

Reachability computation with hybrid dynamical systems. Application to state estimation. Interval methods approaches.

Nacim RAMDANI

University of Orléans, at Bourges https://agora.bourges.univ-orleans.fr/ramdani

GDR MACS Toulouse, 8 July 2017.

Outline

Interval Taylor Methods for IVP ODE

- **Comparison Theorems for Differential Inequalities**
- Set-membership Estimation with Nonlinear Continuous Systems
- Hybrid and Cyber-Physical Systems
- **Nonlinear Hybrid Reachability**
- Set-membership Parameter Estimation with Hybrid Systems

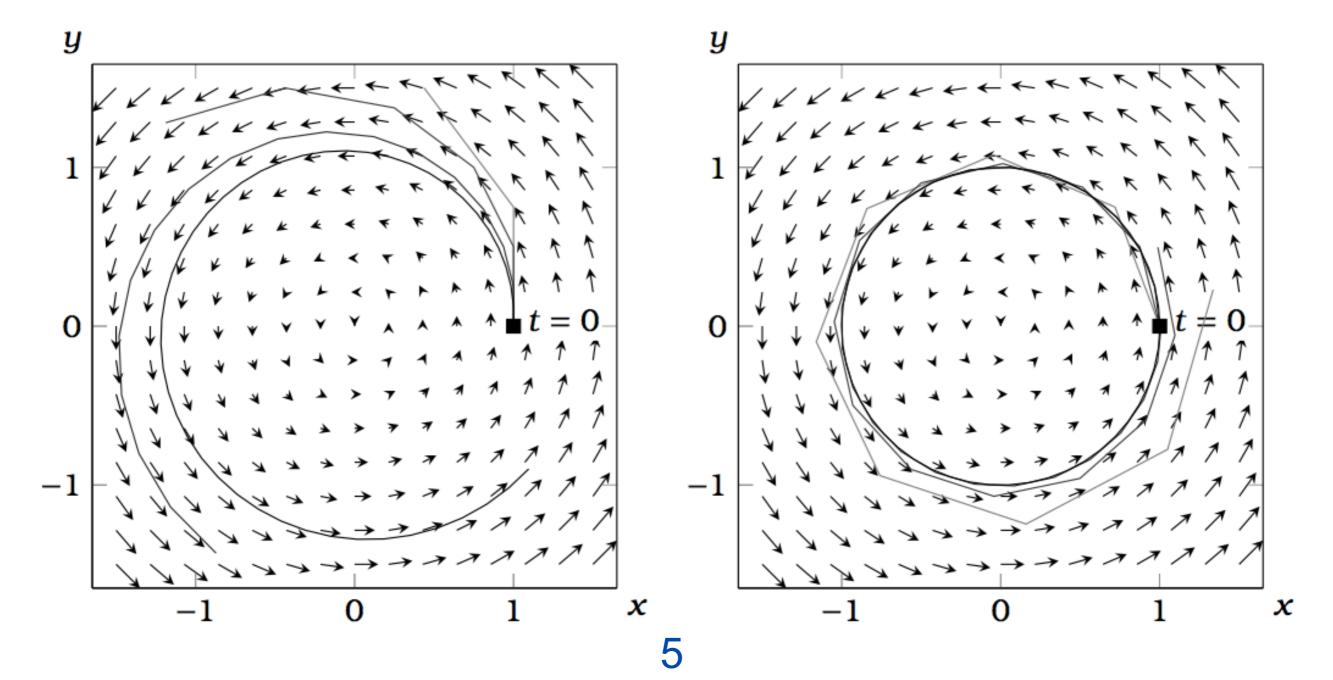
Interval Methods for IVP ODE

Guaranteed set integration with Taylor methods

- (Moore, 66) (Lohner, 88) (Nedialkov, 99)
- IVP ODE
 - $\dot{\mathbf{x}}(t) = f(\mathbf{x}, \mathbf{p}, t), \quad t_0 \leq t \leq t_N, \, \mathbf{x}(t_0) \in [\mathbf{x}_0], \, \mathbf{p} \in [\mathbf{p}]$

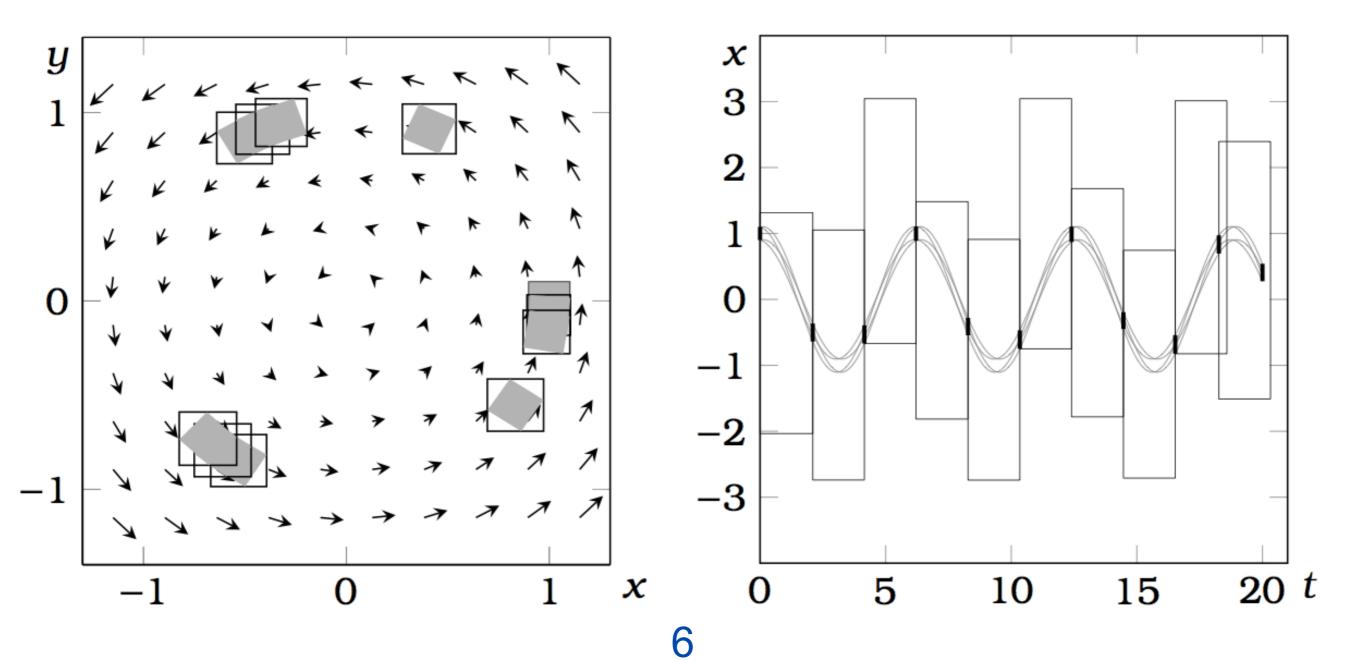
Standard Methods

 $\dot{\mathbf{x}}(t) = \mathbf{f}(\mathbf{x}, \check{\mathbf{p}}, t), \quad t_0 \leq t \leq t_N, \quad \mathbf{x}(t_0) = \mathbf{x}_0$



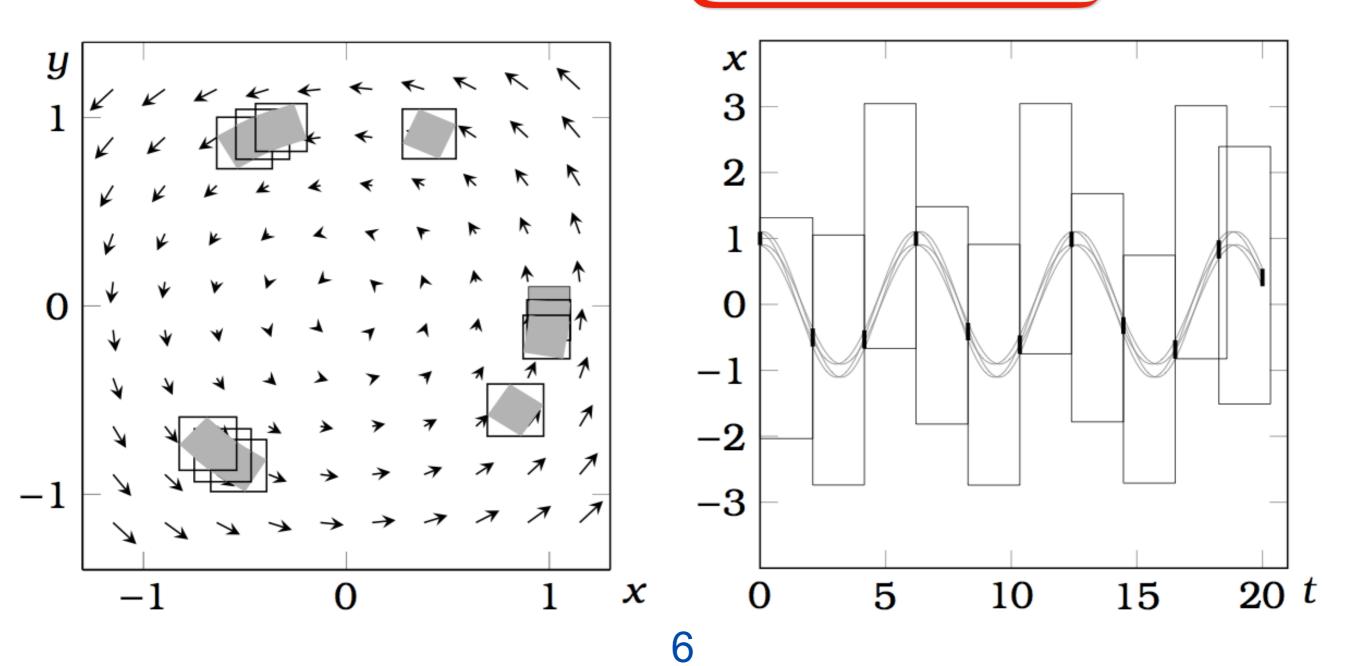
Guaranteed set integration

 $\dot{\mathbf{x}}(t) = f(\mathbf{x}, \mathbf{p}, t), \quad t_0 \leq t \leq t_N, \, \mathbf{x}(t_0) \in [\mathbf{x}_0], \, \mathbf{p} \in [\mathbf{p}]$



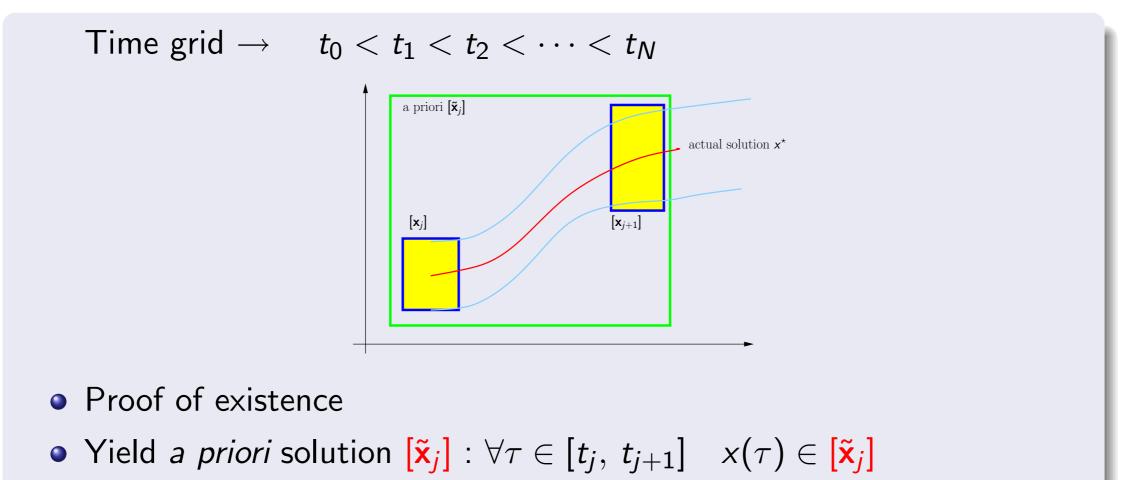
Guaranteed set integration

$$\dot{\mathbf{x}}(t) = f(\mathbf{x}, \mathbf{p}, t), \quad t_0 \leq t \leq t_N, \, \mathbf{x}(t_0) \in [\mathbf{x}_0], \, \mathbf{p} \in [\mathbf{p}]$$



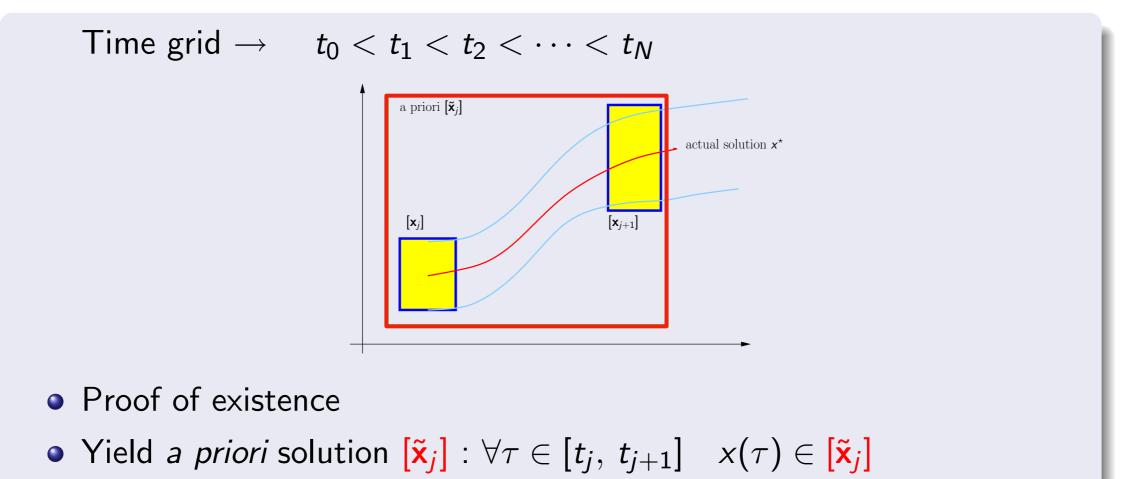
Guaranteed set integration with Taylor methods (Moore,66) (Lohner,88) (Nedialkov,99)

 $\dot{\mathbf{x}}(t) = f(\mathbf{x}, \mathbf{p}, t), \quad t_0 \leq t \leq t_N, \, \mathbf{x}(t_0) \in [\mathbf{x}_0], \, \mathbf{p} \in [\mathbf{p}]$



Guaranteed set integration with Taylor methods (Moore,66) (Lohner,88) (Nedialkov,99)

 $\dot{\mathbf{x}}(t) = f(\mathbf{x}, \mathbf{p}, t), \quad t_0 \leq t \leq t_N, \, \mathbf{x}(t_0) \in [\mathbf{x}_0], \, \mathbf{p} \in [\mathbf{p}]$



Banach fixed-point theorem

Let operator $\Phi : \mathbb{X} \to \mathbb{X}$ be defined on a complete metric space $\{\mathbb{X}, d\}$ with a metric d(.,.). Let γ satisfy $0 \leq \gamma < 1$. If Φ satisfies the Lipschitz condition

$$\forall \mathbf{z}_1, \, \mathbf{z}_1 \in \mathbb{X}, \quad d\left(\Phi\left(\mathbf{z}_1\right), \Phi\left(\mathbf{z}_2\right)\right) \leqslant \gamma d\left(\mathbf{z}_1, \mathbf{z}_2\right),$$

then Φ has a unique fixed-point $x^* \in \mathbb{X}$.

• Metric can be exponential norm of $u(t) \in C^0[t_j, t_{j+1}]$

$$||u||_{\alpha} = \max_{t \in [t_j, t_{j+1}]} (e^{-\alpha(t-t_j)} ||u(t)||), \quad \alpha > 0$$

• If $T\mathbb{X} \subseteq \mathbb{X}$, then T has a unique fixed-point in \mathbb{X}

Picard-Lindelöf operator

 \mathbb{U} : set of continuous functions, $\nu_{j} = \nu(t_{j}), \nu(t) \in \mathbb{U}, t \in [t_{j}, t_{j+1}]$

$$\Phi\left(\nu\left(t\right)\right) = \nu_{j} + \int_{t_{j}}^{t} \mathbf{f}\left(\tau,\nu\left(\tau\right)\right) d\tau$$

Property

$$\Phi\left(\nu^{\star}\right) = \nu^{\star} \Leftrightarrow \dot{\nu}^{\star} = \mathbf{f}\left(\nu^{\star}\right)$$

A priori solution $[\tilde{\mathbf{x}}_j]$

If $\Phi([\tilde{\mathbf{x}}_j]) \subseteq [\tilde{\mathbf{x}}_j]$ then $[\tilde{\mathbf{x}}_j] \supseteq \{\mathbf{x}(t) \mid t \in [t_j, t_{j+1}]\}$

Guaranteed set integration with Taylor methods

• (Moore,66) (Lohner,88) (Nedialkov,99), (Nedialkov et al, 01)

$$\dot{\mathbf{x}}(t) = f(\mathbf{x}, \mathbf{p}, t), \quad t_0 \leq t \leq t_N, \, \mathbf{x}(t_0) \in [\mathbf{x}_0], \, \mathbf{p} \in [\mathbf{p}]$$

 $[\mathbf{x}_j] + [0,h]\mathbf{f}([\tilde{\mathbf{x}}_j]) \subseteq [\tilde{\mathbf{x}}_j]$

A priori Enclosure (input : $[\mathbf{x}_j]$, h, $\alpha > 0$; output : $[\tilde{\mathbf{x}}_j]$, h)

- Initialization : $[\tilde{\mathbf{x}}_j] := [\mathbf{x}_j] + [0, h] \mathbf{f}([\mathbf{x}_j]);$
- ② While $([\mathbf{x}_j] + [0, h] \mathbf{f} ([\mathbf{\tilde{x}}_j]) \not\subset [\mathbf{\tilde{x}}_j])$ do

$$\begin{bmatrix} \mathbf{\tilde{x}}_j \end{bmatrix} := \begin{bmatrix} \mathbf{\tilde{x}}_j \end{bmatrix} + \begin{bmatrix} -\alpha, \alpha \end{bmatrix} | \begin{bmatrix} \mathbf{\tilde{x}}_j \end{bmatrix} | h := h/2$$

end while

Guaranteed set integration with Taylor methods

• (Moore,66) (Lohner,88) (Nedialkov,99), (Nedialkov et al, 01)

$$\dot{\mathbf{x}}(t) = f(\mathbf{x}, \mathbf{p}, t), \quad t_0 \leq t \leq t_N, \, \mathbf{x}(t_0) \in [\mathbf{x}_0], \, \mathbf{p} \in [\mathbf{p}]$$

 $[\mathbf{x}_j] + [0,h]\mathbf{f}([\mathbf{\tilde{x}}_j]) \subseteq [\mathbf{\tilde{x}}_j]$

A priori Enclosure (input : $[\mathbf{x}_j]$, h, $\alpha > 0$; output : $[\tilde{\mathbf{x}}_j]$, h)

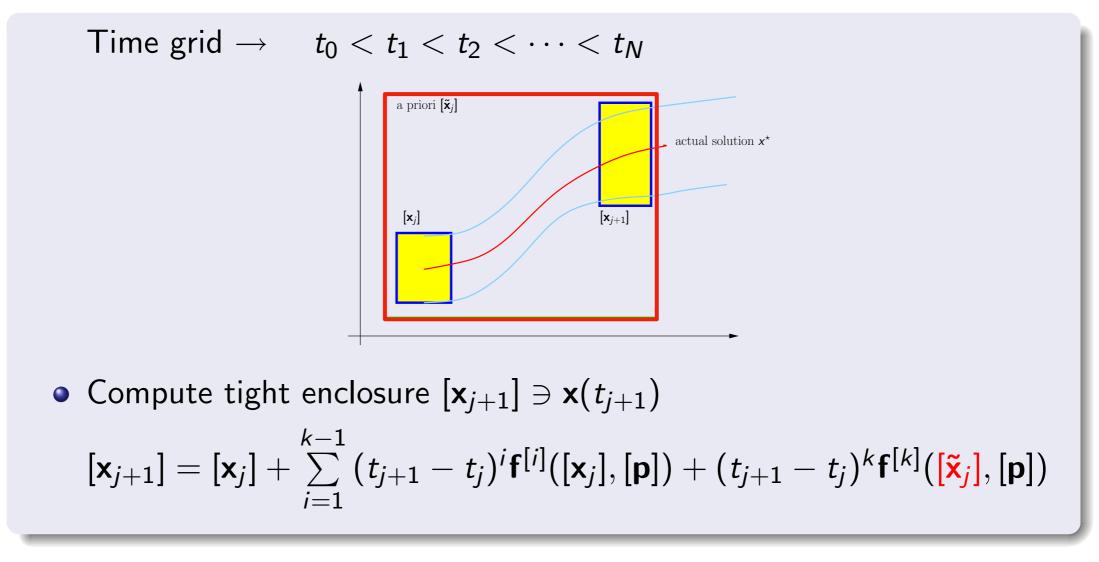
- Initialization : $[\tilde{\mathbf{x}}_j] := [\mathbf{x}_j] + [0, h] \mathbf{f}([\mathbf{x}_j]);$
- ② While $([\mathbf{x}_j] + [0, h] \mathbf{f} ([\mathbf{\tilde{x}}_j]) \not\subset [\mathbf{\tilde{x}}_j])$ do

$$\begin{bmatrix} \mathbf{\tilde{x}}_j \end{bmatrix} := \begin{bmatrix} \mathbf{\tilde{x}}_j \end{bmatrix} + \begin{bmatrix} -\alpha, \alpha \end{bmatrix} | \begin{bmatrix} \mathbf{\tilde{x}}_j \end{bmatrix} | h := h/2$$

end while

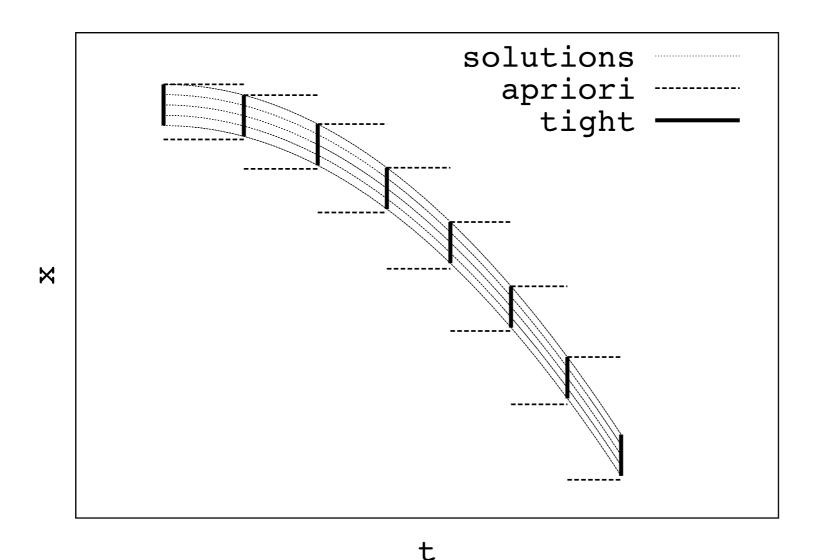
Guaranteed set integration with Taylor methods (Moore,66) (Lohner,88) (Nedialkov,99)

 $\dot{\mathbf{x}}(t) = f(\mathbf{x}, \mathbf{p}, t), \quad t_0 \leq t \leq t_N, \, \mathbf{x}(t_0) \in [\mathbf{x}_0], \, \mathbf{p} \in [\mathbf{p}]$

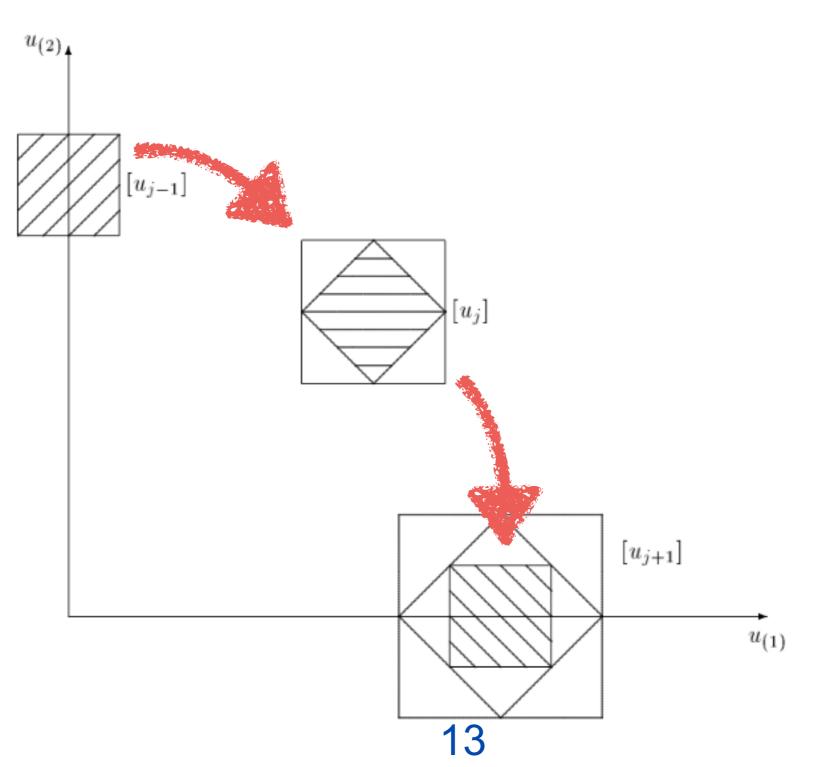


Guaranteed set integration with Taylor methods (Moore,66) (Lohner,88) (Nedialkov,99)

 $\dot{\mathbf{x}}(t) = f(\mathbf{x}, \mathbf{p}, t), \quad t_0 \leq t \leq t_N, \, \mathbf{x}(t_0) \in [\mathbf{x}_0], \, \mathbf{p} \in [\mathbf{p}]$



Wrapping effect (Moore,66)

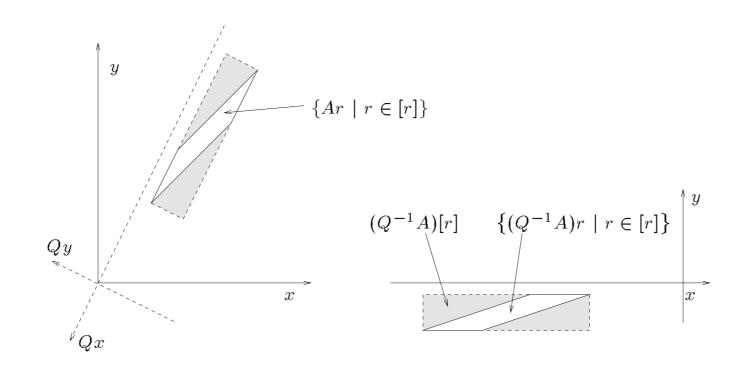


Guaranteed set integration with Taylor methods (Moore,66) (Lohner,88) (Nedialkov,99)

 $\dot{\mathbf{x}}(t) = f(\mathbf{x}, \mathbf{p}, t), \quad t_0 \leq t \leq t_N, \, \mathbf{x}(t_0) \in [\mathbf{x}_0], \, \mathbf{p} \in [\mathbf{p}]$

Mean-value approach

 $[\mathbf{x}](t) \in \{\mathbf{v}(t) + \mathbf{A}(t)\mathbf{r}(t) \mid \mathbf{v}(t) \in [\mathbf{v}](t), \mathbf{r}(t) \in [\mathbf{r}](t)\}.$



Guaranteed set integration with Taylor methods (Moore,66) (Lohner,88) (Nedialkov,99)

 $\dot{\mathbf{x}}(t) = f(\mathbf{x}, \mathbf{p}, t), \quad t_0 \leq t \leq t_N, \, \mathbf{x}(t_0) \in [\mathbf{x}_0], \, \mathbf{p} \in [\mathbf{p}]$

$$\mathbf{f}^{[1]} = \mathbf{x}^{(1)} = \mathbf{f}
 \mathbf{f}^{[2]} = \frac{1}{2}\mathbf{x}^{(2)} = \frac{1}{2}\frac{d\mathbf{f}}{d\mathbf{x}}\mathbf{f}
 \mathbf{f}^{[i]} = \frac{1}{i!}\mathbf{x}^{(i)} = \frac{1}{i}\frac{d\mathbf{f}^{[i-1]}}{d\mathbf{x}}\mathbf{f}, \ i \ge 2$$

Guaranteed set integration with Taylor methods (Moore,66) (Lohner,88) (Rihm,94) (Berz,98) (Nedialkov,99)

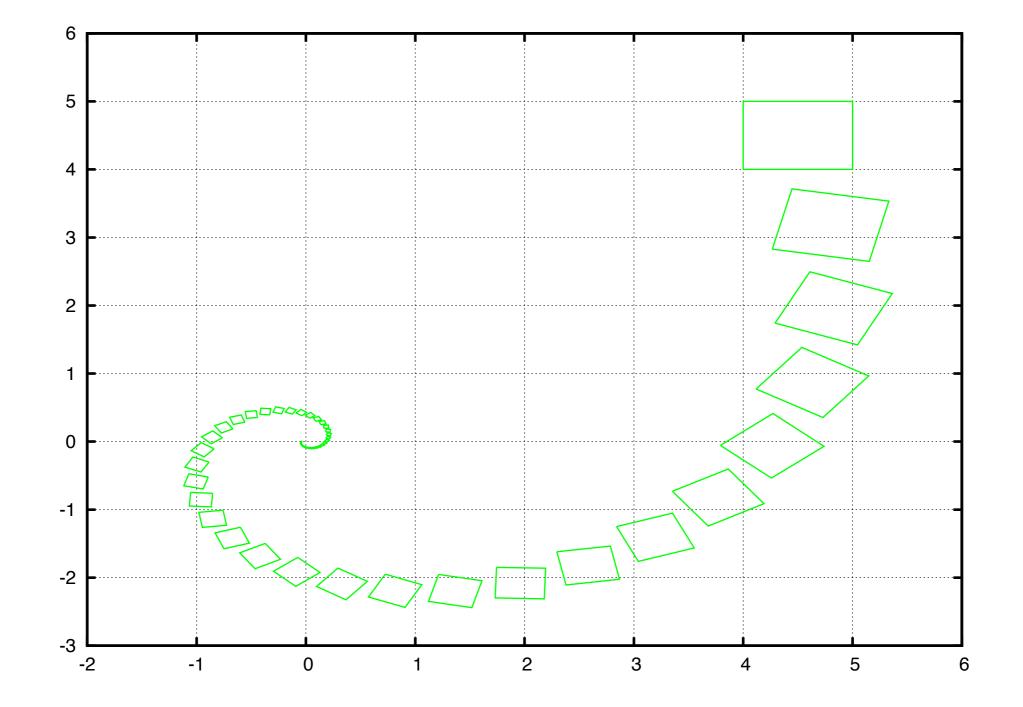
Complexity

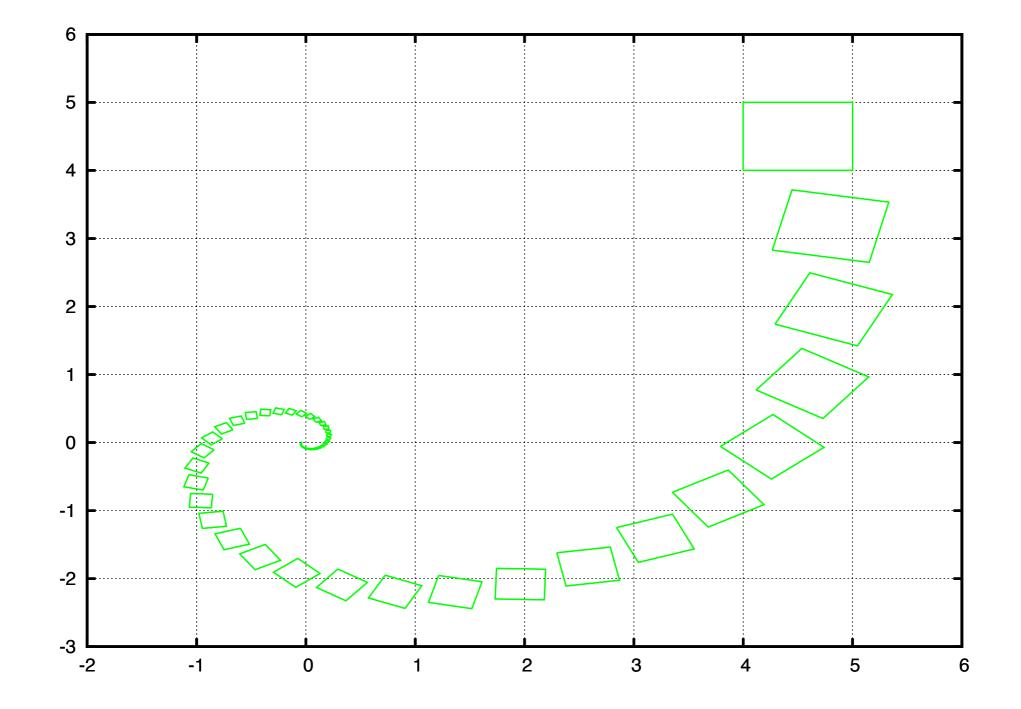
- Work per step is of polynomial complexity
 - Computing Taylor coefficients $\rightarrow o(k^2)$
 - Linear algebra $\rightarrow o(n^3)$

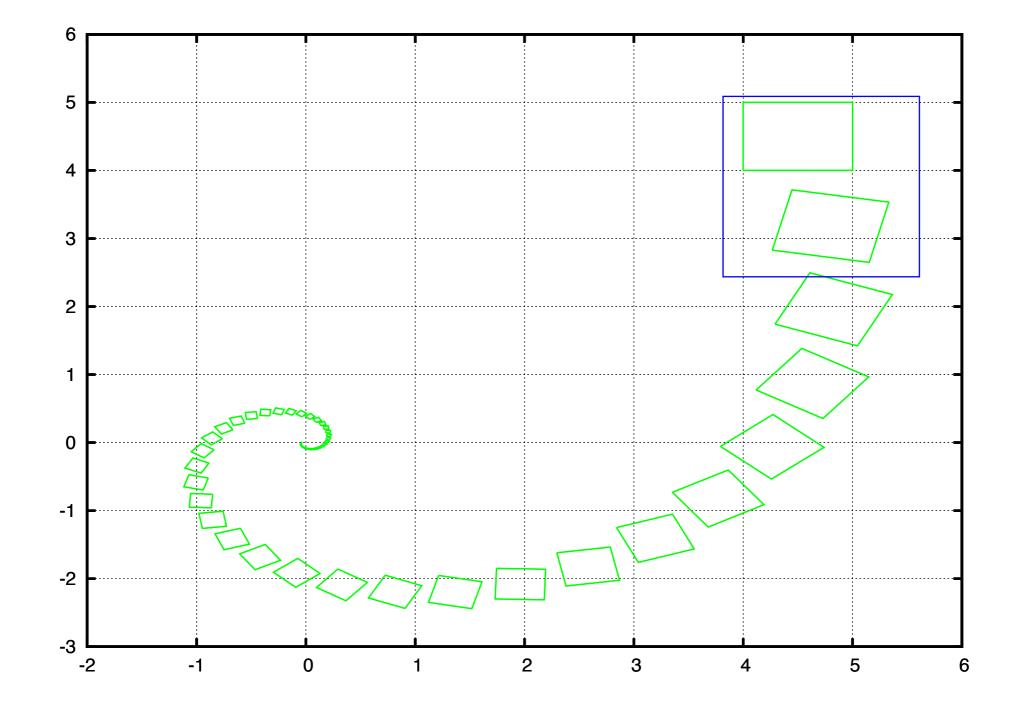
In practice : Obtaining Taylor coefficients ...

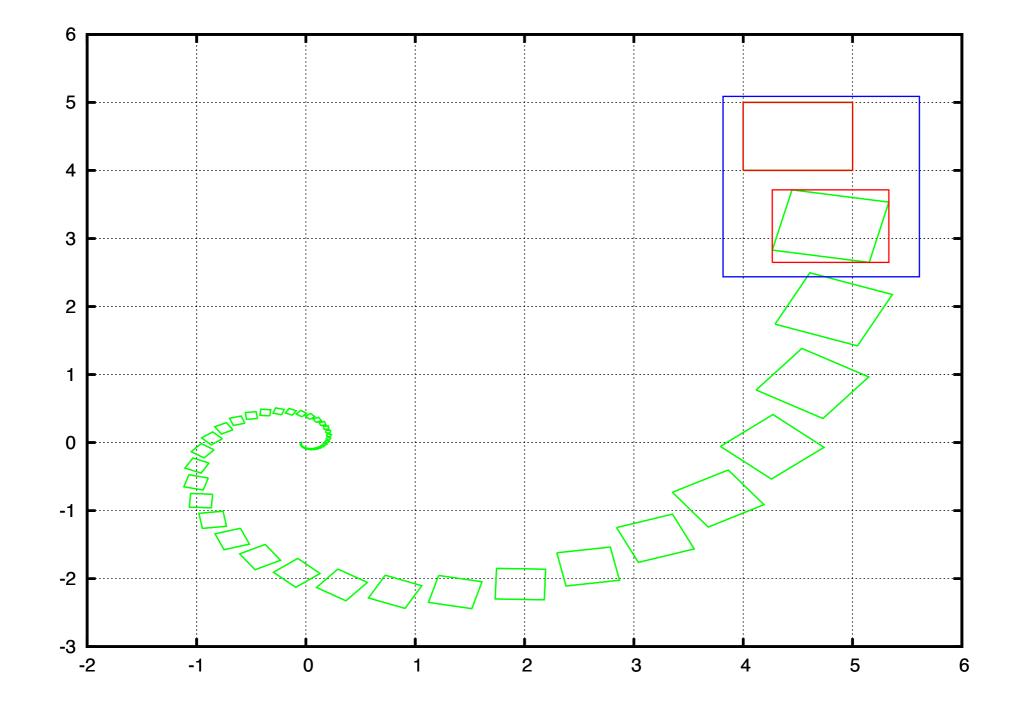
• FADBAD++ (<u>www.fadbad.com</u>)

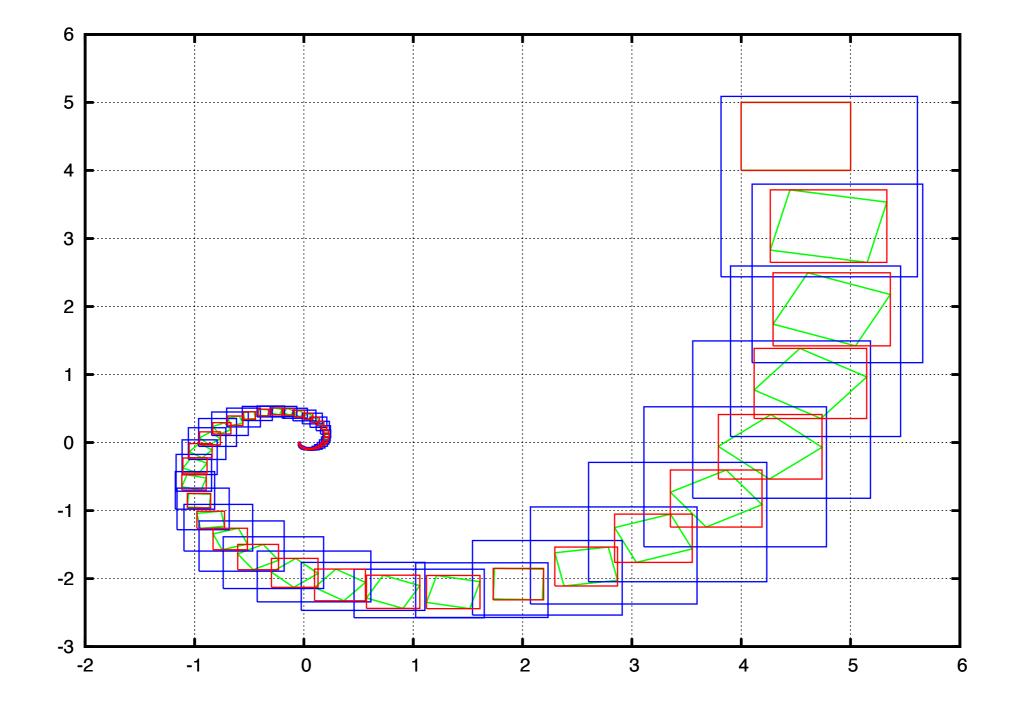
Flexible Automatic differentiation using templates and operator overloading in C++

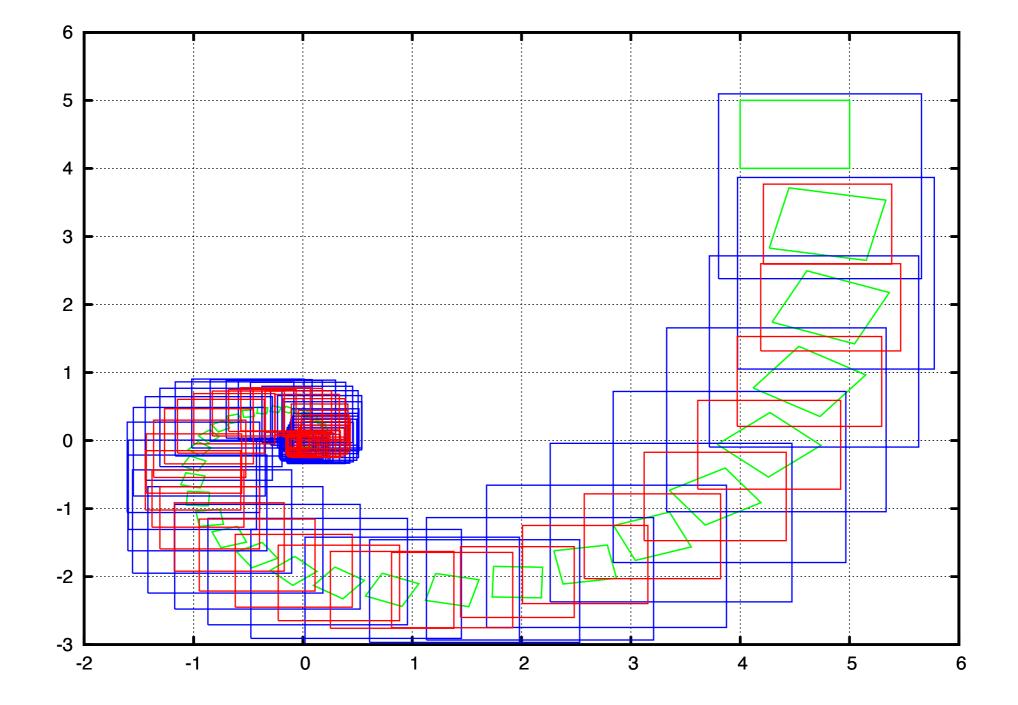








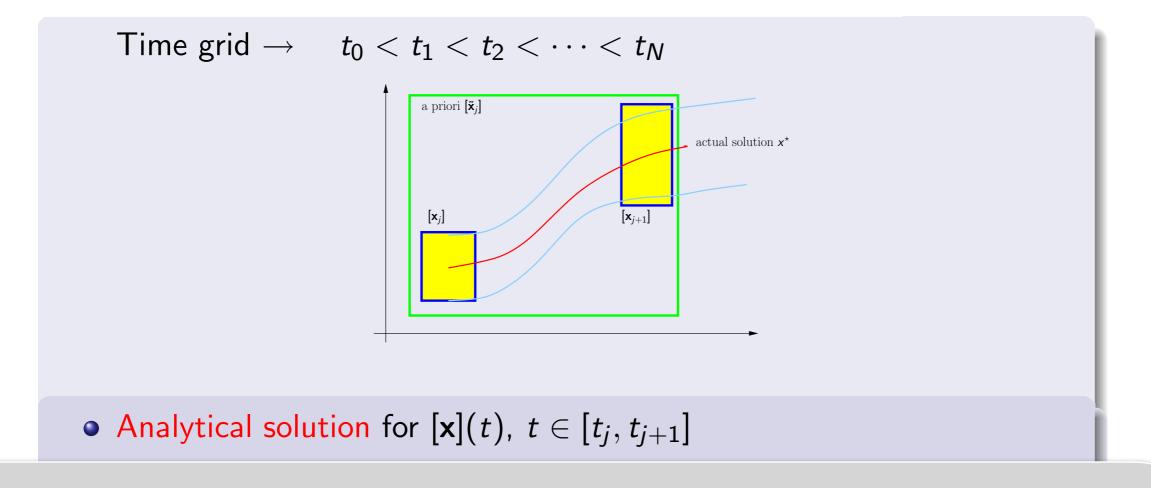




Piecewise analytical expressions for the solution tube

• (Ramdani et Nedialkov, 2011)

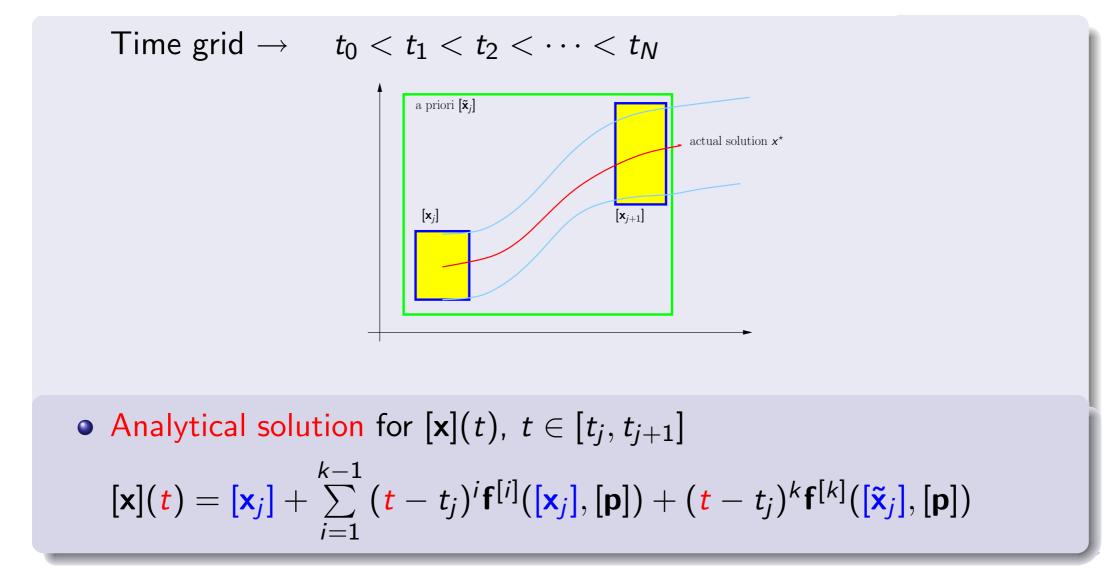
$$\dot{\mathbf{x}}(t) = f(\mathbf{x}, \mathbf{p}, t), \quad t_0 \leq t \leq t_N, \, \mathbf{x}(t_0) \in [\mathbf{x}_0], \, \mathbf{p} \in [\mathbf{p}]$$



Piecewise analytical expressions for the solution tube

• (Ramdani et Nedialkov, 2011)

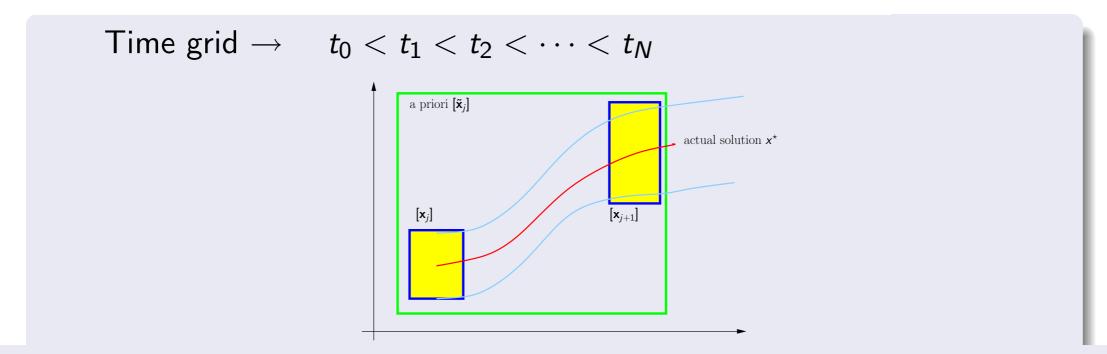
$$\dot{\mathbf{x}}(t) = f(\mathbf{x}, \mathbf{p}, t), \quad t_0 \leq t \leq t_N, \, \mathbf{x}(t_0) \in [\mathbf{x}_0], \, \mathbf{p} \in [\mathbf{p}]$$



Piecewise analytical expressions for the solution tube

• (Ramdani et Nedialkov, 2011)

$$\dot{\mathbf{x}}(t) = f(\mathbf{x}, \mathbf{p}, t), \quad t_0 \leq t \leq t_N, \, \mathbf{x}(t_0) \in [\mathbf{x}_0], \, \mathbf{p} \in [\mathbf{p}]$$



 $\forall \tau \in [t_j, t_j + h_j] \quad \mathbf{x}(\tau) \in [\mathbf{x}(\tau)]$ $[\mathbf{x}(\tau)] = [\mathbf{x}_j] + \sum_{i=1}^{k-1} (\tau - t_j)^i f^{[i]}([\mathbf{x}_j], [\mathbf{p}]) + (\tau - t_j)^k f^{[k]}([\tilde{\mathbf{x}}_j], [\mathbf{p}])$ $\mathbb{R}([t_0, t]; [\mathbf{x}_0]) \subseteq \cup_{\tau \in \{t_0, t\}} [\mathbf{x}(\tau)] \subseteq \cup_{j \in \{0, t\}} [\tilde{\mathbf{x}}_j]$

An Interval Solver for Initial Value Problems in Ordinary Differential Equations

Ned Nedialkov nedialk@mcmaster.ca

VNODE-LP is a C++ package for computing bounds on solutions in IVPs for ODEs. In contrast to traditional ODE solvers, which compute approximate solutions, this solver tries to prove that a unique solution to a problem exists and then computes bounds that contain this solution. Such bounds can be used to help prove a theoretical result, check if a solution satisfies a condition in a safety-critical calculation, or simply to verify the results produced by a traditional ODE solver.

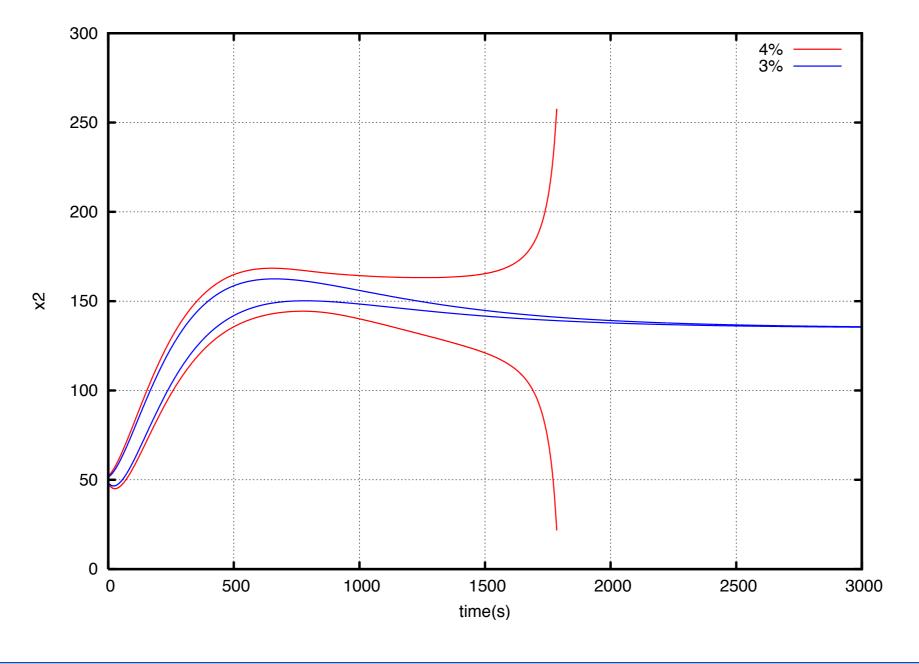
This package is a successor of the <u>VNODE</u> package of N. Nedialkov. A distinctive feature of the present solver is that it is developed entirely using <u>Literate Programming</u>. As a result, the correctness of VNODE-LP's implementation can be examined easier than the correctness of VNODE: the theory, documentation, and source code are produced from the same <u>CWEB</u> files.

download

Guaranteed set integration

- ... with interval Taylor methods. (VNODE, VSPODE)
 - (Moore, 66) (Lohner, 88) (Rihm, 94) (Berz, 98) (Nedialkov, 99)
- ... with interval Taylor models. (Flow*, VSPODE)
 - (Berz & Makino, 1996) (Chen, 2012)
- ... with validated Runge Kutta. (Dynlbex)
 - (Alexandre dit Sandretto & Chapoutot, 2015)

Interval Taylor approach not always successful !!



20

Guaranteed set integration

- ... with interval Taylor methods. (VNODE, VSPODE)
 - (Moore, 66) (Lohner, 88) (Rihm, 94) (Berz, 98) (Nedialkov, 99)
- ... with interval Taylor models. (Flow*, VSPODE)
 - (Berz & Makino, 1996) (Chen, 2012)
- ... with validated Runge Kutta. (Dynlbex)
 - (Alexandre dit Sandretto & Chapoutot, 2015)

Use comparison theorems for differential inequalities

- Monotone systems
 - (Ramdani et al., 2010)
- Muller's theorem
 - (Ramdani, et al. 2006) (Kieffer et al. 2006) (Ramdani, et al. 2009)

Comparison theorems for differential inequalities

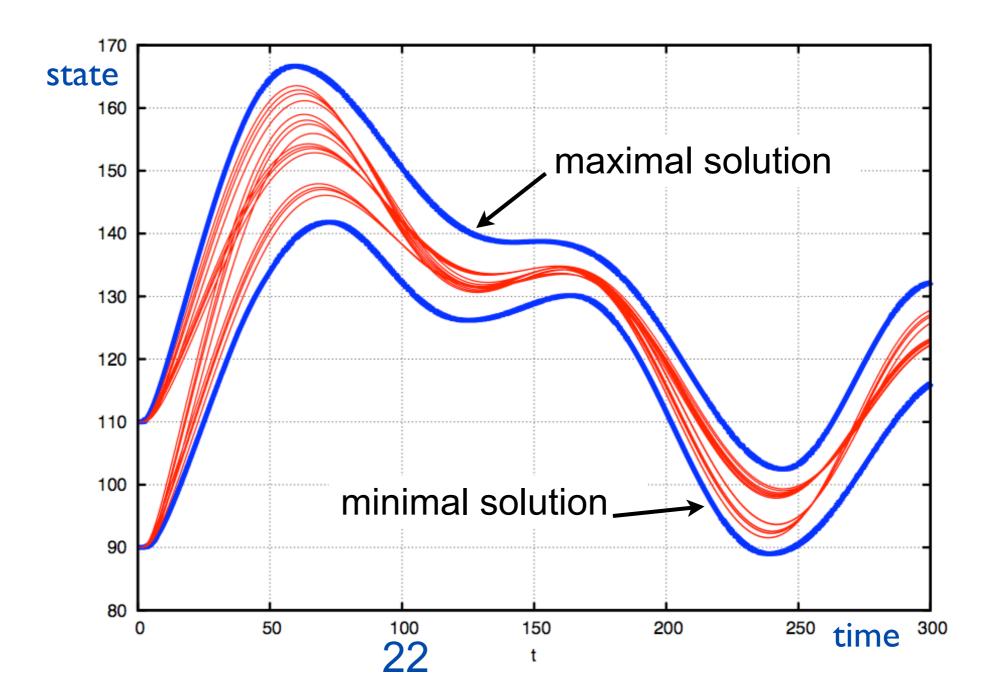
• Müller's existence theorem (1936)

$$\begin{cases} \forall t \in [t_0, t_N], \forall \mathbf{x} \in \mathbb{D}, \forall \mathbf{p} \in \mathbb{P} \\ \forall i \min_{x_i = \omega_i} f_i(\mathbf{x}, \mathbf{p}, t) \ge D^{\pm} \omega_i(t) \\ \forall i \max_{x_i = \Omega_i} f_i(\mathbf{x}, \mathbf{p}, t) \le D^{\pm} \Omega_i(t) \end{cases} \Rightarrow \begin{cases} \text{solution exists} \\ \forall t \in [t_0, t_N], \\ \omega(t_0) \le \mathbf{x}(t_0) \le \Omega(t_0) \end{cases} \end{cases}$$

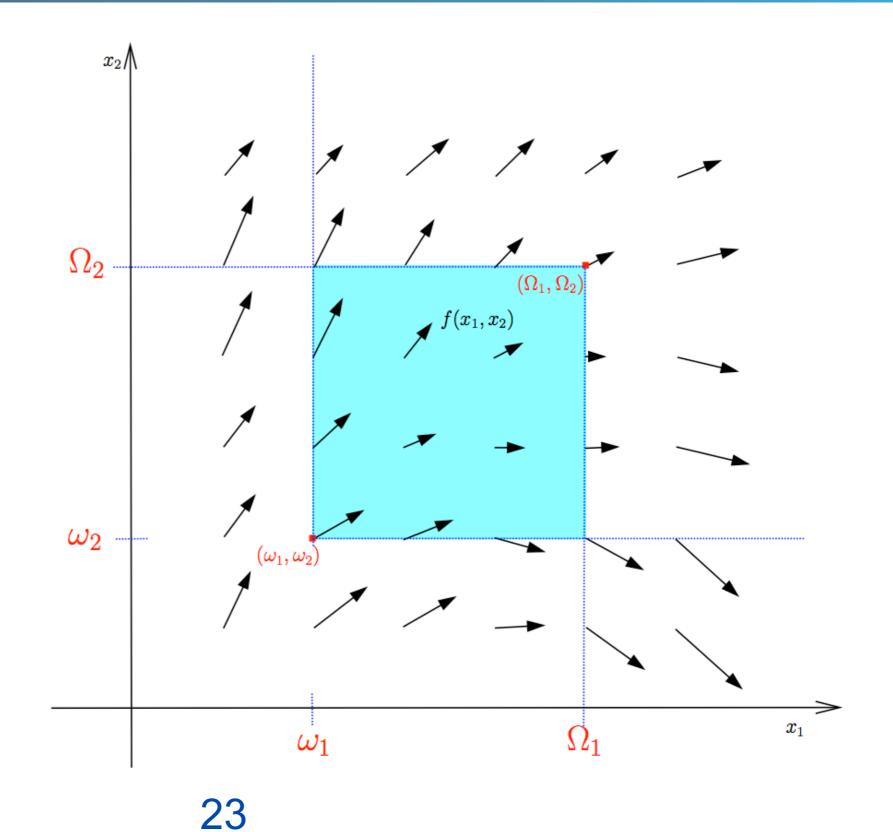
Bracketing systems

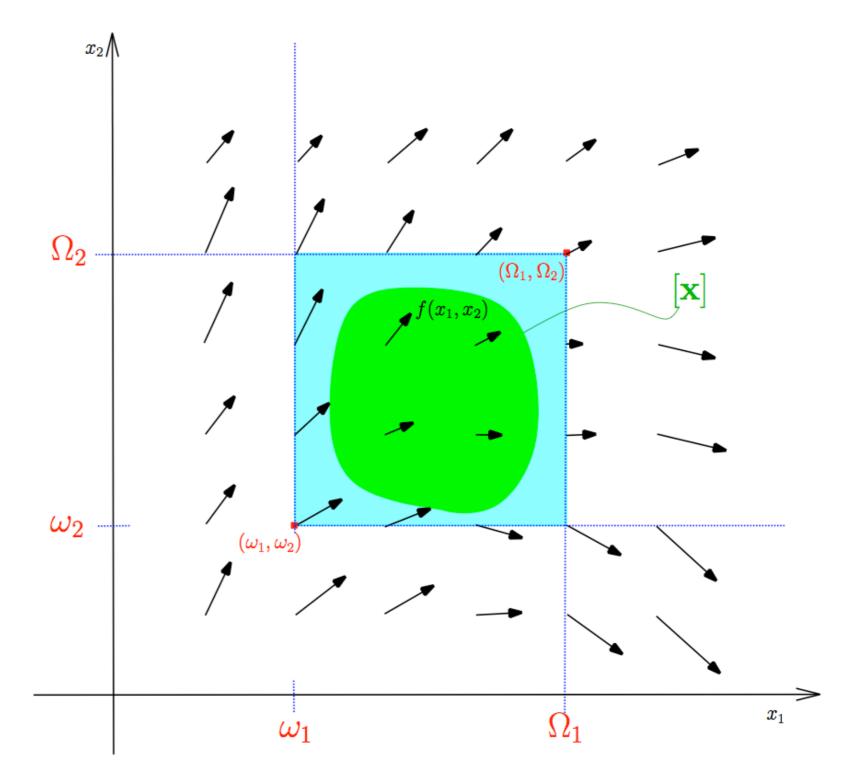
• (Ramdani, et al., IEEE Trans. Automatic Control 2009)

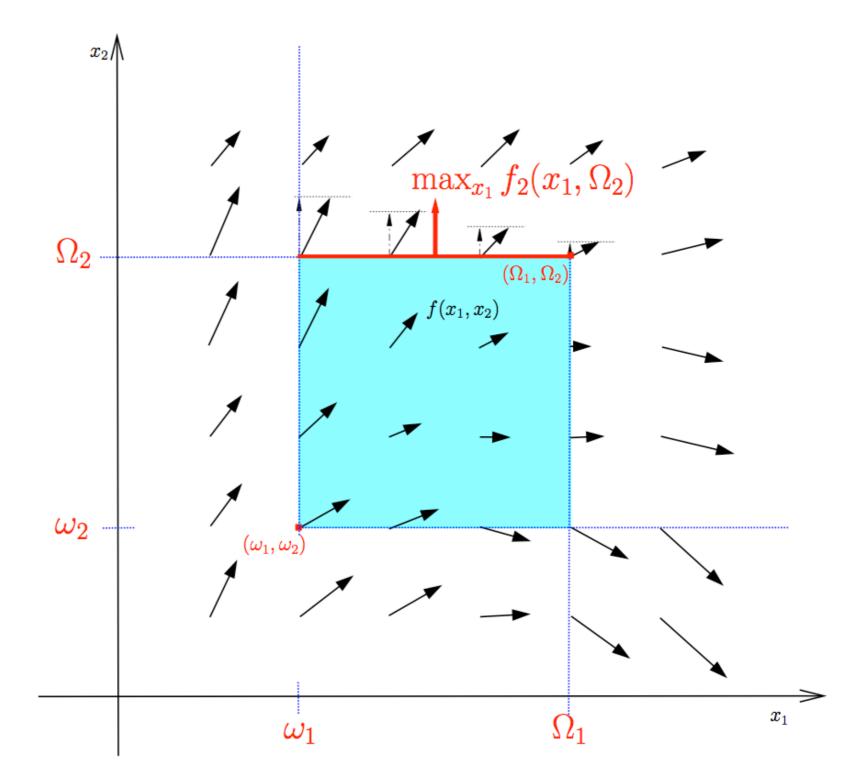
Comparison theorems for differential inequalities Bracketing systems

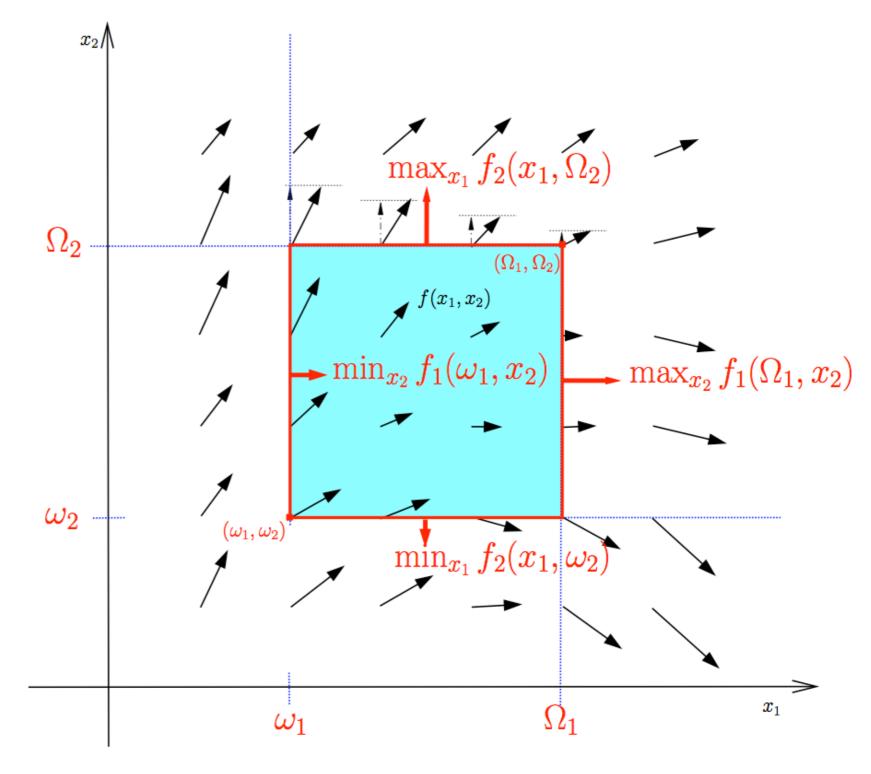


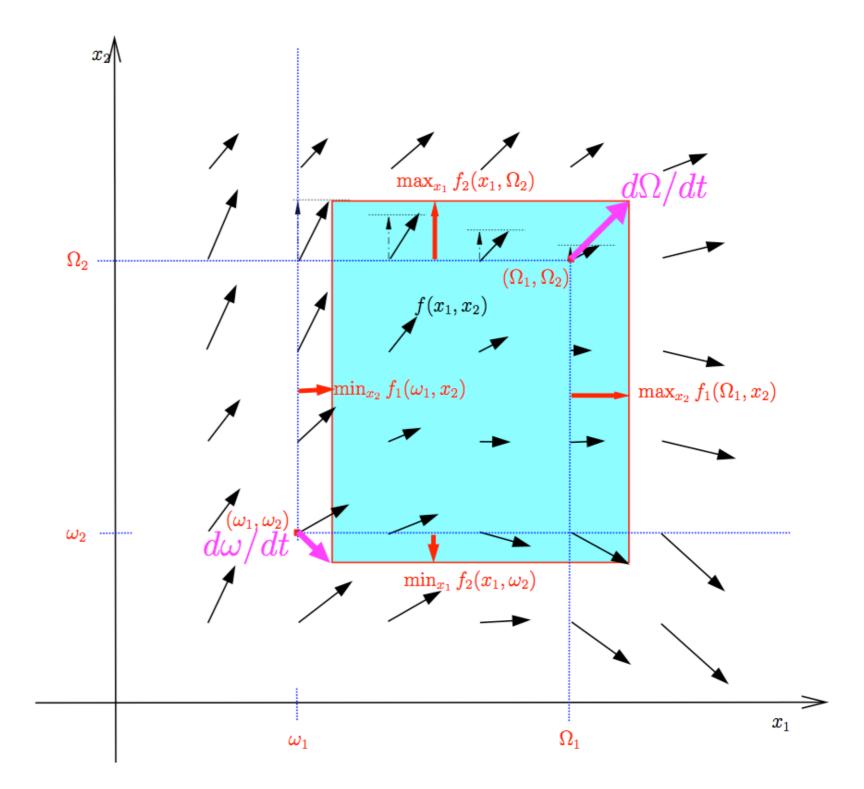
Müller's theorem

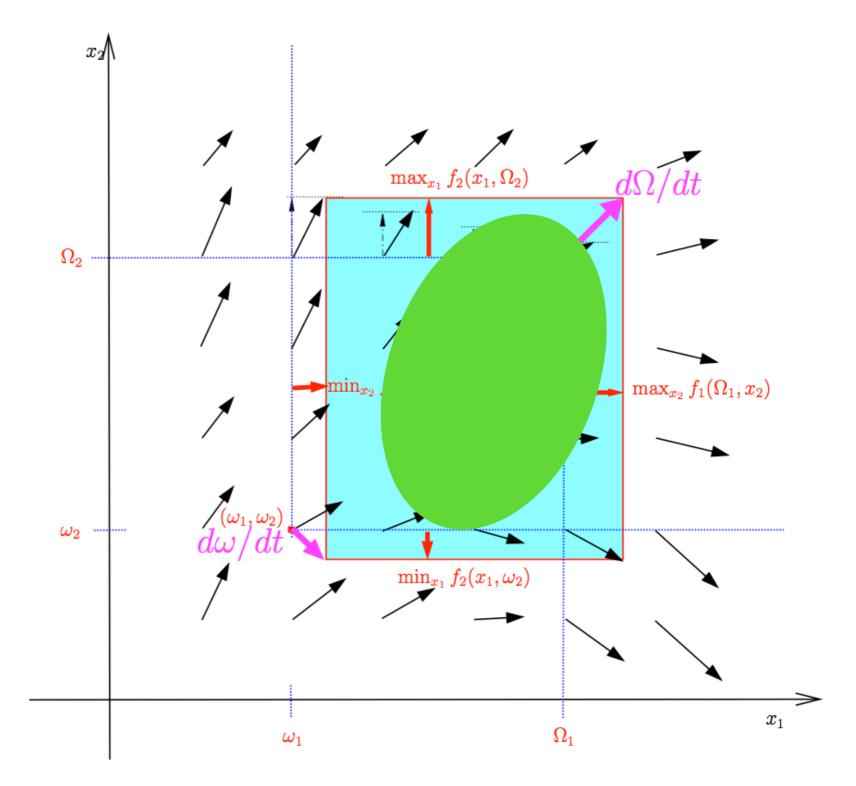












Bracketing systems

Dynamics of ...

 $\begin{cases} \dot{x}_1 = f_1(x_1, x_2, p, t), & x_1(t_0) \in [\underline{x}_{1,0}, \overline{x}_{1,0}] \subset \mathbb{R}, & p \in [\underline{p}, \overline{p}] & t \ge t_0 \\ \dot{x}_2 = f_2(x_1, x_2, p, t), & x_2(t_0) \in [\underline{x}_{2,0}, \overline{x}_{2,0}] \subset \mathbb{R}, \end{cases}$

If $\forall t \ge t_0$, $\forall \mathbf{x}(t) \in [\omega(t), \Omega(t)] \subset \mathbb{R}^2$, $\forall p \in [\underline{p}, \overline{p}]$, $\frac{\partial f_1}{\partial x_2} > 0 \land \frac{\partial f_1}{\partial p} > 0$

then $f_1(\omega_1, \omega_2, \underline{p}) \leq f_1(\omega_1, x_2, p, t)$ and $f_1(\Omega_1, x_2, p, t) \leq f_1(\Omega_1, \Omega_2, \overline{p})$ $\dot{\omega}_1(t) \equiv f_1(\omega_1, \omega_2, \underline{p})$ and $f_1(\Omega_1, \Omega_2, \overline{p}) \equiv \Omega_1(t)$

Bracketing systems

Dynamics of ...

 $\begin{cases} \dot{x}_1 = f_1(x_1, x_2, p, t), & x_1(t_0) \in [\underline{x}_{1,0}, \overline{x}_{1,0}] \subset \mathbb{R}, & p \in [\underline{p}, \overline{p}] & t \ge t_0 \\ \dot{x}_2 = f_2(x_1, x_2, p, t), & x_2(t_0) \in [\underline{x}_{2,0}, \overline{x}_{2,0}] \subset \mathbb{R}, \end{cases}$

If $\forall t \geq t_0$, $\forall \mathbf{x}(t) \in [\omega(t), \Omega(t)] \subset \mathbb{R}^2$, $\forall p \in [p, \overline{p}]$,

$$\frac{\partial f_1}{\partial x_2} > 0 \wedge \frac{\partial f_1}{\partial p} > 0$$

then $f_1(\omega_1, \omega_2, \underline{p}) \leq f_1(\omega_1, x_2, p, t)$ and $f_1(\Omega_1, x_2, p, t) \leq f_1(\Omega_1, \Omega_2, \overline{p})$ $\dot{\omega}_1(t) \equiv f_1(\omega_1, \omega_2, \underline{p})$ and $f_1(\Omega_1, \Omega_2, \overline{p}) \equiv \dot{\Omega}_1(t)$

Comparison theorems for differential inequalities

• Müller's existence theorem (1936)

If
$$\begin{cases} \forall t \in [t_0, t_N], \forall \mathbf{x} \in \mathbb{D}, \forall \mathbf{p} \in \mathbb{P} \\ \forall i \min_{x_i = \omega_i} f_i(\mathbf{x}, \mathbf{p}, t) \ge D^{\pm} \omega_i(t) \\ \forall i \max_{x_i = \Omega_i} f_i(\mathbf{x}, \mathbf{p}, t) \le D^{\pm} \Omega_i(t) \end{cases} \Rightarrow \begin{cases} \text{solution exists} \\ \forall t \in [t_0, t_N], \\ \omega(t_0) \le \mathbf{x}(t_0) \le \Omega(t_0) \end{cases}$$

Bracketing systems : coupled ODEs

$$\Rightarrow \begin{cases} \dot{\boldsymbol{\omega}}(t) = \underline{f}(\boldsymbol{\omega}, \boldsymbol{\Omega}, \underline{\mathbf{p}}, \overline{\mathbf{p}}, t), & \boldsymbol{\omega}(t_0) = \underline{\mathbf{x}}_0 \\ \dot{\boldsymbol{\Omega}}(t) = \overline{f}(\boldsymbol{\omega}, \boldsymbol{\Omega}, \underline{\mathbf{p}}, \overline{\mathbf{p}}, t), & \boldsymbol{\Omega}(t_0) = \overline{\mathbf{x}}_0 \end{cases}$$

Bracketing systems

• Example : Mitogen- Activated Protein Kinase (Sontag, 2005)

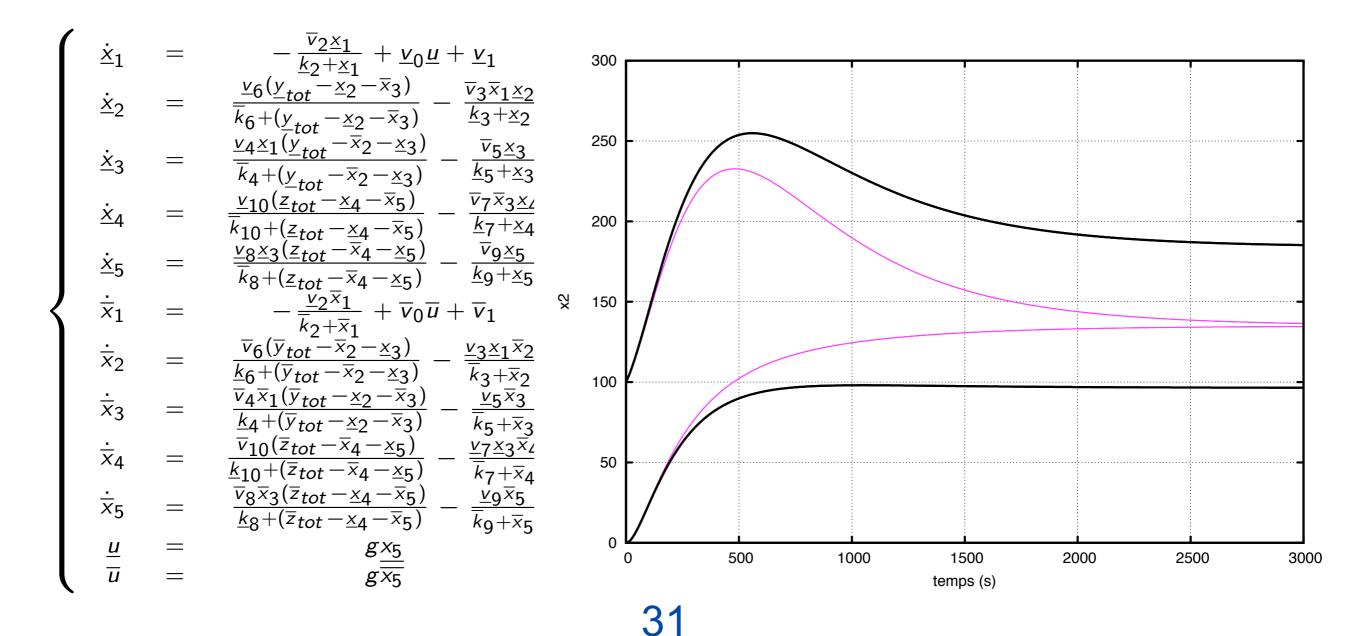
Bracketing systems

• Example : Mitogen- Activated Protein Kinase (Sontag, 2005)

$$\begin{cases} \dot{x}_{1} = -\frac{v_{2}x_{1}}{k_{2}+x_{1}} + v_{0}u + v_{1} \\ \dot{x}_{2} = \frac{v_{6}(y_{tot}-x_{2}-x_{3})}{k_{6}+(y_{tot}-x_{2}-x_{3})} - \frac{v_{3}x_{1}x_{2}}{k_{3}+x_{2}} \\ \dot{x}_{3} = \frac{v_{4}x_{1}(y_{tot}-x_{2}-x_{3})}{k_{4}+(y_{tot}-x_{2}-x_{3})} - \frac{v_{5}x_{3}}{k_{5}+x_{3}} \\ \dot{x}_{4} = \frac{v_{10}(z_{tot}-x_{4}-x_{5})}{k_{10}+(z_{tot}-x_{4}-x_{5})} - \frac{v_{7}x_{3}x_{4}}{k_{7}+x_{4}} \\ \dot{x}_{5} = \frac{v_{8}x_{3}(z_{tot}-x_{4}-x_{5})}{k_{8}+(z_{tot}-x_{4}-x_{5})} - \frac{v_{9}x_{5}}{k_{9}+x_{5}} \\ u = gx_{5} \end{cases}$$

Bracketing systems

Example : Mitogen- Activated Protein Kinase (Sontag, 2005)



Convergence analysis for bracketing systems enclosures.

Practical stability analysis for a class of systems (Ramdani et al, IEEE TAC 2009)

Convergence analysis for bracketing systems enclosures.

- Practical stability analysis for a class of systems (Ramdani et al, IEEE TAC 2009)
- Dual integration method (Meslem & Ramdani, IMA MCI 2017)

$$\dot{\zeta} = f(\zeta), \ \zeta = [\zeta_1 \ \zeta_2]^\top \Leftrightarrow \begin{cases} \dot{\zeta}_1 &= f_1(\zeta_1, \zeta_2) \\ \dot{\zeta}_2 &= f_2(\zeta_1, \zeta_2) & \wedge \operatorname{diag}(f_2) < 0 \end{cases}$$

⇒ Dual integration method (Bracketing on ζ_1 + Int. Taylor on ζ_2) ⇒ one can tune integration step size to obtain tight enclosures

Analysis of enclosures width for bracketing systems

$$\dot{\zeta} = M\zeta + u(d), \qquad d \in [d] \Rightarrow u \in [\underline{u}, \, \overline{u}] = u([d]), \Rightarrow w = \overline{u} - \underline{u},$$
 $M = M_d + M_o^+ - M_o^-, \quad (M_o^+ \ge 0, \, M_o^- \ge 0)$

Let us do it now as an exercise:

Apply the rule for building bracketing systems
 Analyze the dynamics of the enclosure widths

Analysis of enclosures width for bracketing systems

$$\dot{\zeta} = M\zeta + u(d), \qquad d \in [d] \Rightarrow u \in [\underline{u}, \, \overline{u}] = u([d]), \Rightarrow w = \overline{u} - \underline{u},$$
 $M = M_d + M_o^+ - M_o^-, \quad (M_o^+ \ge 0, \, M_o^- \ge 0)$
The bracketing systems by the Muller's theorem :

Ν

$$\begin{pmatrix} \dot{\Omega} \\ \dot{\omega} \end{pmatrix} = \begin{pmatrix} M_d + M_o^+ & -M_o^- \\ -M_o^- & M_d + M_o^+ \end{pmatrix} \begin{pmatrix} \Omega \\ \omega \end{pmatrix} + \begin{pmatrix} \overline{u} \\ \underline{u} \end{pmatrix}$$
$$e = \Omega - \omega \quad \Rightarrow \quad \dot{e} = (M_d + M_o^+ + M_o^-)e + w$$

Monotone order-preserving systems

• Müller, Kamke, Krasnoselskii, Hirsch, Smith, Angeli and Sontag.

• Preserve ordering on initial conditions.

$$\mathbf{x}(t_0) \prec \mathbf{y}(t_0) \Rightarrow \forall \mathbf{t} \geq \mathbf{t_0} \quad \mathbf{x}(t) \prec \mathbf{y}(t) \qquad \prec \in \{<, \leq, \geq, >\}$$

Bracketing systems via Müller's theorem give tight enclosures !

Monotone order-preserving systems

Test based on graph theory : monotone wrt orthant cones.
 No negative cycle in the incidence graph (Kunze & Siegel, 1999)

if
$$\exists \mathbf{D} = diag[(-1)^{\varepsilon_1}, ..., [(-1)^{\varepsilon_n}], \varepsilon_i \in \{0, 1\}$$

s.t $\mathbf{x}(t, \mathbf{x}_0, t_0)$ and $\mathbf{y}(t, \mathbf{y}_0, t_0)$ satisfy

 $\mathbf{D}\mathbf{y}_0 \geq \mathbf{D}\mathbf{x}_0 \Rightarrow \mathbf{D}\mathbf{y}(t, \mathbf{y}_0, t_0) \geq \mathbf{D}\mathbf{x}(t, \mathbf{x}_0, t_0) \ \forall t \geq t_0.$

Monotone order-preserving systems

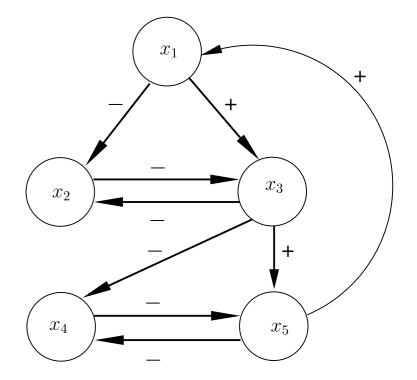
Test based on graph theory : monotone wrt orthant cones.
 No negative cycle in the incidence graph (Kunze & Siegel, 1999)

$$\begin{aligned} \dot{x}_1 &= -(v_2 x_1)/(k_2 + x_1) + v_0 g x_5 + v_1 \\ \dot{x}_2 &= (v_6 (y_{tot} - x_2 - x_3))/(k_6 + (y_{tot} - x_2 - x_3)) - (v_3 x_1 x_2)/(k_3 + x_2) \\ \dot{x}_3 &= (v_4 x_1 (y_{tot} - x_2 - x_3))/(k_4 + (y_{tot} - x_2 - x_3)) - (v_5 x_3)/(k_5 + x_3) \\ \dot{x}_4 &= (v_{10} (z_{tot} - x_4 - x_5))/(k_{10} + (z_{tot} - x_4 - x_5)) - (v_7 x_3 x_4)/(k_7 + x_4) \\ \dot{x}_5 &= (v_8 x_3 (z_{tot} - x_4 - x_5))/(k_8 + (z_{tot} - x_4 - x_5)) - (v_9 x_5)/(k_9 + x_5) \end{aligned}$$

if
$$\exists \mathbf{D} = diag[(-1)^{\varepsilon_1}, ..., [(-1)^{\varepsilon_n}], \varepsilon_i \in \{0, 1\}$$

s.t $\mathbf{x}(t, \mathbf{x}_0, t_0)$ and $\mathbf{y}(t, \mathbf{y}_0, t_0)$ satisfy

$$\mathbf{D}\mathbf{y}_0 \geq \mathbf{D}\mathbf{x}_0 \Rightarrow \mathbf{D}\mathbf{y}(t, \mathbf{y}_0, t_0) \geq \mathbf{D}\mathbf{x}(t, \mathbf{x}_0, t_0) \ \forall t \geq t_0.$$



Monotone order-prese

 Test based on graph theory No negative cycle in the inci

 $\begin{aligned} \dot{x}_1 &= -(v_2 x_1) / (k_2 + x_1) + v_0 g x_5 + v_1 \\ \dot{x}_2 &= (v_6 (y_{tot} - x_2 - x_3)) / (k_6 + (y_{tot} - x_2)) \\ \dot{x}_3 &= (v_4 x_1 (y_{tot} - x_2 - x_3)) / (k_4 + (y_{tot} - x_2)) \\ \dot{x}_4 &= (v_{10} (z_{tot} - x_4 - x_5)) / (k_{10} + (z_{tot} - x_4)) \\ \dot{x}_5 &= (v_8 x_3 (z_{tot} - x_4 - x_5)) / (k_8 + (z_{tot} - x_4)) \end{aligned}$

$$\begin{aligned} & \text{if } \exists \, \mathbf{D} = diag[(-1)^{\varepsilon_1}, ... \\ & \text{s.t } \mathbf{x}(t, \mathbf{x}_0, t_0) \text{ and } \mathbf{y}(t, \mathbf{y}_0, t_0) \text{ satisfy} \\ & \mathbf{D} \mathbf{y}_0 \geq \mathbf{D} \mathbf{x}_0 \Rightarrow \mathbf{D} \mathbf{y}(t, \mathbf{y}_0, t_0) \end{aligned}$$

$$\begin{array}{rcl} \dot{x}_{1} & = & -\frac{\overline{v}_{2}\underline{x}_{1}}{\underline{k}_{2}+\underline{x}_{1}} + \underline{v}_{0}\underline{u} + \underline{v}_{1} \\ \dot{x}_{2} & = & \frac{\underline{v}_{6}(\underline{y}_{tot}-\underline{x}_{2}-\overline{x}_{3})}{\overline{k}_{6}+(\underline{y}_{tot}-\underline{x}_{2}-\overline{x}_{3})} - \frac{\overline{v}_{3}\overline{x}_{1}\underline{x}_{2}}{\underline{k}_{3}+\underline{x}_{2}} \\ \dot{x}_{3} & = & \frac{\underline{v}_{4}\underline{x}_{1}(\underline{y}_{tot}-\overline{x}_{2}-\underline{x}_{3})}{\overline{k}_{4}+(\underline{y}_{tot}-\overline{x}_{2}-\underline{x}_{3})} - \frac{\overline{v}_{5}\underline{x}_{3}}{\underline{k}_{5}+\underline{x}_{3}} \\ \dot{x}_{4} & = & \frac{\underline{v}_{10}(\underline{z}_{tot}-\underline{x}_{4}-\overline{x}_{5})}{\overline{k}_{10}+(\underline{z}_{tot}-\underline{x}_{4}-\overline{x}_{5})} - \frac{\overline{v}_{7}\overline{x}_{3}\underline{x}_{4}}{\underline{k}_{7}+\underline{x}_{4}} \\ \dot{x}_{5} & = & \frac{\underline{v}_{8}\underline{x}_{3}(\underline{z}_{tot}-\underline{x}_{4}-\underline{x}_{5})}{\overline{k}_{8}+(\underline{z}_{tot}-\overline{x}_{4}-\underline{x}_{5})} - \frac{\overline{v}_{9}\underline{x}_{5}}{\underline{k}_{9}+\underline{x}_{5}} \\ \dot{x}_{1} & = & -\frac{\underline{v}_{2}\overline{x}_{1}}{\overline{k}_{2}+\overline{x}_{1}} + \overline{v}_{0}\overline{u} + \overline{v}_{1} \\ \dot{x}_{2} & = & \frac{\overline{v}_{6}(\overline{y}_{tot}-\overline{x}_{2}-\underline{x}_{3})}{\underline{k}_{6}+(\overline{y}_{tot}-\overline{x}_{2}-\underline{x}_{3})} - \frac{\underline{v}_{3}\underline{x}_{1}\overline{x}_{2}}{\overline{k}_{3}+\overline{x}_{2}} \\ \dot{x}_{3} & = & \frac{\overline{v}_{6}(\overline{y}_{tot}-\overline{x}_{2}-\overline{x}_{3})}{\underline{k}_{6}+(\overline{y}_{tot}-\underline{x}_{2}-\overline{x}_{3})} - \frac{\underline{v}_{5}\overline{x}_{3}}{\overline{k}_{5}+\overline{x}_{3}} \\ \dot{x}_{4} & = & \frac{\overline{v}_{10}(\overline{z}_{tot}-\overline{x}_{4}-\underline{x}_{5})}{\underline{k}_{4}+(\overline{y}_{tot}-\underline{x}_{2}-\overline{x}_{3})} - \frac{\underline{v}_{5}\overline{x}_{3}}{\overline{k}_{5}+\overline{x}_{3}} \\ \dot{x}_{4} & = & \frac{\overline{v}_{10}(\overline{z}_{tot}-\overline{x}_{4}-\overline{x}_{5})}{\underline{k}_{4}+(\overline{y}_{tot}-\overline{x}_{4}-\overline{x}_{5})} - \frac{\underline{v}_{7}\underline{x}_{3}\underline{x}_{4}}{\overline{k}_{7}+\overline{x}_{4}} \\ \dot{x}_{5} & = & \frac{\overline{v}_{8}\overline{x}_{3}(\overline{z}_{tot}-\underline{x}_{4}-\overline{x}_{5})}{\underline{k}_{8}+(\overline{z}_{tot}-\overline{x}_{4}-\overline{x}_{5})} - \frac{\underline{v}_{9}\overline{x}_{5}}{\overline{k}_{9}+\overline{x}_{5}} \\ \underline{u} & = & \underline{g}\underline{x}\underline{5} \\ \underline{u} & = & \underline{u}\underline{u}\underline{u} \\ \underline{u} & = & \underline{u}\underline{u}\underline{u} \\ \underline{u} & = & \underline{u}\underline{u}\underline{u}\underline{u} \\ \underline{u} & \underline{u}\underline{u} \\ \underline{u} & \underline{u} \\ \underline{u} & \underline{u}\underline{u} \\ \underline{u} & \underline{u} \\ \underline{u} & \underline{u}\underline{u} \\ \underline{u} & \underline{u}\underline{u} \\ \underline{u} & \underline{u}\underline{u} \\ \underline{u} & \underline{u}\underline{u} \\$$

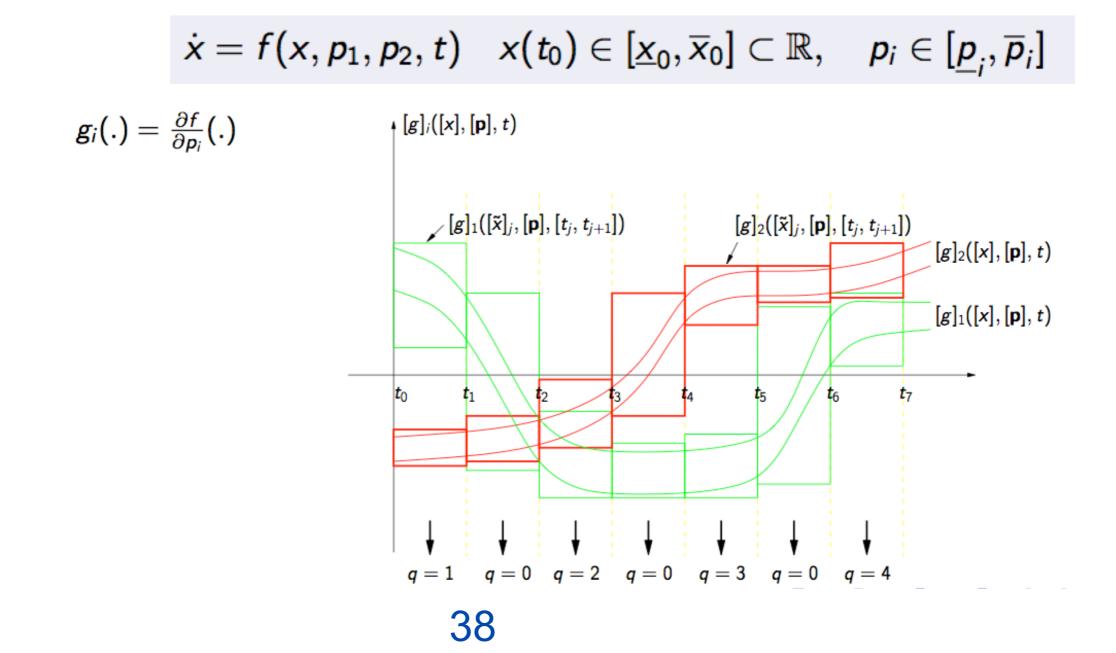
Ramdani, et al., Nonlinear Analysis Hybrid Systems 2010
 Bracketing systems : decoupled ODEs

Monotone order-preserving systems

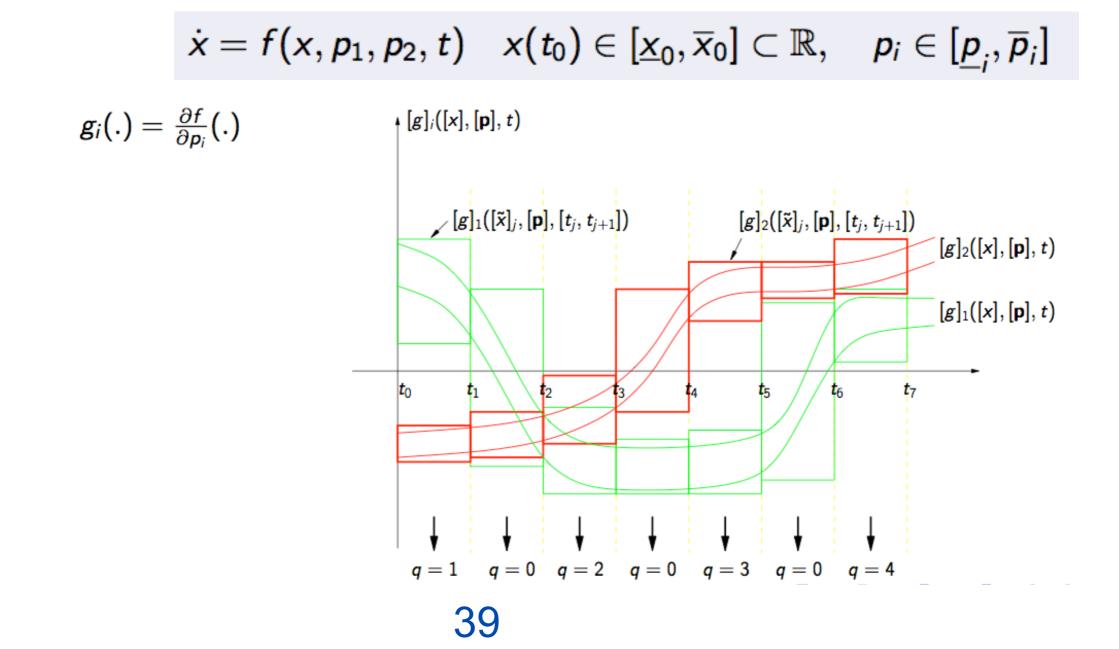
Test based on graph theory : monotone wrt orthant cones.
 No negative cycle in the incidence graph (Kunze & Siegel, 1999)

Let us analyze this system :			
ſ	$\dot{x}_1(t)$	=	$-2x_1+u(t)$
{	$\dot{x}_2(t)$	=	$-2x_1 + u(t)$ $2x_1 - x_3$
l	$\dot{x}_3(t)$	=	$-2x_1 - x_2$.

Nonlinear hybridization

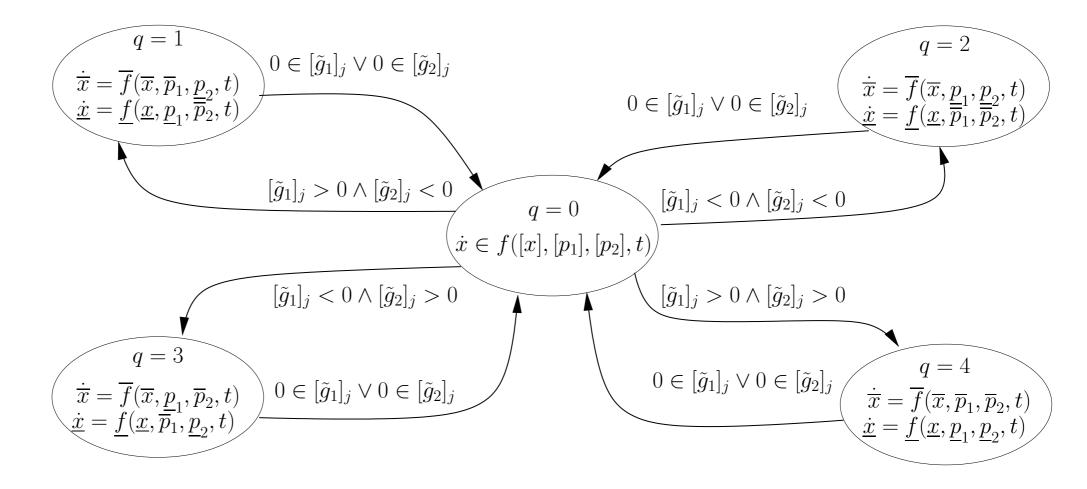


Nonlinear hybridization

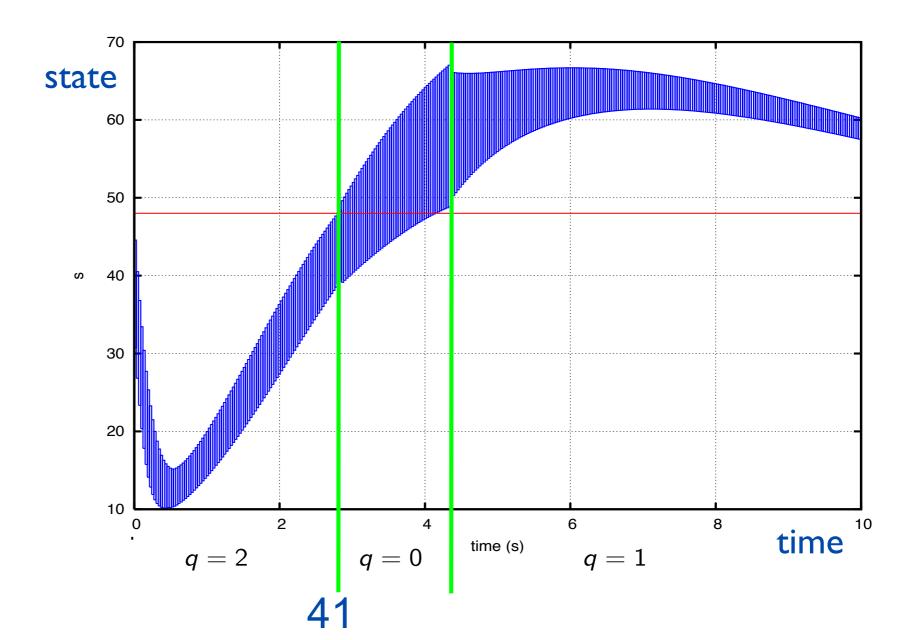


Nonlinear hybridization

$$\dot{x} = f(x, p_1, p_2, t) \quad x(t_0) \in [\underline{x}_0, \overline{x}_0] \subset \mathbb{R}, \quad p_i \in [\underline{p}_i, \overline{p}_i]$$

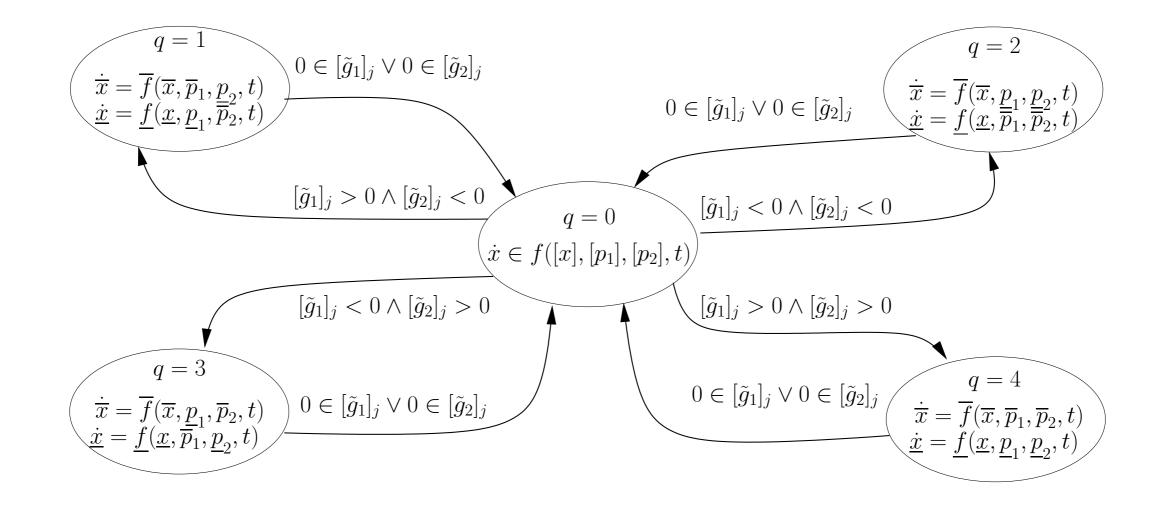


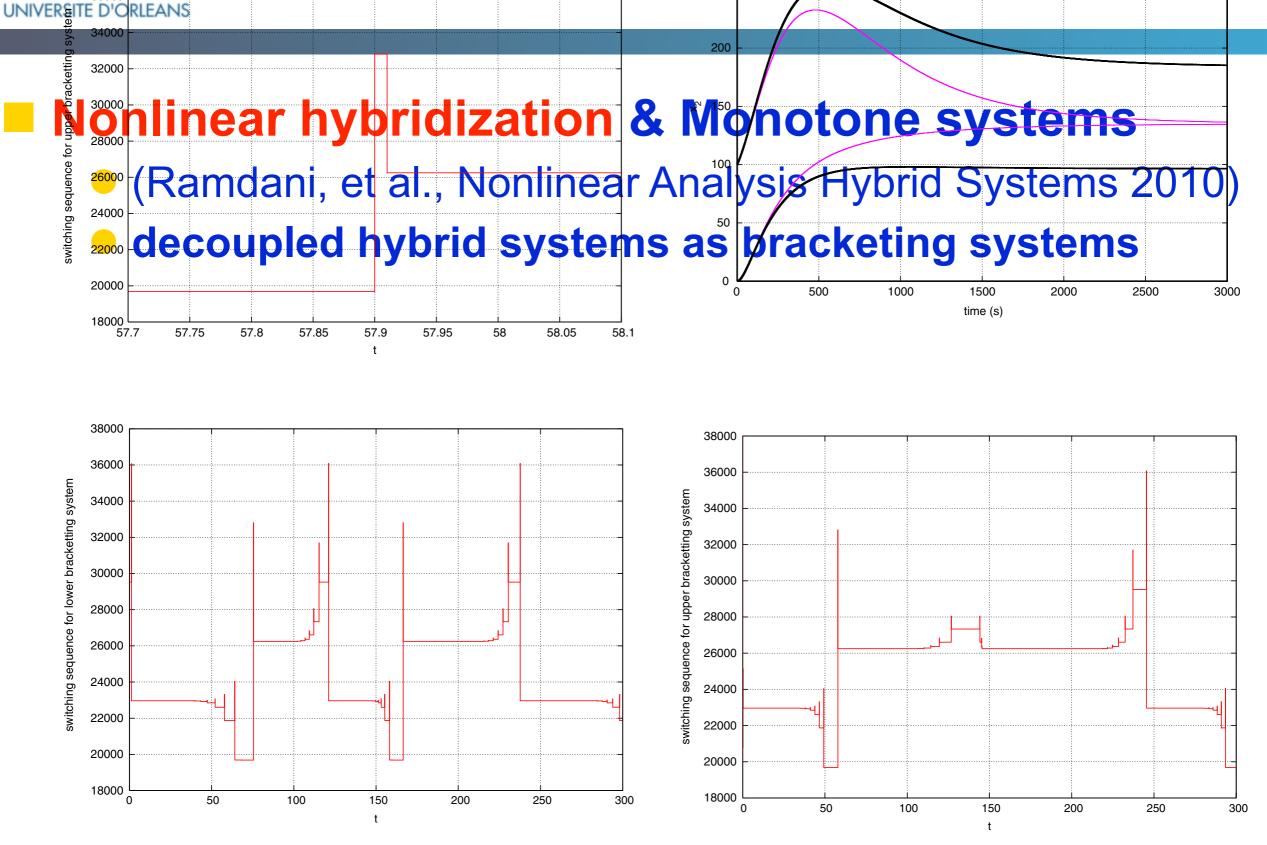
Nonlinear hybridization



Nonlinear hybridization & Monotone systems

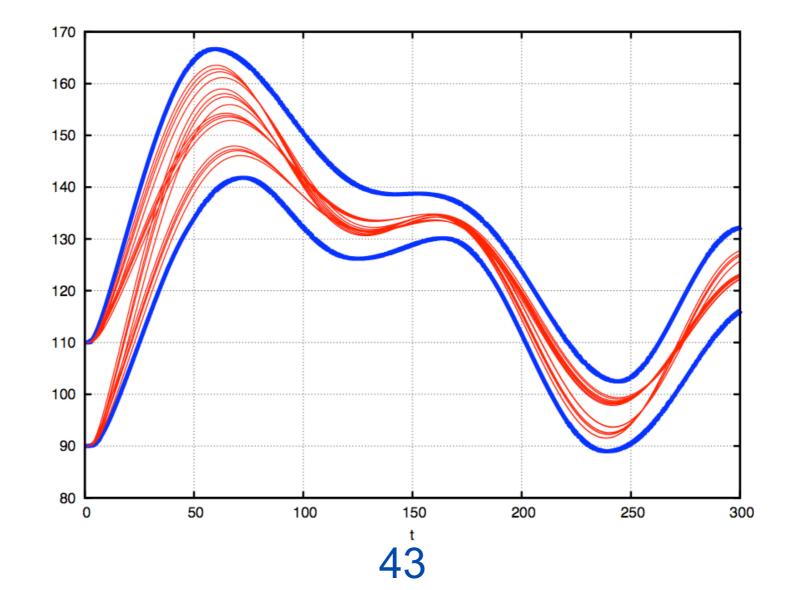
• (Ramdani, et al., Nonlinear Analysis Hybrid Systems 2010)



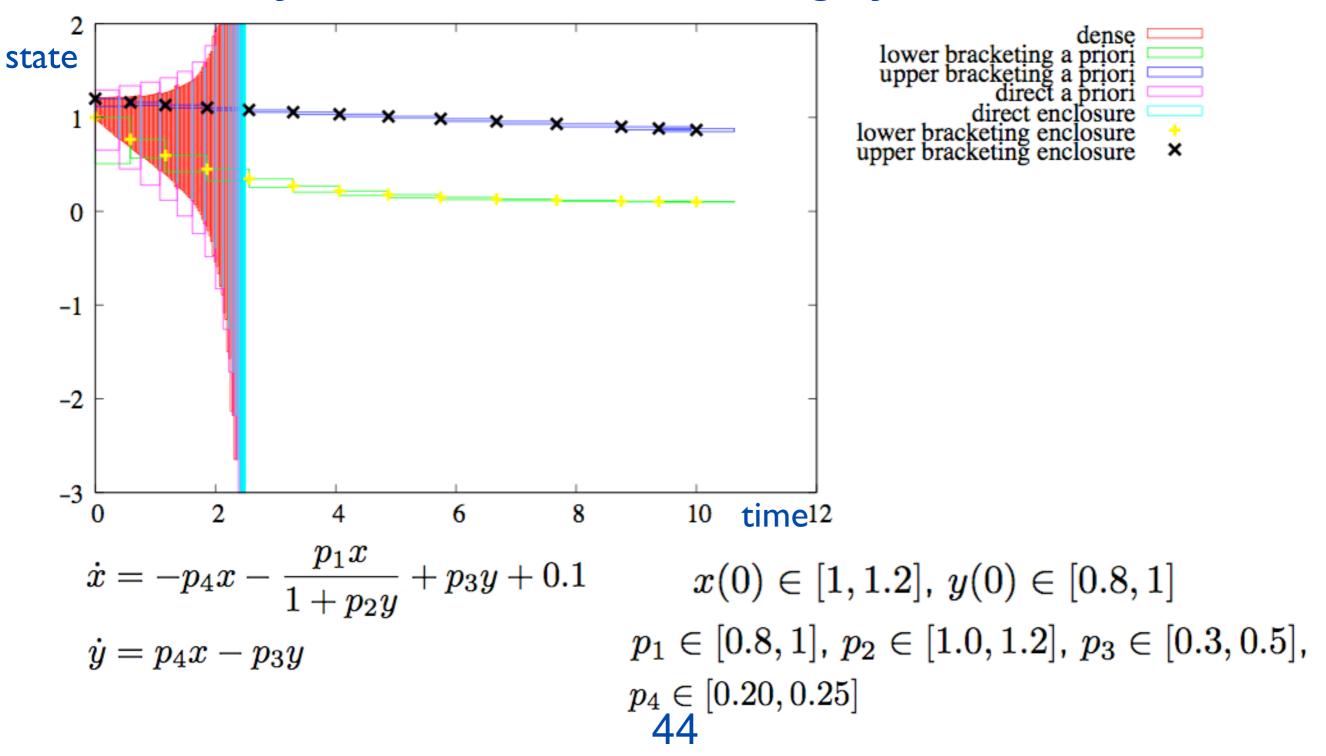


Nonlinear hybridization & Monotone systems

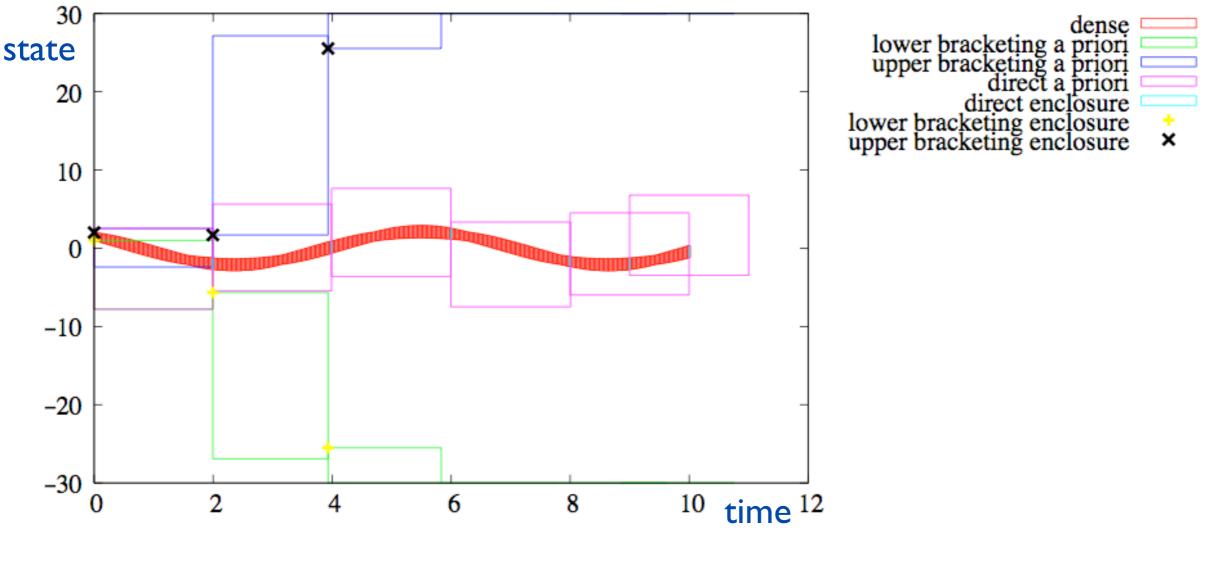
- (Ramdani, et al., Nonlinear Analysis Hybrid Systems 2010)
- decoupled hybrid systems as bracketing systems



Interval Taylor methods vs Bracketing systems



Interval Taylor methods vs Bracketing systems

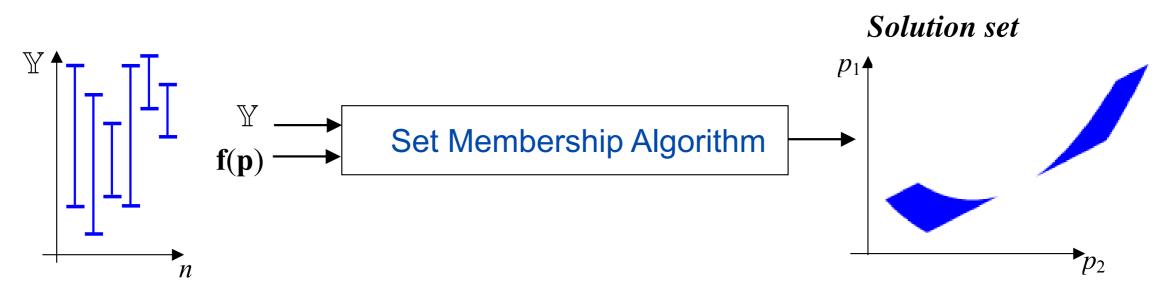


 $\dot{x}=y,\dot{y}=-x$, $x(0),y(0)\in [1,2]$

Set-membership Estimation with Nonlinear Continuous Systems

Set Membership Estimation

Unknown but bounded-error framework



Hypothesis

Uncertainties and errors are bounded with known prior bounds

A set of feasible solutions

$$\mathbb{S} = \{\mathbf{p} \in \mathbb{P} | \mathbf{f}(\mathbf{p}) \in \mathbb{Y}\} = \mathbf{f}^{-1}(\mathbb{Y}) \cap \mathbb{P}$$

Parameter estimation. Set inversion.

- Branch-&-bound, branch-&-prune, interval contractors ...
 (Jaulin, et al. 93) (Raïssi et al., 2004)
- Separator Algebra ...

$$\mathbb{S} = \{ \mathbf{z} \in \mathcal{Z}, \ | \ f(\mathbf{z}) \in \mathcal{Y} \} \quad \rightarrow \underline{\mathbb{S}} \subseteq \mathbb{S} \subseteq \overline{\mathbb{S}}$$

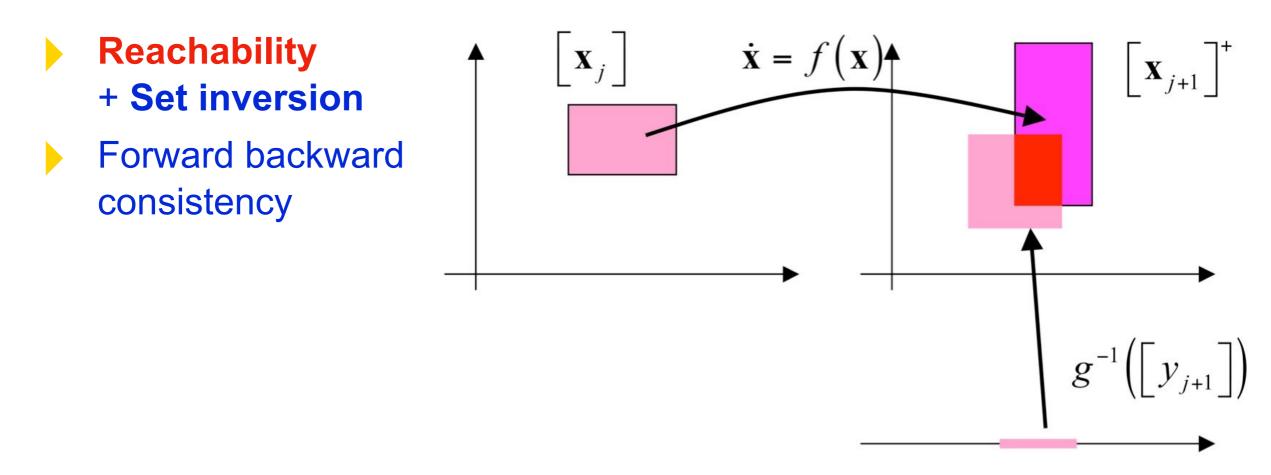
$$\begin{array}{ll} f([\mathbf{z}]) \subseteq \mathcal{Y} & \Rightarrow [\mathbf{z}] \subseteq \underline{\mathbb{S}} : \text{inner approximation} \\ f([\mathbf{z}])) \cap \mathcal{Y} = \emptyset & \Rightarrow [\mathbf{z}] \nsubseteq \overline{\mathbb{S}} : \text{outer approximation} & \Rightarrow [\mathbf{z}] \subseteq \mathcal{Z} \backslash \overline{\mathbb{S}} \\ \text{otherwise} & \text{partition} \ldots \end{array}$$

Set Membership Estimation

State estimation with continuous systems

Prediction - Correction / Filtering approaches

(Jaulin, 02, Raïssi et al., 04, 05), (Meslem, et al, 10), (Milanese & Novara, 11), (Kieffer & Walter, 11) ...

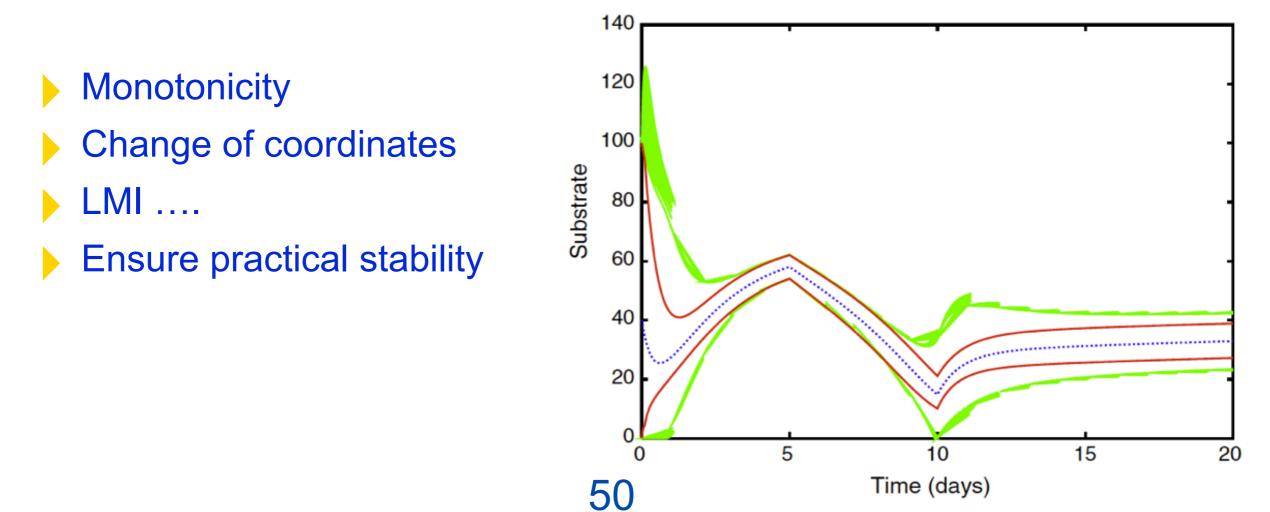


Set Membership Estimation

State estimation with continuous systems

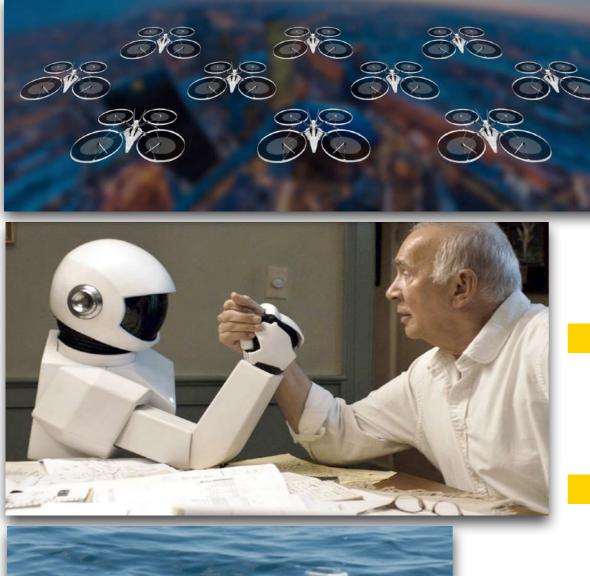
Interval observers

 (Gouzé et al, 00), (Moisan, et al. 09), (Mazenc & Bernard, 10), (Meslem & Ramdani, 11), (Raïssi, et al., 12), (Combastel, 13), (El Thabet, et al. 14), (Efimov, et al. 15) ...



Hybrid and Cyber-Physical Systems

Hybrid Cyber-Physical Systems



Interaction discrete + continuous dynamics

Safety-critical embedded systems

Networked

autonomous systems

 $e:g(x) \ge 0$

 $x \in \operatorname{Inv}(l)$

 $\dot{x} \in \operatorname{Flow}(l, x)$

53

x' = r(e, x)

1'

 $x' \in \operatorname{Inv}(l')$

 $\dot{x}' \in \operatorname{Flow}(l', x')$

Modelling → **hybrid automaton** (Alur, et al. 95)

 $x \in \operatorname{Init}(l)$

- Non-linear continuous dynamics
- Nonlinear guards sets
- Nonlinear reset functions
- Bounded uncertainty

$$H = (\mathcal{Q}, \mathcal{D}, \mathcal{P}, \Sigma, \mathcal{A}, \mathsf{Inv}, \mathcal{F}),$$

Continuous dynamics

$$egin{aligned} & ext{flow}(q): & \dot{\mathbf{x}}(t) = f_q(\mathbf{x},\mathbf{p},t), \ & ext{Inv}(q): &
u_q(\mathbf{x}(t),\mathbf{p},t) < 0, \end{aligned}$$

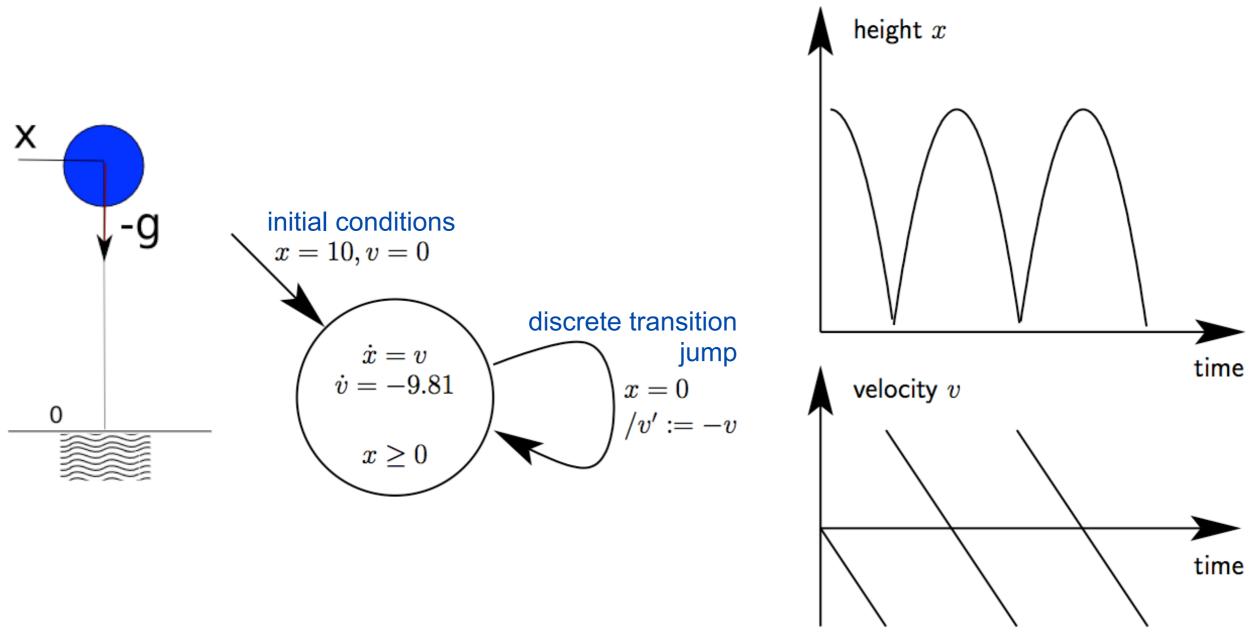
Discrete dynamics

$$\mathcal{A} \ni e: (q \rightarrow q') = (q, \text{guard}, \sigma, \rho, q'),$$

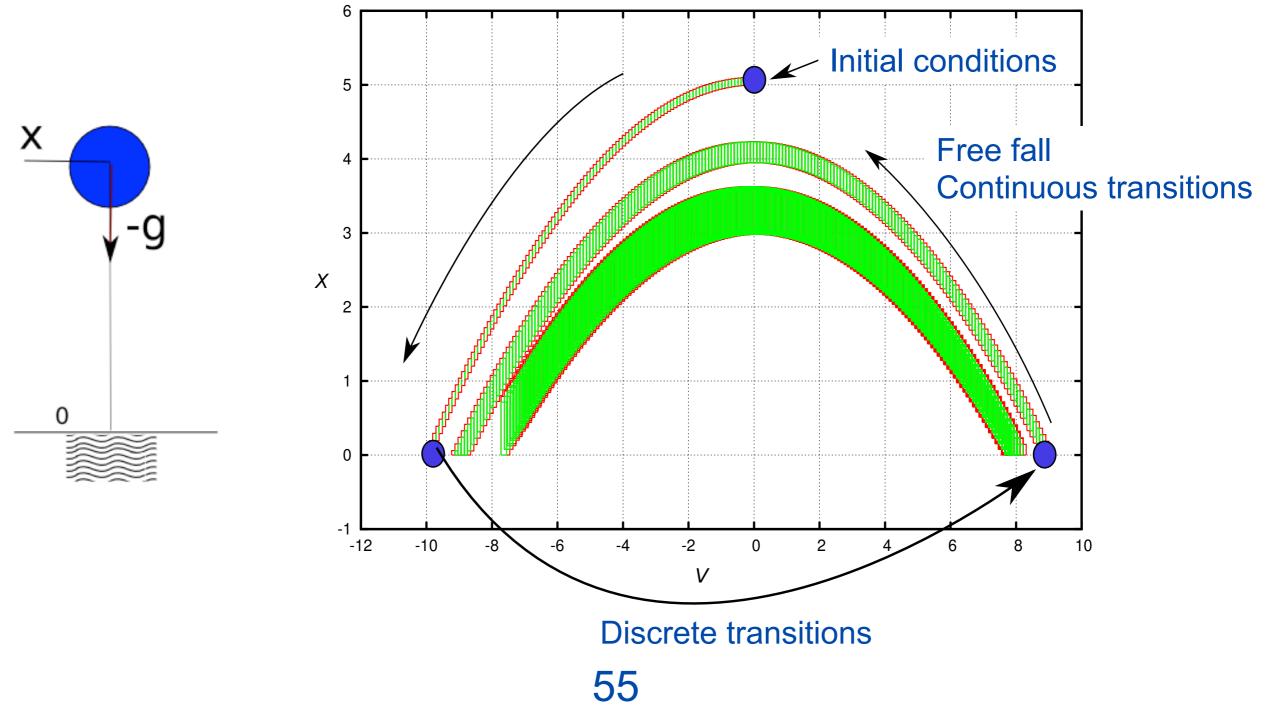
guard(e): $\gamma_e(\mathbf{x}(t), \mathbf{p}, t) = 0,$

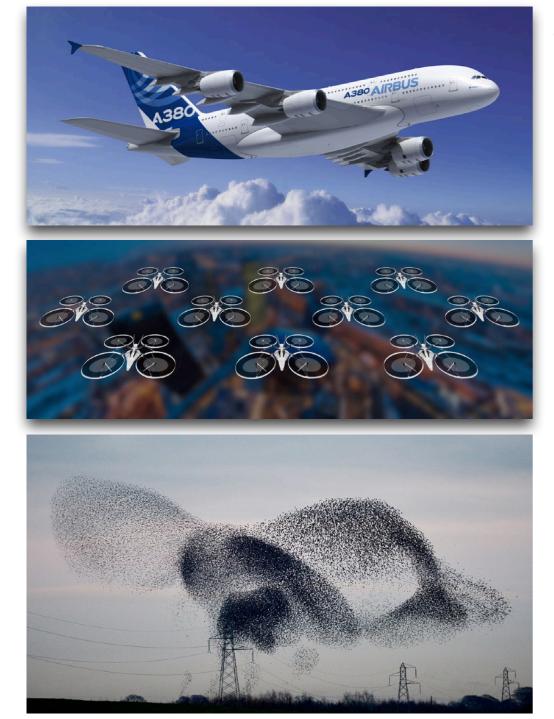
 $t_0 \leq t \leq t_N, \quad \mathbf{x}(t_0) \in \mathbb{X}_0 \subseteq \mathbb{R}^n, \quad \mathbf{p} \in \mathbb{P}$

Example : the bouncing ball



Example : the bouncing ball





Operation in challenging environment, requires ...

- Verification
 - Numerical proof, or
 - Falsification via counter-example
- Synthesis
 - Correct by construction » …

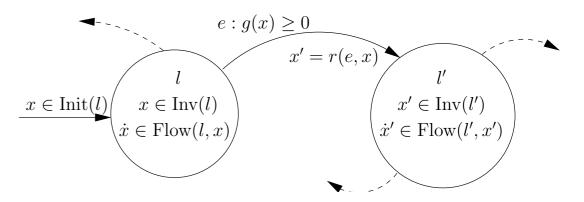
Monitoring, FDI

- Complete state reconstruction
- Worst-case scenario

Verification of Hybrid Systems

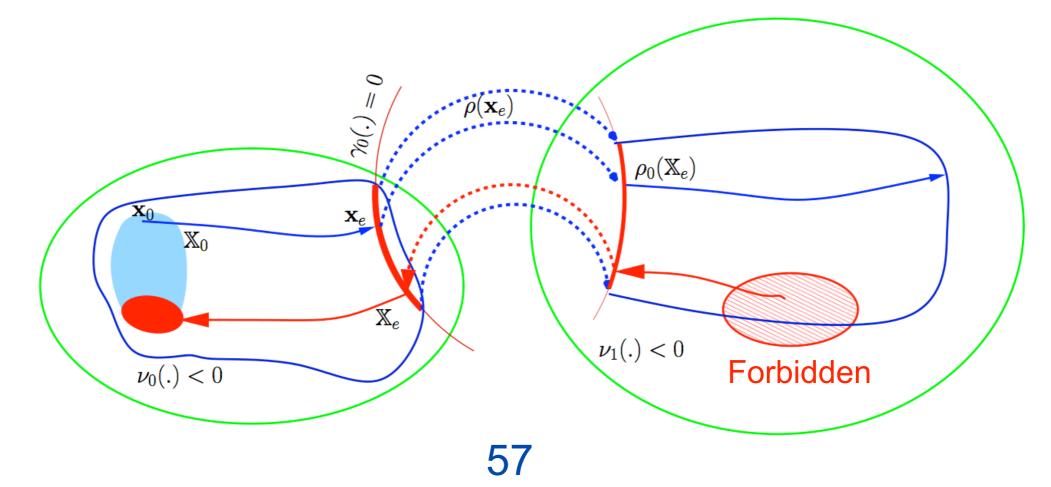
Verification

- Modelling :
- Property specification :

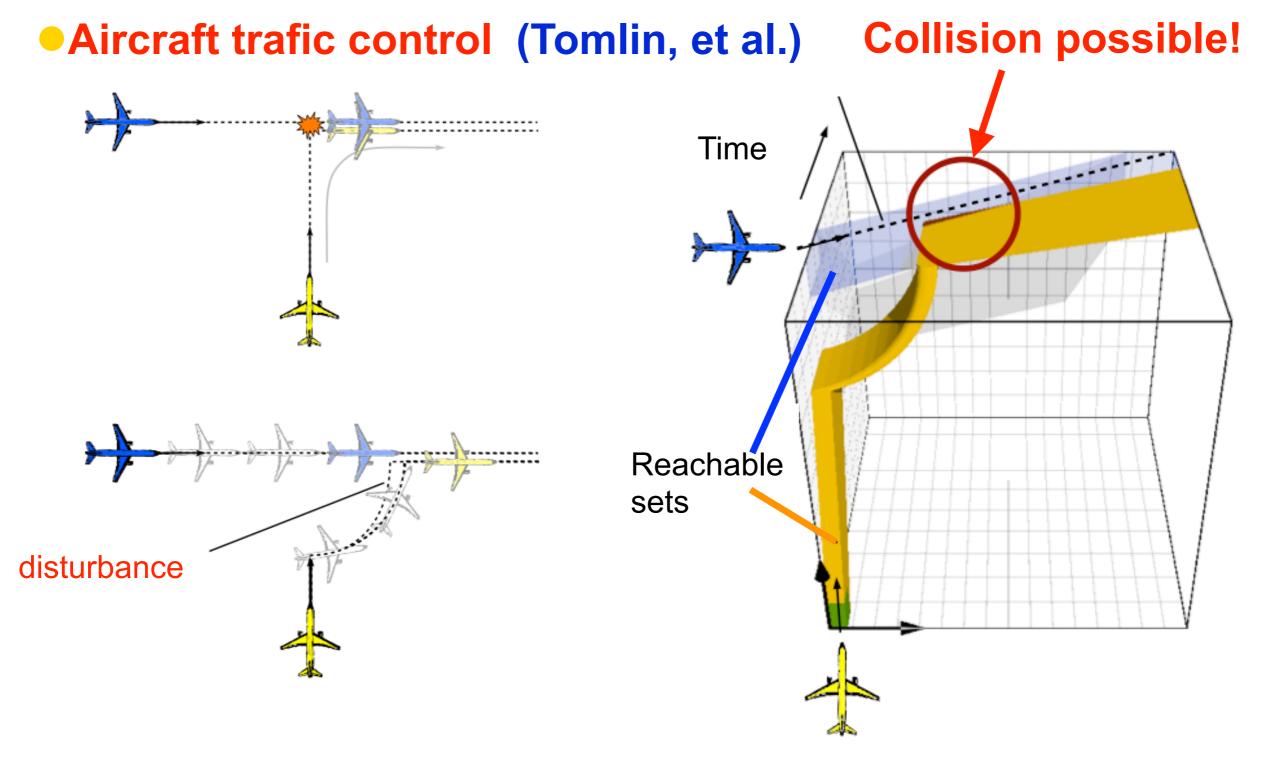


•Verification algorithm : Reachability of unsafe regions

Hybrid / Continuous reachability

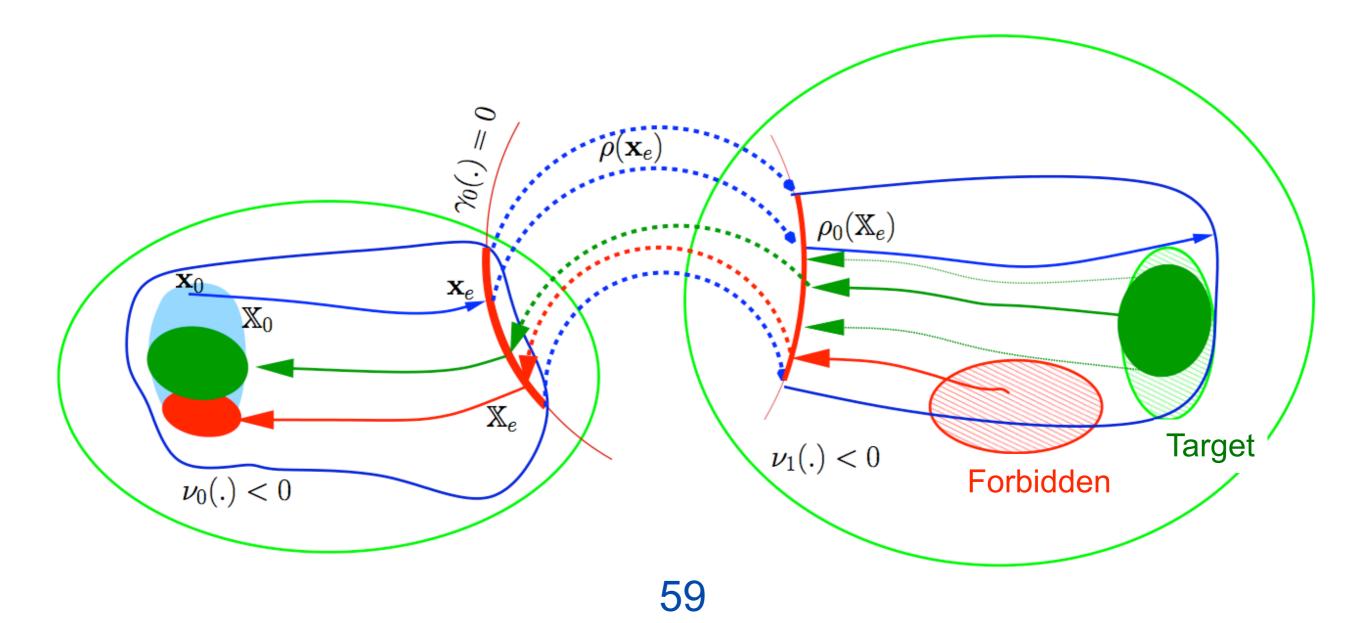


Verification of Hybrid Systems

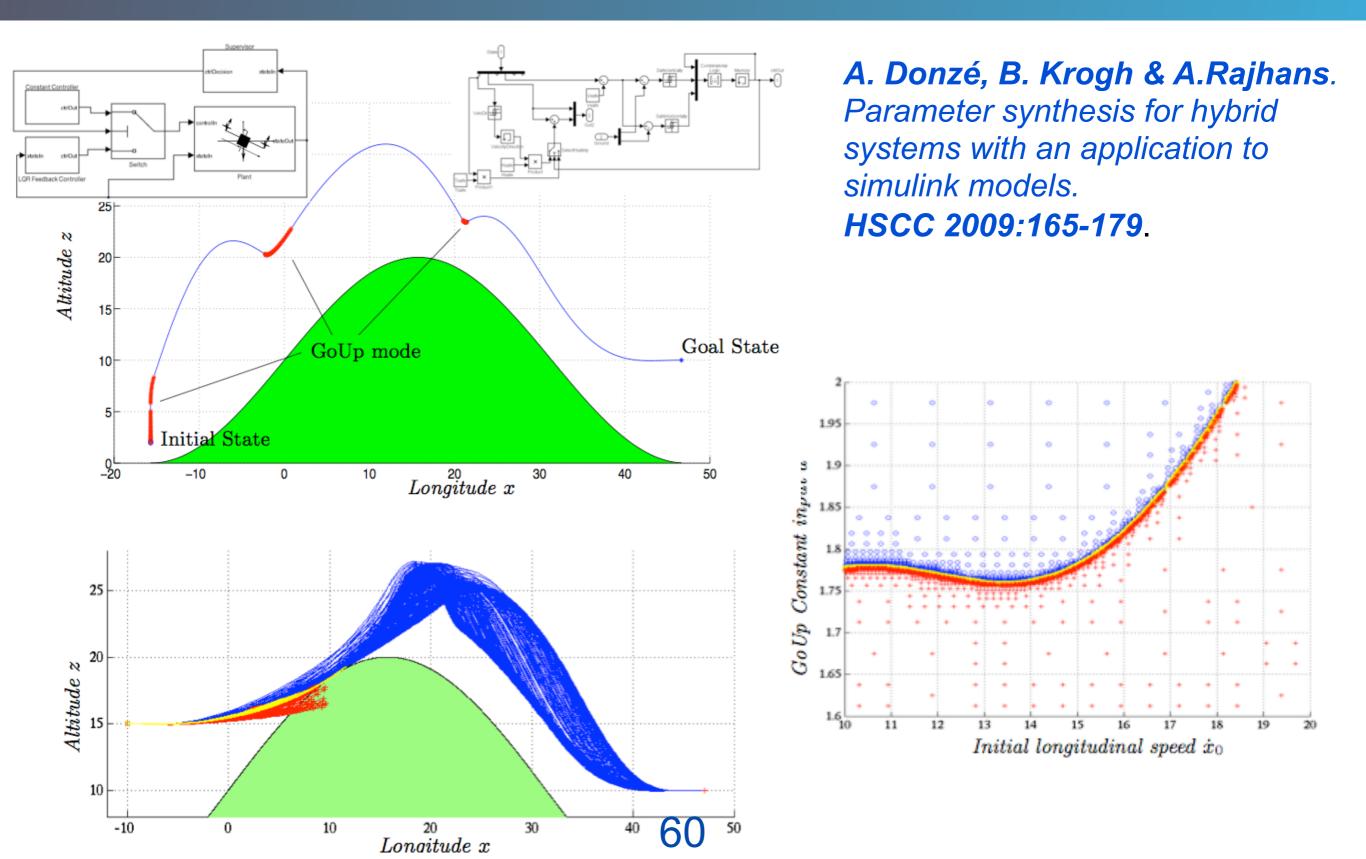


Parametric synthesis

Set-membership estimation



Synthesis of Hybrid Systems



Monitoring of Hybrid Systems

■ Modelling → hybrid automaton

- Non-linear continuous dynamics
- Bounded uncertainty

State Estimation

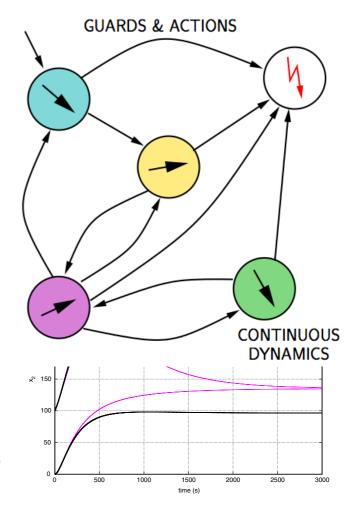
reconstruct system state variables

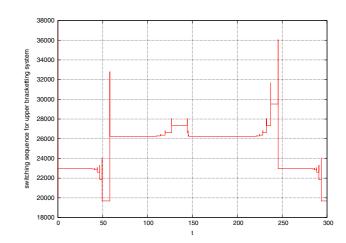
61

- switching sequence
- continuous variables

Important issue

Control & Diagnosis …

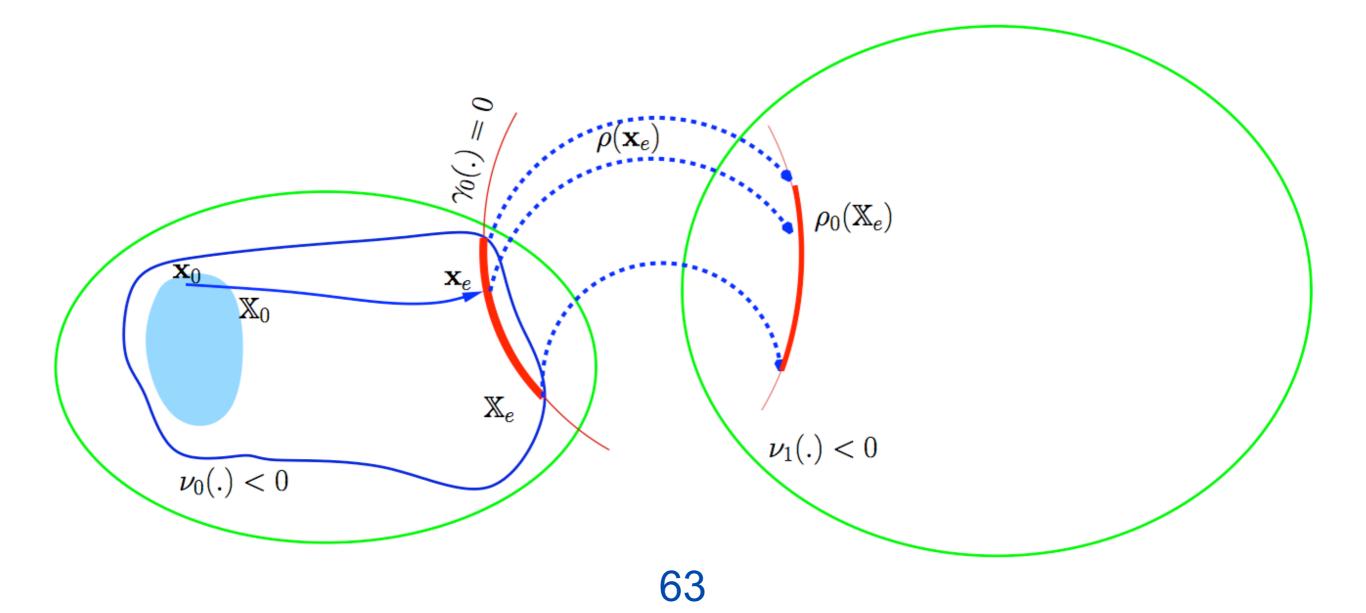




Nonlinear Hybrid Reachability

Hybrid reachability

- Continuous reachability
- Event detection, jump & reset



Guaranteed event detection & localization

An interval constraint propagation approach

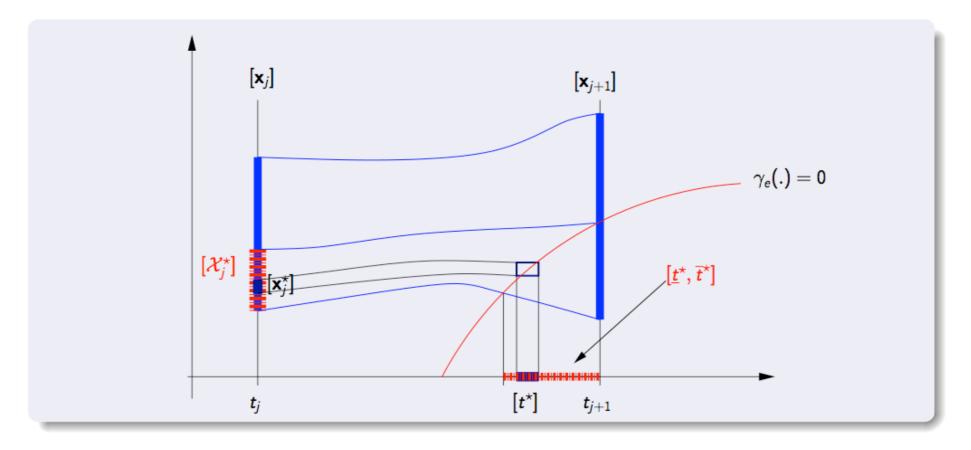
• (Ramdani & Nedialkov, Nonlinear Analysis Hybrid Systems 2011)

Guaranteed event detection & localization

An interval constraint propagation approach

• (Ramdani & Nedialkov, Nonlinear Analysis Hybrid Systems 2011)

Time grid \rightarrow $t_0 < t_1 < t_2 < \cdots < t_N$



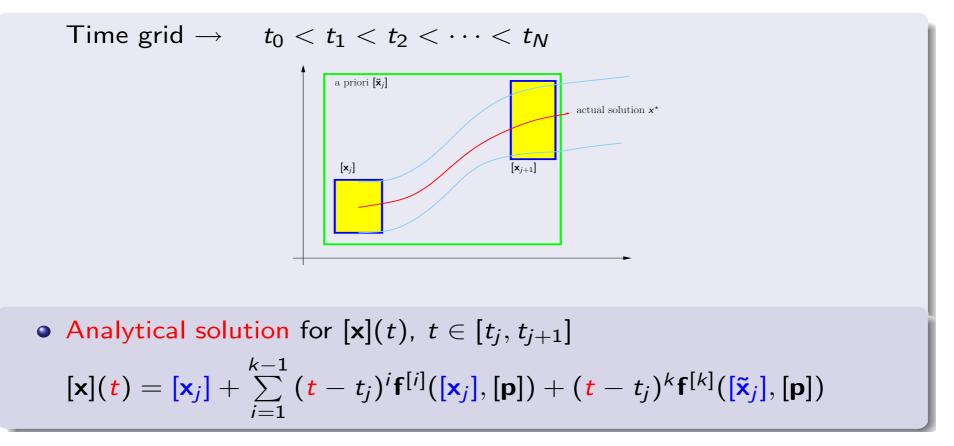
Compute $[\underline{t}^{\star}, \overline{t}^{\star}] \times [\mathcal{X}_{j}^{\star}]$ 64

Guaranteed event detection & localization

• An interval constraint propagation approach

• (Ramdani & Nedialkov, Nonlinear Analysis Hybrid Systems 2011)

 $\dot{\mathbf{x}}(t) = f(\mathbf{x}, \mathbf{p}, t), \quad t_0 \leq t \leq t_N, \, \mathbf{x}(t_0) \in [\mathbf{x}_0], \, \mathbf{p} \in [\mathbf{p}]$



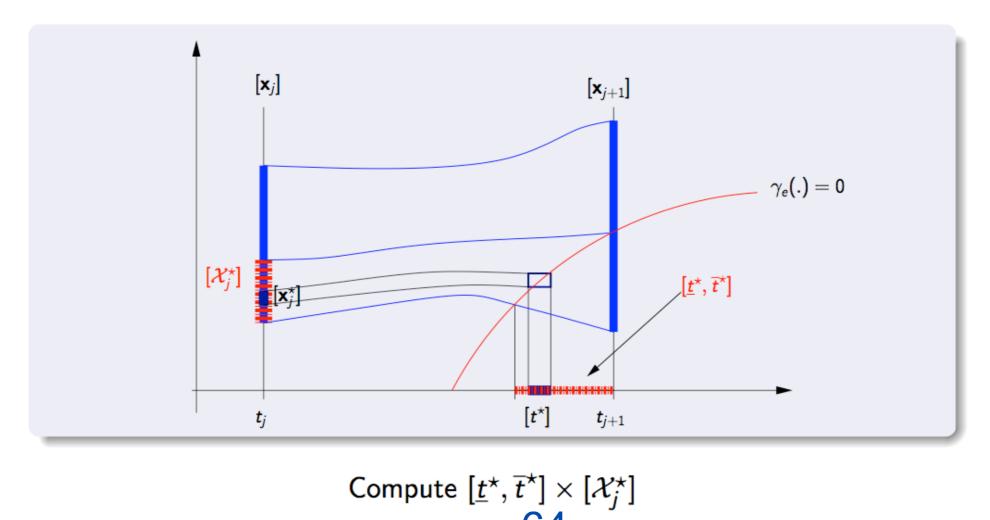
64

Guaranteed event detection & localization

An interval constraint propagation approach

• (Ramdani & Nedialkov, Nonlinear Analysis Hybrid Systems 2011)

Time grid $\rightarrow t_0 < t_1 < t_2 < \cdots < t_N$



Guaranteed event detection & localization

An interval constraint propagation approach

• (Ramdani & Nedialkov, Nonlinear Analysis Hybrid Systems 2011)

Time grid \rightarrow $t_0 < t_1 < t_2 < \cdots < t_N$

[x](t) = Interval Taylor Series (ITS)(t, [x_j], [x̃_j])
 γ([x](t)) = 0

 $\Rightarrow \gamma \circ \mathsf{ITS}(t, \mathbf{x}_j, [\tilde{\mathbf{x}}_j]) \rightarrow \psi(t, \mathbf{x}_j)$

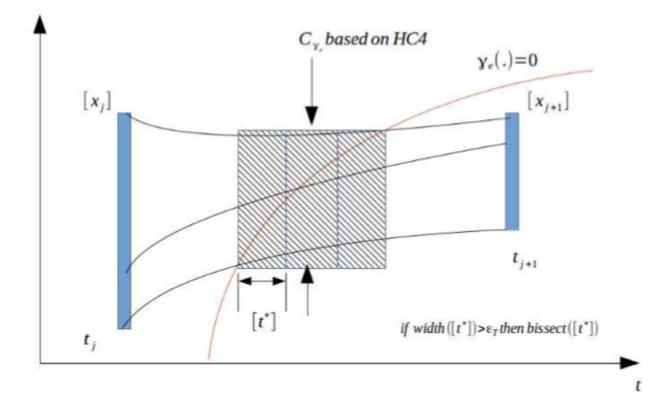
Solve CSP ([t_j, t_{j+1}] × [\mathbf{x}_j], $\psi(.,.) \ni 0$)

65

Detecting and localizing events

Improved and enhanced version. A faster version.

•(Maïga, Ramdani, Travé-Massuyès, IEEE CDC 2013, ECC 2014)

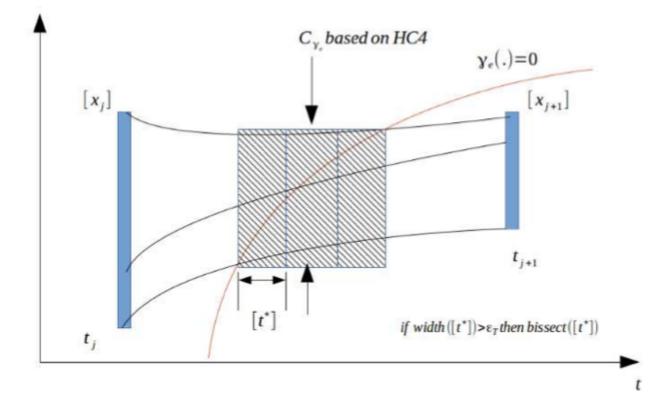


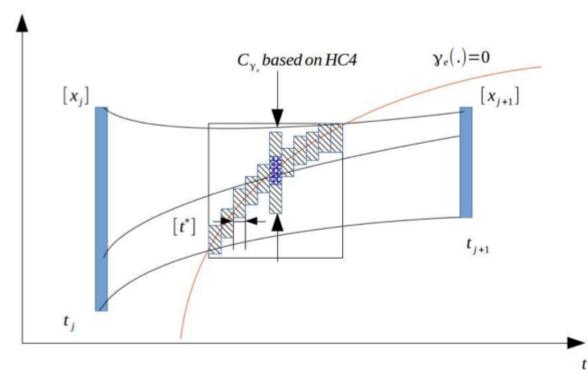
Detecting and localizing events

Improved and enhanced version. A faster version.

•(Maïga, Ramdani, Travé-Massuyès, IEEE CDC 2013, ECC 2014)

66



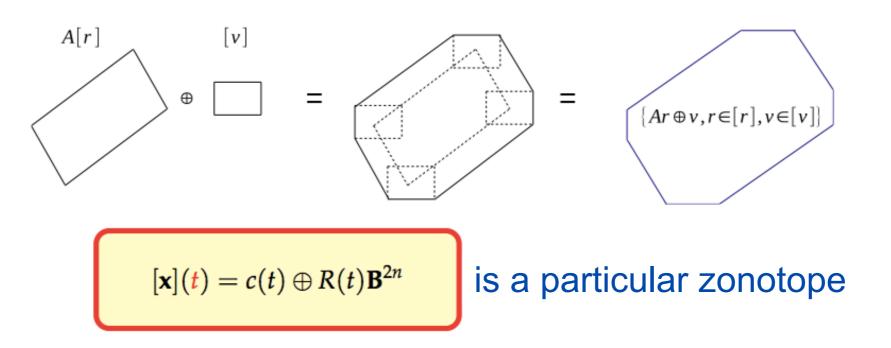


Solution set:

$$[\mathbf{x}](t) = [\mathbf{x}_j] + \sum_{i=1}^{k-1} (t - t_j)^i \mathbf{f}^{[i]}([\mathbf{x}_j], [\mathbf{p}]) + (t - t_j)^k \mathbf{f}^{[k]}([\widetilde{\mathbf{x}}_j], [\mathbf{p}])$$

Mean value form + Lohner's QR transformation method

 $[\mathbf{x}](t) = A(t)[r](t) \oplus [v](t) \to \mathbf{MSBP}$



$$c(t) = A(t)mid([r](t)) + mid([v](t)),$$

$$R(t) = (A(t)diagrad([r](t)) | diagrad([v](t))).$$

67

(Maïga, Ramdani, Travé-Massuyès, Combastel IEEE TAC 2016)

Reduce over-approximation in event-detection

Solve Redundant constraints

$$\mathscr{C}_l^R := (\gamma_e \left(v + A_l^* r \right) = 0) \land (\gamma_e(z) = 0) \land (z = v + A_l^* r)$$

(Maïga, Ramdani, Travé-Massuyès, Combastel IEEE TAC 2016)

Reduce over-approximation in event-detection

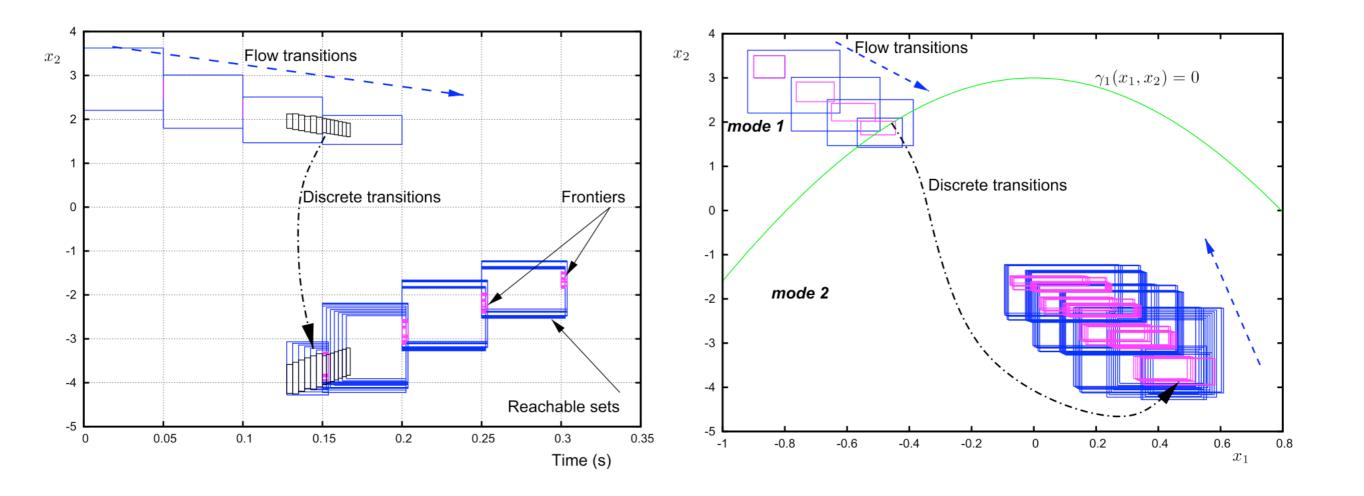
Solve Redundant constraints

$$\mathscr{C}_l^R := (\gamma_e \left(v + A_l^* r \right) = 0) \land (\gamma_e(z) = 0) \land (z = v + A_l^* r)$$

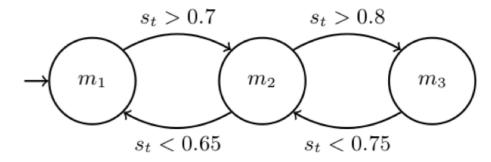
Change-of-coordinate-aware approach to discrete transitions with nonlinear guards

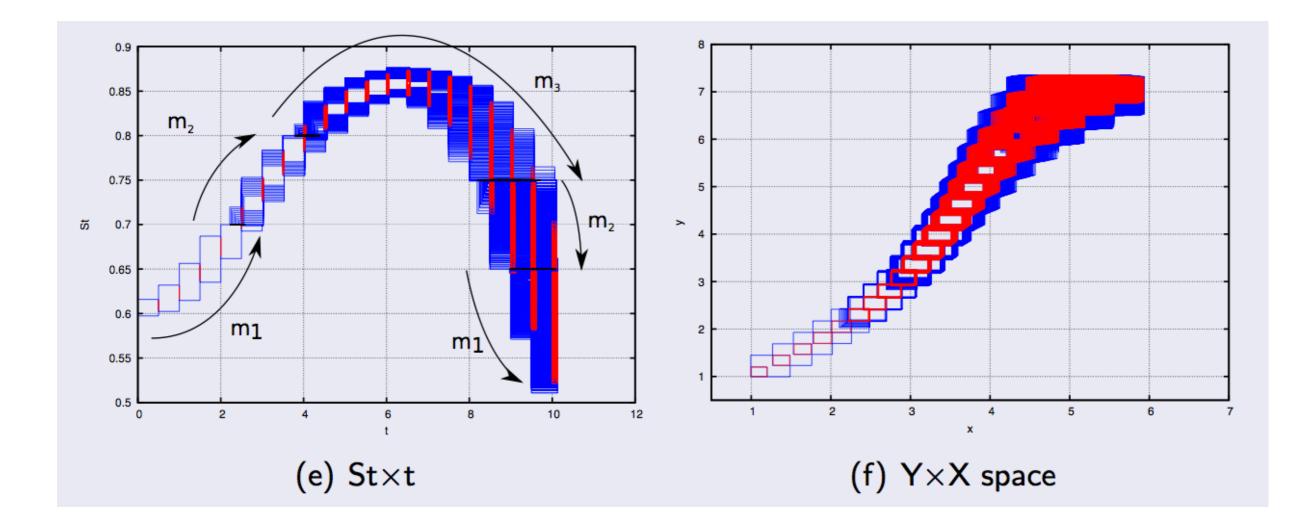
- Zonotope computation
- Inclusion of family of zonotopes. Zonotope extension

Detecting and localizing eventsImproved and enhanced version



Detecting and localizing eventsImproved and enhanced version

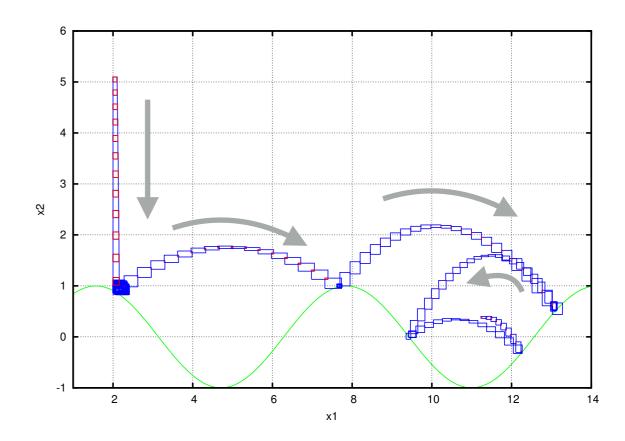




Detecting and localizing events

Improved and enhanced version

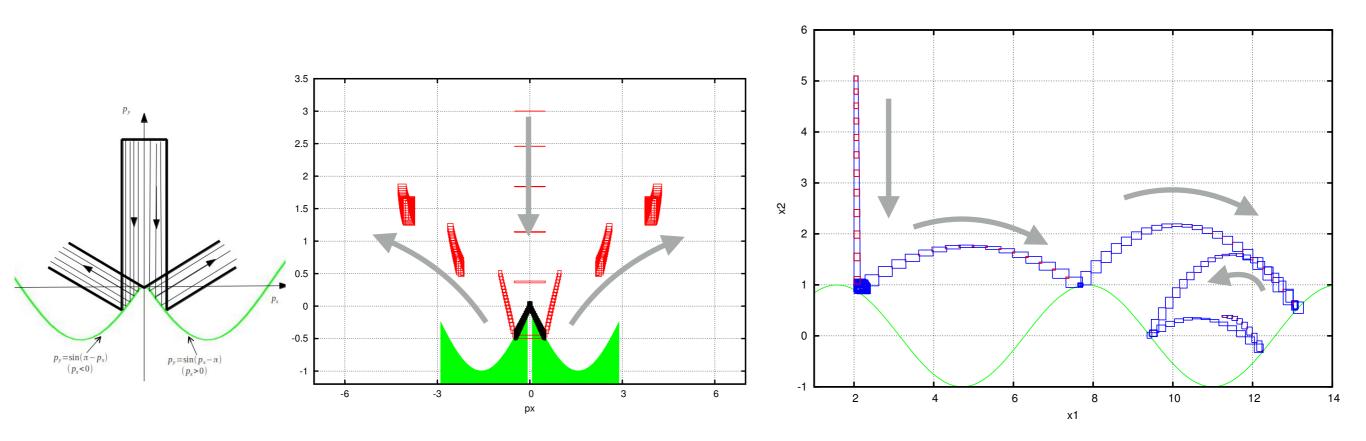
Bouncing ball in 2D.



Detecting and localizing events

Improved and enhanced version

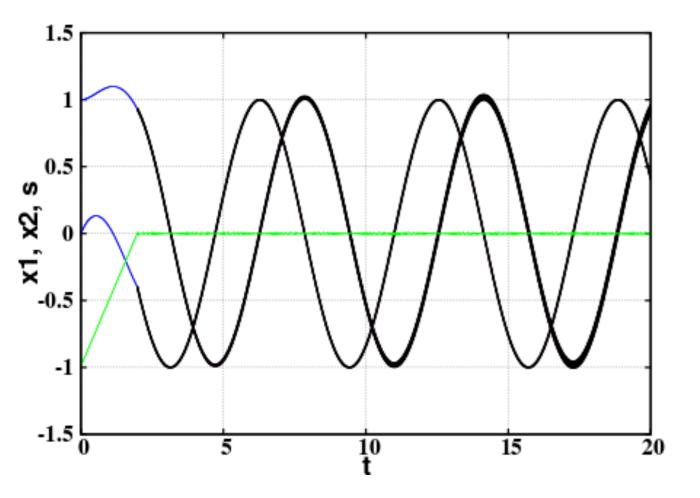
Bouncing ball in 2D.



Detecting and localizing events

Improved and enhanced version

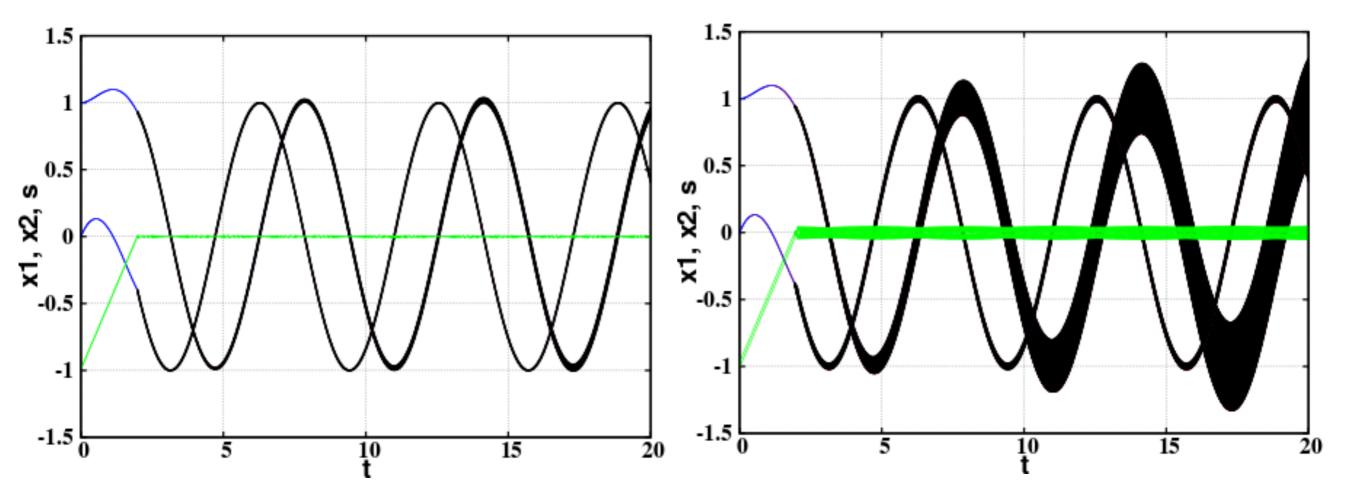
 Impact of uncertainty on sliding mode control (Maïga, Ramdani, Travé-Massuyès, Combastel, IEEE TAC 2016)



Detecting and localizing events

Improved and enhanced version

 Impact of uncertainty on sliding mode control (Maïga, Ramdani, Travé-Massuyès, Combastel, IEEE TAC 2016)



Set-membership Parameter Estimation with Hybrid Systems

Parameter estimation with hybrid systems

Branch-&-bound, branch-&-prune, interval contractors ...
 (Eggers, Ramdani et al., 2012), (Maïga, Ramdani et al., 2015)

$$S = \{ \mathbf{p} \in \mathbb{P}_0 | \quad (\forall t \in [t_0, T_{end}], \\ flow(q) \land Inv(q) \land guard(e)) \\ \land \forall t_j \in \{t_1, t_2, ..., T_n\}, g_q(x, \mathbf{p}, t) \in \mathbb{Y}_j \}$$

Parameter estimation with hybrid systems

Branch-&-bound, branch-&-prune, interval contractors ...
 (Eggers, Ramdani et al., 2012), (Maïga, Ramdani et al., 2015)

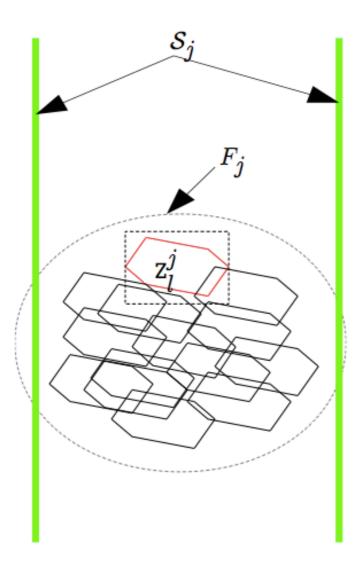
$$S = \{ \mathbf{p} \in \mathbb{P}_0 | \quad (\forall t \in [t_0, T_{end}], \\ flow(q) \land Inv(q) \land guard(e)) \\ \land \forall t_j \in \{t_1, t_2, ..., T_n\}, g_q(x, \mathbf{p}, t) \in \mathbb{Y}_j \}$$

$\underline{\mathbb{S}} \subseteq \mathbb{S} \subseteq \underline{\mathbb{S}} \cup \Delta \mathbb{S} \equiv \overline{\mathbb{S}}$

Need an inclusion test!

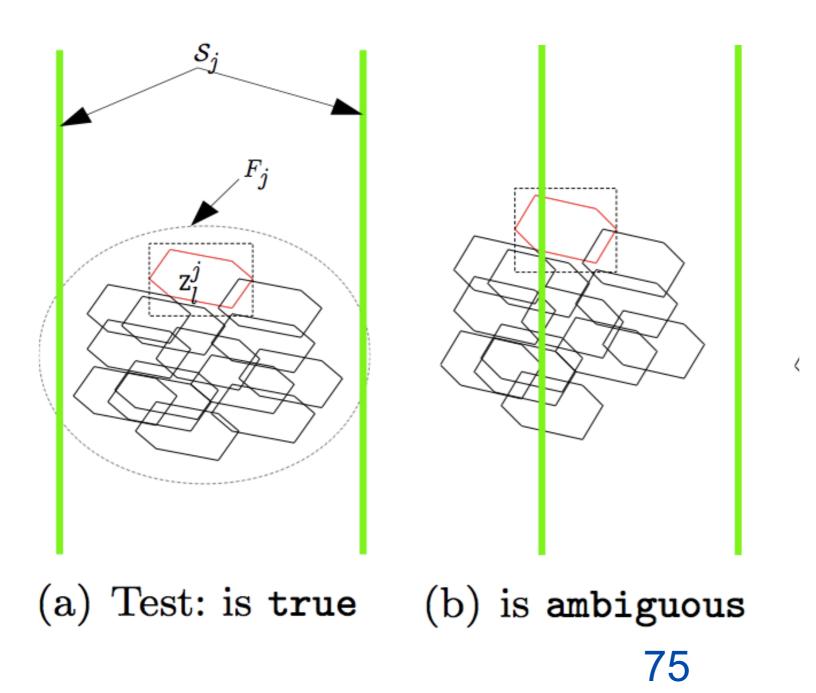
74

Frontier of the reachable set = union of zonotopes

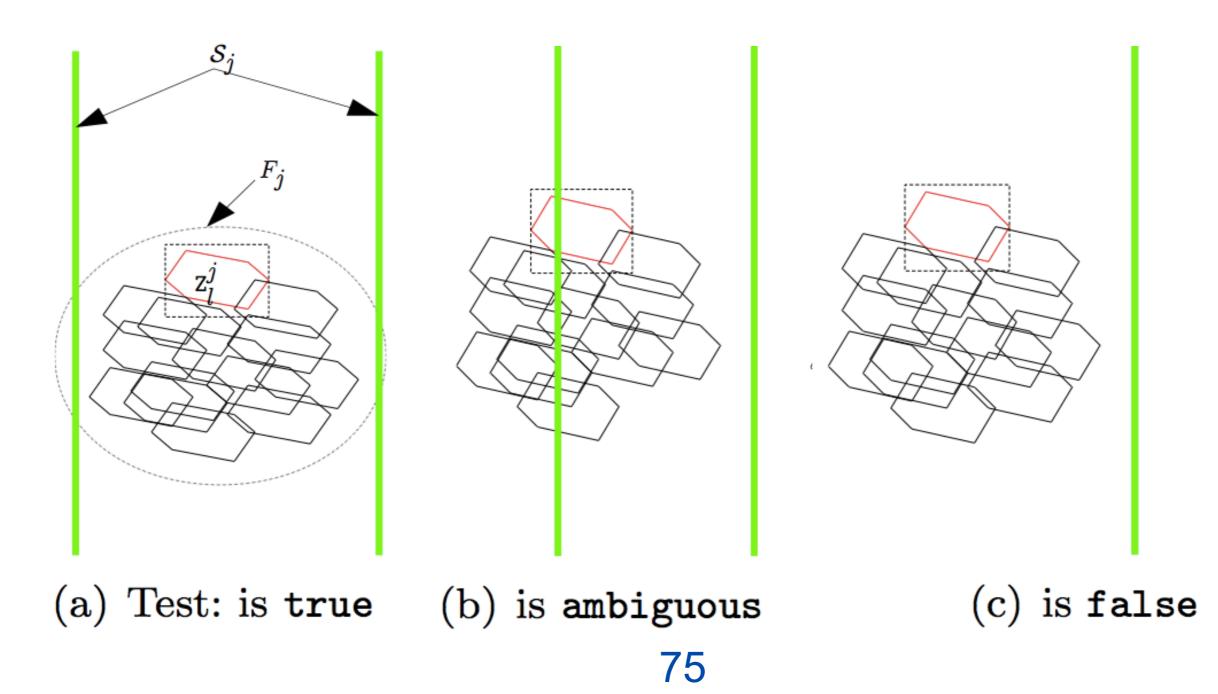


(a) Test: is true

Frontier of the reachable set = union of zonotopes



Frontier of the reachable set = union of zonotopes



Zonotope
$$Z = c \oplus RB^p$$

Strip $S_j = \{x \in \mathbb{R}^n | |\eta^\top x - d_j| \le \sigma_j\} \equiv [y_j]$

Zonotope support strip
$$S_{\mathsf{Z}} = \{x \in \mathbb{R}^n | q_d \leq \eta^\top x \leq q_u\}$$

 $q_u = \min_{x \in \mathsf{Z}} \eta^\top x = \eta^\top c - \|R^\top \eta\|_1$
 $q_d = \max_{x \in \mathsf{Z}} \eta^\top x = \eta^\top c + \|R^\top \eta\|_1$

Theorem [(Vicino and Zappa (1996))]

$$Z \cap S_j = \emptyset \iff (q_d \ge d_j - \sigma_j) \land (q_u \le d_j + \sigma_j)$$
$$Z \subseteq S_j \iff (q_u < d_j - \sigma_j) \lor (q_d > d_j + \sigma_j)$$

Zonotope
$$Z = c \oplus RB^p$$

Strip $S_j = \{x \in \mathbb{R}^n | |\eta^\top x - d_j| \le \sigma_j\} \equiv [y_j]$

Zonotope support strip
$$S_{\mathsf{Z}} = \{x \in \mathbb{R}^n | q_d \leq \eta^\top x \leq q_u\}$$

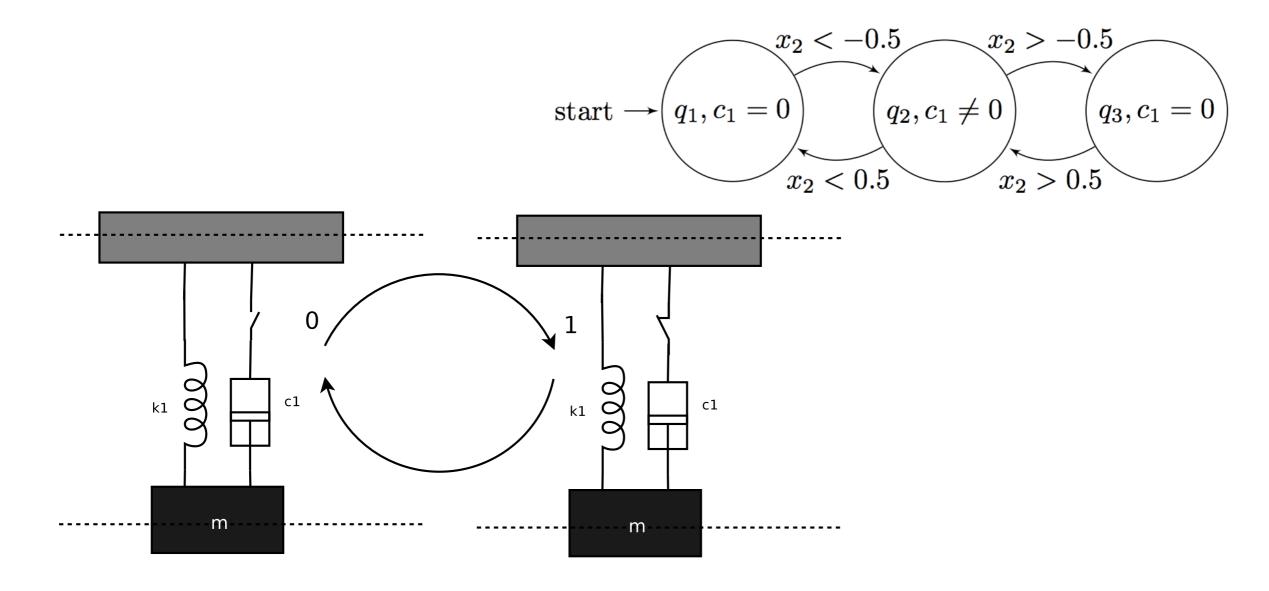
 $q_u = \min_{x \in \mathsf{Z}} \eta^\top x = \eta^\top c - \|R^\top \eta\|_1$
 $q_d = \max_{x \in \mathsf{Z}} \eta^\top x = \eta^\top c + \|R^\top \eta\|_1$

Theorem [(Vicino and Zappa (1996))]

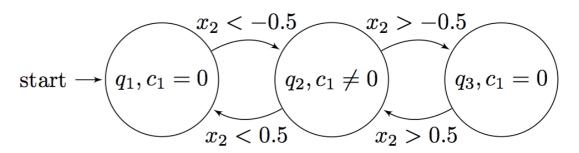
$$\begin{aligned} \mathsf{Z} \cap \mathcal{S}_j &= \emptyset \iff (q_d \ge d_j - \sigma_j) \land (q_u \le d_j + \sigma_j) \\ \mathsf{Z} \subseteq \mathcal{S}_j \iff (q_u < d_j - \sigma_j) \lor (q_d > d_j + \sigma_j) \end{aligned}$$

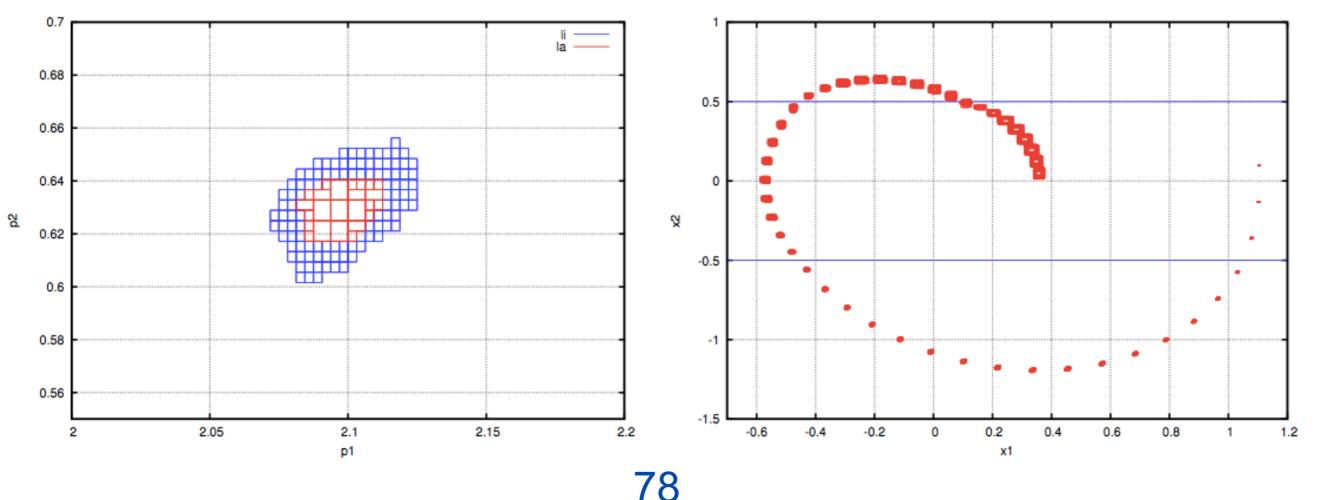
Hybrid Mass-Spring

• Velocity-dependent damping. Mode switching driven by

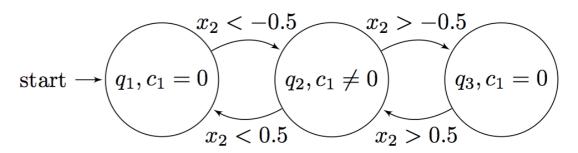


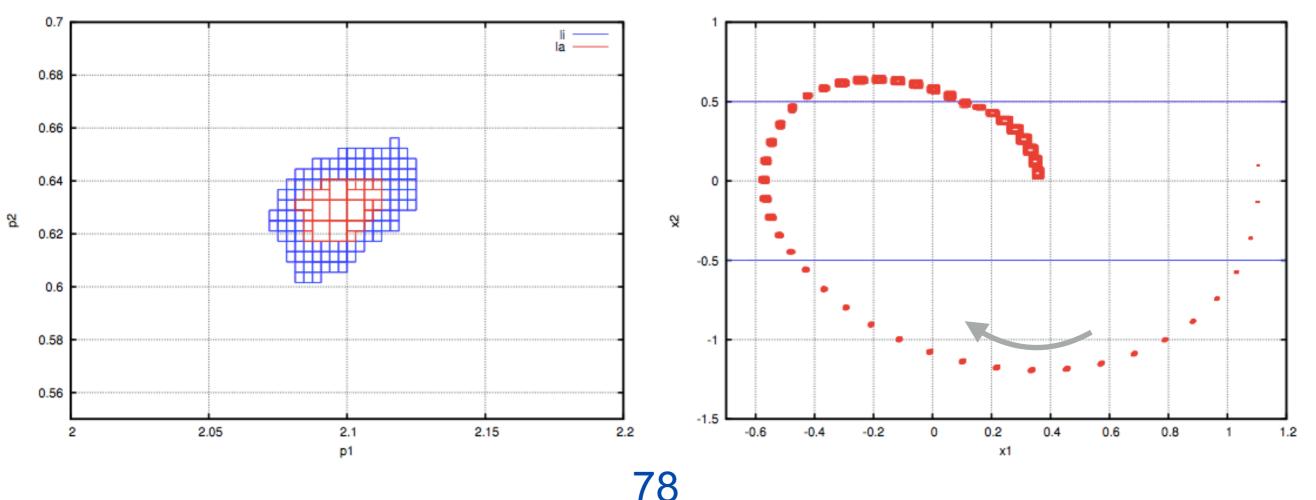
- case 1 : Parameters acting on continuous dynamics.
 - CPU time approx. 140 mn!



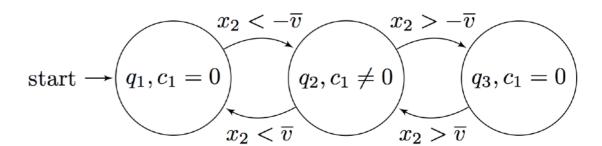


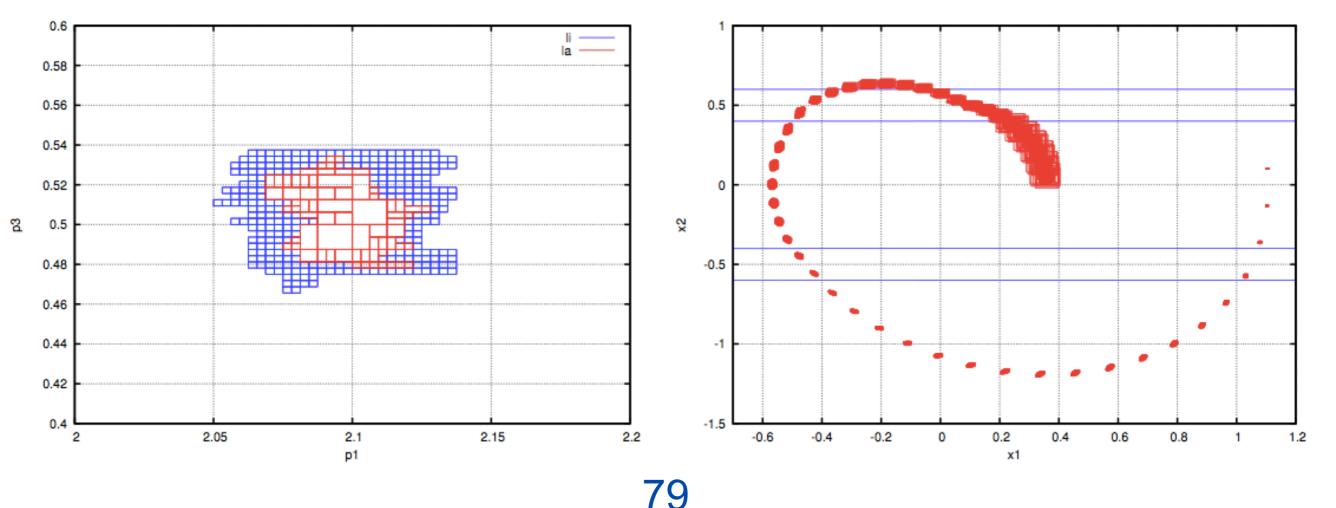
- case 1 : Parameters acting on continuous dynamics.
 - CPU time approx. 140 mn!



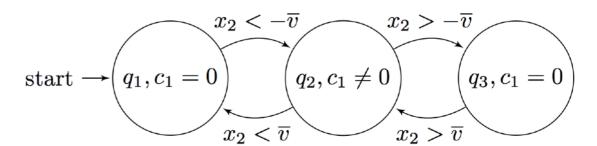


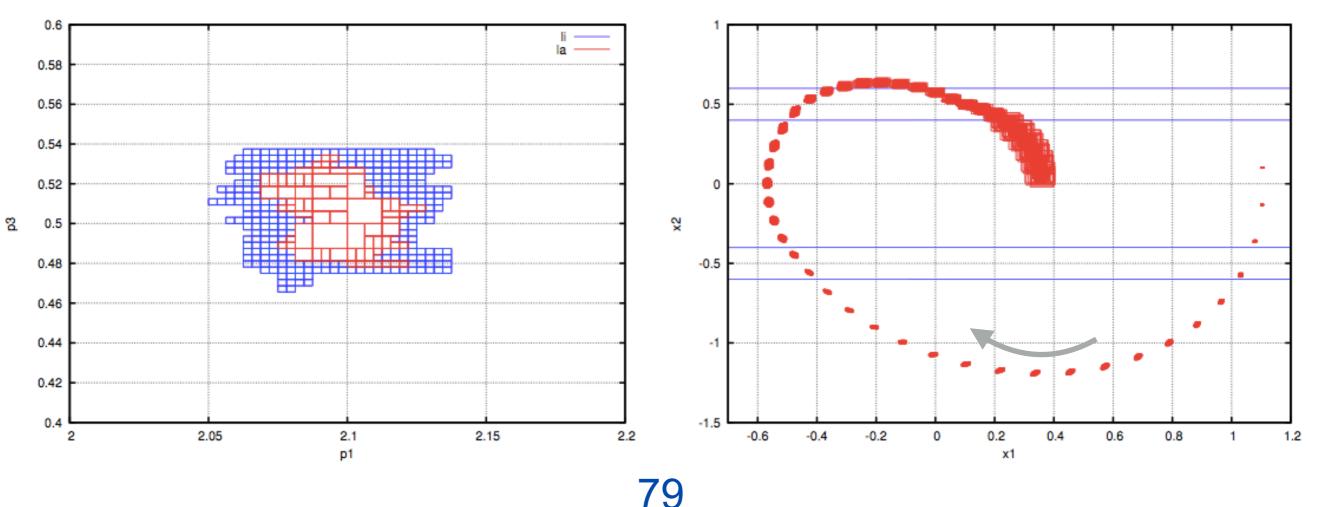
- case 2 : parameters acting on discrete transition.
 - CPU time approx. 40 mn





- case 2 : parameters acting on discrete transition.
 - CPU time approx. 40 mn





Selected References

- N. Meslem, N. Ramdani, Reliable stabilising controller based on set-value parameter synthesis, IMA Journal of Mathematical Control and Information, vol. 34, issue 1, 2017, pp. 159-178.
- M. Maïga, N. Ramdani, L. Travé-Massuyès, C. Combastel, A comprehensive method for reachability analysis of uncertain nonlinear hybrid systems, IEEE Transactions on Automatic Control, vol. 61, n.9, 2016, pp. 2341-2356.
- A. Eggers, N. Ramdani, N.S. Nedialkov & M. Fränzle. Improving the SAT Modulo ODE Approach to Hybrid Systems Analysis by Combining Different Enclosure Methods, Software & Systems Modeling, February 2015, Volume 14, Issue 1, pp 121-148.
- N.Meslem & N.Ramdani, Interval observer design based on nonlinear hybridization and practical stability analysis, International Journal of Adaptive Control and Signal Processing, 25(3): 189–294, 2011.
- N.Ramdani & N.S.Nedialkov, Computing reachable sets for uncertain nonlinear hybrid systems using interval constraint propagation techniques, Nonlinear Analysis: Hybrid Systems, 5(2): 149-162, 2011.
- N.Meslem, N.Ramdani & Y.Candau, Using hybrid automata for set-membership state estimation with uncertain nonlinear continuous-time systems, Journal Process Control, 20(4): 481-489, 2010.
- N.Ramdani, N.Meslem & Y.Candau, Computing reachable sets for uncertain nonlinear monotone systems, Nonlinear Analysis: Hybrid Systems 4(2): 263-278, 2010.
- N.Ramdani, N.Meslem & Y.Candau, A hybrid bounding method for computing an over-approximation for the reachable space of uncertain nonlinear systems, IEEE Transactions on Automatic Control 54(10): 2352–2364, 2009.
- T.Raïssi, N.Ramdani & Y.Candau, Set membership state and parameter estimation for systems described by nonlinear differential equations, Automatica 40:1771–1777, 2004.

