Localization/Explored area

Experimental results

Summary

Set membership approach for underwater exploration with swarms

Vincent Drevelle Luc Jaulin Benoit Zerr

ENSTA Bretagne

International Conference on Underwater Remote Sensing, Brest (France), 2012

Projet labélisé par le Pôle Mer Bretagne

Cible Océanique en Meute Tactique

Organismes financeurs

Partenaires

Unc	lerwater	exp	loration

Localization/Explored area

Experimental results

Outline

1 Underwater exploration with swarms

2 Localization and explored area characterization

- Localization
- Explored area
- Set-membership approach

3 Experimental results

- AUV swarm simulation
- Guaranteed explored area computation

Localization/Explored area

Experimental results

Summary

Underwater exploration with swarms.

It is sometimes necessary to explore a given zone, and to ensure that it has been entirely covered (mapping, mine hunting, search, \dots)

AUV swarms:

- robustness through redundancy and diversity
- scalability
- cooperation

Experimental results

Underwater exploration with swarms.

It is sometimes necessary to explore a given zone, and to ensure that it has been entirely covered (mapping, mine hunting, search, \dots)

AUV swarms:

- robustness through redundancy and diversity
- scalability
- cooperation

In this talk

- Localize the swarm of robots
- Characterize the explored area w.r.t localization uncertainty

Underwater exploration	Localization/Explored area	Experimental results	Summary
Localization			

Outline

Underwater exploration with swarms

2 Localization and explored area characterization

- Localization
- Explored area
- Set-membership approach

Experimental results

- AUV swarm simulation
- Guaranteed explored area computation

Underwater exploration	Unc	lerwater	exp	loration
------------------------	-----	----------	-----	----------

Localization/Explored area

Experimental results

Summary

Localization

Localization.

- Surface : GPS
- Underwater :

No installed infrastucture for localization.

- Dead reckoning
- Acoustical localization system

$$\begin{cases} \dot{\mathbf{x}}(t) &= \mathbf{f}(\mathbf{x}(t), \mathbf{u}(t)) \\ \mathbf{y}(t) &= \mathbf{g}(\mathbf{x}(t)) \end{cases}$$

- dead reckoning
- GPS, acoustic ranges

Use boxes (interval vectors) $[{\bf x}]$ and $[{\bf y}]$ to represent positions and measurements, and their uncertainties.

Localization/Explored area

Experimental results

Summary

Localization

Inter-AUV communication for localization

- Time of arrival measurements -> ranges
- Emitter's position box is transmitted

Each communication is a constraint between two AUV positions.

- Communication enables contraction of position boxes
- Repeated contractions enhance swam localization

Underwater exploration	Localization/Explored area	Experimental results	Summary
Explored area			
- · ·			

1 Underwater exploration with swarms

2 Localization and explored area characterization

Localization

Outline

- Explored area
- Set-membership approach

3 Experimental results

- AUV swarm simulation
- Guaranteed explored area computation

Localization/Explored area

Experimental results

Summary

Explored area

What area has been explored by the swarm?

$$\begin{cases} \dot{\mathsf{x}}(t) &= \mathsf{f}(\mathsf{x}(t),\mathsf{u}(t)) \\ \mathsf{y}(t) &= \mathsf{g}(\mathsf{x}(t)) \\ \mathbb{V}(t) &= \{\mathsf{z} \in \mathbb{R}^2 : \mathsf{v}(\mathsf{z},\mathsf{x}(t)) \leq 0\} \\ \mathbb{M} &= \bigcup_{t \in [t]} \mathbb{V}(t) \end{cases}$$

- evolution
- observation
- visibility
- explored map

This formalism can represent the single AUV case as well as the full swarm:

- x is the state of the swam
- observations are GPS positions and inter-AUV range measurements.

Underwater exploration	Localization/Explored area	Experimental results 00000000	Summary
Explored area			
Visible area and	explored area		

The visible area at time t is represented by the set-valued function $\mathbb{V}(t)$:

$$\mathbb{V}(t) = \left\{ \mathsf{z} \in \mathbb{R}^2 : v(\mathsf{z},\mathsf{x}(t)) \leq 0 \right\}$$

where $v(\mathbf{z}, \mathbf{x}(t))$ is the visibility function.

Let $\mathbb M$ be the map of the explored area. $\mathbb M$ is the union of the visible areas over the whole trajectory:

$$\mathbb{M} = igcup_{t \in [t]} \mathbb{V}(t)$$

Localization/Explored area

Experimental results

Summary

Explored area

Bracketing of the visible area: guaranteed and possible

Guaranteed visible area $\mathbb{V}^\forall:$ set of points that have necessarily been observed, regardless of the state uncertainty

$$\mathbb{V}^{\forall}(t) = \left\{ \mathsf{z} \in \mathbb{R}^2 : \forall \mathsf{x}(t) \in [\mathsf{x}](t), v(\mathsf{z}, \mathsf{x}(t)) \le \mathsf{0} \right\}$$
(1)

Possible visible area \mathbb{V}^{\exists} : set of points that may have been in the robot's field of view:

$$\mathbb{V}^{\exists}(t) = \left\{ \mathsf{z} \in \mathbb{R}^2 : \exists \mathsf{x}(t) \in [\mathsf{x}](t), v(\mathsf{z}, \mathsf{x}(t)) \le 0 \right\}$$
(2)

 $\mathbb{V}^{\forall}(t)$ and $\mathbb{V}^{\exists}(t)$ form a bracketing of the actual visible area $\mathbb{V}(t)$:

$$orall t \in [t], \mathbb{V}^{orall}(t) \subset \mathbb{V}(t) \subset \mathbb{V}^{\exists}(t)$$

Localization/Explored area

Experimental results

Summary

Explored area

Guaranteed visible area depends on position accuracy

Guaranteed visible area $\mathbb{V}^{lash}$

ENSTA Bretagne

Localization/Explored area

Experimental results

Summary

Explored area

Guaranteed visible area depends on position accuracy

Localization/Explored area

Experimental results

Summary

Explored area

Guaranteed and possible explored area

Guaranteed explored area $\mathbb{M}^{\forall}:$ union of all the guaranteed visible areas during the mission

$$\mathbb{M}^{\forall} = \bigcup_{t \in [t]} \mathbb{V}^{\forall}(t), \tag{3}$$

Possible explored area \mathbb{M}^\exists : union of all the possible visible areas over time

$$\mathbb{M}^{\exists} = \bigcup_{t \in [t]} \mathbb{V}^{\exists}(t).$$
(4)

A bracketing of the actual explored area ${\mathbb M}$ is given by

$$\mathbb{M}^{\forall} \subset \mathbb{M} \subset \mathbb{M}^{\exists}.$$

Underwater exploration	Localization/Explored area	Experimental results	Summary
Set-membership approach			
Outline			

1 Underwater exploration with swarms

2 Localization and explored area characterization

- Localization
- Explored area
- Set-membership approach

Experimental results

- AUV swarm simulation
- Guaranteed explored area computation

Localization/Explored area

Experimental results

Summary

Set-membership approach

Constraint satisfaction problem

Variables: x, u, y, M. Domains: Tubes (function intervals) [x], [y] and [u]. Set interval [M].

Underwater exploration	Localization/Explored area	Experimental results	Summary
Set-membership approach			
Contraction prod	cess		

Contract the trajectory tube until a fixed point

- observations
- differential equation
- Occupies a bracketing of the map (union of SIVIA)

Underwater exploration	Localization/Explored area	Experimental results	Summary
Set-membership approach			
Contraction pro	cess		

Contract the trajectory tube until a fixed point

- observations
- differential equation
- Occupies a bracketing of the map (union of SIVIA)

Underwater exploration	Localization/Explored area	Experimental results	Summary
AUV swarm simulation			
Outline			

Underwater exploration with swarms

Localization and explored area characterization

- Localization
- Explored area
- Set-membership approach

3 Experimental results

- AUV swarm simulation
- Guaranteed explored area computation

Localization/Explored area

Experimental results

Summary

AUV swarm simulation

AUV swarm simulation.

Simulate a swarm of AUVs equipped with

- GPSs
- Speed and depth sensors
- INS
- Acoustical communication and ranging

Mission: exploration and sonar mapping of an 1.5 km x 2 km area

Localization/Explored area

Experimental results

Summary

AUV swarm simulation

AUV swarm: exploration of an area.

Localization/Explored area

Experimental results

Summary

AUV swarm simulation

AUV localization uncertainty.

- Boxes represent position uncertainty
- Control done wrt box centers
- Range measurements contract boxes

Localization/Explored area

Experimental results

Summary

AUV swarm simulation

Communication improves accuracy and coverage. Red=unexplored. Green intensity=number of scans

With communication

• Without communication

Drevelle, Jaulin, Zerr (ENSTA Bretagne) Underwater exploration with swarms

Underwater exploration	Localization/Explored area	Experimental results ○○○○○●○○	Summary
Guaranteed explored area computa	tion		
Outline			

Underwater exploration with swarms

Localization and explored area characterization

- Localization
- Explored area
- Set-membership approach

3 Experimental results

- AUV swarm simulation
- Guaranteed explored area computation

Localization/Explored area

Experimental results

Summary

Guaranteed explored area computation

Position refining.

Before contraction

- Constraint propagation with distance measurements
- Forward-backward constraint propagation over trajectory with evolution equation

Localization/Explored area

Experimental results

Summary

Guaranteed explored area computation

Position refining.

- Constraint propagation with distance measurements
- Forward-backward constraint propagation over trajectory with evolution equation

Localization/Explored area

Experimental results

Summary

Guaranteed explored area computation

Position refining.

- Constraint propagation with distance measurements
- Forward-backward constraint propagation over trajectory with evolution equation

Localization/Explored area

Experimental results

Summary

Guaranteed explored area computation

Position refining.

- Constraint propagation with distance measurements
- Forward-backward constraint propagation over trajectory with evolution equation

Localization/Explored area

Experimental results

Summary

Guaranteed explored area computation

Explored area computation. Red=guaranteed (\mathbb{M}^{\forall}), Yellow=possible (\mathbb{M}^{\exists})

With communication

• Without communication

Underwater exploration	Localization/Explored area	Experimental results	Summary

Summary

- Set membership approach for localization of AUVs in a swarm
- Guaranteed bracketing of the explored area
- Inter-AUV communication and ranging improves exploration coverage, and validation
- Outlook
 - Tighten the explored area set interval.
 - Deal with erroneous measurements and prevent rumour propagation in the swarm.
 - Swarm of different robots

