6)

Note, dvk
dt

represents the acceleration vector ak of the kth particle. Now,

∂vk
∂q̇i

=
∂

∂q̇i

(
drk
dt

)
=

∂

∂q̇i

(
∂rk
∂qi

q̇i

)
=
∂rk
∂qi

,

since rk does not depend on q̇i. Thus, (4.6) rewrites

d

dt

∂

∂q̇i
T (q, q̇) =

∑
k

mk

(
aT
k · ∂rk

∂qi
+ vT

k · d
dt

(
∂rk
∂qi

))
,

=
∑
k

mka
T
k · ∂rk

∂qi
+
∑
k

mkv
T
k · ∂vk

∂qi
.

Substracting this equation with (4.5) yields

d

dt

∂

∂q̇i
T (q, q̇)− ∂

∂qi
T (q, q̇) =

∑
k

mka
T
k .
∂rk
∂qi

.

From the second Newton law mkak is equal to the sum of forces applies to the kth particle. Note

by fk (q) the resultant of all the forces derivating from a potential V (i.e., fk is a function of q) and

gk (t) the resultant of all other forces. We have fk + gk = mkak. Thus,

d

dt

∂

∂q̇i
T (q, q̇)− ∂

∂qi
T (q, q̇) =

∑
k

(
fTk (q) + gT

k

)
.
∂rk(q)

∂qi
(4.7)
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Now, the force fk (q) satis�es.

fk(q) = −mk
∂Vk(q)

∂rk

where Vk(q) is the potential of he kth particle. Thus Equation 4.7 becomes

d
dt

∂
∂q̇i
T (q, q̇)− ∂

∂qi
T (q, q̇) =

∑
k

(
−mk

∂Vk(q)
∂rk

)
.
(
∂rk(q)
∂qi

)
+
∑

k g
T
k .

∂rk(q)
∂qi

,

=
∑

k

(
−mk

∂Vk(q)
∂qi

)
+
∑

k g
T
k .

∂rk(q)
∂qi

,

= − ∂
∂qi

∑
kmkVk(q) +

∑
k g

T
k .

∂rk(q)
∂qi

.

(4.8)

The quantity
∑

kmkVk(q) represents the potential energy U(q) of the system. Equation 4.8 rewrites

into

d

dt

∂

∂q̇i
T (q, q̇)− ∂

∂qi
T (q, q̇) = −∂U (q)

∂qi
+
∑
k

gT
k .
∂rk (q)

∂qi
,

or equivalently

d

dt

∂

∂q̇i
(T (q, q̇)− U(q))− ∂

∂qi
(T (q, q̇)− U(q)) =

∑
k

gT
k .
∂rk (q)

∂qi
,

due to the fact that ∂
∂q̇i

(U(q)) = 0. Set L (q, q̇) = T (q, q̇) − U (q), we get the Euler-Lagrange

equation :

d

dt

∂

∂q̇i
(L(q, q̇))− ∂

∂qi
(L(q, q̇)) =

∑
k

gT
k .
∂rk(q)

∂qi
.

The quantity ui =
∑

k g
T
k .

∂rk(q)
∂qi

is called generalized force. It can be interpreted as a force since a

small modi�cation dqi of qi requires a work equal to

dτ =
∑
k

gT
k .drk =

∑
k

gT
k .
∂rk(q)

∂qi
dqi = ui.dqi.

This equation expresses that the work input is equal to the product of force and displacement. Thus,

the generalized force ui can be de�ned as the ratio dτ
dqi

where dτ is the amount of work required to

generate an increase of dqi on the joint qi. So ui represents a force if qi corresponds to a length, and

a torque if qi corresponds to an angle.

4.6 Modeling a simple pendulum using the Euler-Lagrange

method

Let us now consider a simple example to illustrate the principle of the approach where the system

is a simple pendulum.
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Figure 4.3: A simple pendulum

The variable q is the angle of the pendulum and q̇ is the angular velocity. The Lagrangian is

given by

L(q, q̇) = T (q, q̇)− V (q) =
1

2
m (ℓq̇)2 − ℓ (1− cos q)mg.

The Euler-Lagrange equation is

d

dt

(
∂L

∂q̇

)
−

(
∂L

∂q

)
= u,

where u is an external torque. Weight, for example, cannot be considered as external, as its in�uence

is already taken into account in the Lagrangian via the potential energy V (q). Since

∂L

∂q̇
= mℓ2q̇

∂L

∂q
= −ℓmg sin q.

The Euler-Lagrange equation rewrites as

d

dt

(
mℓ2q̇

)
+ ℓmg sin q = u,

i.e.,

mℓ2q̈ + ℓmg sin q = u.

The state equation of the pendulum are thus{
q̇ = q̇

q̈ = −ℓmg sin q+u
mℓ2
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Exercises

Exercise 15.� Modeling an underwater robot

See the correction video at https://youtu.be/Ox8zavW9WYw

The robot we will be modeling is the Redermor (greyhound of the sea in the Breton language). It

is represented on Figure 4.4. It is an entirely autonomous underwater robot. This robot, developed

by GESMA (Groupe d'Etude Sous-Marine de l'Atlantique - Atlantic underwater research group), has

a length of 6 m, a diameter of 1 m and a weight of 3 800 kg. It has an e�cient propulsion and control

system with the aim of �nding mines on the seabed.

Figure 4.4: Redermor built by GESMA (Groupe d'Etude Sous-Marine de l'Atlantique - Atlantic

underwater research group), on the water surface, still close to the boat it was launched from

Let us build a local coordinate system R0 : (o0, i0, j0,k0) over the area traveled by the robot. The

point o0 is placed on the surface of the ocean. The vector i0 indicates north, j0 points to the east and

k0 is oriented towards the center of the Earth. Let p = (px, py, pz) be the coordinates of the center

of the robot expressed in the coordinate system R0. The state variables of the underwater robot are

its position p in the coordinate system R0, its tangential v and its three Euler angles φ, θ, ψ. Its

inputs are the tangential acceleration v̇ as well as three control rudders which act respectively on
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ωx, ωy, ωz. More formally, we have:
u1 = v̇

vu2 = ωy
vu3 = ωz
u4 = ωx

where the factor v preceding u2, u3 indicates that the robot is only able to turn left/right (through

u3) or up/down (through u2) when it is advancing. Give the kinematic state model for this system.

Exercise 16.� Dzhanibekov e�ect

See the correction video at https://youtu.be/EA1Rh5MgGKI

The Dzhanibekov e�ect (discovered by Poinsot [13]) corresponds to the instability of the rotation

of a rigid body around its second principal axes. We consider a parallelepiped of mass m given in

Figure 4.5. We assume that the density is uniform.

Figure 4.5: Parallelepiped body used to illustrate the Dzhanibekov e�ect

1) Recall that the inertia matrix of a solid body occupying the volume V is

I =

∫
V

ρ(x, y, z)

 y2 + z2 −xy −xz
−xy x2 + z2 −yz
−xz −yz x2 + y2

 dx dy dz

where ρ(x, y, z) is the density. Compute the inertia matrix of the parallelepiped.

2) The Euler equation of a free rigid body is given by

ω̇r = −I−1 · (ωr ∧ (I · ωr))
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where ωr = (ω1, ω2, ω3) is the rotation vector expressed in the body frame. Give the state equation

governing the rotation of our parallelepiped. The state vector is taken as (ω1, ω2, ω3).

3) Give the equilibrium points of the system in the state-space. Conclude about about the rotation

of any solid asteroid in the rotating space.

4) Study the stability of the rotation along the steady states.

5) Take a = 0.4, b = 1, c = 3,m = 1. Illustrate by a simulation, an unstable situation with a

rotation of the parallelepiped rotating along one of its principle axis.

Exercise 17.� Euler �eld

See the correction video at https://youtu.be/in5wrQkVv4A

The goal of this exercise is to provide a geometrical interpretation of the behavior of a solid body

in rotation. We consider the Euler equation given by

ω̇r = −I−1 · (ωr ∧ (I · ωr))

where ωr is the rotation vector expressed in the body frame and I is the inertia matrix given by

I =

 1 0 0

0 2 0

0 0 3


1) Show that the kinetic energy given by

EK =
1

2
ωT
r Iωr

is constant.

2) Draw in three dimensional �gure, the ellipsoid E corresponding to the set of all ωr such that

energy equal to E0 = 10J. Draw the vector �eld describing the evolution of ωr on this ellipsoid.

3) Simulate with a Runge-Kutta method the evolution of the rotation vector for an initial

condition ωr(0) = (4,
√
2, 0). Draw the corresponding trajectory on the ellipsoid E . Interpret the

result.

4) Simulate an evolution for ωr(0) = (0.01,
√
10, 0). Conclude.

Exercise 18.� Flat disk

See the correction video at https://youtu.be/Ra918LJ08WQ

Consider a disk spinning in the space without any gravity. The disk is assumed to be �at, i.e.,

its inertia matrix

I =

 I1 0 0

0 I2 0

0 0 I3


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should satisfy (i) the positivity condition: I1 > 0, I2 > 0, I3 > 0 and (ii) the �atness condition:

I1 = I2 + I3.

We assume that we can control some internal forces in a strap down manner. It means that we

have no inertial wheels to control the rotation of the disk. Instead, we could slightly modify I by

dilatation or compression of some parts of the disk. We also consider that we are not able to change

the center of gravity of the disk.

At rest, the inertial matrix is assumed to be

Ī =

 Ī1 0 0

0 Ī2 0

0 0 Ī3

 =

 1
2
mr2 0 0

0 1
4
mr2 0

0 0 1
4
mr2


where r is the radius of the disk and m is its mass. We assume that, we have two symmetric pairs

of masses which can move along the y and z axis as in Figure 4.6.

Figure 4.6: The disk spins and the two pairs of masses (black and green) can slightly move in order

the control the motion of the rotation vector ω

The inertia of the disk is now

I =

 1
2
mr2 + 1

2
ℓ22 +

1
2
ℓ23 0 0

0 1
4
mr2 + 1

2
ℓ23 0

0 0 1
4
mr2 + 1

2
ℓ22


where ℓ2 corresponds to the distance of the y-masses (green) to the center and ℓ3 is the distance of

the z-masses (black) to the center. Our objective is to propose a controller to modify the rotation of

the disk.
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1) Denote by R the orientation of the �at disk and by ωr = (ω1, ω2, ω3) the spin vector in the

body frame. Taking into account the time invariance of the angular momentum, show that state

equation to which obeys the disk can be given by,

ω̇1 = − ω1

I2+I3
(u1 + u2)− I3−I2

I2+I3
ω2ω3

ω̇2 = −ω2

I2
u1 − ω3ω1

ω̇3 = −ω3

I3
u2 + ω1ω2

İ2 = u1
İ3 = u2

where

u1 = ℓ2ℓ̇2
u2 = ℓ3ℓ̇3

2) To �nd a controller for our system, we follow a Lyapunov control approach [14]. For this,

we choose a positive function V (x) such that V (x) = 0 when the objective is reached. Give an

expression for a controller which tends to decrease V (x).

3) Aligment control. We want the disk spins around one principal axis of the body. For instance

its �rst axis, i.e., the x-axis. We de�ne the objective function

V (x) =
1

2

(
ω2
2 + ω2

3 + (I2 − Ī2)
2 + (I3 − Ī3)

2
)
.

The quantity ω2
2 + ω2

3 corresponds to the alignment error. Note that when V (x) = 0, we have

ω2 = ω3 = 0 (the alignment is performed) and I = Ī (the inertia matrix is at its nominal position).

Propose a controller which tends to decrease V (x). Illustrate by a simulation.

4) Passivity control. We now want the disk losses energy with the intuition that it may limit the

precession. We de�ne the mechanical energy as

V (x) = 1
2
I1ω

2
1 +

1
2
I2ω

2
2 +

1
2
I3ω

2
3 +

1
2
(I2 − Ī2)

2 + 1
2
(I3 − Ī3)

2 .

The quantity 1
2
ωT
r Iωr corresponds to kinetic energy and 1

2
(I2 − Ī2)

2 + 1
2
(I3 − Ī3)

2 is the arti�cial

potential energy. Propose a controller which tends to decrease V (x). Illustrate by a simulation.

5) Precession controller. To cancel it, we propose to take the objective function

V (x) = 1
2
((I3 − I2)ω2ω3)

2 + 1
2
((I1 − I3)ω3ω1)

2 + 1
2
((I2 − I1)ω1ω2)

2

+1
2
(I2 − Ī2)

2 + 1
2
(I3 − Ī3)

2.

The quantity

((I3 − I2)ω2ω3)
2 + ((I1 − I3)ω3ω1)

2 + ((I2 − I1)ω1ω2)
2 = ∥ωr ∧ I · ωr∥2

can be interpreted precession energy, i.e., a part of the kinetic energy that creates the precession and

that can be recovered. Indeed, when ωr ∧ I · ωr = 0, we see from the Euler equation that ω̇r = 0
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when u = 0, which means that we have no more precession. Implement the corresponding controller

and illustrate by a simulation.

6) Assume that at time t = 0, the disk spins around the second axis:

ωr(0) = (10−5, 10, 0)

and that we want it spins around the �rst axis. Combine the previous controllers to achieve this

goal. Validate on a simulation.

Exercise 19.� Inverted rod pendulum

See the correction video at https://youtu.be/bmwtuAcF6iY

Consider the inverted rod pendulum represented on Figure 4.7, composed of a pendulum placed

in unstable equilibrium on a carriage.

Figure 4.7: Inverted pendulum

The value u is the force exerted on the carriage of mass mc = 5 kg, s indicates the position of

the carriage, θ is the angle between the pendulum and the vertical. At the tip b of the pendulum of

length ℓ = 1 m is a �xated mass mr = 1 Kg. Finally, a is the point of articulation between the rod

and the carriage.

1) De�ne q = (s, θ) the vector of generalized coordinates. Write the Lagrangian L(q, q̇).

2) Using Sympy, write the Euler-Lagrange equations

3) Derive the state equations of the system using Sympy as much as possible.

4) Propose a simulation using a Runge-Kutta method.

Exercise 20.� Rolling disk
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See the correction video at https://youtu.be/VAKjnEcIjXg

Consider a disk rolling on a plane without friction nor sliding, as shown on Figure 4.8.

Figure 4.8: Disk (blue) rolling on a plane. The vertical and horizontal projections are painted black

We assume that the disk mass is m = 5kg and its radius is r = 1m. The gravity is taken as

g = 9.81ms−2.

In this exercise, we want to �nd the state equations describing the motion of the disk. The

Lagrangian approach, often applied to model robots, will be chosen.

The state vector is chosen as x = (c1, c2, φ, θ, ψ, φ̇, θ̇, ψ̇) where (c1, c2) is the vertical projection of

center c = (c1, c2, c3) of the disk and φ, θ, ψ are the three Euler angle. As illustrated by Figure 4.8,

� φ is the spin angle

� θ is the stand angle, i.e., when θ = 0, the disk is vertical

� ψ is the heading, i.e., the horizontal orientation of the disk.

1) Give an expression of the Lagrangian L with respect to the state variables.

2) If the ground is a �at frozen lake where the disk can slide in both direction (horizontally and

laterally), then the state vector is

(q, q̇) = (c1, c2, φ, θ, ψ, ċ1, ċ2, φ̇, θ̇, ψ̇),

Using the Euler Lagrange equations, given by

d

dt

(
∂L
∂q̇

)
− ∂L
∂q︸ ︷︷ ︸

Q(q,q̇,q̈)

= τ
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where τ are the external constraint forces, �nd a di�erential equation describing the motions of the

disk sliding on the ice.

3) Assume now that, no sliding is possible and the disk can only roll. Show that these rolling

constraint on (q,q̇) are linked by the di�erential equations:

ċ1 = r sinψ · φ̇+ r cosψ cos θ · θ̇ − r sinψ sin θ · ψ̇
ċ2 = −r cosψ · φ̇+ r sinψ cos θ · θ̇ + r cosψ sin θ · ψ̇

4) We have no friction no external forces to thrust or slow down the disk. The only external

forces that apply to the disk are the reaction of the ground on the disk. The principle of d'Alembert

states that the rolling constraints do not work. It can be used to �nd an expression for τ which

occurs in the right hand side of the Euler-Lagrange equation. Show that

τ = λ1 ·


1

0

−r sinψ
−r cosψ cos θ

r sinψ sin θ

+ λ2 ·


0

1

r cosψ

−r sinψ cos θ

−r cosψ sin θ


where λ1 and λ2 are the Lagrange parameters which depend on q.

5) Deduce the state equations of the rolling disk with a state vector given by x =

(c1, c2, φ, θ, ψ, φ̇, θ̇, ψ̇).

6) Simulate the rolling disk with the following initial state

(c1, c2, φ, θ, ψ, φ̇, θ̇, ψ̇) = (2, 0, 0, 0.1, 0, 2.5, 0, 0)

for t ∈ [0, 10]. The simulation should behave as illustrated by Figure 4.9 where the blue disk

corresponds to the initial state.

Figure 4.9: Disk rolling on a plane with precession
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7) Find some initial conditions for the disk so that the simulation generates a perfect a circular

trajectory.
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Chapter 5

Inertial control

In this chapter, we consider the equations (4.2) given by
ṗ = R · vr (i)

Ṙ = R · (ωr ∧ ) (ii)

v̇r = RT · g + 1
m
· fr − ωr ∧ vr (iii)

ω̇r = I−1 · (τ r − ωr ∧ I · ωr) (iv)

(5.1)

This model can be quali�ed as inertial since two inertial parameters are involved : the mass m and

the inertia matrix I. A control loop on such a system is also quali�ed as inertial since it requires the

knowledge of these two inertial parameters only.

In this chapter, we show how to choose the forces fr and the torque τ r to track a virtual pose

represented by a desired position pd(t) and a desired orientation Rd(t). We assume these quantities

have a closed form and thus their two �rst derivatives ṗd, p̈d, Ṙd, R̈d, are available.

5.1 Control the accelerations

We �rst note that if we choose

{
fr = mv̇dr −mRT · g +mωr ∧ vr
τ r = I · ω̇d

r + ωr ∧ I · ωr

where the new inputs are v̇dr and ω̇d
r the values we want for v̇r and ω̇r, the system (5.1) simpli�es

into 
ṗ = R · vr
Ṙ = R · (ωr ∧ )

v̇r = v̇dr
ω̇r = ω̇d

r

We now have a model which is purely kinematic. The parameters m and I do not occur anymore.
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5.2 Positioner

The positioner is a controller which computes the acceleration v̇dr to apply to the robot to reach

a desired target pd(t). More precisely, we want an expression of v̇dr with respect to pd(t) and the

state variables p,R,vr,ωr. We de�ne the error

e = pd − p.

To cancel this error, by choosing the right acceleration, we take here a proportional and derivative

controller. For this, we want the error to satisfy the error equation

ë+ α1ė+ α0e = 0

where α0, α1 are chosen to generate a stable characteristic polynomial.

In the robot frame, the error equation becomes ër + α1ėr + α0er = 0, where

er = RTe = RT (pd − p)

ėr = RTė = RT (ṗd − ṗ) = RTṗd − vr
ër = RTë = RT (p̈d − p̈)

= RTp̈d −RT(Ṙvr +Rv̇r)

= RTp̈d − ωr ∧ vr − v̇r

Thus

ër + α1ėr + α0er = 0

⇔ RTp̈d − ωr ∧ vr − v̇r + α1ėr + α0er = 0

⇔ v̇r = RTp̈d − ωr ∧ vr + α1ėr + α0er

Since v̇r = v̇dr the expression of the positioner is thus

v̇dr = RTp̈d − ωr ∧ vr + α1(R
Tṗd − vr) + α0R

T(pd − p).

This means that if we are able to produce the forces and torques that generate the acceleration v̇r
then, the error e = pd − p will converge to zero.

5.3 Orientator

The orientator is a controller which tells us how to change the rotation vector in order to follow a

desired orientation Rd(t), i.e., we want an expression of ω̇
d
r with respect to Rd and the state variables

p,R,vr,ωr.

We need to recall that

d

dt
log(R(t)) = RT(t) · Ṙ(t). (5.2)

Indeed,
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d
dt
exp(log(R(t)) = d

dt
R(t)

⇒ exp(log(R(t)) · d
dt
log(R(t)) = Ṙ(t)

⇒ d
dt
log(R(t)) = RT(t) · Ṙ(t)

In SO(3), the orientation error can be represented by Rd · RT. Now, this quantity cannot be

quali�ed as an error since SO(3) has no addition operator. In the corresponding Lie algebra, we

de�ne the error as

e = Log(RdR
T)

where e corresponds to the rotation vector we have to follow for 1sec to go from R to Rd. To

cancel thus error, by choosing the right angular acceleration ω̇d
r , we can consider a proportional and

derivative controller. For this, we want the error to satisfy

ë+ α1ė+ α0e = 0,

where α0, α1 are chosen to generate a stable characteristic polynomial. Now,

e∧ = log(RdR
T)

ė∧ = d
dt
log(RdR

T)
(5.2)
= RRT

d · d
dt
(RdR

T)

= RRT
d · (RdṘ

T + ṘdR
T)

= RṘT︸ ︷︷ ︸
=−(ω∧)

+R RT
d Ṙd︸ ︷︷ ︸

=(RTd ωd)∧

RT

(1.3)
= − (ω∧) + ((R ·RT

dωd)∧)

Thus

e = Log(RdR
T)

ė = −ω +RRT
dωd

ë = −ω̇ + ṘRT
dωd +RṘT

dωd +RRT
d ω̇d

In the robot frame, the error equation ë+ α1ė+ α0e = 0, becomes ër + α1ėr + α0er = 0, where

er = RTe = RTLog(RdR
T)

ėr = RTė = −RTω +RT
dωd

ër = RTë = −RTω̇︸ ︷︷ ︸
=ω̇r

+RTṘ︸ ︷︷ ︸
=ωr∧

RT
dωd + ṘT

dωd +RT
d ω̇d

(5.3)

The di�erential equation for the error is

0 = ër + α1ėr + α0er

⇔ 0
(5.3)
= −ω̇r + (ωr∧) ·RT

dωd + ṘT
dωd +RT

d ω̇d + α1ėr + α0er
⇔ ω̇r = (ωr ∧ )RT

dωd + ṘT
dωd +RT

d ω̇d + α1ėr + α0er
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Since ω̇d
r = ω̇r, we get

ω̇d
r = (ωr ∧ )RT

dωd + ṘT
dωd +RT

d ω̇d + α1ėr + α0er

As a consequence, to provide the robot an orientation Rd(t) we can take the following controller

Orientator (in : Rd, Ṙd, R̈d,R,ωr; out: ω̇
d
r)

1 ωd = ∧−1(Ṙd ·RT
d )

2 ω̇d = ∧−1(Ṙd · ṘT
d + R̈d ·RT

d )

3 er = RT · Log(RdR
T)

4 ėr = −ωr +RT
dωd

5 ω̇d
r =

(
(ωr ∧ )RT

d + ṘT
d

)
· ωd +RT

d ω̇d + α1ėr + α0er

We can take a characteristic polynomial for the error which is stable as for instance: (s + 1) =

s2 + 2s+ 1. In this case, α0 = 1 and α1 = 2.

5.4 Controller

As illustrated by Figure 5.1, we are now able to generate the right resultant fr and the right torque

τ r in order to track a time dependent position pd(t) with the right time dependent orientation Rd(t).

To get generate the torque τ r, we can either use the external forces such as propellers or use

inertial disks inside the robot.

Figure 5.1: Orientator and positioner
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5.5 Two-dimensional robots

If the robot moves in the plane, then, we can still apply Equation 5.1 which now becomes simpler.

This is illustrated by Figure 5.2. For a two dimensional robot, we get

R =

 cosψ − sinψ 0

sinψ cosψ 0

0 0 1

 , p =

 p1
p2
0

 , ωr =

 0

0

ω

 ,

ωr∧ =

 0 −ω 0

ω 0 0

0 0 0

 , ω̇r =

 0

0

ω̇

 , fr =

 fr1
fr2
0



Figure 5.2: Robot in the plane

If we select only the x, y components as represented in Figure 5.2, right, we get
ṗ = R · vr
Ṙ = R · ω∧
v̇r = 1

m
· fr − (ω∧)vr

ω̇ = τ
I33

(5.4)

In this equation, ω is a scalar and we have

ω∧ =

(
0 −ω
ω 0

)
.

There is no need to specify if the relation is expressed in the robot frame or in the world frame: they

are the same. Moreover,

R =

(
cosψ − sinψ

sinψ cosψ

)
and the vectors vr, fr are both two dimensional. The main di�erence between Equations (4.2) and

(5.4) is the Euler equation which collapses into ω̇ = τ
I33
. This is due to the fact that ω,τ are now

both scalar instead of three dimensional vectors.

The equations for the orientator and the positioner remain valid.
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Exercises

Exercise 21.� Lie bracket for control

See the correction video at https://youtu.be/P�tQ7ZuNZs

The motivation of Lie bracket for control is illustrated by Figure 5.3 on the car parking problem. We

would like to move the blue car sideway between the two red cars already parked. Moving sideway

is not possible, but we can approach this direction using many small forward-backward maneuvers.

Building this new sideway direction corresponds to the Lie bracket operator between two dynamics.

The goal of this exercise is two illustrate Lie brackets on a simple Dubins car.

Figure 5.3: The inertial unit inside the robot is static

Consider two vector �elds f and g of Rn corresponding to two state equations ẋ = f(x) and ẋ = g(x).

We de�ne the Lie bracket between these two vector �elds as

[f ,g] =
dg

dx
· f − df

dx
· g.

We can check that the set of vector �elds equipped with the Lie bracket is a Lie algebra. The

proof is not di�cult but tedious and will not be asked in this exercise.

1) Consider the linear vector �elds f(x) = A · x, g(x) = B · x. Compute [f ,g] (x).

2) Consider the system

ẋ = f(x) · u1 + g(x) · u2.

We propose to apply the following cyclic sequence:

t ∈ [0, δ] t ∈ [δ, 2δ] t ∈ [2δ, 3δ] t ∈ [3δ, 4δ] t ∈ [4δ, 5δ] . . .

u = (1, 0) u = (0, 1) u = (−1, 0) u = (0,−1) u = (1, 0) . . .
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where δ is an in�nitesimal time period δ. This periodic sequence will be denoted by

{(1, 0) , (0, 1) , (−1, 0) , (0,−1)}

Show that

x(t+ 2δ) = x (t− 2δ) + [f ,g] (x(t)) δ2 + o
(
δ2
)
.

3) Which periodic sequence should we take in order to follow the �eld ν · [f ,g]. We will �rst

consider the case ν ≥ 0 and then the case ν ≤ 0.

4) Propose a controller such that the system becomes

ẋ = f(x) · a1 + g(x) · a2 + [f ,g] (x) · a3

where a = (a1, a2, a3) is the new input vector.

5) Consider a Dubins car described by the following state equations:
ẋ = u1 cos θ

ẏ = u1 sin θ

θ̇ = u2

where u1 is the speed of the cart, θ its orientation and (x, y) the coordinates of its center. Using Lie

Brackets, add a new input to the system, i.e., a new direction of control.

6) Propose a simulation to check the good behavior of your controller. To do this take δ small

enough to be consistent with the second order Taylor approximation but large with respect to the

sampling time dt. For instance, we may take δ =
√
dt. The initial state vector is taken as x(0) =

(0, 0, 1).

7) Propose a controller so that the car goes up. Consider the same questions, where the car goes

down, right and left, respectively.

Exercise 22.� Follow the equator

See the correction video at https://youtu.be/8brHzqFHhSg

We consider a mobile body moving around a planet, the Earth, with a radius ρE rotating along

the vertical axis with a rotation rate ψ̇E.

1) Draw the Earth rotating with a static body at position p with the following frames (see Figure

5.4):

1. R0 is the Earth-centered inertial frame, �xed with respect to the stars

2. R1 is the Earth frame and turning with the Earth with a rotational speed ψ̇E

3. R2 is the navigation frame, ego-centered and pointing toward the sky

4. R3 is the ego-centered frame of the robot.
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Figure 5.4: Earth with the di�erent frames. The origin of the frames have been shifted for more

visibility

For the simulation, take ψ̇E = 0.2 rad/s, ρE = 10m.

2) Provide the kinematic state equations for the body. The state variables are taken as (p,R3,v3),

where p is the position of the body in R0, R3 is the orientation of the body, and v3 is the speed of

the body seen from R0 and expressed in R3. The inputs are chosen as ω3, the rotation vector of the

body and a3, the measured acceleration, both expressed in R3. Propose a simulation with the Earth

rotating and the body moving in the space with a gravity given by g (p) = −9.81 · ρ2T
p

∥p∥3 .

3) The planet is now assumed to be made of water and the body is an underwater robot equipped

with actuators (such as propellers) to move inside the water. The gravity is taken as g (p) = −9.81
ρT

p.

The water of the rotating planet drags the robot through friction forces (tangential and rotational).

Moreover, the robot which has the same density as the surrounding �uid receives an Archimedes

upward buoyant force. Propose a dynamical model describing the motion of the robot. The inputs

will be the rotational acceleration uω3 et the tangential acceleration ua3 expressed in R3. These

acceleration result from the action of the actuators creating forces and torques on the robot. Propose

a simulation illustrating all these e�ects.

4) The robot behaves like a 3D Dubins-like car model. More precisely, it is equipped with a

single propeller which push the robot forward without any possibility to control the speed. We take

ua3 = (1, 0, 0)T. We assume that the robot can chose its rotation vector using rudders, jet pumps or

inertial wheels. Find a controller such that the robot goes to East along the equator. Validate by a

simulation.

Exercise 23.� Modeling and control of a torpedo

See the correction video at https://youtu.be/4kLr7KnyNi8

We consider the autonomous underwater vehicle (AUV), a Riptide, represented by Figure 5.5.

For its locomotion, the robot uses three �ns and one propeller. The inputs are u0, the rotation speed
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of the propeller and the angles u1, u2, u3 of the �ns. We assume that we have no side slip e�ect. This

means that the velocity vector vr has always the direction of the robot, or equivalently, the robot

has no lateral speed.

Figure 5.5: The Riptide robot has one propeller and three �ns

1) Recall that the mechanization kinematic equations of a solid body are given by


ṗ = R · vr
Ṙ = R · (ωr∧)
v̇r = ar − ωr ∧ vr

where R is the orientation matrix, ωr is the rotation vector expressed in the robot frame, ar is the

acceleration vector in the robot frame, and p is the position of the robot in the world frame. Find a

kinematic state space model for the robot, where the inputs are ωr and the longitudinal acceleration

arx.

2) Considering that the robot has no side slip, propose a dynamic model for the robot. We will

assume that the robot has a cylinder shape, that its buoyancy is neutral, and the added mass is equal

to the mass of the robot. The inputs are now, u0, u1, u2, u3.

3) Propose a controller for the dynamical model. More precisely, we want that the closed loop

system has the desired rotation vector ω̄r and the desired acceleration ārx.

4) Illustrate the behavior of the system using a simulation. Try to get a trajectory similar to that

illustrated by Figure 5.5.
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Figure 5.6: The Riptide (orange) is controlled to turn left with a desired speed of 1ms−1. The surface

shadow at the surface is painted gray.

Exercise 24.� Geodesic

See the correction video at https://youtu.be/S1-j554Szac

Consider a n-dimensional manifold embedded into Rm, m > n with the parametric equations

x = r(q),

where q ∈ Rn represents the con�guration vector (or the vector of the degrees of freedom) of a robot

and x ∈ Rm is coordinate vector in the workspace. We assume that we can control the acceleration

q̈ of q via a control u. In this exercise, we want to �nd a controller (see Figure 5.7) which computes

u such that ẍ−w is as small as possible. We will then make the correspondence with the notion of

geodesic used to characterize the shortest path between two points of a manifold [15].
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Figure 5.7: The controller generates u in order to minimize ∥ẍ−w∥

1) Consider a curve x(t) = r(q(t)). Give an expression of ẍ as a function of q, q̇, q̈.

2) We want ẍ = w where w is the wanted acceleration. Now, due to the fact that x(t) should stay

on the manifold r(Rn), all accelerations ẍ are not allowed. Only the projection of ẍ on the tangent

plane can be chosen as desired. This is illustrated by Figure 5.8 where the car can turn left and right

but should stay on the surface. This means that we cannot have any impact on the component of ẍ

which is orthogonal to the manifold (red arrow in the �gure).

Find the controller (see Figure 5.8 ) which computes u such that ∥ẍ−w∥ is as small as possible.

Figure 5.8: When moving on the manifold, we can only have an action the acceleration along the

manifold (blue) but not on the transverse component (red)

3) When we do not want any acceleration along the manifold, we chose w = 0 and the

corresponding trajectory is called a geodesic. What is the equation of a geodesic starting q(0) = q0

and q̇(0) = q̇0.

4) We consider the torus, given by

 x1
x2
x3

 = r(q1, q2) =

 (a1 + a2 cos q2) cos q1
(a1 + a2 cos q2) sin q1

−a2 sin q2


with a1 = 10, a2 = 6. Compute and draw a geodesic on the torus starting from q(0) = (0, 0) and

q̇(0) = (0.1, 0.2), t ∈ [0, 50]. An illustration of what you should obtain is given by Figure 5.9.
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Figure 5.9: The geodesic oscillates around the external equator

5) We consider the ellipsoid, described by

 x1
x2
x3

 = r(q1, q2) =

 a1 cos q2 cos q1
a2 cos q2 sin q1
a3 sin q2


where a1 = 8, a2 = 4, a3 = 2. Write a program which computes a geodesic starting from q(0) = (0, 0)

and such that q(10) = (2, 1).

Exercise 25.� Helicopter looping

See the correction video at https://youtu.be/aCI-Tgydct8

Consider the helicopter robot described by Figure 5.5. It has a main rotor on top and a small tail

rotor. In order to control the helicopter, one can tilt the angle of each blade on both rotors. The main

rotor is used to move the helicopter up and down, and to make the helicopter tilt forward, backward,

left or right. By tilting a blade to increase the blade's angle of attack, the pilot can increase the force

of lift that is pushing up on that blade [16].

Figure 5.10: Helicopter
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A state space model is given by



ṗ = R · vr (i)

Ṙ = R · (ωr ∧ ) (ii)

v̇r = RT ·

 0

0

g

+ 1
m
·

 0

0

−τ0

− ωr ∧ vr (iii)

ω̇r = I−1 ·

 τ1
τ2
τ3

− ωr ∧ (I · ωr)

 (iv)

where


τ0
τ1
τ2
τ3

 =


β1ω

2
1 0 0 0

0 β2ω
2
1 0 0

0 0 β3ω
2
1 0

−δ1ω2
1 0 0 −β4ℓω2

2

 ·


u1
u2
u3
u4

 .

In this model, R corresponds to the orientation, p the position, vr the speed vector expressed

in the robot frame, ωr the rotation vector also expressed in the robot frame, τ0 is the total thrust

generated by the main rotor, τ1 is the roll torque, τ2 is the pitch torque, τ3 is head torque generated

by the tail rotor and u the input vector. We assume that ω1 = ω2 = 100, β1 = 0.02, β2 = β3 = β1
10
,

β4 = 0.002, δ1 =
β1
5
all expressed in the international unit system.

1) Provide a controller to that the helicopter has the desired orientation Rd and the desired total

thrust τ d0 .

2) Give a controller for the system, so that the helicopter performs a looping, as illustrated by

Figure 5.5.

3) Validate using a simulation.
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Figure 5.11: Helicopter performing a looping

Exercise 26.� Hexarotor

See the correction video at https://youtu.be/3HVC9IMDB4o

A hexarotor is composed of a body and 6 rotors. Each rotor is at position q(i) and produces

a force fi in the direction d(i). In the body frame, the coordinates of q(i),d(i) are given by the

following table:

i 1 2 3 4 5 6

q(i)

 0

1

0

  −1

0

0

  0

−1

0

  1

0

0

  1
2

0

0

  0
1
2

0


d(i)

 1

0

0

  0

0

1

  0

0

1

  0

0

1

  1

0

0

  0

1

0


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This is illustrated by Figure 5.12. Each force fi contributes to the resultant on the robot as

d(i) · fi and to the torque as q(i) ∧ d(i) · fi.

Figure 5.12: Hexarotor with its six propellers

1) Find the state equations of the hexarotor. The state is be composed of the position p, the

orientation R, the speed vr in the robot frame and the rotation vector ωr in the robot frame. The

inputs are f1, . . . , f6.

2) Find a controller that makes the hexarotor able to dock on a platform at position pd with an

orientation Rd.

3) Illustrate on a simulation in the case where the position and the orientation for the platform

(which corresponds to the target to be reached) are given by

pd =

 sin 3t
10

cos 4t
10

1
10

· sin 3t
10

 , Rd = Exp

 sin t

cos 2t

t

 .

Exercise 27.� Scan satellite

See the correction video at https://youtu.be/MRD3xtGYZwE

We consider a 2-dimensional satellite in orbit around the Earth. We assume that it is described

by the state equations

ṗ = R · vr
Ṙ = R · ω∧
v̇r = RT · g − ω ∧ vr
ω̇ = τ

Ṙw = Rw · ωw∧
ω̇w = −τ
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where Rw and ωw de�ne the angle position and rotation speed of an inertial wheel inside the satellite,

p is the position of the satellite, R is its orientation, vr its speed expressed in its own frame and ω

it rotation speed. We assume that the gravity is g = − p
∥p∥3 .

1) Provide a simulation for τ = 0 with the following initial conditions:

p(0) =

(
0

1

)
,vr(0) =

(
0.8

0

)
,R(0) = Rw(0) =

(
1 0

0 1

)
, ω(0) = ωw(0) = 0.

2) Find a controller so that the satellite is always oriented toward the center of the Earth.
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