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Most of the material of this presentation is detailed in the overview:

Denis Efimov & Tarek Räıssi, Design of interval observers for uncertain
dynamical systems, Automation and Remote Control, Volume 77, Issue 2,
pp 191-225, 2016.
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Context

Observation/Control
X Linear systems: several constructive results ⇒ freq. approaches,

output/state feedback,. . .

X Nonlinear systems: the solutions depend on the nonlinearity
structure ⇒
Lipschitzian systems: |f(x1)− f(x2)| ≤ M |x1 − x2|
⇒ linear approaches can be used to build observers/controllers.

X LPV systems (Linear Parameter-Varying): intermediate class
between Linear and Nonlinear systems

Several techniques allow one to transform/approximate NL into LPV
systems
ẋ = f(x, u) ⇒ ẋ = A(θ(t))x+B(θ(t))u
The nonlinear trajectory belongs into the LPV ones
NL ≡ Linear + parameter uncertainties (θ(t))
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Estimation & Uncertainties

Several cases may be met

Models without uncertainties

Models with uncertain parameters (constant or varying uncertain
parameters)

Uncertain parameters & unknown inputs

Observers structures

ẋ = Ax +Bu; y = Cx

⇒ Luenberger Obs. ż = Az +Bu+ L(y − Cz).

ẋ = A(θ)x +B(θ)u; y = C(θ)x ⇒ θ is known or unknown?

Possible solutions

Adaptive approaches ⇒ joint estimation of x and θ.

Robust approaches ż = Aaz +Bau+ L(y − Caz) (for some average
values Aa, Ba and Ca).

Set-membership estimation / Interval observers.

Tarek RAISSI
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Set-membership estimation 1/5

Without uncertainties ⇒ point estimation.

Systems subject to bounded uncertainties ⇒ estimation of a feasible
solution set.

X Prediction/correction approach
Jaulin, 2002 ; Kieffer & Walter, 2004 ; Räıssi, Ramdani, Candau, 2004 . . .

X Interval Observers
Gouzé, Rapaport & Hadj-Sadok, 2000 ; Moisan, Bernard & Gouzé, 2009, Räıssi,

Videau & Zolghadri, 2010 ; Ramdani, Meslem & Candau, 2011 ; Mazenc &

Bernard, 2011 ; Räıssi, Efimov & Zolghadri, 2012 ; Efimov, Räıssi, Chebotarev,

Zolghadri, 2013 ; Combastel, 2013 ; Mazenc, Dinh, Niculescu, 2013 . . .
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Set-membership estimation 2/5

Illustrative example
Let’s consider the following example:

ẋ(t) = −x3(t) + d(t), t ≥ 0, (1)

d(t) ∈ [−1, 1] is uncertain input whose values belong into the
interval [−1, 1].

Assume that the admissible values for initial conditions of this
system is the interval [−2, 2], i.e. x(0) ∈ [−2, 2].

The system is nonlinear, the input and initial conditions are
uncertain ⇒ it is hard to evaluate an exact value of the state x(t) at
each time t.

However, it is possible to evaluate the admissible values for x(t)
with initial conditions x(0) ∈ [−2, 2] and d(t) ∈ [−1, 1].

Tarek RAISSI
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Set-membership estimation 3/5

Illustrative example
The set of admissible values is described by:







ẋ(t) = −x3(t)− 1, x(0) = −2

ẋ(t) = −x3(t) + 1, x(0) = 2
(2)

Figure: Admissible set of the solutions of (1) computed through (2)
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Set-membership estimation 4/5

Illustrative example

As we can conclude, the interval [x(t), x(t)] represents a worst case
estimate of admissible values of x(t) for given uncertainties.

The main problem considered in this survey is how to design an
interval estimator like (2) using all available information, including
the output measurements (not taken into account in this example)
and minimizing the width of the interval [x(t), x(t)], i.e. x(t)− x(t).

Linear Time-Invariant, Linear Parameter-Varying, Continuous-time,
discrete-time systems are considered.

Tarek RAISSI
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Set-membership estimation 5/5

Given a system described by

{

ẋ = f(x, u)
y = h(x)

(3)

Definition 1

The dynamical system
{

ż = α(z, y, u)
[

xT , xT
]T

= β(z, y, u)
(4)

is an interval observer for (3) if:

x(0) ≤ x(0) ≤ x(0) ⇒ −∞ < x(t) ≤ x(t) ≤ x(t) < ∞, ∀t ≥ 0. (5)

Roughly speaking, an interval observer should verify two conditions:

◮ Inclusion: x(t) ≤ x(t) ≤ x(t), ∀t ≥ t0

◮ Stability of e = x− x and e = x− x

Tarek RAISSI
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Cooperative systems - nonnegative systems

Given two vectors x1, x2 and two matrices A1, A2, the relations
x1 ≤ x2, x1 ≥ x2, A1 ≤ A2, A1 ≥ A2 should be understood
elementwise.

A positive semi-definite matrix is denoted by P : P = PT � 0.

A square matrix S ∈ Rn×n is called Metzler if
Si,j ≥ 0, ∀ 1 ≤ i 6= j ≤ n. The set of all Metzler matrices is
denoted by M.

Theorem 1

Given a Metzler matrix S (S ∈ M), the system

ż = Sz + r(t); z ∈ Rn; r : R+ → Rn
+

is called cooperative or nonnegative. Its trajectories verify:

z(0) ≥ 0 ⇒ z(t) ≥ 0, ∀t ≥ 0.

Tarek RAISSI
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Metzler matrices properties

A matrix A ∈ Rn×n is Hurwitz stable (A ∈ H) if all its eigenvalues have
negative real parts.

For a Metzler matrix A ∈ M ⊆ Rn×n, the following properties are
similar:

A ∈ H ;

A−1 ≤ 0 ;

there exists P ∈ Rn×n, P = PT ≻ 0 such that

ATP + PA ≺ 0;

there exists a diagonal matrix D ∈ Rn×n, D ≻ 0 such that

ATD +DA ≺ 0;

there exists a vector ρ ∈ Rn, ρ > 0 such that

AT ρ < 0

Tarek RAISSI



16/79

Introduction Interval observers - LTI systems Joint state and unknown input estimation Fault Tolerant Control

Somme additional properties

Define A+ = max(0, A), A− = A+ −A ⇒ the matrix of absolute values
of all elements by |A| = A+ +A−.

Lemma 1

Given vectors x, x, x ∈ Rn, x ≤ x ≤ x and a matrix A ∈ Rm×n, then

A+x−A−x ≤ Ax ≤ A+x−A−x. (6)

For A ≤ A ≤ A, A,A ∈ Rm×n, then

A+x+−A
+
x−−A−x++A

−
x− ≤ Ax ≤ A

+
x+−A+x−−A

−
x++A−x−

(7)

Tarek RAISSI
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LTI continuous-time systems

Given a system described by

{

ẋ(t) = Ax(t) +Bd(t), d : R+ → Rq
+

y(t) = Cx(t) +Dd(t)
(8)

where A is a Metzler matrix, then the solution x(t) is elementwise
nonnegative for all t ≥ 0 provided that x(0) ≥ 0 and B ∈ Rn×q

+ .

The stability of the nonnegative system (8) can be checked by verifying a
Linear Programming (LP) problem

ATλ < 0

for some nonnegative λ ∈ Rn
+, or equivalently a Lyapunov matrix

equation
ATP + PA ≺ 0

with P a diagonal matrix.

Tarek RAISSI
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LTI continuous-time systems

Lemma 2a

a
Refer for instance to

C. Briat, Robust stability analysis of uncertain linear positive systems via integral linear constraints: L1- and linfty-gain
characterizations, 50th IEEE CDC and ECC, (Orlando), pp. 6337-6342, 2011.

Y. Ebihara, D. Peaucelle, and D. Arzelier, L1 gain analysis of linear positive systems and its application, 50th IEEE CDC and
ECC, (Orlando), pp. 4029-4035, 2011.

The nonnegative system (8) (i.e. A is Metzler, B ≥ 0, C ≥ 0 and
D ≥ 0) is asymptotically stable if and only if there exist a nonnegative
λ ∈ Rn

+ and a scalar γ > 0 such that the following LP problem is feasible:

(

ATλ+ CTEp

BTλ− γEp +DTEp

)

< 0. (9)

Moreover, in this case, the L1 gain of the transfer d → y is lower than γ.

Tarek RAISSI
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LTI continuous-time systems

Lemma 3a

a
Refer for instance to

C. Briat, Robust stability analysis of uncertain linear positive systems via integral linear constraints: L1- and linfty-gain
characterizations, 50th IEEE CDC and ECC, (Orlando), pp. 6337-6342, 2011.

Y. Ebihara, D. Peaucelle, and D. Arzelier, L1 gain analysis of linear positive systems and its application, 50th IEEE CDC and
ECC, (Orlando), pp. 4029-4035, 2011.

The nonnegative system (8) (i.e. A is Metzler, B ≥ 0, C ≥ 0 and
D ≥ 0) is asymptotically stable if and only if there exist a nonnegative
λ ∈ Rn

+ and a scalar γ > 0 such that the following LP problem is feasible:

(

Aλ+BEq

Cλ− γEp +DEq

)

< 0. (10)

Moreover, in this case, the L∞ gain of the transfer d → y is lower than γ.

Tarek RAISSI
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LTI Continuous-time systems

{

ẋ(t) = Ax(t) + d(t)
y(t) = Cx(t) + v(t)

(11)

Assumption 1

Assmume that x0 ≤ x(0) ≤ x0, d(t) ≤ d(t) ≤ d(t), −V ≤ v(t) ≤ V ,
∀t ≥ 0.

Interval observer structure:







ẋ(t) = Ax+ L [y(t)− Cx]− |L|EpV + d(t)

ẋ(t) = Ax+ L [y(t)− Cx] + |L|EpV + d(t)
(12)

How to ensure
x(t) ≤ x(t) ≤ x(t)

Tarek RAISSI
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LTI Continuous-time systems

Theorem 2a

a
J.L. Gouzé, A. Rapaport, and M. Hadj-Sadok, Interval observers for uncertain biological systems, Ecological Modelling, vol. 133, pp.

46-56, 2000.

Let Assumption 1 hold and x ∈ Ln
∞, then, the solutions of the systems (11)

and (12) satisfy
x(t) ≤ x(t) ≤ x(t)

provided that the matrix A−LC is Metzler. In addition, if A−LC is Hurwitz,
then x, x ∈ Ln

∞.

Proof:
Define the estimation errors e(t) = x(t)− x(t), e(t) = x(t) − x(t)

ė(t) = (A− LC)e(t) + Lv(t) + |L|EpV + d(t) − d(t),

ė(t) = (A− LC)e(t) − Lv(t) + |L|EpV + d(t) − d(t).

By assumption 1, |L|EpV ± Lv(t) ≥ 0, d(t) − d(t) ≥ 0, d(t) − d(t) ≥ 0 ⇒
The inputs of e(t), e(t) are nonnegative and e(0) ≥ 0, e(0) ≥ 0.

If A− LC is Metzler, then e(t) ≥ 0, e(t) ≥ 0,∀t ≥ 0

If A− LC is Hurwitz, then e(t), e(t) ∈ Ln
∞

⇒ x(t), x(t) are also bounded
(inputs of e(t), e(t) and x are bounded).

Tarek RAISSI
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LTI Continuous-time systems

Optimal interval observers

If the observer gain L is designed such that A− LC is Metzler ⇒
x(t) ≤ x(t) ≤ x(t), ∀t ≥ 0.
If the observer gain L is designed such that A− LC is Hurwitz
stable ⇒ the error x(t)− x(t) is bounded.
What about the width of w([x(t)− x(t)]) = x(t)− x(t) ?
The [x(t), x(t)] width otimization in the L1 framework can be
formulated as a Linear Programming problem:

Theorem 3

Consider the interval observer (12) for (11). If there exist a nonnegative
vector λ ∈ Rn, W ∈ Rn and a diagonal matrix M ∈ Rn×n such that

(

ATλ− CTW + En

λ− γEn

)

< 0

ATλ− CTW +Mλ ≥ 0
λ > 0,M ≥ 0

(13)

Then, W = LTλ and d → w(x − x) has a L1 gain lower than γ.
Tarek RAISSI
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LTI Continuous-time systems

Theorem 3 provides an effective and simple computational tool to
design interval observers for LTI systems.

It gives only sufficient conditions ⇒ in some cases this LP problem
may have no solution.

The LP problem has no solution if it is not possible to find L such
that A− LC is simultaneously Metzler and Hurwitz.

A counterexample: Given a system described by:

ẋ = Ax +Bu, y = Cx,

A =

(

0 1
0 0

)

, B =

(

0
1

)

, C =
(

1 0
)

,

This system is observable, whereas the matrix

A− LC =

(

−l1 1
−l2 0

)

cannot be Hurwitz and Metzler!
Tarek RAISSI
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LTI Continuous-time systems

The detectability of (A,C) implies the existence of L such that
A− LC is Hurwitz stable.

The Hurwitz property of matrices is preserved under similarity
transformations of coordinates ⇒

1 To overcome this issue, it is possible to design the gain L such that
the matrix A− LC is Hurwitz

2 Find a nonsingular matrix S ∈ Rn×n such that in the new
coordinates z = Sx the state matrix D = S(A− LC)S−1 is Metzler.
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LTI Continuous-time systems

Lemma 4a

aT. Räıssi, D. Efimov, and A. Zolghadri, Interval state estimation for a class of nonlinear
systems, IEEE Transactions on Automatic Control, vol. 57, no. 1, pp. 260-265, 2012.

Given the matrices A ∈ Rn×n, D ∈ Rn×n, and C ∈ Rp×n. If there exists
a matrix L ∈ Rn×p such that the matrices A−LC and D have the same
eigenvalues, then there exists a matrix S ∈ Rn×n such that
D = S(A− LC)S−1 provided that the pairs (A− LC, e1) and (D, e2)
are observable for some e1 ∈ R1×n, e2 ∈ R1×n.
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LTI Continuous-time systems

By adding and substracting Ly(t) to (11), the dynamics of this LTI
system is described by:

ẋ(t) = (A− LC)x(t) + Ly(t)− Lv(t) + d(t). (14)

Under conditions of Lemma 4 (slide 25), in the new coordinates z = Sx,
the system (14) takes the form:

ż(t) = Dz(t) + SLy(t) + δ(t), δ(t) = S[d(t)− Lv(t)]. (15)

Let
{

δ(t) = S+d(t)− S−d(t)− |SL|EpV

δ(t) = S+d(t)− S−d(t) + |SL|EpV.

By using Lemma 1 (slide 16), we get

δ(t) ≤ δ(t) ≤ δ(t).
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LTI Continuous-time systems

Under the detectability property for the pair (A,C), all the conditions of
Theorem 2 in slide 21 are satisfied in the coordinates z = Sx. An interval
observer candidate is given by:

{

ż(t) = Dz(t) + SLy(t) + δ(t)

ż(t) = Dz(t) + SLy(t) + δ(t)
(16)

Initital conditions:
{

z(0) = S+x0 − S−x0

z(0) = S+x0 − S−x0

Estimation in the original coordinates: Let R = S−1

{

x(t) = R+z(t)−R−z(t)
x(t) = R+z(t)−R−z(t)

(17)
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LTI Continuous-time systems

Remark:

If the eigenvalues of (A− LC) are complex-valued, the change of
coordinates z = Sx could be time-varying.

Lemmaa

aF. Mazenc and O. Bernard, Interval observers for linear time-invariant systems
with disturbances, Automatica, vol. 47, no. 1, pp. 140–147, 2011.

Let A− LC be Hurwitz, then there exists an invertible matrix function
S : R → Rn×n of class C∞ elementwise, ||S(t)||2 < +∞ for all t ∈ R,
such that for all t ∈ R,

Ṡ(t) = DS(t)− S(t)(A − LC)

where D ∈ Rn×n is a Hurwitz and Metzler matrix.

D can for instance be chosen as the Jordan canonical form of
A− LC.
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Numerical example 1/2

ẋ = Ax +B(p1, p2)f(x)u(t), y = Cx,

A =





2 0 0

1 −4
√
3

−1 −
√
3 −4



 , B(p1, p2) =





−2p1
0
p2



 ,

C =
[

1 0 0
]

,

f(x) = x1x2, p1 = 4.48, p̄1 = 6.12, p
2
= 3.2, p̄2 = 3.6.

The pair (A,C) is not observable and there is no observer gain L

such that the matrix A− LC is Metzler.
Only one eigenvalue can be assigned with the gain L.
The matrix

D =





−a b 0
0 −a b

b 0 −a





has the following eigenvalues b− a, −a− 0.5b± 0.5b
√
3i (we take

here b = 2 and a = 3).
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Numerical example 2/2

For L =
[

3 0 0
]T

, the matrix A− LC ∈ H and its eigenvalues

are −1, −4±
√
3i.

The pairs (A− LC, e1) and (R, e2) are observable for

e1 =
[

1 0 1
]

, e2 =
[

1 1 0
]

,

then

S = O−1
2 O1 =





0.158 0.866 0.5
0.842 −0.866 0.5
0.658 0 −1



 .
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Notations and definitions

A matrix A ∈ Rn×n is called Schur stable if its spectral radius is less
than one.

A matrix A ∈ Rn×n is called nonnegative if all its elements are
nonnegative.

Definition: nonnegative systems

Consider the linear system

x(k + 1) = Ax(k) + ω(k) (18)

where ω ∈ Rn
+ and A is a nonnegative matrix.

∀k > 0, x(k) ≥ 0 provided that x(0) ≥ 0.

Such dynamical systems are called nonnegative (or cooperative).
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LTI discrete-time systems: observer design

Consider the following system:

{

x(t + 1) = Ax(t) + d(t)
y(t) = Cx(t) + v(t),

, t ∈ Z+ (19)

Assumption:
Let x(0) ∈ [x0, x0], two functions d, d ∈ Ln

∞ and a constant V > 0
such that

d(t) ≤ d(t) ≤ d(t), |v(t)| ≤ V, ∀t ∈ Z+.

Interval observer structure:











x(t+ 1) = Ax(t) + L(y(t)− Cx(t)) − |L|EpV + d(t)

x(t+ 1) = Ax(t) + L(y(t)− Cx(t)) + |L|EpV + d(t)

x(0) = x0, x(0) = x0.

(20)
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LTI discrete-time systems: observer design

Theorem 4a

aD. Efimov, W. Perruquetti, T. Räıssi, and A. Zolghadri, On interval observer design for
time-invariant discrete-time systems, European Control Conference (Zurich), 2013.

Let the assumption given above hold and x ∈ Ln
∞, the solutions of (19)

and (20) satisfy
x(t) ≤ x(t) ≤ x(t), ∀t ∈ Z+

provided that the matrix A− LC is nonnegative. In addition, x and
x ∈ Ln

∞ if A− LC is Schur stable.

Proof sketch:
The estimation errors dynamics e(t) = x(t)− x(t) and e(t) = x(t) − x(t) follow the dynamics:

{

e(t + 1) = (A − LC)e(t) + d(t)− d(t) + |L|EpV − Lv(t)

e(t + 1) = (A − LC)e(t) + d(t) − d(t) + |L|EpV + Lv(t)
(21)

The relation x(t) ≤ x(t) ≤ x(t), ∀t ∈ Z+ is ensured based on the assumption of slide 33
and nonnegativity of (A − LC).

The stability is ensured if (A − LC) is Schur stable.
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LTI discrete-time systems: observer design

The observer gain L can be computed as a solution of the following
Linear Matrix Inequality (LMI):































(

P PA−WC

ATP − CTWT P

)

≻ 0

PA−WC ≥ 0

P = PT ≻ 0

(22)

The diagonal matrix P ∈ Rn×n and W ∈ Rn×p are the variables to
determine ⇒ then L = P−1W .

A gain optimization problem (similar to the continuous-time case)
can also be formulated to find L providing a minimal interval width
x(t)− x(t) with respect to a chosen norm.
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LTI discrete-time systems: observer design

Restrictive condition: existence of L such that (A− LC) is
nonnegative ⇒ Change of coordinates.

Theorem 5a

aD. Efimov, W. Perruquetti, T. Räıssi, and A. Zolghadri, On interval observer design for
time-invariant discrete-time systems, European Control Conference (Zurich), 2013.

Let the assumption of slide 33 be verified and A − LC is Schur stable for a gain L. Given a
matrix R ∈ R

n×n and e1 ∈ R
1×n, e2 ∈ R

1×n such that λ(A − LC) = λ(R) and the pairs
(A − LC, e1), (R, e2) are observable. Then, an interval estimation for (19) is given by:







z(t + 1) = Rz(t) + Fy(t) − |F |EpV + S+d(t) − S−d(t)

z(t + 1) = Rz(t) + Fy(t) + |F |EpV + S+d(t) − S−d(t)

{

z
0
= S+x

0
− S−x0

z0 = S+x0 − S−x
0

{

x(t) = (S−1)+z(t) − (S−1)−z(t),

x(t) = (S−1)+z(t) − (S−1)−z(t)

where S = OA−LCO−1 (OA−LC and OR are the observability matrices of the pairs

(A − LC, e1), (R, e2)) and F = SL.
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aD. Efimov, W. Perruquetti, T. Räıssi, and A. Zolghadri, On interval observer design for
time-invariant discrete-time systems, European Control Conference (Zurich), 2013.

Let the assumption of slide 33 be verified and A − LC is Schur stable for a gain L. Given a
matrix R ∈ R

n×n and e1 ∈ R
1×n, e2 ∈ R

1×n such that λ(A − LC) = λ(R) and the pairs
(A − LC, e1), (R, e2) are observable. Then, an interval estimation for (19) is given by:







z(t + 1) = Rz(t) + Fy(t) − |F |EpV + S+d(t) − S−d(t)

z(t + 1) = Rz(t) + Fy(t) + |F |EpV + S+d(t) − S−d(t)

{

z
0
= S+x

0
− S−x0

z0 = S+x0 − S−x
0

{

x(t) = (S−1)+z(t) − (S−1)−z(t),

x(t) = (S−1)+z(t) − (S−1)−z(t)

where S = OA−LCO−1 (OA−LC and OR are the observability matrices of the pairs

(A − LC, e1), (R, e2)) and F = SL.

Tarek RAISSI



36/79

Introduction Interval observers - LTI systems Joint state and unknown input estimation Fault Tolerant Control

LTI discrete-time systems: observer design

Restrictive condition: existence of L such that (A− LC) is
nonnegative ⇒ Change of coordinates.

Theorem 5a

aD. Efimov, W. Perruquetti, T. Räıssi, and A. Zolghadri, On interval observer design for
time-invariant discrete-time systems, European Control Conference (Zurich), 2013.

Let the assumption of slide 33 be verified and A − LC is Schur stable for a gain L. Given a
matrix R ∈ R

n×n and e1 ∈ R
1×n, e2 ∈ R

1×n such that λ(A − LC) = λ(R) and the pairs
(A − LC, e1), (R, e2) are observable. Then, an interval estimation for (19) is given by:







z(t + 1) = Rz(t) + Fy(t) − |F |EpV + S+d(t) − S−d(t)

z(t + 1) = Rz(t) + Fy(t) + |F |EpV + S+d(t) − S−d(t)

{

z
0
= S+x

0
− S−x0

z0 = S+x0 − S−x
0

{

x(t) = (S−1)+z(t) − (S−1)−z(t),

x(t) = (S−1)+z(t) − (S−1)−z(t)

where S = OA−LCO−1 (OA−LC and OR are the observability matrices of the pairs

(A − LC, e1), (R, e2)) and F = SL.

Tarek RAISSI



36/79

Introduction Interval observers - LTI systems Joint state and unknown input estimation Fault Tolerant Control

LTI discrete-time systems: observer design

Restrictive condition: existence of L such that (A− LC) is
nonnegative ⇒ Change of coordinates.

Theorem 5a
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LTI discrete-time systems: observer design

Numerical example:







x(t+ 1) =

(

0.3 −0.7
0.6 −0.5

)

x(t) +

(

sin(0.1t)
cos(0.2t)

)

+ 0.5

(

sin(0.5tx2(t))
sin(0.3t)

)

y(t) =
(

1 0
)

x(t) + 0.1sin(t)

Let L =
(

−0.8000 −0.7000
)T

and D = A− LC =

(

0.3 0.1
0.6 0.2

)

.

D is a nonnegative matrix ⇒ no need of a change of coordinates.
The nonlinear term is bounded ⇒ it can be considered as a disturbance.
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LTI discrete-time systems: observer design

Numerical example:
The simulations are performed using the interval observer given in the
slide 36.
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Interval observers and linear systems with unknown inputs

LTI discrete-time system with unknown inputs:

{

x(k + 1) = Ax(k) +Bu(k) +Dd(k) + ω(k)

y(k) = Cx(k) + δ(k)
(23)

Is it possible to estimate x and d? ⇒ Such estimation can be useful for
instance for diagnosis and Fault Tolerant Control.

For more details, refer to:

Elinirina Irena Robinson, Julien Marzat, Tarek Räıssi, Interval Observer Design for Unknown
Input Estimation of Linear Time-Invariant Discrete-Time Systems, IFAC World Congress,
Toulouse, France. 9-14 July, 2017.

D. Gucik-Derigny, T. Räıssi, A. Zolghadri, A note on interval observer design for unknown
input estimation, International Journal of Control, 89(1), 25-37, 2016.
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Interval observers and linear systems with unknown inputs

Methodology to jointly estimate the bounds of x and d

1 Change of coordinates to divide the system (23) into two subsytems:
→ one affected by the unknown input
→ the second one is unknown input-free

2 Change of coordinates to ensure the nonnegativity property of the
observation error in the new coordinates

3 Design of an interval observer in the new basis to compute x and x.

4 Compute d and d.
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Step 1: State and unknown input decoupling

LTI discrete-time system with unknown inputs:

{

x(k + 1) = Ax(k) +Bu(k) +Dd(k) + ω(k)

y(k) = Cx(k) + δ(k)
(24)

Assumption 2

C is a full row rank matrix and D is a full column rank matrix.

There exist matrices H ∈ Rn×n, R0 ∈ Rq×q and K ∈ Rq×q such
that:

D = H

[

R0

0

]

KT (25)
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Step 1: obtain an unknown input-free system

Transformation of the initial system into an equivalent one: Let

z(k) = HTx(k) =

[

z1(k)
z2(k)

]











z(k + 1) = Ãz(k) + B̃u(k) +

[

R0

0

]

d̃(k) + ω̃(k)

y(k) = C̃z(k) + δ(k)

(26)

where:

H =

[

H11 H12

H21 H22

]

, Ã = H
T
AH =

[

Ã11 Ã12

Ã21 Ã22

]

B̃ = H
T
B =

[

B̃1

B̃2

]

, C̃ = CH =
[

C̃1 C̃2

]

d̃(k) = K
T
d(k)ω̃(k) = H

T
ω =

[

ω̃1(k)
ω̃2(k)

]

HT is supposed to be bounded, therefore |ω̃| ≤ ω̃.
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Step 1: obtain an unknown input-free system











z(k + 1) = Ãz(k) + B̃u(k) +

[

R0

0

]

d̃(k) + ω̃(k)

y(k) = C̃z(k) + δ(k)

(27)

The system (27) is decomposed into an unknown input depending
subsystem and an unknown input-free subsytem:










z1(k + 1) = Ã11z1(k) + Ã12z2(k) + B̃1u(k) +R0d̃(k) + ω̃1(k)

z2(k + 1) = Ã21z1(k) + Ã22z2(k) + B̃2u(k) + ω̃2(k)

y(k) = C̃1z1(k) + C̃2z2(k) + δ(k)

(28)
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Step 1: obtain an unknown input-free system
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y(k) = C̃1z1(k) + C̃2z2(k) + δ(k)

(29)

Transformation of (29) into a conventional linear system:

C̃1 is supposed to be a full column rank matrix and can be
decomposed as:

C̃1 = H1

[

R1

0

]

KT
1 (30)

with H1 =
[

H011 H012

]

(H011 ∈ Rp×q and H012 ∈ Rp×(p−q)).

Measurements equation can be decomposed as ỹ(k) = HT
1 y(k)

{

ỹ1(k) = R1K
T
1 z1(k) +HT

011C̃2z2(k) +HT
011δ(k)

ỹ2(k) = HT
012C̃2z2(k) +HT

012δ(k) = C2z2(k) +HT
012δ(k)

(31)
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Step 1: obtain an unknown input-free system

Measurements equation can be decomposed as

{

ỹ1(k) = R1K
T
1 z1(k) +HT

011C̃2z2(k) +HT
011δ(k)

ỹ2(k) = HT
012C̃2z2(k) +HT

012δ(k) = C2z2(k) +HT
012δ(k)

(32)

As ỹ1(k) = GT
s ỹ(k) with GT

s =
[

Iq Oq×(p−q)

]

, the expression of
z1 is extracted from the first equation of (32):

z1(k) = E(y(k)− C̃2z2(k)− δ(k)) (33)

with E = K1R
−1
1 GT

s H
T
1 .

By replacing (33) in the dynamics of z2 in (29) we obtain:

z2(k+1) = Ã21E[y(k)−C̃2z2(k)−δ(k)]+Ã22z2(k)+B̃2u(k)+ω̃2(k)
(34)
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ỹ1(k) = R1K
T
1 z1(k) +HT

011C̃2z2(k) +HT
011δ(k)
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s ỹ(k) with GT

s =
[

Iq Oq×(p−q)

]

, the expression of
z1 is extracted from the first equation of (32):

z1(k) = E(y(k)− C̃2z2(k)− δ(k)) (33)

with E = K1R
−1
1 GT

s H
T
1 .

By replacing (33) in the dynamics of z2 in (29) we obtain:

z2(k+1) = Ã21E[y(k)−C̃2z2(k)−δ(k)]+Ã22z2(k)+B̃2u(k)+ω̃2(k)
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Step 1: obtain an unknown input-free system

Finally we obtain the following unknown input-free LTI discrete-time
system:

{

z2(k + 1) = A2z2(k) +B2u(k) +D2y(k)−D2δ(k) + ω̃2(k)

ỹ2(k) = C2z2(k) +HT
012δ(k)

(35)

where A2 = Ã22 − Ã21EC̃2 , B2 = B̃2, C2 = HT
012C̃2 and D2 = Ã21E.
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Step 2: Nonnegativity of the observation error in the new

coordinates

Unknown input-free LTI discrete-time system:
{

z2(k + 1) = A2z2(k) +B2u(k) +D2y(k)−D2δ(k) + ω̃2(k)

ỹ2(k) = C2z2(k) +HT
012δ(k)

(36)

Assumption

The pair (A2, C2) is detectable.

There exists a gain L ∈ R(n−q)×(p−q) and a matrix P such that
(A2 − LC2) is Schur stable and R = P (A2 − LC2)P

−1 is nonnegative.

After the change of coordinates r2 = Pz2, the system (36) is
described in the new coordinates by:
{

r2(k + 1) = Rr2(k) + PB2u(k) +My(k)−Mδ(k) + Pω̃2(k)

ỹ2(k) = C2P
−1r2(k) +HT

012δ(k)

(37)
Tarek RAISSI



49/79

Introduction Interval observers - LTI systems Joint state and unknown input estimation Fault Tolerant Control

Step 2: Nonnegativity of the observation error in the new

coordinates

Unknown input-free LTI discrete-time system:
{

z2(k + 1) = A2z2(k) +B2u(k) +D2y(k)−D2δ(k) + ω̃2(k)
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To sum up the previous steps

1 First change of coordinates z = H⊤x to obtain an unknown
input-free system:
{

z2(k + 1) = A2z2(k) +B2u(k) +D2y(k)−D2δ(k) + ω̃2(k)

ỹ2(k) = C2z2(k) +HT
012δ(k)

(38)

2 Second change of coordinates r2 = Pz2 to ensure the cooperativity
property of the observation error in the new coordinates:
{

r2(k + 1) = Rr2(k) + PB2u(k) +My(k)−Mδ(k) + Pω̃2(k)

ỹ2(k) = C2P
−1r2(k) +HT

012δ(k)

(39)

where (A2 − LC2) is Schur stable and R = P (A2 − LC2)P
−1 is

nonnegative.

⇒ The interval observer given in slide 36 can be used to estimate
the state r2 and . . . z2.
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Step 3: Compute x and x
Step 3a: Compute r and r

State estimation is first performed in the coordinates r2.

We define ∆
T
=

[

δ −δ
]

, ∆T =
[

−δ δ
]

and Ω
T
=

[

ω −ω
]

,

ΩT =
[

−ω ω
]

.

Theorem 5

Assume that r2(0) ≤ r2(0) ≤ r2(0). Then, for all k ∈ Z+ the estimates
r2(k) and r2(k) given by

{

r2(k + 1) = Rr2(k) + PB2u(k) +My(k) + (−M)∗∆+ P ∗Ω̃2

r2(k + 1) = Rr2(k) + PB2u(k) +My(k) + (−M)∗∆+ P ∗Ω̃2

(40)

are bounded and verify

r2(k) ≤ r2(k) ≤ r2(k) (41)
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Step 3: Compute x and x
Step 3b: Compute z2 and z2

Since r2 = Pz2, the bounds of z2(k) are given by:

Corollary

The bounds of the state z2 is given by:

{

z2(k) = (P−1)+r2(k) + (P−1)−r2(k)

z2(k) = (P−1)+r2(k) + (P−1)−r2(k)
(42)

with z2(k) ≤ z2(k) ≤ z2(k)
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Step 3: Compute x and x
Step 3c: Return into the initial coordinates x and x

Using x = Hz the following theorem ensures the interval estimation
of the state vector in the original coordinates.

Theorem 7

Assume x(0) ≤ x(0) ≤ x(0). Then, for all k ∈ Z+ the estimates x(k)
and x(k) given by



















x1(k) = H11Ey + (H12)
∗Z2(k) + (−E1)

∗Z2(k) + (−H11E)∗∆

x1(k) = H11Ey + (H12)
∗Z2(k) + (−E1)

∗Z2(k) + (−H11E)∗∆

x2(k) = H21Ey + (H22)
∗Z2(k) + (−E2)

∗Z2(k) + (−H21E)∗∆

x2(k) = H21Ey + (H22)
∗Z2(k) + (−E2)

∗Z2(k) + (−H21E)∗∆

(43)

are bounded and verify

x(k) ≤ x(k) ≤ x(k) (44)

with E1 = H11EC̃2 and E2 = H21EC̃2.
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Step 4: Compute d and d











z1(k + 1) = Ã11z1(k) + Ã12z2(k) + B̃1u(k) +R0d̃(k) + ω̃1(k)

z2(k + 1) = Ã21z1(k) + Ã22z2(k) + B̃2u(k) + ω̃2(k)

y(k) = C̃1z1(k) + C̃2z2(k) + δ(k)

(45)

Expression of d is obtained from (45) with d̃ = K⊤d:

d(k) = KR−1
0 [z1(k + 1)− Ã11z1(k)− Ã12z2(k)− B̃1u(k)− ω̃1(k)]

Then using
z1(k) = E(y(k)− C̃2z2(k)− δ(k)) (46)

The expression of the unknown input d is

d(k) = KR−1
0 [Ey(k + 1)− EC̃2z2(k + 1)− Eδ(k + 1)− Ã11(Ey(k)

−EC̃2z2(k)− Eδ(k)) − Ã12z2(k)− B̃1u(k)− ω̃1(k)]
(47)
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Step 4: Compute d and d

The following theorem ensures the interval estimation of the
unknown input:

Theorem

for all k ∈ Z+ the estimates d(k) and d(k) given by























d(k) = Qy(k + 1)−QÃ11Ey(k)−QB̃1u(k) +G∗

1Z2(k + 1) +G∗

2Z2(k)

+G∗

3∆+G∗

4∆+G∗

5Ω̃1

d(k) = QEy(k + 1)−QÃ11Ey(k)−QB̃1u(k) +G∗

1Z2(k + 1) +G∗

2Z2(k)

+G∗

3∆+G∗

4∆+G∗

5Ω̃1

(48)

are bounded and verify
d(k) ≤ d(k) ≤ d(k) (49)

With Q = KR−1
0 , G1 = −QEC̃2, G2 = Q(Ã11EC̃2 − Ã12), G3 = −QE,

G4 = QÃ11E and G5 = −Q.
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Problem statement

Dynamical systems can be subject to several kinds of faults such as:

Actuators faults,

System faults,

Sensors faults.

I

Faults

Actuators System Sensors
uk yk

Figure: Faulty system.
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Problem statement

Fault Tolerant Control is required to maintain stability and additional
performances in presence of faults.

II

I
Faults Detection

and Isolation (FDI)

Faults

Actuators System Sensors

Reconfiguration

Mechanism

Controller
uk

uc
yk

−

+

Figure: Active FTC system.
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Problem statement

II

I Fault Detection

and Isolation (FDI)

Faults

Actuators System Sensors

Reconfiguration

Mechanism

Controller
−

+

uk

uc
yk

Figure: Passive FTC system.

Tarek RAISSI



62/79

Introduction Interval observers - LTI systems Joint state and unknown input estimation Fault Tolerant Control

Problem statement

Consider a discrete-time LTI system:

{

xk+1 = Axk +Buk + wk

yk = Cxk + vk
(50)

The system dynamics with actuator additive faults can be modeled by:

{

xk+1 = Axk + (B +Bf,k)uk + wk

yk = Cxk + vk
(51)

where Bf,k ∈ Rn×q is a time-varying fault parameter. w and v are
respectively disturbance and noise sequences.
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Assumptions and Goal

Assumption

∆B 6 Bf,k 6 ∆B ∀ Bf,k ∈ Rn×q.

wk 6 wk 6 wk are satisfied ∀ k ∈ N. ‖v‖ < V < +∞.

Goal

The goal of this section is to stabilize the system (50) with a robust
feedback control keeping the required performances despite the
appearance of actuator faults and external disturbances.
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Interval observers design for (51) requires the following assumption.

Assumption

The pair (A,C) is detectable and there exists a matrix L ∈ Rn×p such
that A− LC is Schur stable.

The proposed interval observer structure for (51) is:



















xk+1 = (A− LC)xk +Buk +∆Bu+
k −∆Bu−

k + wk

+Lyk + |L|V Ep

xk+1 = (A− LC)xk +Buk +∆Bu+
k −∆Bu−

k + wk

+Lyk − |L|V Ep

(52)

with u+
k = max(uk, 0) and u−

k = u+
k − uk.
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Theorem 8

Let the assumptions of this section be satisfied, A− LC is nonnegative
and the initial state x0 verifies x0 ≤ x0 ≤ x0, then the state xk solution
of (52) satisfies:

xk ≤ xk ≤ xk, ∀k ∈ N (53)

In addition if A− LC is Schur stable, it follows that ek, ek ∈ L∞
n with

ek = xk − xk and ek = xk − xk.
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If ∄L such that A− LC is Schur stable and nonnegative ⇒ A change of
coordinates zk = Rxk with a nonsingular matrix R such that
E = R(A− LC)R−1 is Schur stable and nonnegative. In the new

coordinates z, the interval observer can be written as :






















zk+1 = Ezk +RBuk + ϕ(u−
k , u

+
k ) + ρ(wk, wk)

+RLyk + |F |V Ep

zk+1 = Ezk +RBuk + ϕ(u−
k , u

+
k ) + ρ(wk, wk)

+RLyk − |F |V Ep

(54)

with ϕ(u−
k , u

+
k ) = (R+∆B −R−∆B)u+

k − (R+∆B −R−∆B)u−
k ,

ϕ(u−
k , u

+
k ) = (R+∆B −R−∆B)u+

k − (R+∆B −R−∆B)u−
k ,

ρ(wk, wk) = R+wk −R−wk, ρ(wk, wk) = R+wk −R−wk, F = RL.
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If ∄L such that A− LC is Schur stable and nonnegative ⇒ A change of
coordinates zk = Rxk with a nonsingular matrix R such that
E = R(A− LC)R−1 is Schur stable and nonnegative. In the new

coordinates z, the interval observer can be written as :






















zk+1 = Ezk +RBuk + ϕ(u−
k , u

+
k ) + ρ(wk, wk)

+RLyk + |F |V Ep

zk+1 = Ezk +RBuk + ϕ(u−
k , u

+
k ) + ρ(wk, wk)

+RLyk − |F |V Ep

(54)

with ϕ(u−
k , u

+
k ) = (R+∆B −R−∆B)u+

k − (R+∆B −R−∆B)u−
k ,

ϕ(u−
k , u

+
k ) = (R+∆B −R−∆B)u+

k − (R+∆B −R−∆B)u−
k ,

ρ(wk, wk) = R+wk −R−wk, ρ(wk, wk) = R+wk −R−wk, F = RL.
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Theorem 9

Given a nonsingular matrix R such that E = R(A− LC)S is Schur
stable and nonnegative. Then, the solutions of (51) and (54) satisfy (in
the coordinates z):

zk ≤ zk ≤ zk, ∀k ∈ N (55)

provided that z0 ≤ z0 ≤ z0. In addition, if A− LC, then the interval
observer errors ek and ek ∈ Ln

∞ with ek = zk − zk and ek = zk − zk.
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{

xk+1 = Axk + (B +Bf,k)uk + wk

yk = Cxk + vk

Interval observer

ykuk

xkxk

Figure: Faulty system.
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Faulty system

Interval observer

ykuk

xkxk−K

Figure: System with feedback control.

uk = −Kxk (56)
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Figure: System with feedback control.

uk = −Kxk (56)
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Control design

Substituting the control (56) into the interval observer (52), we get:



















xk+1 = (A− LC)xk −BKxk +∆B max{0,−Kxk}
−∆B max{0,Kxk}+ wk + Lyk + |L|V Ep

xk+1 = (A− LC)xk −BKxk +∆B max{0,−K xk}
−∆B max{0,Kxk}+ wk + Lyk − |L|V Ep

(57)
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Control design

Theorem 10

Let the assumptions of this section be satisfied and A− LC ≥ 0. If there
exist P ∈ R2n×2n, P = PT ≻ 0 and γ > 0, such that the dynamic state
feedback K satisfies the following constraint:

|K|2 ≤ 1

8γ

1

10
∣

∣∆B
∣

∣

2 (58)

with DTPD − P ≤ −I, D = A− LC and γ = 3
2

∣

∣DTP
∣

∣

2
+ |P |, then,

the system (57) is asymptotically stable.
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Numerical simulations

Consider the discrete-time LTI system:

{

xk+1 = Axk + (B +Bf,k)uk + wk,

yk = Cx1,k + vk,
(59)

A =







1.1 − 0.1 0.35

0.9 0.2 − 0.2

0.85 − 0.2 0.25






, B =







1

−1

0






, Bf,k =







0

sin(k)

0







∆B = −∆B = [0 1 0]T , wk = [0 0.1 sin(0.1 k) 0]T ,
wk = −wk = [0 0.1 0]T , vk = 0.01 cos(k) and V = 0.01.
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Numerical simulations

For L = [1 1 0.5]T , the matrix A− LC is not nonnegative. Thus a
transformation of coordinates,

S =







−0.058 0.997 − 0.052

0.134 − 0.044 − 0.99

0.989 0.064 0.131






is used such that

E = R(A− LC)S, with R = S−1, is nonnegative.























zk+1 = Ezk +RBuk + ϕ(u−
k , u

+
k ) + ρ(wk, wk)

+RLyk + |F |V Ep

zk+1 = Ezk +RBuk + ϕ(u−
k , u

+
k ) + ρ(wk, wk)

+RLyk − |F |V Ep

(60)

with uk = −K xk and K = [0.9140 0.9128 0.3999].
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Numerical simulations
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Figure: Simulations results for the case of LTI system without fault.
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Figure: Simulations results for the case of LTI system with fault.
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More results about Interval estimation at the Open Invited Track on
Interval estimation applied to diagnosis and control of uncertain
systems - IFAC-WC’2017 - July 11th.

Tarek RAISSI
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