

experiences in multiple underwater vehicle coordination based on acoustic communication (constraints)

Vincent Rigaud, Director of the Underwater Systems unit , Ifremer, CETSM- European Center for Underwater Technologies Lorenzo Brignone, Jan Opderbecke Underwater Systems Unit IFREMER

Background & Motivation

Practical swarm scenario

GREX

PedNeback

- Reduce cost , reducing ship time mainly
- Offer new ways and new missions with existing fleets
- Design of the squadron is complex and mission dependent
 - **Evaluation of communications constraints in real world!**

FeedNeback

Case Study

"Source seeking with swarms (SSS)" Design the swarm with simulator

- Simulator architecture covers all aspects
 - Environment model
 - Dynamic vehicle model
 - Vehicle control
 - Formation control
 - Acoustic communication model
 - Search algorithm

5

Swarm design: build the team from simulation SSS

GREX

FeedNeback

- **Formation Control : Swarm design vs mission duration**
- Formation holds up to 50% of communication packet loss
 - Large fleet -> Long communication cycle, because of spectral occupation real limitations
 - ->Large fleet -> Low formation velocity

FeedNeback

From simulation to @ sea validation

- Vehicle and communication model
 - Models verified by sea trials
 - Severe conditions as test case

Probability of packet loss for DI=2, SL=173 db ref 1µPa at 1m, Nis=90 dbV/sqrt(Hz) at f, BW=239.8Hz, f=10kHz, gamma1=0.246, Kb=60 bits,k=2

200 250 Distance Im

300

350 400

450 500

150

50 100

Communication : Sea trials Objectives

« qualitative Tests with two-way acoustic communication between two moving AUVs »

Practical outcomes for the realised tests
A better understanding of:

Integration of DSPCOMM modem on AUVs
 Acoustic bandwith in realistic conditions

3. Data compression and bandwith optimisation

4. Range measurement

5. Medium Access Control

6. Acoustic networking

GREX

Requirements: the AUVs

VORTEX AUV

- Hover capable AUV
- 50m max depth,
- 0.7 m/s max speed
- 4 degrees of freedom
- Radio, WiLan and acoustic communication
- Simple dead reckoning NAV (DVL, compass, depth, altitude)
- MIMOSA mission compatible

Asterx AUV

- Survey type operational AUV
- 3000m max depth,
- 3.0 m/s max speed
- Radio, proprietor acoustic communication and DSPComm
- INS based NAV + USBL

Features:

- Vortex is in DP at surface
- Asterx is at approx 60m depth on a closed preplanned mission path
- Vehicles exchange data packets on acoustic channel (TDMA)
- Exchanged data is simply logged on both vehicles

Features:

- Both vehicles navigate on predefined paths
- Top down data is used to compute relative distance between vehicles
- On exceeding distance threshold, Asterx starts wait circle (1a and 1b) and issues meeting point coordinates (1b)
- On successful top-down and bottom-up communication exchange vehicles continue their preplanned trajectories (1b)

Requirements: Communication strategy for Media Access

GREX

Time division multiple access (TDMA) : channel access method for shared medium networks. It allows several users to share the same frequency channel by dividing the signal into different time slots

- Both vehicles exchange same data packets (i.e. same length)
- Data Tx occurs at set interval defined to avoid collisions
- No retransmissions
- Communication period depends on acoustic modem own *TIMEOUT* parameter, data packet length and use of range measurement

14

Requirements: Communication strategy for Medium Access

FeedNeback

GREX

- Data packet: VehicleNavData structure (8 doubles = 64 bytes) + 2 bytes
- After compression : 18 bytes
- ATO on current DSPComm modem is about 4 seconds
- ATO applies to both data sends and range requests

Results: some statistics

Co-desig	in for netw	orked co	ontrol syste	ms

Whole Day Testing

	IX TX	IX RX	Success Rate
nov-10	237	43	18.14345992
nov-12	596	116	19.46308725
nov-13	306	206	67.32026144
nov-14	631	186	29.4770206

Whole Day Testing

	VX TX	VX RX	Success Rate
nov-10	237	29	12.23628692
nov-12	546	0	0
nov-13	307	0	0
nov-14	629	271	43.08426073

WaitOnDistance summary

	Wod IX TX	WoD IX RX	Success Rate
nov-10	0	0	0
nov-12	132	71	53.78787879
nov-13	75	55	73.33333333
nov-14	87	61	70.11494253

WaitOnDistance summary

	WoD VX TX	WoD VX RX	Success Rate
nov-10	0	0	0
nov-12	132	0	0
nov-13	75	0	0
nov-14	86	43	50

note : TX == UDP_R on the acoustic Handler RX == SER_R on the Acoustic Handler

Results summary

- **ECNEDACK** 1. Valuable experience made on two-way acoustic communication between AUVs
 - 2. Identified issues with power supply to modems
 - 3. Identified other issues with modems for upgrade design
 - 4. Valuable experience on TDMA
 - 5. Data was successfully exchanged between vehicles and used for coordination

6. First sea trial validation of Vortex AUV

7. Integration and validation of NEMO-PSE supervisory
 control software on Ifremer AUV

