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Most of the material of this presentation is detailed in the overview:

Denis Efimov & Tarek Raissi, Design of interval observers for uncertain
dynamical systems, Automation and Remote Control, Volume 77, Issue 2,
pp 191-225, 2016.
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Introduction

Context

Observation/Control

V' Linear systems: several constructive results = freq. approaches,
output/state feedback,. ..

v Nonlinear systems: the solutions depend on the nonlinearity
structure =
Lipschitzian systems: |f(z1) — f(z2)| < M|z — z2|
= linear approaches can be used to build observers/controllers.
v LPV systems (Linear Parameter-Varying): intermediate class
between Linear and Nonlinear systems
@ Several techniques allow one to transform/approximate NL into LPV
systems
T = f(z,u) =z = A0())x + B(O(t))u
@ The nonlinear trajectory belongs into the LPV ones
o NL = + parameter uncertainties (0(t))
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Introduction

Estimation & Uncertainties

Several cases may be met
@ Models without uncertainties

@ Models with uncertain parameters (constant or varying uncertain
parameters)

@ Uncertain parameters & unknown inputs
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@ & =Ax+ Bu;y =Cx
= Luenberger Obs. 2 = Az + Bu+ L(y — Cxz).
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Introduction

Estimation & Uncertainties

Several cases may be met
@ Models without uncertainties

@ Models with uncertain parameters (constant or varying uncertain
parameters)

@ Uncertain parameters & unknown inputs
Observers structures
@ & =Ax+ Bu;y =Cx
= Luenberger Obs. 2 = Az + Bu+ L(y — Cxz).
o & =A(0)x + B(O)u;y = C(0)x = 0 is known or unknown?
Possible solutions
@ Adaptive approaches = joint estimation of = and 6.

@ Robust approaches z = A,z + Bou + L(y — Cyz) (for some average
values A,, B, and C,).

@ Set-membership estimation / Interval observers.
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Set-membership estimation 1/5

@ Without uncertainties = point estimation.

@ Systems subject to bounded uncertainties = estimation of a feasible
solution set.
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@ Systems subject to bounded uncertainties = estimation of a feasible
solution set.
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Jaulin, 2002 ; Kieffer & Walter, 2004 ; Raissi, Ramdani, Candau, 2004 ...
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Introduction

Set-membership estimation 1/5

@ Without uncertainties = point estimation.
@ Systems subject to bounded uncertainties = estimation of a feasible
solution set.

V" Prediction/correction approach
Jaulin, 2002 ; Kieffer & Walter, 2004 ; Raissi, Ramdani, Candau, 2004 ...

V" Interval Observers
Gouzé, Rapaport & Hadj-Sadok, 2000 ; Moisan, Bernard & Gouzé, 2009, Raissi,
Videau & Zolghadri, 2010 ; Ramdani, Meslem & Candau, 2011 ; Mazenc &
Bernard, 2011 ; Raissi, Efimov & Zolghadri, 2012 ; Efimov, Raissi, Chebotarev,
Zolghadri, 2013 ; Combastel, 2013 ; Mazenc, Dinh, Niculescu, 2013 ...
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Set-membership estimation 2/5

lllustrative example
Let's consider the following example:

i(t) = —23(t) +d(t), t>0, (1)

@ d(t) € [-1,1] is uncertain input whose values belong into the
interval [—1,1].

@ Assume that the admissible values for initial conditions of this
system is the interval [—2,2], i.e. 2(0) € [-2,2].

@ The system is nonlinear, the input and initial conditions are
uncertain = it is hard to evaluate an exact value of the state z(t) at
each time .

@ However, it is possible to evaluate the admissible values for x(t)
with initial conditions 2(0) € [-2,2] and d(t) € [-1,1].
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Set-membership estimation 3/5

lllustrative example
The set of admissible values is described by:

i(t) = —z*(t) -1, z(0)=-2

) = sin({) ¢]fg) =sin’(31) |"(” = sin(5¢)

0 1 2 3 4 t

Figure: Admissible set of the solutions of (1) computed through (2)
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Set-membership estimation 4/5

lllustrative example

)] represents a worst case

@ As we can conclude, the interval [z(t), T(¢
for given uncertainties.

estimate of admissible values of z(t)

@ The main problem considered in this survey is how to design an
interval estimator like (2) using all available information, including
the output measurements (not taken into account in this example)
and minimizing the width of the interval [z(t), Z(¢)], i.e. T(t) — z(¢).

@ Linear Time-Invariant, Linear Parameter-Varying, Continuous-time,
discrete-time systems are considered.

Tarek RAISSI



Set-membership estimation 5/5

Given a system described by

The dynamical system

{[ i = a(zy,u) @

@TviT]T = B(z7y7u)

is an interval observer for (3) if:

2(0) <2(0) <TO) = —oo<a(t) <a(t) T <oo, W20 ()]

Roughly speaking, an interval observer should verify two conditions:
» Inclusion: z(t) < z(t) <Z(t), Yt > %o
» Stabilityofe=x—2xande=7—x
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© Interval observers - LTI systems
@ Continuous-time systems
@ Discrete-time systems
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© Interval observers - LTI systems
@ Continuous-time systems
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Cooperative systems - nonnegative systems

@ Given two vectors x1, o and two matrices Ay, Ao, the relations
z1 < X9, T1 > 29, A1 < As, A1 > A, should be understood
elementwise.

@ A positive semi-definite matrix is denoted by P : P = PT > 0.

@ A square matrix S € R"*" is called Metzler if
Si; >0,V 1<i#j<n. The set of all Metzler matrices is
denoted by M.

Given a Metzler matrix S (S € M), the system
2=8z+r(t); zeR"™ r:Ry—=R}

is called cooperative or nonnegative. lts trajectories verify:

2(0) > 0= z(t) > 0,vt > 0.

4
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Metzler matrices properties

A matrix A € R"*" is Hurwitz stable (4 € H) if all its eigenvalues have
negative real parts.

For a Metzler matrix A € M C R"*"™, the following properties are
similar:

o AcH,;

e A1 <0 ;

@ there exists P € R"*", P = PT » ( such that

ATP+ PA<0;

©

there exists a diagonal matrix D € R™"*", D > 0 such that

ATD+ DA <0:

[

there exists a vector p € R™, p > 0 such that
ATp <0
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Somme additional properties

Define AT = max(0,A), A~ = AT — A = the matrix of absolute values
of all elements by |A] = AT + A~.

Given vectors x,z,T € R", x < 2 < T and a matrix A € R™*"™ then

Ate — A~

8|
IA

Ax

IN

AYT — Az (6)
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Somme additional properties

Define AT = max(0,A), A~ = AT — A = the matrix of absolute values
of all elements by |A] = AT + A~.

Given vectors x,z,T € R", x < 2 < T and a matrix A € R™*"™ then

Atz — A T< Az < AT — A z. (6)
R

(7)
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LTI continuous-time systems

Given a system described by

i(t) = Az(t) + Bd(t), d:Ry —RE o
{ y(t) = Cx(t) + Dd(t) (8)

where A is a Metzler matrix, then the solution z(t) is elementwise
nonnegative for all ¢ > 0 provided that z(0) > 0 and B € R}™“.

The stability of the nonnegative system (8) can be checked by verifying a
Linear Programming (LP) problem

ATx <0

for some nonnegative A € R, or equivalently a Lyapunov matrix
equation
ATP+PA<O

with P a diagonal matrix.
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LTI continuous-time systems

Lemma 2°

The nonnegative system (8) (i.e. A is Metzler, B >0, C' > 0 and
D > 0) is asymptotically stable if and only if there exist a nonnegative
A € R and a scalar v > 0 such that the following LP problem is feasible:

ATX+CTE,
(BT)\ —+E, +D"E,) <" )

Moreover, in this case, the L; gain of the transfer d — y is lower than 7.
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LTI continuous-time systems

Lemma 3?

The nonnegative system (8) (i.e. A is Metzler, B >0, C' > 0 and
D > 0) is asymptotically stable if and only if there exist a nonnegative
A € R and a scalar v > 0 such that the following LP problem is feasible:

AX+ BE,
(C)\ By + DEq) <0 (10)

Moreover, in this case, the L., gain of the transfer d — y is lower than 7.
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LTI Continuous-time systems

Assmume that z, < x(0) < T, d(t) < d(t) < d(t), =V <v(t) <V,
vt > 0.

Interval observer structure:
{ 2(t) = Az + L[y(t) — Cz] — |L|E,V +d(t)

Z(t) = AT + L[y(t) — CF] + |L|E,V + d(t)
How to ensure

2(t) < 2(t) < T(1)
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LTI Continuous-time systems

Theorem 2°

Let Assumption 1 hold and = € L7, then, the solutions of the systems (11)
and (12) satisfy

a(t) < 2(t) < 3(1)
provided that the matrix A — LC is Metzler. In addition, if A — LC is Hurwitz,
then 2,7 € L.

Proof:
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LTI Continuous-time systems

Theorem 2°

Let Assumption 1 hold and = € L7, then, the solutions of the systems (11)
and (12) satisfy

a(t) < 2(t) < 3(1)
provided that the matrix A — LC is Metzler. In addition, if A — LC is Hurwitz,
then 2,7 € L.

Proof:
Define the estimation errors e(t) = z(t) — z(t), e(t) =T(t) — z(t)

&(t) = (A= LC)e(t) + Lo(t) + |L|EpV + d(t) — d(
e(t) = (A — LC)e(t) — Lo(t) + |L|EpV + d(t) — d(t).
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LTI Continuous-time systems

Theorem 2°

Let Assumption 1 hold and = € L7, then, the solutions of the systems (11)
and (12) satisfy

a(t) < 2(t) < 3(1)
provided that the matrix A — LC is Metzler. In addition, if A — LC is Hurwitz,
then 2,7 € L.

Proof:
Define the estimation errors e(t) = z(t) — z(t), e(t) =T(t) — z(t)
&(t) = (A = LO)e(t) + Lo(t) + |L|EpV + d(t) — d(t),
e(t) = (A — LC)e(t) — Lo(t) + |L|EpV + d(t) — d(t).
) —

By assumption 1, |L|E,V £ Lv(t) > 0, d(t) —d(t) >0,

d(t) —d(t) >0 =
The inputs of e(t), €(t) are nonnegative and ¢(0) > 0, 6(0) > 0.
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LTI Continuous-time systems

Theorem 2°

Let Assumption 1 hold and = € L7, then, the solutions of the systems (11)
and (12) satisfy

a(t) < 2(t) < 3(1)
provided that the matrix A — LC is Metzler. In addition, if A — LC is Hurwitz,
then 2,7 € L.

Proof:
Define the estimation errors e(t) = z(t) — z(t), e(t) =T(t) — z(t)
&(t) = (A = LO)e(t) + Lo(t) + |L|EpV + d(t) — d(t),
e(t) = (A — LC)e(t) — Lo(t) + |L|EpV + d(t) — d(t).
) —

By assumption 1, |L|E,V £ Lu(t) >0, d(t) —d(t) >0, d(t
The inputs of e(t), €(t) are nonnegative and ¢(0) > 0, 6(0) > 0.
If A— LC is Metzler, then e(t) > 0,¢e(t) > 0,Vt >0

d(t) > 0=
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LTI Continuous-time systems

Theorem 2°

Let Assumption 1 hold and = € L7, then, the solutions of the systems (11)
and (12) satisfy

a(t) < 2(t) < 3(1)
provided that the matrix A — LC is Metzler. In addition, if A — LC is Hurwitz,
then 2,7 € L.

Proof:
Define the estimation errors e(t) = z(t) — z(t), e(t) =T(t) — z(t)
é(t) = (A — LO)e(t) + Lu(t) + |L|EpV + d(t) — d(¢),
e(t) = (A — LC)e(t) — Lo(t) + |L|EpV 4 d(t) — d(t).
) —

By assumption 1, |L|E,V £ Lu(t) >0, d(t) —d(t) >0, d(t
The inputs of e(t), €(t) are nonnegative and ¢(0) > 0, 6(0) > 0.
If A— LC is Metzler, then e(t) > 0,¢e(t) > 0,Vt >0

If A— LC is Hurwitz, then e(t),e(t) € LT, = z(t),Z(t) are also bounded
(inputs of e(t),€(t) and z are bounded).
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LTI Continuous-time systems

Optimal interval observers
@ If the observer gain L is designed such that A — LC is Metzler =
z(t) < z(t) <T(t),Vt > 0.
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LTI Continuous-time systems

Optimal interval observers
@ If the observer gain L is designed such that A — LC is Metzler =
z(t) < z(t) <T(t),Vt > 0.
@ If the observer gain L is designed such that A — LC' is Hurwitz
stable = the error T(t) — z(¢) is bounded.
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LTI Continuous-time systems

Optimal interval observers
@ If the observer gain L is designed such that A — LC is Metzler =
z(t) < z(t) <T(t),Vt > 0.
@ If the observer gain L is designed such that A — LC' is Hurwitz
stable = the error T(t) — z(¢) is bounded.
@ What about the width of w([Z(t) — z(¢)]) = Z(t) — z(t) ?
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LTI Continuous-time systems

Optimal interval observers

@ If the observer gain L is designed such that A — LC is Metzler =
z(t) < z(t) <T(t),Vt > 0.

@ If the observer gain L is designed such that A — LC' is Hurwitz
stable = the error T(t) — z(¢) is bounded.

@ What about the width of w([Z(t) — z(¢)]) = Z(t) — z(t) ?
The [z(t),Z(t)] width otimization in the L; framework can be
formulated as a Linear Programming problem:

Tarek RAISSI



Interval observers - LTI systems

0000000000000 0000

LTI Continuous-time systems

Optimal interval observers

@ If the observer gain L is designed such that A — LC is Metzler =
z(t) < z(t) <T(t),Vt > 0.

@ If the observer gain L is designed such that A — LC' is Hurwitz
stable = the error T(t) — z(¢) is bounded.

@ What about the width of w([Z(t) — z(¢)]) = Z(t) — z(t) ?
The [z(t),Z(t)] width otimization in the L; framework can be
formulated as a Linear Programming problem:

Consider the interval observer (12) for (11). If there exist a nonnegative
vector A € R™, W € R"™ and a diagonal matrix M € R™*™ such that

AT - CTW + E,
o ~E, <0
AT — CTW + MA >0
A>0,M>0

(13)

Then, W = LT X and d — w(T — ) has a L, gain lower than 7.
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LTI Continuous-time systems

@ Theorem 3 provides an effective and simple computational tool to
design interval observers for LTI systems.
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LTI Continuous-time systems

@ Theorem 3 provides an effective and simple computational tool to
design interval observers for LTI systems.

@ It gives only sufficient conditions = in some cases this LP problem
may have no solution.
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LTI Continuous-time systems

@ Theorem 3 provides an effective and simple computational tool to
design interval observers for LTI systems.

@ It gives only sufficient conditions = in some cases this LP problem
may have no solution.

@ The LP problem has no solution if it is not possible to find L such
that A — LC is simultaneously Metzler and Hurwitz.
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LTI Continuous-time systems

@ Theorem 3 provides an effective and simple computational tool to
design interval observers for LTI systems.

@ It gives only sufficient conditions = in some cases this LP problem
may have no solution.

@ The LP problem has no solution if it is not possible to find L such
that A — LC is simultaneously Metzler and Hurwitz.

A counterexample: Given a system described by:

& = Ax + Bu, y=Cux,

0 1 0
A_<OO), B_(1>,C_(1 0),
This system is observable, whereas the matrix
=L 1
NS
cannot be Hurwitz and Metzler!
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LTI Continuous-time systems

@ The detectability of (A, C) implies the existence of L such that
A — LC' is Hurwitz stable.
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LTI Continuous-time systems

@ The detectability of (A, C) implies the existence of L such that
A — LC' is Hurwitz stable.

@ The Hurwitz property of matrices is preserved under similarity
transformations of coordinates =
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LTI Continuous-time systems

@ The detectability of (A, C) implies the existence of L such that
A — LC' is Hurwitz stable.

@ The Hurwitz property of matrices is preserved under similarity
transformations of coordinates =

© To overcome this issue, it is possible to design the gain L such that
the matrix A — LC' is Hurwitz
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LTI Continuous-time systems

@ The detectability of (A, C) implies the existence of L such that
A — LC' is Hurwitz stable.

@ The Hurwitz property of matrices is preserved under similarity
transformations of coordinates =

© To overcome this issue, it is possible to design the gain L such that
the matrix A — LC' is Hurwitz
@ Find a nonsingular matrix S € R™*™ such that in the new

coordinates z = Sz the state matrix D = S(A — LC)S™! is Metzler.
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LTI Continuous-time systems

Lemma 4°

Given the matrices A € R"*™ D € R"*" and C € RP*", If there exists
a matrix L € R™*P such that the matrices A — LC and D have the same
eigenvalues, then there exists a matrix S € R™*" such that

D = S(A— LC)S~! provided that the pairs (A — LC,e;) and (D, e3)
are observable for some e; € R1X", e; € RYX"™,
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LTI Continuous-time systems

By adding and substracting Ly(t) to (11), the dynamics of this LTI
system is described by:

#(t) = (A — LC)z(t) + Ly(t) — Lo(t) + d(t). (14)

Under conditions of Lemma 4 (slide 25), in the new coordinates z = Sxz,
the system (14) takes the form:

2(t) = Dz(t) + SLy(t) + 6(¢), &(t) = S[d(t) — Lo(t)]. (15)
Let _

(t) = S*d(t) — S~d(t) — |SL|E,V

t

é
{ 0(t) = STd(t) — S~d(t) + |SL|E,V.
By using Lemma 1 (slide 16), we get

a(t) < a(t) <o(t).
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LTI Continuous-time systems

Under the detectability property for the pair (A, C), all the conditions of
Theorem 2 in slide 21 are satisfied in the coordinates z = Sz. An interval

observer candidate is given by:
é(t) = Dz(t) + SLy(t) + é(t) (16)
zZ +9

Initital conditions:
{ 2(0) = Stz, — S 7o
- _

Estimation in the original coordinates: Let R = S~!

z(t) = RTz(t) — R7z(t)
{ F(t) = RT2(t) — R~ () (17)

Tarek RAISSI
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LTI Continuous-time systems

Remark:

If the eigenvalues of (A — LC') are complex-valued, the change of
coordinates z = Sz could be time-varying.
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LTI Continuous-time systems

Remark:

If the eigenvalues of (A — LC') are complex-valued, the change of
coordinates z = Sz could be time-varying.
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LTI Continuous-time systems

Remark:
If the eigenvalues of (A — LC') are complex-valued, the change of
coordinates z = Sz could be time-varying.

Lemma?

Let A — LC be Hurwitz, then there exists an invertible matrix function
S : R — R™ ™ of class C* elementwise, ||S(t)||2 < +oo for all t € R,
such that for all ¢ € R,

$(t) = DS(t) — S(t)(A — LC)

where D € R™*" is a Hurwitz and Metzler matrix.
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LTI Continuous-time systems

Remark:
If the eigenvalues of (A — LC') are complex-valued, the change of
coordinates z = Sz could be time-varying.

Lemma?

Let A — LC be Hurwitz, then there exists an invertible matrix function
S : R — R™ ™ of class C* elementwise, ||S(t)||2 < +oo for all t € R,
such that for all ¢ € R,

$(t) = DS(t) — S(t)(A — LC)

where D € R™*" is a Hurwitz and Metzler matrix.

D can for instance be chosen as the Jordan canonical form of
A—LC.
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Numerical example 1/2

& = Ax 4+ B(p1,p2)f(z)u(t), y = Cx,

2 O O —2p1
A = 1 -4 3|, B(pi,p) = 0 )
IR S i
c=[10 0],

f(x) = 2122, p, = 4.48, p1 = 6.12, p, = 3.2, p2 = 3.6.
@ The pair (A4, C) is not observable and there is no observer gain L
such that the matrix A — LC' is Metzler.
@ Only one eigenvalue can be assigned with the gain L.
@ The matrix

—a b 0
D = 0 —a b
b 0 -—a

has the following eigenvalues b — a, —a — 0.5b 4 0.5bv/3i (we take
here b =2 and a = 3).
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Numerical example 2/2

oForL=1[3 0 0]" the matrix A — LC € H and its eigenvalues

are —1, —4 +/3i.
@ The pairs (A — LC,e1) and (R, e2) are observable for

e1r=[1 0 1],ea=[1 1 0],

then
0.158 0.866 0.5

S=0,'0,= 0842 —0.866 0.5
0658 0 -1
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© Interval observers - LTI systems

@ Discrete-time systems
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Notations and definitions

@ A matrix A € R™*" is called Schur stable if its spectral radius is less
than one.
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Notations and definitions

@ A matrix A € R™*" is called Schur stable if its spectral radius is less
than one.

@ A matrix A € R™*" is called nonnegative if all its elements are
nonnegative.
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Notations and definitions

@ A matrix A € R™*" is called Schur stable if its spectral radius is less
than one.

@ A matrix A € R™*" is called nonnegative if all its elements are
nonnegative.
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Notations and definitions

@ A matrix A € R™*" is called Schur stable if its spectral radius is less
than one.

@ A matrix A € R™*" is called nonnegative if all its elements are
nonnegative.

Definition: nonnegative systems

Tarek RAISSI



Interval observers - LTI systems
0O®@000000

Notations and definitions

@ A matrix A € R™*" is called Schur stable if its spectral radius is less
than one.

@ A matrix A € R™*" is called nonnegative if all its elements are
nonnegative.

Definition: nonnegative systems

o Consider the linear system

2k + 1) = Az(k) + w(k) (18)

where w € RY and A is a nonnegative matrix.
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Notations and definitions

@ A matrix A € R™*" is called Schur stable if its spectral radius is less
than one.

@ A matrix A € R™*" is called nonnegative if all its elements are
nonnegative.

Definition: nonnegative systems

o Consider the linear system

z(k+1) = Az(k) + w(k) (18)
where w € RY and A is a nonnegative matrix.
e Vk > 0, z(k) > 0 provided that z(0) > 0.
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Notations and definitions

@ A matrix A € R™*" is called Schur stable if its spectral radius is less
than one.

@ A matrix A € R™*" is called nonnegative if all its elements are
nonnegative.

Definition: nonnegative systems

o Consider the linear system

z(k+1) = Az(k) + w(k) (18)
where w € RY and A is a nonnegative matrix.
e Vk > 0, z(k) > 0 provided that z(0) > 0.

@ Such dynamical systems are called nonnegative (or cooperative).
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LTI discrete-time systems: observer design

@ Consider the following system:

y(t) = Cat) +o(t), = €L+ (19)

@ Assumption:

Let 2(0) € [z, To], two functions d,d € L7 and a constant V > 0
such that

d(t) < d(t) <d(t), |o(t)] < V.Vt € Zy.
@ Interval observer structure:
(t+1) = Ax(t)

(t+1)=Az(t)
(0) =2y, =(0) =

L(y(t) — Cz(t)) — |LIE,V +d(t)

+ z
+ ( (t) — Cz(t)) + |L|E,V +d(t) (20)

B 88
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LTI discrete-time systems: observer design

Theorem 42

Let the assumption given above hold and = € L7, the solutions of (19)
and (20) satisfy
z(t) < x(t) <ZT(t),Vt € Zy
provided that the matrix A — LC' is nonnegative. In addition, z and
T e L if A— LC is Schur stable.
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LTI discrete-time systems: observer design

Theorem 42

Let the assumption given above hold and = € L7, the solutions of (19)
and (20) satisfy
z(t) < x(t) <ZT(t),Vt € Zy

provided that the matrix A — LC' is nonnegative. In addition, z and
T e L if A— LC is Schur stable.

Proof sketch:

The estimation errors dynamics e(t) = x(t) — z(t) and €(t) = Z(t) — z(t) follow the dynamics:
e(t+1) = (A— LO)e(t) + d(t) — d(t) + |L|E,V — Lo(t) 1)
et +1) = (A— LO)e(t) +d(t) — d(t) + |L|EpV + Lou(t)

@ The relation z(t) < x(t) < T(t),Vt € Z4 is ensured based on the assumption of slide 33
and nonnegativity of (A — LC).
@ The stability is ensured if (A — LC') is Schur stable.
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LTI discrete-time systems: observer design

The observer gain L can be computed as a solution of the following
Linear Matrix Inequality (LMI):

P PA-WC
ATP — CTWT P =0

PA—WC >0 (22)
P=PT+0

@ The diagonal matrix P € R™*™ and W € R"*P are the variables to
determine = then L = P11V,

@ A gain optimization problem (similar to the continuous-time case)
can also be formulated to find L providing a minimal interval width
T(t) — z(t) with respect to a chosen norm.
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LTI discrete-time systems: observer design

Restrictive condition: existence of L such that (A — LC) is
nonnegative = Change of coordinates.
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LTI discrete-time systems: observer design

Restrictive condition: existence of L such that (A — LC) is
nonnegative = Change of coordinates.
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LTI discrete-time systems: observer design

Restrictive condition: existence of L such that (A — LC) is
nonnegative = Change of coordinates.

Theorem 5°

Let the assumption of slide 33 be verified and A — LC' is Schur stable for a gain L. Given a
matrix R € R™"*™ and e; € R' X", e € R'*™ such that A(A — LC) = A(R) and the pairs
(A—LC,e1), (R,ez) are observable. Then, an interval estimation for (19) is given by:
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LTI discrete-time systems: observer design

Restrictive condition: existence of L such that (A — LC) is
nonnegative = Change of coordinates.

Theorem 5°

Let the assumption of slide 33 be verified and A — LC' is Schur stable for a gain L. Given a
matrix R € R™"*™ and e; € R' X", e € R'*™ such that A(A — LC) = A(R) and the pairs
(A—LC,e1), (R,ez) are observable. Then, an interval estimation for (19) is given by:

{ 2(t+ 1) = Re(t) + Fy(t) — [F|E,V + STd(t) — 57d(t)

Z(t + 1) = RZ(t) + Fy(t) + |F|E,V + STd(t) — S™d(t)
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LTI discrete-time systems: observer design

Restrictive condition: existence of L such that (A — LC) is
nonnegative = Change of coordinates.

Theorem 5°

Let the assumption of slide 33 be verified and A — LC' is Schur stable for a gain L. Given a
matrix R € R™"*™ and e; € R' X", e € R'*™ such that A(A — LC) = A(R) and the pairs
(A—LC,e1), (R,ez) are observable. Then, an interval estimation for (19) is given by:

{ 2(t+ 1) = Rz(t) + Fy(t) — |F|E,V + 5td(t) — S~d(t)
Z(t + 1) = RZ(t) + Fy(t) + |F|E,V + STd(t) — S™d(t)

2o =Sz, — S %o
Zo = S+fo — 57£0
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LTI discrete-time systems: observer design

Restrictive condition: existence of L such that (A — LC) is
nonnegative = Change of coordinates.

Theorem 5°

Let the assumption of slide 33 be verified and A — LC' is Schur stable for a gain L. Given a
matrix R € R™"*™ and e; € R' X", e € R'*™ such that A(A — LC) = A(R) and the pairs
(A—LC,e1), (R,ez) are observable. Then, an interval estimation for (19) is given by:

{ 2(t+ 1) = Rz(t) + Fy(t) — |F|E,V + 5td(t) — S~d(t)
Z(t + 1) = RZ(t) + Fy(t) + |F|E,V + STd(t) — S™d(t)

2o =Sz, — S %o
Zo = S+fo — 57£0

{ z(t) = (ST z(t) - (S7H7=(1),
z(t) = (S™H () — (571 2(8)

where S = OA—LC‘071 (Oa—rLc and OR are the observability matrices of the pairs
(A—LC,e1), (R,e2)) and F = SL.
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LTI discrete-time systems: observer design

Numerical example:

0.3 -0.7 sin(0.1t) sin(0.5txa(t))
2t +1) = <O.6 —0.5) () + <cos(0.2t)> + 0'5( sin(0.3t) )
y(t) = (1 0)=z(t) + 0.1sin(t)

Let L = (—0.8000 —0.7000)"

0.3 0.1
andD-A—LC-(O.6 02
D is a nonnegative matrix = no need of a change of coordinates.

The nonlinear term is bounded = it can be considered as a disturbance.
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LTI discrete-time systems: observer design

Numerical example:

The simulations are performed using the interval observer given in the
slide 36.
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Joint state and unknown input estimation

© Joint state and unknown input estimation
o State estimation
@ Upper and lower bounds of the unknown input
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Joint state and unknown input estimation

Interval observers and linear systems with unknown inputs

@ LTI discrete-time system with unknown inputs:

{x(k+ 1) = Az(k) + Bu(k) + Dd(k) + w(k) 23)

y(k) = Cuz(k) + (k)

Is it possible to estimate x and d? = Such estimation can be useful for
instance for diagnosis and Fault Tolerant Control.
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Joint state and unknown input estimation

Interval observers and linear systems with unknown inputs

@ LTI discrete-time system with unknown inputs:

z(k+1) = Ax(k)+ Bu(k) + Dd(k) + w(k) (23)
y(k) = Cak) + (k)

Is it possible to estimate x and d? = Such estimation can be useful for
instance for diagnosis and Fault Tolerant Control.

For more details, refer to:

@ Elinirina Irena Robinson, Julien Marzat, Tarek Raissi, Interval Observer Design for Unknown
Input Estimation of Linear Time-Invariant Discrete-Time Systems, IFAC World Congress,
Toulouse, France. 9-14 July, 2017.

@ D. Gucik-Derigny, T. Raissi, A. Zolghadri, A note on interval observer design for unknown
input estimation, International Journal of Control, 89(1), 25-37, 2016.
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Interval observers and linear systems with unknown inputs

Methodology to jointly estimate the bounds of x and d

Q@ Change of coordinates to divide the system (23) into two subsytems:
— one affected by the unknown input
— the second one is unknown input-free

© Change of coordinates to ensure the nonnegativity property of the
observation error in the new coordinates

© Design of an interval observer in the new basis to compute z and 7.
© Compute d and d.
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© Joint state and unknown input estimation
@ State estimation
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Joint state and unknown input estimation
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Step 1: State and unknown input decoupling

LTI discrete-time system with unknown inputs:

{x(k +1) = Ax(k) + Bu(k) + Dd(k) + w(k) (20)

y(k) = Ca(k) + 6(k)
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Joint state and unknown input estimation
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Step 1: State and unknown input decoupling

LTI discrete-time system with unknown inputs:

{x(k +1) = Ax(k) + Bu(k) + Dd(k) + w(k) (20)

y(k) = Ca(k) + 6(k)

C'is a full row rank matrix and D is a full column rank matrix.
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Joint state and unknown input estimation
0@0000000000

Step 1: State and unknown input decoupling

LTI discrete-time system with unknown inputs:

{x(k +1) = Ax(k) + Bu(k) + Dd(k) + w(k) (20)

y(k) = Ca(k) + 6(k)

C'is a full row rank matrix and D is a full column rank matrix.

@ There exist matrices H € R™"*", Ry € R7%? and K € R?*7 such
that:

D=H ﬁo} KT (25)
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Joint state and unknown input estimation
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Step 1: obtain an unknown input-free system

@ Transformation of the initial system into an equivalent one: Let

z1(k
z(k) = HTz(k) = [é%
dk+1) = Ae(k)+ Bu(k) + || d(k) + o (k)
- 0 (26)
y(k) = Cz(k) + (k)
where:
Hi1 Hiz i T Ay A
H = |:H21 sz] » A=H AH = |:A~21 A~22:|
B A ot
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Joint state and unknown input estimation
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Step 1: obtain an unknown input-free system

@ Transformation of the initial system into an equivalent one: Let

z1(k
z(k) = HTz(k) = [é%
dk+1) = Ae(k)+ Bu(k) + || d(k) + o (k)
- 0 (26)
y(k) = Cz(k) + (k)
where:
Hi1 Hiz i T Ay A
H = |:H21 sz] » A=H AH = |:A~21 A~22:|
B A ot

@ HT is supposed to be bounded, therefore @] € @.
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obtain an unknown input-free system

@ The system (27) is decomposed into an unknown input depending
subsystem and an unknown input-free subsytem:

z(k+1) = 14:11121(/@ + 14:11222(/@ + J?w(k) + Rod(k) + @1 (k)
zo(k +1) = As121(k) + A2222(k) + Bau(k) + wa(k)

2
y(k) = C121(k) + Cozo(k) + (k)
(28)
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Joint state and unknown input estimation
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Step 1: obtain an unknown input-free system

21 (k‘ + 1) = flnzl(k) + fllng(k) + Blu(k) + R()(i(k) + L:Jl(k)
Q(k' + 1) = Aglzl(k) + AQQZQ(]C) + BQU(]C) +
y(k‘) = C’lzl(k) + égZQ(k) + 5(]6)

Transformation of (29) into a conventional linear system:
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Step 1: obtain an unknown input-free system

21 (k‘ + 1) = flnzl(k) + A1222(k) + Blu(k) + R()(i(k) + (,:Jl(k)
(k+1 +

29 ) = 1212121(]6) + AQQZQ(]C) + BQU(]C) (,:JQ(]C)
y(k‘) = Clzl(k) + CQZQ(k) + 5(]6)
(29)
Transformation of (29) into a conventional linear system:
@ C is supposed to be a full column rank matrix and can be
decomposed as:
Cy = H; ﬁﬂ KT (30)

with H; = [HOll H()lg} (H()11 € RP*? and Hy1o € RPX(P*Q)).
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Step 1: obtain an unknown input-free system

21 (k‘ + 1) = flnzl(k) + A1222(k) + Blu(k) + R()(i(k) + (,:Jl(k)
(k+1 +

29 ) = 1212121(]6) + AQQZQ(]C) + BQU(]C) (,:JQ(]C)
y(k‘) = Clzl(k) + CQZQ(k) + 5(]6)
(29)
Transformation of (29) into a conventional linear system:
@ C is supposed to be a full column rank matrix and can be
decomposed as:
Cy = H; ﬁﬂ KT (30)
with Hy = [Hou1  Hoiz] (Hour € RP*? and Hoyz € RP*(P=4)),
@ Measurements equation can be decomposed as (k) = H{ y(k)
gi1(k) = RiK{z (k) + Hgyy Coza(k) + Hiy16(k) (31)
Ja(k) = Hg15Coz2(k) + H150(k) = Caza(k) + Hyy50(k)
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Step 1: obtain an unknown input-free system

@ Measurements equation can be decomposed as

(32)

g1(k) = RiKTz(k) + HE, Caza(k) + HE,6(K)
Jo(k) = HgyyCoz(k) + Hiy90(k) = Caza(k) 4+ Hayp6(k)
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Step 1: obtain an unknown input-free system

@ Measurements equation can be decomposed as

{gl(k) = RiKT 2 (k) + HE, Cozo(k) + HE,5(k) (32)

Ja(k) = HE,Coza(k) + HE0(k) = Caza(k) + Hi,0(k)

o As §1(k) = GLy(k) with G = [I;  Ogx(p—q)]. the expression of
z1 is extracted from the first equation of (32):

z1(k) = B(y(k) — Caza(k) — 8(k)) (33)

with E = KR 'GTHT.
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Step 1: obtain an unknown input-free system

@ Measurements equation can be decomposed as

{gl(k) = RiKT 2 (k) + HE, Cozo(k) + HE,5(k) (32)

G2(k) = Hef1oCaz(k) + Hi120(k) = Ca2a(k) + H120(k)
o As §1(k) = GLy(k) with G = [I;  Ogx(p—q)]. the expression of
z1 is extracted from the first equation of (32):
21(k) = E(y(k) — Coza(k) — 3(k)) (33)

with B = K R 'GTHT .
@ By replacing (33) in the dynamics of 2o in (29) we obtain:

29 (k'—|— 1) = AQlE[y(k) _OQZQ(IC) —5(/6‘)] +A2222(k)+32u(k)+(;&2(k)
(34)
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Step 1: obtain an unknown input-free system

Finally we obtain the following unknown input-free LTI discrete-time
system:

{zg(k +1) = Aoza(k) + Bou(k) + Doy(k) — Dad(k) + @ (k) (35)

:ljg(k‘) = CQZQ(k;) + Hg—ig(S(k)

where AQ = AQQ — AglEég , BQ = BQ, 02 = H,Oll2c~12 and DQ = AglE.
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Step 2: Nonnegativity of the observation error in the new

coordinates

@ Unknown input-free LTI discrete-time system:

Zg(k + 1) = AQZQ(k) + Bgu(k) + Dgy(k) — DQ(S(k) + (Z)Q(/ﬂ)
72(k) = Chzo() + Hi120(k)
(36)
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Step 2: Nonnegativity of the observation error in the new

coordinates

@ Unknown input-free LTI discrete-time system:
z2(k+1) = Azza(k) + Bau(k) + Day(k) — D26(k) + w2 (k)
72(k) = Chzo() + Hi120(k)
(36)

@ The pair (A2, Cb) is detectable.

o There exists a gain L € R"9X(P~9 and a matrix P such that
(A2 — LCy) is Schur stable and R = P(As — LC2)P ! is nonnegative.
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Step 2: Nonnegativity of the observation error in the new

coordinates

@ Unknown input-free LTI discrete-time system:
z2(k+1) = Azza(k) + Bau(k) + Day(k) — D26(k) + w2 (k)
72(k) = Chzo() + Hi120(k)
(36)

@ The pair (A2, Cb) is detectable.

o There exists a gain L € R"9X(P~9 and a matrix P such that
(A2 — LCy) is Schur stable and R = P(As — LC2)P ! is nonnegative.

@ After the change of coordinates ro = Pz, the system (36) is
described in the new coordinates by:
ﬂg(k) = CQP_l’/’Q(k) + H(%Q(S(k')

137‘
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To sum up the previous steps

@ First change of coordinates z = H "z to obtain an unknown
input-free system:
ZQ(k‘ + 1) = AQZQ(k) + BQU;(’f) + Dgy(k) — D25(k) + (:.12(/{})
ﬂg(/ﬂ) = CQZQ(k) + H(,{;Q(S(k)
(38)
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To sum up the previous steps

@ First change of coordinates z = H "z to obtain an unknown
input-free system:

{ 2k +1) = Asza(k) + Bau(k) + Day(k) — Dad(k) + o (k)

ga(k) = Coza) + Hi150(k)
(38)

© Second change of coordinates o = Pz5 to ensure the cooperativity
property of the observation error in the new coordinates:
ﬂg(k) = CQP_lrg(k) + Hgﬁ&(k)
(39)

where (A — LCs) is Schur stable and R = P(Ay — LC3)P~1is
nonnegative.
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To sum up the previous steps

@ First change of coordinates z = H "z to obtain an unknown
input-free system:

ZQ(k‘ + 1) = AQZQ(k) + BQU;(’f) + Dgy(k) — D25(k) + (:.12(/{})
72(k) = Chzo) + Hi120(k)
(38)

© Second change of coordinates o = Pz5 to ensure the cooperativity
property of the observation error in the new coordinates:

ﬂg(k) = CQP_lrg(k) + Hgﬁ&(k)
(39)
where (A — LCs) is Schur stable and R = P(Ay — LC3)P~1is
nonnegative.

=- The interval observer given in slide 36 can be used to estimate
the state 5 and ... 25.

Tarek RAISSI



Joint state and unknown input estimation
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Step 3: Compute z and T

Step 3a: Compute r and 7

@ State estimation is first performed in the coordinates rs.
o We define A’ = 6 —d], AT = [0 4] and o = @ -,
Q' =[-w @
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Step 3: Compute z and T

Step 3a: Compute r and 7

@ State estimation is first performed in the coordinates rs.
o We define A’ = 6 —d], AT = [0 4] and o = @ -,
Q' =[-w @

Theorem 5

Assume that 75(0) < r2(0) < 72(0). Then, for all k € Z the estimates
ro(k) and T2 (k) given by

ro(k+1) = Rry(k) + PBou(k) + My(k) + (—M)*A + P*Q,
(40)

{m(k +1) = Rra(k) + PByu(k) + My(k) + (-M)*A + P*Q,

are bounded and verify

ro(k) < ro(k) <Ta(k) (41)

4
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Step 3: Compute z and T

Step 3b: Compute z2 and z3

@ Since ro = Pz, the bounds of z5(k) are given by:

Corollary

The bounds of the state z5 is given by:

;2(]“) (42)
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Joint state and unknown input estimation

00000000000 e

Step 3: Compute z and T

Step 3c: Return into the initial coordinates z and ©

@ Using x = Hz the following theorem ensures the interval estimation
of the state vector in the original coordinates.

Theorem 7

Assume z(0) < z(0) < T(0). Then, for all k € Z4 the estimates z(k)
and z(k) given by

Z1(k) = HnBy+ (Hi2)*Za(k) + (—E1)*Zo(k) + (—H1 E)*A
zy(k) = HuBEy+ (Hi2)"Zy(k) + (—E1)*Z,(k) + (—HuE)*A
Ta(k) = HoEy+ (Ha2)*Za(k) + (—E2)*Z2(k) + (—H2 E)*A
2y(k) = HanEy+ (H2) Zy(k) + (—E2)"Zy(k) + (—H21E)*A
(43)

are bounded and verify

z(k) < x(k) <T(k)

—~~
~
>

N

with By = Hj1EC5 and Ey = Hy ECs.
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© Joint state and unknown input estimation

@ Upper and lower bounds of the unknown input
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Joint state and unknown input estimation
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Step 4: Compute d and d

21 (k‘ + 1) = jlnzl(k) + fllng(k) + Blu(k) + R()(i(k) + wl(k)
z(k+1) = {12121(76) +~f~12222(k) + Bou(k) + @ (k)
y(k) = C121(k) + Caz2(k) + 6(k)
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Joint state and unknown input estimation
oceo

Step 4: Compute d and d

21 (k‘ + 1) = jlnzl(k) + fllng(k) + Blu(k) + R()(i(k) + wl(k)
z(k+1) = {12121(76) +~f~12222(k) + Bou(k) + @ (k)
y(k) = C121(k) + Caz2(k) + 6(k)

@ Expression of d is obtained from (45) with d = KT d:
d(k) = KRy '[z1(k + 1) — Ay 21 (k) — Ara2a(k) — Biu(k) — @1 (k)]
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Joint state and unknown input estimation
oceo

Step 4: Compute d and d

21 (k‘ + 1) = jlnzl(k) + fllng(k) + Blu(k) + R()(i(k) + wl(k)
z(k+1) = {12121(76) +~f~12222(k) + Bou(k) + @ (k)
y(k) = C121(k) + Caz2(k) + 6(k)

@ Expression of d is obtained from (45) with d = KT d:
d(k) = KRy '[z1(k + 1) — Ay 21 (k) — Ara2a(k) — Biu(k) — @1 (k)]

@ Then using ~
z1(k) = E(y(k) — Caza(k) — 6(k)) (46)
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Step 4: Compute d and d

21 (k‘ + 1) = jlnzl(k) + fllng(k) + Blu(k) + R()(i(k) + wl(k)
z(k+1) = Ag 2 (k) +~f~12222(k) + Bou(k) + @ (k)
y(k) = C21(k) + Coza(k) + 6()

@ Expression of d is obtained from (45) with d = KT d:
d(k) = KRy '[z1(k + 1) — Ay 21 (k) — Ara2a(k) — Biu(k) — @1 (k)]

@ Then using ~
z1(k) = E(y(k) — Caza(k) — 6(k)) (46)

@ The expression of the unknown input d is

d(k) = KRy'[Ey(k+1) — ECyzo(k +1) — E§(k + 1) — An (Ey(k)
—ECQZQ(k) - E(S(k)) - Algzg(k) - Blu(ls) — G)l(k)] ( )
47
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Step 4: Compute d and d

@ The following theorem ensures the interval estimation of the
unknown input:

Theorem

for all k € Z the estimates d(k) and d(k) given by

dk) =Qyk+1)— QAH_Ey(k) — QBru(k) + G1Za2(k + 1) + G3Z2(k)

+G3A + GIA + Gl
d(k) =QFEy(k+1) — QAnEy(k) — QBiu(k) + GiZ,(k + 1) + G3Zy(k)
+G3A + GiA + GiQy
(48)
are bounded and verify :
d(k) < d(k) < d(k) (49)

With Q = KR(;I, G = _QEOQ, Go = Q(AllEéz = Alz), Gy = —QE,
G4 = QAME and G5 = —Q.
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Problem statement

Dynamical systems can be subject to several kinds of faults such as:
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@ System faults,
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Problem statement

Dynamical systems can be subject to several kinds of faults such as:
9 Actuators faults,
@ System faults,
@ Sensors faults.

Faults

/ / /

—»| Actuators |5 System | | Sensors |

Figure: Faulty system.
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Problem statement

Fault Tolerant Control is required to maintain stability and additional
performances in presence of faults.

Faults Detection
and Isolation (FDI)

Reconfiguration

Mechanism
Faults
ue T Yk
¢ Contxoller Actuators |5 System | .| Sensors [l
i u
]

Figure: Active FTC system.
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Faults
Conb«iller Actuators || System || Sensors

U,

]

Figure: Passive FTC system.
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Problem statement

Consider a discrete-time LTI system:

{ Tp+1 = Az + Buy + wy (50)

yr = Cxg + vy
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Problem statement

Consider a discrete-time LTI system:

(50)

Tip1 = Az + Bug + wi
yr = Cxg + vy

The system dynamics with actuator additive faults can be modeled by:

T = Axp + (B+ Byp)ur +w
{ k41 E+( k) Uk k (51)

yr = Cxp + vp

where By € R"*? is a time-varying fault parameter. w and v are
respectively disturbance and noise sequences.
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Assumptions and Goal

AB < By < ABVY By € R"X4q,
w;, < wg < Wy, are satisfied V k € N. |Jv|| <V < +o0.
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Assumptions and Goal

9 AB < By < EVBﬁk € R"Xa,
0 w, < wy < Wy are satisfied V k € N. |ju]] <V < 400,

Goal

The goal of this section is to stabilize the system (50) with a robust
feedback control keeping the required performances despite the
appearance of actuator faults and external disturbances.

| A\
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Interval observers design for (51) requires the following assumption.

The pair (A, C) is detectable and there exists a matrix L € R™*P such
that A — LC is Schur stable.
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Interval observers design for (51) requires the following assumption.

The pair (A, C) is detectable and there exists a matrix L € R™*P such
that A — LC is Schur stable.

The proposed interval observer structure for (51) is:

Try1 = (A — LO)Ty + Buy + ABuf — ABuy, + Wy,
+Lyi + |L|VE,

Zpyq = (A= LO)zy, + Buy + ABuf — ABu;, 4w,
+Ly, — |L|VE,

(52)

b oot - _
with u;” = max(ug,0) and u;, = u — ug.
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Theorem 8

Let the assumptions of this section be satisfied, A — LC is nonnegative
and the initial state xo verifies x, < xo < To, then the state x}, solution
of (52) satisfies:

z, <z < Tg, Vk € N (53)

In addition if A — LC' is Schur stable, it follows that e;, €, € L with
€ =T — Tk andgk =T — Xy
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If AL such that A — LC is Schur stable and nonnegative = A change of
coordinates z; = Rz with a nonsingular matrix R such that
E = R(A— LC)R™! is Schur stable and nonnegative.
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If AL such that A — LC is Schur stable and nonnegative = A change of
coordinates z; = Rz with a nonsingular matrix R such that
E = R(A— LC)R™! is Schur stable and nonnegative. In the new

coordinates z, the interval observer can be written as :
Zit1 = EZy + RBuy, + 9(uy, ,u)b) + p(Wy, wy,)
+RLy, + |F|VE,
241 = Bz + RBug + p(uy, ul) + p(Wk, wy,)
+RLy, — |F|VE,

(54)

with o(uy ,u;) = (RTAB — R-AB)u} — (R"AB — R AB)u,,,
?(u; ,u)) = (RTAB — R-AB)u} — (R*AB — R~ AB)uy,,
p(Wr,w,) = Rtw, — R™Wy, p(Wg,w,) = R™wy, — R~ w,, F = RL.
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Theorem 9

Given a nonsingular matrix R such that E = R(A — LC)S is Schur
stable and nonnegative. Then, the solutions of (51) and (54) satisfy (in
the coordinates z):

2 <z <Zk, VkeN (55)

provided that z, < zg < Zo. In addition, if A — LC, then the interval
observer errors e;, and €y, € LY with €, =Zy — 2, and e;, = 2z — 2.
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Uk

Tht1 = Az + (B + B/-_k)uk —+ Wi

A4

yr = Cxg, + v

Yk

—>]| Interval observer <

By b

Figure: Faulty system.
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Uk

Faulty system

Yk

Interval observer

-K

Figure: System with feedback control.

up = — KTy,

(56)

Tarek RAISSI



Fault Tolerant Control
[e]e]e] lo}

Control design

Substituting the control (56) into the interval observer (52), we get:

Th+1 = (A - LC)fk — BK7T +AB maw{O, —ka}
—AB maz{0, KTy} + W + Lyx + |L| VE,

2y = (A= LC)x;, — BKTy, + AB max{0, —K Ty}
—AB maz{0, KTy} + wy, + Ly, — |L|VE,

(57)
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Control design

Theorem 10

Let the assumptions of this section be satisfied and A — LC > 0. If there
exist P € R?"*27 P = PT « 0 and v > 0, such that the dynamic state
feedback K satisfies the following constraint:

1 1
K| <

— —— 58
~ 8 10[AB] (%)

with DPD — P < —I, D= A~ LC and v = | DTP|* + |P|, then,
the system (57) is asymptotically stable.
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Numerical simulations

Consider the discrete-time LTI system:

Tht1 = Az + (B + Bf7k;)uk + wy, (59)
yr = Cx1 i + vk,
1.1 —0.1 0.35 1 0
A=10.9 0.2 —-0.2 ,B=|-1|,Bsr= sin(k)
0.8 —0.2 0.25 0 0
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Numerical simulations

Consider the discrete-time LTI system:

Tht1 = Az + (B + Bf7k;)uk + wy, (59)
yr = Cx1 i + vk,
—-0.1 0.35 1 0
0.2 —-0.2 ,B = -1 ,Bf’k = SZTL(]C)
0.85 —0.2 0.25 0 0

AB=-AB=[0 1 0T, wpy=1[0 0.1sin(0.1k) 0]7,
p=—w, =1[0 0.1 0]7, vy =0.01cos(k) and V = 0.01.

€|l>
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Numerical simulations

For L=1[1 1 0.5]T, the matrix A — LC is not nonnegative.
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Numerical simulations

For L=[1 1 0.5]7, the matrix A — LC is not nonnegative. Thus a

transformation of coordinates,
—0.058 0.997 —0.052

S =10.134 —0.044 —0.99| is used such that

0.989 0.064 0.131
E = R(A - LC)S, with R = S~1, is nonnegative.
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Numerical simulations

For L=[1 1 0.5]7, the matrix A — LC is not nonnegative. Thus a

transformation of coordinates,
—0.058 0.997 —0.052

S=10134 —-0.044 —0.99| is used such that
0.989 0.064 0.131
E = R(A - LC)S, with R = S~1, is nonnegative.
Zit1 = Bz + RBuy, + 8(uy, ,u)l) + p(wy, wy)
+RLyy + |F|VE,
Zj1 = Bz + RBug + o(uy ,u)l) + p(@y, wy,)
+RLy, — |F|VE,

(60)

with up, = —K Tj, and K = [0.9140 0.9128 0.3999).
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Numerical simulations

;
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Time(s)

Figure: Simulations results for the case of LTI system without fault.
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Figure: Simulations results for the case of LTI system with fault.
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More results about Interval estimation at the Open Invited Track on
Interval estimation applied to diagnosis and control of uncertain
systems - IFAC-WC’'2017 - July 11th.
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