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Nonlinear Set Integration

n Guaranteed set integration with Taylor methods 
l(Moore,66) (Lohner,88) (Nedialkov,99) 
l IVP ODE

Interval Taylor Methods

Guaranteed set integration with Taylor methods
(Moore,66) (Eijgenraam,81) (Lohner,88) (Rihm,94) (Berz,98) (Nedialkov,99)

ẋ(t) = f (x,p, t), t0 ≤ t ≤ tN , x(t0) ∈ [x0] , p ∈ [p]

Time grid → t0 < t1 < t2 < · · · < tN

[xj ] [xj+1]

actual solution x⋆

a priori [x̃j ]

Proof of existence

Yield a priori solution [x̃j ] : ∀τ ∈ [tj , tj+1] x(τ) ∈ [x̃j ]
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ẋ(t) = f (x,p, t), t0 ≤ t ≤ tN , x(t0) ∈ [x0] , p ∈ [p]

Time grid → t0 < t1 < t2 < · · · < tN

[xj ] [xj+1]

actual solution x⋆

a priori [x̃j ]

Proof of existence

Yield a priori solution [x̃j ] : ∀τ ∈ [tj , tj+1] x(τ) ∈ [x̃j ]

N. Ramdani (INRIA) Hybrid Nonlinear Reachability 11 / 28

n Guaranteed set integration with Taylor methods 
l(Moore,66) (Lohner,88) (Nedialkov,99)

7



Interval Taylor Methods

Guaranteed set integration with Taylor methods
(Moore,66) (Eijgenraam,81) (Lohner,88) (Rihm,94) (Berz,98) (Nedialkov,99)
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Nonlinear Set Integration

T. Ra!"ssi et al. / Automatica 40 (2004) 1771–1777 1773

Real arithmetic operations are extended to intervals
(Moore, 1966). Consider an operator ◦ ∈ {+;−; ∗; =} and
[a], [b] two intervals, then

[a] ◦ [b] = {x ◦ y | x∈ [a]; y∈ [b]}: (2)

The width of an interval [a] is de!ned by w(a) = "a− a,
and its midpoint by m(a) = ( "a+ a)=2.
An interval vector is a vector with interval components,

the set of n-dimensional real interval vectors is denoted by
IRn. An interval matrix is a matrix with interval components.
The set of n×m real interval matrices is denoted by IRn×m.
The widthw(:) of an interval vector (or of an interval matrix)
is the maximum of the widths of its interval components.
The midpoint m(:) of an interval matrix (resp. an interval
vector) is a matrix (resp. a vector) composed of the midpoint
of its interval components.
Classical operations for interval vectors (resp. interval

matrices) are direct extensions of the same operations for
punctual vectors (resp. punctual matrices) (for more details,
see: Moore, 1966; Neumaier, 1990; Jaulin et al., 2001).
Let f :Rn → Rm, the range of the function f over an

interval vector [a] is given by

f([a]) = {f(x) | x∈ [a]}: (3)

The interval function [f] from IRn to IRm is an inclusion
function for f if

∀[a]∈ IRn; f([a]) ⊆ [f]([a]): (4)

An inclusion function of f can be obtained by replacing
each occurrence of a real variable by its corresponding in-
terval and by replacing each standard function by its interval
evaluation. Such a function is called the natural inclusion
function. In practice the inclusion function is not unique, it
depends on how f is written.
For the sake of brevity, the same notation will be used for

the ranges of the used functions and their inclusion functions.

4. Validated integration of ordinary di!erential equations
using Taylor expansions

Consider the following equation:

ẋ = f(x(t)); x(t0)∈ [x0]; (5)

where the function f is assumed to be at least k-times con-
tinuously di#erentiable in a domain D ⊆ Rn. Interval arith-
metic is used to compute guaranteed bounds for the solution
of (5) at the sampling times {t1; t2; : : : ; tN}. The most e#ec-
tive methods to solve such a problem are based on Taylor
expansions (for more details see Moore, 1966; Nedialkov
et al., 1999; Rihm, 1994). These methods consist in two
parts: they !rst verify existence and uniqueness of the so-
lution using the !xed point theorem and the Picard–Lin-
del$of operator (Moore, 1966; Rihm, 1994) and compute an a
priori enclosure [x̃j] such that x(t)∈ [x̃j] for all t ∈ [tj; tj+1].

In the second part, the solution of (5) at tj+1 is computed
using a Taylor expansion, where [x̃j] is used to compute the
remainder term (Berz, Makino, & Hoefkens, 2001; Moore,
1966; Nedialkov et al., 1999; Rihm, 1994).
Moore (1966) uses the Picard–Lindel$of operator in order

to derive a formula for computing the a priori set [x̃j]:

[x̃j] = [xj] + [0; h]f([xj]); (6)

where h denotes the integration step (h= tj+1 − tj).
In practice, the set computed by (6) will often fail to

contain the true solution (Nedialkov, 1999); consequently,
the classical technique used consists in in%ating [x̃j] until
it veri!es the following inclusion (Nedialkov, Jackson, &
Pryce, 2001):

[xj] + [0; h]f([x̃j]) ⊆ [x̃j]: (7)

This method is summarized in the following algorithm.

Algorithm. enclosure (in: [xj], !, out: [x̃j])

[x̃j] = [xj];

while ([xj] + [0; h]f([x̃j]) ⊆ [x̃j])

[x̃j] = in%ate ([x̃j]; !) (with !¿ 0):

The in%ate function for an interval vector [x] =
([x1; "x1]; : : : ; [xN ; "xN ])T consists in in%ating all its compo-
nents, as follows:

([(1− !)x1; (1 + !) "x1]; : : : ; [(1− !)xN ; (1 + !) "xN ])T: (8)

The accuracy of the computed set [x̃j] depends on the coef-
!cient !.
If the set [x̃j] satis!es inclusion (7), then the inclusion

x(t)∈ [x̃j] holds for all t ∈ [tj; tj+1] and the true solution xj+1
of the ordinary di#erential equation (5) at tj+1 is contained,
in a guaranteed way, in the interval vector [xj+1] given by
the following Taylor expansion:

[xj+1] = [xj] +
k−1∑

i=1

hif [i]([xj]) + hk f [k]([x̃j]) (9)

(see Moore, 1966; Rihm, 1994; Nedialkov et al., 1999).
In Eq. (9), k denotes the order of the Taylor expansion

and the coe&cients f [i] are the Taylor coe&cients of the
solution x(t) which are recursively obtained by

f [1] = f ; f [i] =
1
i
@f [i−1]

@x
f ; i¿ 2: (10)

Because one has to proceed with the in%ation of the set
[x̃j], the size of the latter might become quite large before
inclusion (7) is satis!ed. The pessimism thus introduced
by the large width of the set can be reduced by using a
high-order k for the Taylor expansion in expression (9), the
remainder being proportional to 1=(k!). Even though, when
using (9) to solve (5), the width of the solution always
increases even for high orders. To solve such a drawback,
Rihm (1994) proposes to evaluate (9) through the following

n Guaranteed set integration with Taylor methods 
l (Moore,66) (Lohner,88) (Nedialkov,99), (Nedialkov et al, 01)
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Guaranteed set integration with Taylor methods
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ẋ(t) = f (x,p, t), t0 ≤ t ≤ tN , x(t0) ∈ [x0] , p ∈ [p]

Mean-value approach

[x](t) ∈
{

v(t) + A(t)r(t) | v(t) ∈ [v](t), r(t) ∈ [r](t)
}

.

N. Ramdani (INRIA) Hybrid Nonlinear Reachability 12 / 28
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Les coe�cients de Taylor

f [1] = x(1) = f
f [2] = 1

2x
(2) = 1

2
df
dx f

f [i ] = 1
i!x

(i) = 1
i

df [i�1]

dx f, i � 2
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n Guaranteed set integration with Taylor methods 
l(Moore,66) (Lohner,88) (Rihm,94) (Berz,98) (Nedialkov,99) 

lComplexity 
l Work per step is of polynomial complexity 

l Computing Taylor coefficients → o(k2) 
l Linear algebra                         → o(n3) 

lIn practice : Obtaining Taylor coefficients ... 
l FADBAD++   (www.fadbad.com) 

 Flexible Automatic differentiation using templates  
 and operator overloading in C++

Nonlinear Set Integration
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Interval Taylor Methods

Guaranteed set integration with Taylor methods
(Moore,66) (Eijgenraam,81) (Lohner,88) (Rihm,94) (Berz,98) (Nedialkov,99)

ẋ(t) = f (x,p, t), t0 ≤ t ≤ tN , x(t0) ∈ [x0] , p ∈ [p]

Time grid → t0 < t1 < t2 < · · · < tN

[xj ] [xj+1]

actual solution x⋆

a priori [x̃j ]

Analytical solution for [x](t), t ∈ [tj , tj+1]

[x](t) = [xj ] +
k−1
∑

i=1
(t − tj)i f [i ]([xj ], [p]) + (t − tj)k f [k]([x̃j ], [p])
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Proof of existence

Yield a priori solution [x̃j ] : ∀τ ∈ [tj , tj+1] x(τ) ∈ [x̃j ]
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n Piecewise analytical expressions for the solution tube 
l (Ramdani et Nedialkov, 2011)
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nGuaranteed set integration
l … with interval Taylor methods. (VNODE, VSPODE)

‣ (Moore, 66) (Lohner, 88) (Rihm, 94) (Berz, 98) (Nedialkov, 99)
l … with interval Taylor models. (Flow*, VSPODE)

‣ (Berz & Makino, 1996) (Chen, 2012) 
l … with validated Runge Kutta. (DynIbex)

‣ (Alexandre dit Sandretto & Chapoutot, 2015)
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nGuaranteed set integration
l … with interval Taylor methods. (VNODE, VSPODE)

‣ (Moore, 66) (Lohner, 88) (Rihm, 94) (Berz, 98) (Nedialkov, 99)
l … with interval Taylor models. (Flow*, VSPODE)

‣ (Berz & Makino, 1996) (Chen, 2012) 
l … with validated Runge Kutta. (DynIbex)

‣ (Alexandre dit Sandretto & Chapoutot, 2015)

nUse comparison theorems for differential inequalities
n Monotone systems 

‣ (Ramdani et al., 2010)
n Muller’s theorem

‣ (Ramdani, et al. 2006) (Kieffer et al. 2006) (Ramdani, et al. 2009)
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Set Integration

n Comparison theorems for differential inequalities 

l Müller’s existence theorem (1936) 

l Bracketing systems 
l (Ramdani, et al., IEEE Trans. Automatic Control 2009)

If

solution exists

Nonlinear Set Integration
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n Comparison theorems for differential inequalities  
lBracketing systems

maximal solution

minimal solution

time

state

Nonlinear Set Integration
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Müller’s theorem
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then

n Bracketing systems 
l Dynamics of ...

.

Nonlinear Set Integration
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then

n Bracketing systems 
l Dynamics of ...

.
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n Comparison theorems for differential inequalities 

l Müller’s existence theorem (1936) 

l Bracketing systems : coupled ODEs

If

solution exists

Nonlinear Set Integration
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n Bracketing systems 
l Example : Mitogen- Activated Protein Kinase (Sontag, 2005)

Nonlinear Set Integration
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Exemple
Modèle de biologie moléculaire (Mitogen-Activated Protein Kinase cascades)

Système non linéaire incertain

�
⌅⌅⌅⌅⌅⌅⌅⌅⌅⇤

⌅⌅⌅⌅⌅⌅⌅⌅⌅⇥

ẋ1 = � v2x1
k2+x1

+ v0u + v1

ẋ2 = v6(ytot�x2�x3)
k6+(ytot�x2�x3)

� v3x1x2
k3+x2

ẋ3 = v4x1(ytot�x2�x3)
k4+(ytot�x2�x3)

� v5x3
k5+x3

ẋ4 = v10(ztot�x4�x5)
k10+(ztot�x4�x5)

� v7x3x4
k7+x4

ẋ5 = v8x3(ztot�x4�x5)
k8+(ztot�x4�x5)

� v9x5
k9+x5

u = gx5

Trouver les systèmes englobants et utiliser le théorème de Müller ?

n Bracketing systems 
l Example : Mitogen- Activated Protein Kinase (Sontag, 2005)
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Exemple
Modèle de biologie moléculaire (Mitogen-Activated Protein Kinase cascades)

Enveloppe du tube de trajectoire � Système couplé

�
⌅⌅⌅⌅⌅⌅⌅⌅⌅⌅⌅⌅⌅⌅⌅⌅⇤

⌅⌅⌅⌅⌅⌅⌅⌅⌅⌅⌅⌅⌅⌅⌅⌅⇥

ẋ1 = � v2x1
k2+x1

+ v0u + v1

ẋ2 =
v6(y

tot
�x2�x3)

k6+(y
tot
�x2�x3)

� v3x1x2
k3+x2

ẋ3 =
v4x1(y

tot
�x2�x3)

k4+(y
tot
�x2�x3)

� v5x3
k5+x3

ẋ4 =
v10(ztot�x4�x5)

k10+(ztot�x4�x5)
� v7x3x4

k7+x4

ẋ5 =
v8x3(ztot�x4�x5)

k8+(ztot�x4�x5)
� v9x5

k9+x5

ẋ1 = � v2x1
k2+x1

+ v0u + v1

ẋ2 =
v6(ytot�x2�x3)

k6+(ytot�x2�x3)
� v3x1x2

k3+x2

ẋ3 =
v4x1(ytot�x2�x3)
k4+(ytot�x2�x3)

� v5x3
k5+x3

ẋ4 =
v10(ztot�x4�x5)

k10+(ztot�x4�x5)
� v7x3x4

k7+x4

ẋ5 =
v8x3(ztot�x4�x5)
k8+(ztot�x4�x5)

� v9x5
k9+x5

u = gx5
u = gx5

Exemple
Modèle de biologie moléculaire (Mitogen-Activated Protein Kinase cascades)

Enveloppe du tube de trajectoire
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n Bracketing systems 
l Example : Mitogen- Activated Protein Kinase (Sontag, 2005)
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nConvergence analysis for bracketing systems 
enclosures.   

n Practical stability analysis for a class of systems  
(Ramdani et al, IEEE TAC 2009) 

Nonlinear Set Integration
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nConvergence analysis for bracketing systems 
enclosures.   

n Practical stability analysis for a class of systems  
(Ramdani et al, IEEE TAC 2009) 

n Dual integration method (Meslem & Ramdani, IMA MCI 2017) 
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nAnalysis of enclosures width for bracketing systems  

Nonlinear Set Integration

34

Let us do it now as an exercise: 

1. Apply the rule for building bracketing systems 
2. Analyze the dynamics of the enclosure widths 



nAnalysis of enclosures width for bracketing systems  

Nonlinear Set Integration
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n Monotone order-preserving systems 
lMüller, Kamke, Krasnoselskii, Hirsch, Smith, Angeli and Sontag. 

lPreserve ordering on initial conditions. 

lBracketing systems via Müller’s theorem give tight enclosures !

Nonlinear hybridization with order preserving dynamical systems Order preserving monotone dynamical systems

Order preserving monotone dynamical systems
(Smith, 1995), (Hirsch et Smith, 2005), (Angeli et Sontag, 2003)

Definition : Order preserving monotone dynamical system

x(t0) ≺ y(t0) ⇒ ∀t ! t0 x(t) ≺ y(t) ≺∈ {<,≤,≥, >}

Example
⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

x1(t0) ≤ y1(t0)
x2(t0) ≥ y2(t0)
x3(t0) < y3(t0)
x4(t0) > y4(t0)

....

⎫

⎪

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎪

⎭

⇒ ∀t > t0,

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

x1(t) ≤ y1(t)
x2(t) ≥ y2(t)
x3(t) < y3(t)
x4(t) > y4(t)

....

⎫

⎪

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎪

⎭

N.Ramdani (PRISME) Nonlinear Reachability 46 / 89
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Nonlinear hybridization with order preserving dynamical systems Order preserving monotone dynamical systems

Order preserving monotone dynamical systems
(Smith, 1995), (Hirsch et Smith, 2005), (Angeli et Sontag, 2003)

Monotonicity w.r.t orthant cone of Rn

if ∃D = diag [(−1)ε1 , ..., [(−1)εn ], εi ∈ {0, 1}

s.t x(t, x0, t0) and y(t, y0, t0) satisfy

Dy0 ≥ Dx0 ⇒ Dy(t, y0, t0) ≥ Dx(t, x0, t0) ∀t ≥ t0.

N.Ramdani (PRISME) Nonlinear Reachability 49 / 89

nMonotone order-preserving systems 
l Test based on graph theory : monotone wrt orthant cones.  

No negative cycle in the incidence graph  (Kunze & Siegel, 1999)
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Fig. 2. Incidence graph for system (52). It exhibits no negative cycles. System (52) is monotone with respect to the orthant S⇤ = {⇤ixi ⌅ 0}, ⇤ =
(1, �1, 1, �1, 1).

It is clear that our bounding approach successfully computes an over-approximation for the reachable set. Furthermore, it
is easy to see that since parameter components appear only once in the algebraic expressions of (52), the bounding systems
are feasible. Then, the enclosures obtained using our method are tight (up to the accuracy of the guaranteed numerical
integration method used).

5.2. Reachability of an uncertain nonlinear monotone system using our hybrid bounding approach

Consider the thermal model of a material sample submitted to a multi-harmonic signal [47]. State vector x ⌃ R13 stands
for temperature and t denotes time. The state equation is as follows:

⇧
���������������������⌥

���������������������⌃

ẋ1 = �1

⇤

x2 � 2x1 + u0 +
 

l=1...5

ul sin(2l�1⌃0t + ⇧l)

⌅

ẋ2 = 2�1

�
x1 �
�
1 + ⌅1

⌅2

⇥
x2 + ⌅1

⌅2
x3
⇥

ẋ3 = 2(p0 + p1x3)
�
x4 � x3 + p2

⇥2

⌅2
(x2 � x3)

⇥

ẋi = (p0 + p1xi)(xi+1 � 2xi + xi�1) i = 4, . . . , 9

ẋ10 = 2(p0 + p1x10)
�
x9 � x10 + p2

⇥2

⌅2
(x11 � x10)

⇥

ẋ11 = 2�2

�
x12 �
�
1 + ⌅3

⌅2

⇥
x11 + ⌅3

⌅2
x10
⇥

ẋ12 = �3(x13 � 2x12 + x11)

ẋ13 = 2�3

�
x12 �
�
1 + ⌅3

⌅4

⇥
x13 + ⌅3

⌅4
u0

⇥
.

(53)

Parameter vector p = [p0 p1 p2]T is taken in the set p = [0.7, 1.23] s�1 ⇥ [0.01, 0.015] s�1 K�1 ⇥ [0.23, 0.64]mW�1 K
and initial state vector domain is taken as x0i = [90, 110] ⇤C.

The other parameters are assumed known; they take the following values: �1 = 5.44 s�1, �2 = �3 = 5.7 s�1,
u0 = 100 ⇤C, u1 = 10.14 ⇤C, u2 = 13.84 ⇤C, u3 = 17.4 ⇤C, u4 = 23.87 ⇤C, u5 = 30.81 ⇤C, ⌃0 = 0.00314 Hz,
⇧1 = 1.225, ⇧2 = 1.103, ⇧3 = 0.836, ⇧4 = 0.470, ⇧5 = 0.269, ⌅1/⌅2 = 0.1777, ⌅3/⌅4 = 0.0003, ⌅3/⌅2 = 0.0910,
⇥2/⌅2 = 2.2857 Wm�1 K�1.

Whenoneuses interval Hermite–Obreshkov serieswith variable step control as implemented in theVNODE software [28]
directly on the uncertain system (53), the computed enclosures blow up after one or two time steps (in fact VNODE software
stops), as long as parameter vector p is taken uncertain, even with very small uncertainty.

Since system (53) is cooperative, we can use the hybrid bracketing technique introduced in Section 4. To build the
automaton (51) characterizing the upper bounding systems for (53), we need to study the signs of the partial derivatives
(� fi/�pk). Note that parameters p0, p1 and p2 appear in f3 and f10, and parameters p0 and p1 appear in fi, i = 4 . . . 9. In
addition, the signs of the partial derivatives (� fi/�p0) and (� fi/�p1) are similar. Hence, we have to monitor the sign of
only 10 partial derivatives: (� fi/�p0), i = 3, . . . , 10, and (� fi⇧/�p2), i⇧ = 3 and i⇧ = 10. Now, according to the sign of

Author's personal copy

N. Ramdani et al. / Nonlinear Analysis: Hybrid Systems 4 (2010) 263–278 273

time(s)

4%
3%

 50

 100

 150

 200

 250

0 500 1000 1500 2000 2500 3000

x 2

 0

 300

Fig. 1. Time history of the x2 component of the reachable set of (52) with no parametric uncertainty. The curve labelled 3% corresponds to 3% uncertainty
on initial state vector, whereas the one labelled 4% corresponds to 4% uncertainty on initial state vector. Both curves are obtained with ITM (3%: CPU
time = 22.44 s PIV 2 GHz). Without parametric uncertainty, ITM diverges as soon as the size of the domain for initial state vector is larger than 3%.

10. -switching- := true
11. ⇤i := �

i 
(p), (i ⌅ I ), {i = 1, . . . , n}

12. endif
13. else %I = ⌃
14. q⇤ ⇥ Read mode number %q⇤ ofm-type
15. if (q⇤ ⇧= q), then
16. -switching- := true
17. ⇤i := �

i
(p), {i = 1, . . . , n}

18. endif

5. Applications

5.1. Reachability of an uncertain nonlinear monotone system using comparison principles

This example is taken frommolecular system biology. Consider a nonlinear dynamical model, which describes Mitogen-
Activated Protein Kinase cascades [45]

�
⌅⌅⌅⇤

⌅⌅⌅⇥

ẋ1 = �(v2x1)/(k2 + x1) + v0gx5 + v1
ẋ2 = (v6(ytot � x2 � x3))/(k6 + (ytot � x2 � x3)) � (v3x1x2)/(k3 + x2)
ẋ3 = (v4x1(ytot � x2 � x3))/(k4 + (ytot � x2 � x3)) � (v5x3)/(k5 + x3)
ẋ4 = (v10(ztot � x4 � x5))/(k10 + (ztot � x4 � x5)) � (v7x3x4)/(k7 + x4)
ẋ5 = (v8x3(ztot � x4 � x5))/(k8 + (ztot � x4 � x5)) � (v9x5)/(k9 + x5)

(52)

When ITM is used directly on system (52), the size of the enclosures blows up rapidly if a very small uncertainty (0.01%)
is considered for parameter vector or if relative uncertainty on initial state vector is larger than 3%, as shown in Fig. 1.

We will now show how to compute the reachable set using Theorem 2. The incidence graph obtained as indicated in
Section 2 is depicted in Fig. 2; it exhibits no negative cycles. According to Proposition 1, system (52) is monotone with
respect to the orthant S⇥ where ⇥ = (1, �1, 1, �1, 1). Using a change of coordinate z = Diag(⇥)x, it can be converted to a
cooperative system, and Theorem 2 applies.

Let us consider uncertainty on parameter and initial state vectors: x1 = [20, 170], x2 = [0, 100], x3 = [1000, 1200],
x4 = [0, 10], x5 = [250, 300], v0 = [0.0015, 0.0016], v1 = [0.09, 0.1], v2 = [1.2, 1.3], v3 = v4 = [0.064, 0.065],
v5 = v6 = v9 = v10 = [5, 5.1], v7 = v8 = [0.06, 0.07], ytot = [1200, 1201], ztot = [300, 301], k2 = [200, 201],
k3 = k4 = k5 = k6 = [1200, 1201], k7 = k8 = k9 = k10 = [300, 301]. Interval Hermite–Obreshkov method with variable
time step as implemented in the open source VNODE software [46] is used for solving the initial value problems for the
bracketing systems obtained using the comparison principles detailed in Section 3. Fig. 3 plots the time history of the x2
component of the reachable set as obtained in both cases where parametric uncertainty is taken or not taken into account.

nMonotone order-preserving systems 
l Test based on graph theory : monotone wrt orthant cones.  

No negative cycle in the incidence graph  (Kunze & Siegel, 1999)
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Nonlinear hybridization with order preserving dynamical systems Order preserving monotone dynamical systems

Order preserving monotone dynamical systems
(Smith, 1995), (Hirsch et Smith, 2005), (Angeli et Sontag, 2003)

Monotonicity w.r.t orthant cone of Rn

if ∃D = diag [(−1)ε1 , ..., [(−1)εn ], εi ∈ {0, 1}

s.t x(t, x0, t0) and y(t, y0, t0) satisfy

Dy0 ≥ Dx0 ⇒ Dy(t, y0, t0) ≥ Dx(t, x0, t0) ∀t ≥ t0.

N.Ramdani (PRISME) Nonlinear Reachability 49 / 89

Author's personal copy

274 N. Ramdani et al. / Nonlinear Analysis: Hybrid Systems 4 (2010) 263–278

Fig. 2. Incidence graph for system (52). It exhibits no negative cycles. System (52) is monotone with respect to the orthant S⇤ = {⇤ixi ⌅ 0}, ⇤ =
(1, �1, 1, �1, 1).

It is clear that our bounding approach successfully computes an over-approximation for the reachable set. Furthermore, it
is easy to see that since parameter components appear only once in the algebraic expressions of (52), the bounding systems
are feasible. Then, the enclosures obtained using our method are tight (up to the accuracy of the guaranteed numerical
integration method used).

5.2. Reachability of an uncertain nonlinear monotone system using our hybrid bounding approach

Consider the thermal model of a material sample submitted to a multi-harmonic signal [47]. State vector x ⌃ R13 stands
for temperature and t denotes time. The state equation is as follows:

⇧
���������������������⌥

���������������������⌃

ẋ1 = �1

⇤

x2 � 2x1 + u0 +
 

l=1...5

ul sin(2l�1⌃0t + ⇧l)

⌅

ẋ2 = 2�1

�
x1 �
�
1 + ⌅1

⌅2

⇥
x2 + ⌅1

⌅2
x3
⇥

ẋ3 = 2(p0 + p1x3)
�
x4 � x3 + p2

⇥2

⌅2
(x2 � x3)

⇥

ẋi = (p0 + p1xi)(xi+1 � 2xi + xi�1) i = 4, . . . , 9

ẋ10 = 2(p0 + p1x10)
�
x9 � x10 + p2

⇥2

⌅2
(x11 � x10)

⇥

ẋ11 = 2�2

�
x12 �
�
1 + ⌅3

⌅2

⇥
x11 + ⌅3

⌅2
x10
⇥

ẋ12 = �3(x13 � 2x12 + x11)

ẋ13 = 2�3

�
x12 �
�
1 + ⌅3

⌅4

⇥
x13 + ⌅3

⌅4
u0

⇥
.

(53)

Parameter vector p = [p0 p1 p2]T is taken in the set p = [0.7, 1.23] s�1 ⇥ [0.01, 0.015] s�1 K�1 ⇥ [0.23, 0.64]mW�1 K
and initial state vector domain is taken as x0i = [90, 110] ⇤C.

The other parameters are assumed known; they take the following values: �1 = 5.44 s�1, �2 = �3 = 5.7 s�1,
u0 = 100 ⇤C, u1 = 10.14 ⇤C, u2 = 13.84 ⇤C, u3 = 17.4 ⇤C, u4 = 23.87 ⇤C, u5 = 30.81 ⇤C, ⌃0 = 0.00314 Hz,
⇧1 = 1.225, ⇧2 = 1.103, ⇧3 = 0.836, ⇧4 = 0.470, ⇧5 = 0.269, ⌅1/⌅2 = 0.1777, ⌅3/⌅4 = 0.0003, ⌅3/⌅2 = 0.0910,
⇥2/⌅2 = 2.2857 Wm�1 K�1.

Whenoneuses interval Hermite–Obreshkov serieswith variable step control as implemented in theVNODE software [28]
directly on the uncertain system (53), the computed enclosures blow up after one or two time steps (in fact VNODE software
stops), as long as parameter vector p is taken uncertain, even with very small uncertainty.

Since system (53) is cooperative, we can use the hybrid bracketing technique introduced in Section 4. To build the
automaton (51) characterizing the upper bounding systems for (53), we need to study the signs of the partial derivatives
(� fi/�pk). Note that parameters p0, p1 and p2 appear in f3 and f10, and parameters p0 and p1 appear in fi, i = 4 . . . 9. In
addition, the signs of the partial derivatives (� fi/�p0) and (� fi/�p1) are similar. Hence, we have to monitor the sign of
only 10 partial derivatives: (� fi/�p0), i = 3, . . . , 10, and (� fi⇧/�p2), i⇧ = 3 and i⇧ = 10. Now, according to the sign of

Author's personal copy

N. Ramdani et al. / Nonlinear Analysis: Hybrid Systems 4 (2010) 263–278 273

time(s)

4%
3%

 50

 100

 150

 200

 250

0 500 1000 1500 2000 2500 3000

x 2

 0

 300

Fig. 1. Time history of the x2 component of the reachable set of (52) with no parametric uncertainty. The curve labelled 3% corresponds to 3% uncertainty
on initial state vector, whereas the one labelled 4% corresponds to 4% uncertainty on initial state vector. Both curves are obtained with ITM (3%: CPU
time = 22.44 s PIV 2 GHz). Without parametric uncertainty, ITM diverges as soon as the size of the domain for initial state vector is larger than 3%.

10. -switching- := true
11. ⇤i := �

i 
(p), (i ⌅ I ), {i = 1, . . . , n}

12. endif
13. else %I = ⌃
14. q⇤ ⇥ Read mode number %q⇤ ofm-type
15. if (q⇤ ⇧= q), then
16. -switching- := true
17. ⇤i := �

i
(p), {i = 1, . . . , n}

18. endif

5. Applications

5.1. Reachability of an uncertain nonlinear monotone system using comparison principles

This example is taken frommolecular system biology. Consider a nonlinear dynamical model, which describes Mitogen-
Activated Protein Kinase cascades [45]

�
⌅⌅⌅⇤

⌅⌅⌅⇥

ẋ1 = �(v2x1)/(k2 + x1) + v0gx5 + v1
ẋ2 = (v6(ytot � x2 � x3))/(k6 + (ytot � x2 � x3)) � (v3x1x2)/(k3 + x2)
ẋ3 = (v4x1(ytot � x2 � x3))/(k4 + (ytot � x2 � x3)) � (v5x3)/(k5 + x3)
ẋ4 = (v10(ztot � x4 � x5))/(k10 + (ztot � x4 � x5)) � (v7x3x4)/(k7 + x4)
ẋ5 = (v8x3(ztot � x4 � x5))/(k8 + (ztot � x4 � x5)) � (v9x5)/(k9 + x5)

(52)

When ITM is used directly on system (52), the size of the enclosures blows up rapidly if a very small uncertainty (0.01%)
is considered for parameter vector or if relative uncertainty on initial state vector is larger than 3%, as shown in Fig. 1.

We will now show how to compute the reachable set using Theorem 2. The incidence graph obtained as indicated in
Section 2 is depicted in Fig. 2; it exhibits no negative cycles. According to Proposition 1, system (52) is monotone with
respect to the orthant S⇥ where ⇥ = (1, �1, 1, �1, 1). Using a change of coordinate z = Diag(⇥)x, it can be converted to a
cooperative system, and Theorem 2 applies.

Let us consider uncertainty on parameter and initial state vectors: x1 = [20, 170], x2 = [0, 100], x3 = [1000, 1200],
x4 = [0, 10], x5 = [250, 300], v0 = [0.0015, 0.0016], v1 = [0.09, 0.1], v2 = [1.2, 1.3], v3 = v4 = [0.064, 0.065],
v5 = v6 = v9 = v10 = [5, 5.1], v7 = v8 = [0.06, 0.07], ytot = [1200, 1201], ztot = [300, 301], k2 = [200, 201],
k3 = k4 = k5 = k6 = [1200, 1201], k7 = k8 = k9 = k10 = [300, 301]. Interval Hermite–Obreshkov method with variable
time step as implemented in the open source VNODE software [46] is used for solving the initial value problems for the
bracketing systems obtained using the comparison principles detailed in Section 3. Fig. 3 plots the time history of the x2
component of the reachable set as obtained in both cases where parametric uncertainty is taken or not taken into account.

nMonotone order-preserving systems 
l Test based on graph theory : monotone wrt orthant cones.  

No negative cycle in the incidence graph  (Kunze & Siegel, 1999)

lRamdani, et al., Nonlinear Analysis Hybrid Systems 2010
lBracketing systems : decoupled ODEs
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Exemple
Modèle de biologie moléculaire (Mitogen-Activated Protein Kinase cascades)

Enveloppe du tube de trajectoire � Système couplé

�
⌅⌅⌅⌅⌅⌅⌅⌅⌅⌅⌅⌅⌅⌅⌅⌅⇤

⌅⌅⌅⌅⌅⌅⌅⌅⌅⌅⌅⌅⌅⌅⌅⌅⇥

ẋ1 = � v2x1
k2+x1

+ v0u + v1

ẋ2 =
v6(y

tot
�x2�x3)

k6+(y
tot
�x2�x3)

� v3x1x2
k3+x2

ẋ3 =
v4x1(y

tot
�x2�x3)

k4+(y
tot
�x2�x3)

� v5x3
k5+x3

ẋ4 =
v10(ztot�x4�x5)

k10+(ztot�x4�x5)
� v7x3x4

k7+x4

ẋ5 =
v8x3(ztot�x4�x5)

k8+(ztot�x4�x5)
� v9x5

k9+x5

ẋ1 = � v2x1
k2+x1

+ v0u + v1

ẋ2 =
v6(ytot�x2�x3)

k6+(ytot�x2�x3)
� v3x1x2

k3+x2

ẋ3 =
v4x1(ytot�x2�x3)
k4+(ytot�x2�x3)

� v5x3
k5+x3

ẋ4 =
v10(ztot�x4�x5)

k10+(ztot�x4�x5)
� v7x3x4

k7+x4

ẋ5 =
v8x3(ztot�x4�x5)
k8+(ztot�x4�x5)

� v9x5
k9+x5

u = gx5
u = gx5

Nonlinear Set Integration



nMonotone order-preserving systems 
l Test based on graph theory : monotone wrt orthant cones.  

No negative cycle in the incidence graph  (Kunze & Siegel, 1999)
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n Nonlinear hybridization 
l (Ramdani, et al., IEEE Trans. Automatic Control 2009)

Nonlinear Set Integration
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n Nonlinear hybridization 
l (Ramdani, et al., IEEE Trans. Automatic Control 2009)

Nonlinear Set Integration
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n Nonlinear hybridization 
l (Ramdani, et al., IEEE Trans. Automatic Control 2009)

q = 0

ẋ ∈ f([x], [p1], [p2], t)

0 ∈ [g̃1]j ∨ 0 ∈ [g̃2]j

[g̃1]j > 0 ∧ [g̃2]j < 0

[g̃1]j < 0 ∧ [g̃2]j > 0

0 ∈ [g̃1]j ∨ 0 ∈ [g̃2]j

ẋ = f (x, p1, p2
, t)

q = 1

ẋ = f (x, p
1
, p2, t)

ẋ = f (x, p
1
, p2, t)

q = 3

ẋ = f(x, p1, p2
, t)

0 ∈ [g̃1]j ∨ 0 ∈ [g̃2]j

[g̃1]j < 0 ∧ [g̃2]j < 0

[g̃1]j > 0 ∧ [g̃2]j > 0

q = 4

q = 2

ẋ = f (x, p
1
, p

2
, t)

ẋ = f (x, p1, p2, t)

ẋ = f (x, p
1
, p

2
, t)

0 ∈ [g̃1]j ∨ 0 ∈ [g̃2]j
ẋ = f(x, p1, p2, t)

Nonlinear Set Integration
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n Nonlinear hybridization 
l (Ramdani, et al., IEEE Trans. Automatic Control 2009)

Nonlinear hybridization approach to reachability Example

Uncertain nonlinear system from bio-reactors

Time history of s component
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 0  2  4  6  8  10

s

time (s)
q = 2 q = 0 q = 1

N.Ramdani (PRISME) Nonlinear Reachability 36 / 89

time

state

Nonlinear Set Integration
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n Nonlinear hybridization & Monotone systems 
l (Ramdani, et al., Nonlinear Analysis Hybrid Systems 2010)

q = 0

ẋ ∈ f([x], [p1], [p2], t)

0 ∈ [g̃1]j ∨ 0 ∈ [g̃2]j

[g̃1]j > 0 ∧ [g̃2]j < 0

[g̃1]j < 0 ∧ [g̃2]j > 0

0 ∈ [g̃1]j ∨ 0 ∈ [g̃2]j

ẋ = f (x, p1, p2
, t)

q = 1

ẋ = f (x, p
1
, p2, t)

ẋ = f (x, p
1
, p2, t)

q = 3

ẋ = f(x, p1, p2
, t)

0 ∈ [g̃1]j ∨ 0 ∈ [g̃2]j

[g̃1]j < 0 ∧ [g̃2]j < 0

[g̃1]j > 0 ∧ [g̃2]j > 0

q = 4

q = 2

ẋ = f (x, p
1
, p

2
, t)

ẋ = f (x, p1, p2, t)

ẋ = f (x, p
1
, p

2
, t)

0 ∈ [g̃1]j ∨ 0 ∈ [g̃2]j
ẋ = f(x, p1, p2, t)

Nonlinear Set Integration
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n Nonlinear hybridization & Monotone systems 
l (Ramdani, et al., Nonlinear Analysis Hybrid Systems 2010) 
l decoupled hybrid systems as bracketing systems
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Fig. 5. Zoom on the switching sequence for the hybrid automaton which drives the upper bounding system for (53), around t = 60 s.
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Fig. 6. Switching sequence for the hybrid automaton which drives the lower bounding system for (53).

Since parameter pk appears in several fi, the enclosures obtained for the reachable set are not tight, as already discussed
in Section 3.3. This fact is emphasized in Fig. 7, where one can see typical state trajectories obtained with extreme values
for p and starting from x or x. It is clear that the enclosures derived by our hybrid bounding method are not reached by any
of these trial trajectories. Note however, that the overestimation is not induced by our hybrid bounding approach, but by
Rules 1 and 2 used for deriving the bracketing systems for each mode.

6. Conclusion

In this paper we have addressed the issue of computing the reachable set for uncertain nonlinear continuous monotone
dynamical systems.Wehave shown that for these types of systems, the hybrid bounding approach developed in our previous
work can be improved in the sense that upper and lower component-wise bounds can be computed separately. A pleasant
consequence is that mode switching need not use whole solution sets and is thus more efficient. Along the lines of our
previous work, we have re-formulated our hybrid bounding approach and also proposed an improved rule for obtaining
the bracketing systems. Our new method handles successfully nonlinear, non-autonomous, monotone systems even in the
presence of large uncertainty in both initial state and parameter vectors.

The rule used for obtaining the bounding systems works component-wise, therefore, these systems are generally not
feasible. This leads to over-approximations in the computed reachable sets. This issue should be addressed to improve the
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Fig. 3. Time history of the x2 component of the reachable set of (52) as obtained with Theorem 2, with an initial domain for state vector of size 100%. The
curve labelled ‘no uncertainty’ corresponds to no uncertainty in the parameter vector (CPU time= 38.26 s PIV 2GHz) and the one labelled ‘with uncertainty’
corresponds to the presence of uncertainty in the parameter vector (CPU time = 38.58 s PIV 2 GHz).
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Fig. 4. Switching sequence for the hybrid automaton which drives the upper bounding system for (53).

the latter, i.e. using functions �i⇧(.) defined in Rule 2, the upper bounding systems are obtained by replacing parameter
components in each algebraic expression of fi� either by their upper or by lower bound, form-typemodes, or by using whole
parameter uncertainty domain, for s-type modes. Since there are 10 partial derivatives to monitor and 3 possible values for
the parameter components (lower bound / upper bound / whole uncertainty interval), the set Q of discrete modes contains
310 elements, and we merely use a word of ternary digits of length 10, to number the modes. Note however, that not all of
them may be activated.

Fig. 4 shows the switching sequence for the hybrid automaton which derives the upper component-wise bounds of the
reachable set of (53), as generated by algorithm Hybrid-Upper-Bounding. Some modes are active on very short time
intervals. Fig. 5 magnifies the switching sequence around t = 60 s. In fact, such modes are s-type modes which are usually
active only over one or two integration time intervals.

The automatonwhich derives the lower component-wise bounds is obtained in a similarmanner. The switching sequence
for this automaton is shown in Fig. 6.

Note that both initial state vector and parameter vector are taken uncertain with large uncertainties. Fig. 7 shows the
time history of the x12 component of the reachable set. Obviously, even for very large parameter boxes the hybrid bracketing
method successfully computes the reachable set.
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n Nonlinear hybridization & Monotone systems 
l (Ramdani, et al., Nonlinear Analysis Hybrid Systems 2010) 
l decoupled hybrid systems as bracketing systems

Nonlinear Set Integration
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n Interval Taylor methods vs Bracketing systems

time

state

Nonlinear Set Integration
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n Interval Taylor methods vs Bracketing systems

time

state

Nonlinear Set Integration
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n Set-membership Estimation  
with Nonlinear Continuous Systems

46



Set Membership Estimation

n Unknown but bounded-error framework

Set membership estimation
Continuous-time systems
High dimensional system

Context
State-of-the-art

Set-membership or bounded error approach
(Belforte et al., 1990) ; (Milanese et al., 1996) ;(Vicino and Zappa, 1996) ;
(Walter et al., 1990) ; (Norton et al., 1994, 1995)

  

f(p) 

n 

ys 
Optimisation de J(e(p))

e(p) 

ys p1 

p2 

Régions de confiance 

f(p) 

n 

Set membersip algorithm 

Y p1 

p2 

Solution set

Y 

 

Hypothesis

Uncertainties and errors are bounded with known prior bounds

A set of feasible solutions

S = {p � P|f(p) � Y} = f�1(Y) ⇥ P

Nacim Ramdani et al. Set-membership identification . . .

Set Membership Algorithm
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Set Membership Estimation

n Parameter estimation. Set inversion. 
l Branch-&-bound, branch-&-prune, interval contractors … 

 (Jaulin, et al. 93) (Raïssi et al., 2004)  
l Separator Algebra … 



n State estimation with continuous systems 
l Prediction - Correction / Filtering approaches  
‣ (Jaulin, 02, Raïssi et al., 04, 05), (Meslem, et al, 10),  

(Milanese & Novara, 11), (Kieffer & Walter, 11) … 

‣ Reachability  
+ Set inversion 

‣ Forward backward 
consistency

49
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n State estimation with continuous systems 
l Interval observers  
‣ (Gouzé et al, 00), …. (Moisan, et al. 09), (Mazenc & Bernard, 10),  

(Meslem & Ramdani, 11), (Raïssi, et al., 12),  
(Combastel, 13), (El Thabet, et al. 14), (Efimov, et al. 15) … 

‣ Monotonicity 

‣ Change of coordinates 

‣ LMI …. 

‣ Ensure practical stability

50
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n Hybrid and Cyber-Physical Systems

51



Hybrid Cyber-Physical Systems

n Interaction discrete  
     + continuous dynamics 

n Safety-critical  
     embedded systems 

n Networked  
     autonomous systems
52



Hybrid Cyber-Physical Systems

nModelling → hybrid automaton (Alur, et al. 95) 

l Non-linear continuous dynamics  
l Nonlinear guards sets 
l Nonlinear reset functions  
l Bounded uncertainty

Continuous dynamics

Discrete dynamics

l

x ∈ Inv(l)

l′

x′ ∈ Inv(l′)

e : g(x) ≥ 0

ẋ′ ∈ Flow(l′, x′)

x′ = r(e, x)

ẋ ∈ Flow(l, x)

x ∈ Init(l)

53
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nExample : the bouncing ball

Hybrid Cyber-Physical Systems

initial conditions

discrete transition 
jump 



Hybrid Cyber-Physical Systems

55

nExample : the bouncing ball

-1

0

1

2

3

4

5

6

-12 -10 -8 -6 -4 -2 0 2 4 6 8 10

Discrete transitions

Initial conditions

freefall
Continuous transtions

X

V

Free fall 
Continuous transitions

Initial conditions 

Discrete transitions  



Operation in challenging environment,  
requires … 
nVerification 

n Numerical proof, or 
n Falsification via counter-example 

nSynthesis 
n « Correct by construction » …  

nMonitoring, FDI 
n Complete state reconstruction  
n Worst-case scenario

56

Hybrid Cyber-Physical Systems



nVerification 
lModelling :  
lProperty specification :  

lVerification algorithm : Reachability of unsafe regions 
lHybrid / Continuous reachability 

l

x ∈ Inv(l)

l′

x′ ∈ Inv(l′)

e : g(x) ≥ 0

ẋ′ ∈ Flow(l′, x′)

x′ = r(e, x)

ẋ ∈ Flow(l, x)

x ∈ Init(l)

Forbidden

57

Verification of Hybrid Systems



lAircraft trafic control  (Tomlin, et al.) 

disturbance  

 
Reachable 
sets   

Time  

Collision possible!

Verification of Hybrid Systems
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Hybrid Cyber-Physical Systems

n Parametric synthesis 
n Set-membership estimation

Forbidden
Target

59



Synthesis of Hybrid Systems

A. Donzé, B. Krogh & A.Rajhans. 
Parameter synthesis for hybrid 
systems with an application to 
simulink models.  
HSCC 2009:165-179.

60

http://www.dblp.org/db/conf/hybrid/hscc2009.html#DonzeKR09


Monitoring of Hybrid Systems

nModelling → hybrid automaton 
l Non-linear continuous dynamics  
l Bounded uncertainty 

nState Estimation  
→ reconstruct system state variables 
lswitching sequence 
lcontinuous variables 

nImportant issue 
l Control & Diagnosis ...
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Fig. 3. Time history of the x2 component of the reachable set of (52) as obtained with Theorem 2, with an initial domain for state vector of size 100%. The
curve labelled ‘no uncertainty’ corresponds to no uncertainty in the parameter vector (CPU time= 38.26 s PIV 2GHz) and the one labelled ‘with uncertainty’
corresponds to the presence of uncertainty in the parameter vector (CPU time = 38.58 s PIV 2 GHz).
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Fig. 4. Switching sequence for the hybrid automaton which drives the upper bounding system for (53).

the latter, i.e. using functions �i⇧(.) defined in Rule 2, the upper bounding systems are obtained by replacing parameter
components in each algebraic expression of fi� either by their upper or by lower bound, form-typemodes, or by using whole
parameter uncertainty domain, for s-type modes. Since there are 10 partial derivatives to monitor and 3 possible values for
the parameter components (lower bound / upper bound / whole uncertainty interval), the set Q of discrete modes contains
310 elements, and we merely use a word of ternary digits of length 10, to number the modes. Note however, that not all of
them may be activated.

Fig. 4 shows the switching sequence for the hybrid automaton which derives the upper component-wise bounds of the
reachable set of (53), as generated by algorithm Hybrid-Upper-Bounding. Some modes are active on very short time
intervals. Fig. 5 magnifies the switching sequence around t = 60 s. In fact, such modes are s-type modes which are usually
active only over one or two integration time intervals.

The automatonwhich derives the lower component-wise bounds is obtained in a similarmanner. The switching sequence
for this automaton is shown in Fig. 6.

Note that both initial state vector and parameter vector are taken uncertain with large uncertainties. Fig. 7 shows the
time history of the x12 component of the reachable set. Obviously, even for very large parameter boxes the hybrid bracketing
method successfully computes the reachable set.
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n Nonlinear Hybrid Reachability
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nHybrid reachability 
l Continuous reachability 
l Event detection, jump & reset

Hybrid Cyber-Physical Systems
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Hybrid Reachability Computation

nGuaranteed event detection & localization 
l An interval constraint propagation approach  

l(Ramdani & Nedialkov, Nonlinear Analysis Hybrid Systems 2011)
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Hybrid Reachability Computation

nGuaranteed event detection & localization 
l An interval constraint propagation approach  

l(Ramdani & Nedialkov, Nonlinear Analysis Hybrid Systems 2011)
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Interval Taylor Methods

Guaranteed set integration with Taylor methods
(Moore,66) (Eijgenraam,81) (Lohner,88) (Rihm,94) (Berz,98) (Nedialkov,99)

ẋ(t) = f (x,p, t), t0 ≤ t ≤ tN , x(t0) ∈ [x0] , p ∈ [p]

Time grid → t0 < t1 < t2 < · · · < tN

[xj ] [xj+1]

actual solution x⋆

a priori [x̃j ]

Analytical solution for [x](t), t ∈ [tj , tj+1]

[x](t) = [xj ] +
k−1
∑

i=1
(t − tj)i f [i ]([xj ], [p]) + (t − tj)k f [k]([x̃j ], [p])

N. Ramdani (INRIA) Hybrid Nonlinear Reachability 11 / 28

Hybrid Reachability Computation

nGuaranteed event detection & localization 
l An interval constraint propagation approach  

l(Ramdani & Nedialkov, Nonlinear Analysis Hybrid Systems 2011)
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Hybrid Reachability Computation

nGuaranteed event detection & localization 
l An interval constraint propagation approach  

l(Ramdani & Nedialkov, Nonlinear Analysis Hybrid Systems 2011)
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nGuaranteed event detection & localization 
l An interval constraint propagation approach  

l(Ramdani & Nedialkov, Nonlinear Analysis Hybrid Systems 2011)
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Hybrid Reachability Computation



nDetecting and localizing events 
l Improved and enhanced version. A faster version.  

l(Maïga, Ramdani, Travé-Massuyès, IEEE CDC 2013, ECC 2014)
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nDetecting and localizing events 
l Improved and enhanced version. A faster version.  

l(Maïga, Ramdani, Travé-Massuyès, IEEE CDC 2013, ECC 2014)
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Mean value form + Lohner’s QR transformation method 

is a particular zonotope 

Hybrid Reachability Computation

Solution set:
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Hybrid Reachability Computation



(Maïga, Ramdani, Travé-Massuyès, Combastel IEEE TAC 2016) 

nReduce over-approximation in event-detection
l  Solve Redundant constraints
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Hybrid Reachability Computation



(Maïga, Ramdani, Travé-Massuyès, Combastel IEEE TAC 2016) 

nReduce over-approximation in event-detection
l  Solve Redundant constraints

nChange-of-coordinate-aware approach to discrete 
transitions with nonlinear guards 

lZonotope computation 

l Inclusion of family of zonotopes. Zonotope extension
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Hybrid Reachability Computation
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nDetecting and localizing events 
l Improved and enhanced version 

Hybrid Reachability Computation
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nDetecting and localizing events 
l Improved and enhanced version  

Hybrid Reachability Computation
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nDetecting and localizing events 
l Improved and enhanced version  
 
Bouncing ball in 2D.

Hybrid Reachability Computation
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nDetecting and localizing events 
l Improved and enhanced version  
 
Bouncing ball in 2D.

Hybrid Reachability Computation
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nDetecting and localizing events 
l Improved and enhanced version  

l Impact of uncertainty on sliding mode control  
(Maïga, Ramdani, Travé-Massuyès, Combastel, IEEE TAC 2016)

Hybrid Reachability Computation
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nDetecting and localizing events 
l Improved and enhanced version  

l Impact of uncertainty on sliding mode control  
(Maïga, Ramdani, Travé-Massuyès, Combastel, IEEE TAC 2016)

Hybrid Reachability Computation



n Set-membership Parameter Estimation  
with Hybrid Systems
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Set Membership Estimation

n Parameter estimation with hybrid systems 
l Branch-&-bound, branch-&-prune, interval contractors … 

 (Eggers, Ramdani et al., 2012), (Maïga, Ramdani et al., 2015)
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Set Membership Estimation

n Parameter estimation with hybrid systems 
l Branch-&-bound, branch-&-prune, interval contractors … 

 (Eggers, Ramdani et al., 2012), (Maïga, Ramdani et al., 2015)

Need an inclusion test! 
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Frontier of the reachable set = union of zonotopes

Inclusion test
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Inclusion test
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Frontier of the reachable set = union of zonotopes

Inclusion test
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Inclusion test
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Inclusion test
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nHybrid Mass-Spring 
l Velocity-dependent damping. Mode switching driven by 

Parameter identification
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nHybrid Mass-Spring 
l case 1 : Parameters acting on continuous dynamics. 

l CPU time approx. 140 mn! 

Parameter identification
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nHybrid Mass-Spring 
l case 1 : Parameters acting on continuous dynamics. 

l CPU time approx. 140 mn! 

Parameter identification
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nHybrid Mass-Spring 
l case 2 : parameters acting on discrete transition. 

l CPU time approx. 40 mn

Parameter identification
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nHybrid Mass-Spring 
l case 2 : parameters acting on discrete transition. 

l CPU time approx. 40 mn

Parameter identification
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