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Introduction

Introduction

Usually via minimization of cost function, for instance

J (p) = ‖y−ym (p)‖22 , (1)

where

ym (p) is vector of model outputs
‖·‖

2
is a (possibly weighted) `2 norm.

Then
p̂= argmin

p
J (p) . (2)
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Introduction

Di�culties

Parameters of model may not be identi�able uniquely
↪→ di�erent values of p̂ may yield the same ym (p̂)

Numerical algorithm to compute p̂ may get trapped at local minimizer

Even if single p̂ is obtained and if y ' ym (p̂), p̂ cannot be considered
as �nal answer to the estimation problem
↪→ quality tag is missing.

p̂i = 1.2345±10−4 is quite di�erent of p̂i = 1.2345±103.
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Estimating parameter and uncertainty Classical approaches

Classical approaches

Based on

Level-set [11].

Monte-Carlo techniques [11].

Evaluation of the density of the estimator [8].

Bounded-error estimation [9].

Characterization of parameter uncertainty via previous approaches relies on
hypotheses on noise corrupting data

di�cult to check from residuals y−ym (p̂) when ny is large,

impossible to check when only few data points.
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Estimating parameter and uncertainty Approaches proposed by Campi et al.

LSCR and SPS

Campi et al. [1, 3, 2] propose two new approaches named LSCR and SPS

exact characterization of parameter uncertainty

in non-asymptotic conditions.

Hypotheses

1 System generating data must belong to model set (true value p∗

should be meaningful)

2 Noise samples must be independently distributed with distributions
symmetric with respect to zero.
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LSCR

LSCR
Introduction - main idea

LSCR [1]: leave-out sign-dominant correlated regions

Independent estimates of the correlation of the prediction error

εt (p) = yt −ymt (p)

should have random signs.

Leave out subset of parameter space where sign does not appear
random (i.e. is sign dominant)

De�nes, without any approximation,

region Θ to which p∗ belongs with speci�ed probability.
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LSCR

LSCR
Example

Model ymt (p) = p, with 8 noisy data generated with p∗ = 3.
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LSCR

LSCR I
Description

Consider prediction error

εt (p) = yt −ymt (p)

such that εt(p
∗) is realization of noise corrupting data at time t.

1 Select two integers r > 0 and q > 0.

2 For t = 1+ r , . . . ,k+ r = n, compute

cε
t−r ,r (p) = εt−r (p)εt (p) . (3)
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LSCR

LSCR II
Description

3 Compute

sε
i ,r (p) = ∑

k∈Ii
cε

k,r (p) , i = 1, ...,m. (4)

where Ii ⊂ I, set of indexes. Collection G of subsets Ii , i = 1, ...,m,
forms a group under the symmetric di�erence operation, i.e.,
(Ii ∪ Ij)− (Ii ∩ Ij) ∈G.

4 Find Θε
r ,q such that at least q of functions sε

i ,r (p) are larger than 0
and at least q are smaller than 0.
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LSCR

LSCR
Description

Exemple of G st ∀Ii ∈G ,∀Ii ∈G one has (Ii ∪ Ij)− (Ii ∩ Ij) ∈G

1 2 3 4 5 6 7

I1 • • • •

I2 • • • •

I3 • • • •

I4 • • • •

I5 • • • •

I6 • • • •

I7 • • • •

I8

sε
1,r=1 (p) = ε1 (p)ε2 (p)+ ε2 (p)ε3 (p)+ ε4 (p)ε5 (p)+ ε5 (p)ε6 (p)

sε
2,r=1 (p) = ε1 (p)ε2 (p)+ ε3 (p)ε4 (p)+ ε4 (p)ε5 (p)+ ε6 (p)ε7 (p)

sε
3,r=1 (p) = . . .
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LSCR

LSCR
Properties

The set Θε
r ,q is such that [1]

Pr
(
p∗ ∈Θε

r ,q

)
= 1−2q/m.

Shape and size of Θε
r ,q depend on

values given to q and r

group G and its number of elements m.

A procedure for generating G of appropriate size suggested in [4].
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LSCR

LSCR
Example (continued)

Model ymt (p) = p, with 8 noisy data generated with p∗ = 3.
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7 empirical correlations, and 71% con�dence region
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LSCR

LSCR
More formal de�nition

The set Θε
r ,q may be de�ned more formally as

Θε
r ,q =Θε,−

r ,q ∩Θε,+
r ,q , (5)

with

Θε,−
r ,q =

{
p ∈ P such that

m

∑
i=1

τ
ε,−
i (p)> q

}
, (6)

Θε,+
r ,q =

{
p ∈ P such that

m

∑
i=1

τ
ε,+
i (p)> q

}
, (7)

where P is prior domain for p.

17 / 75



LSCR

LSCR
More formal de�nition

Moreover

τ
ε,−
i (p) =

{
1 if − sε

i ,r (p)> 0,

0 else,
(8)

and

τ
ε,+
i (p) =

{
1 if sε

i ,r (p)> 0,

0 else.
(9)

Θε,−
r ,q contains all values of p ∈ P such that at least q of the functions

sε
i ,r (p) are smaller than 0, whereas Θε,+

r ,q contains all values of p ∈ P such
that at least q of the functions sε

i ,r (p) are larger than 0.
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SPS

SPS
Introduction

SPS [2]: sign-perturbed sums.

SPS is designed for linear regression, where

yt = ϕ
T
t p
∗+wt , t = 1, . . . ,n, (10)

with ϕt known regression vector.

SPS computes an exact con�dence region for p∗ around least-squares
estimate p̂, which is solution to normal equations

n

∑
t=1

ϕt

(
yt −ϕ

T
t p̂
)
= 0. (11)
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SPS

SPS
Description

For a generic p, de�ne

s0 (p) =
n

∑
t=1

ϕt

(
yt −ϕ

T
t p
)
, (12)

and the sign-perturbed sums

si (p) =
n

∑
t=1

αi ,tϕt

(
yt −ϕ

T
t p
)
, (13)

where i = 1, . . . ,m−1 and αi ,t =±1 with equal probability, and

zi (p) = ‖si (p)‖22 , i = 0, . . . ,m−1. (14)
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SPS

SPS
Description

Con�dence region Σq is set of all p such that z0 (p) is not among the q
largest values of (zi (p))

m−1
i=0 .

In [2], it is shown that p∗ ∈Σq with exact probability 1−q/m.
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SPS

SPS
More formal de�nition

Σq may be de�ned more formally as

Σq =

{
p ∈ P such that

m−1

∑
i=1

τi (p)> q

}
(15)

where

τi (p) =

{
1 if zi (p)− z0 (p)> 0,

0 else.
(16)

23 / 75



SPS

SPS
Illustration

Model ymt (p) = p, with 20 noisy data generated for p∗ = 3. We choose
m = 10.
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Guaranteed characterization via interval analysis

Guaranteed characterization

In LSCR (and SPS), one has to characterize

Ψq =

{
p ∈ P such that

m

∑
i=1

τi (p)> q

}
, (17)

where τi (p) is some indicator function

τi (p) =

{
1 if fi (p)> 0,

0 else,
(18)

and where fi (p) depends on the model structure, the measurements, and
the parameter vector p.
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Guaranteed characterization via interval analysis

Guaranteed characterization

In LSCR (and SPS), one has to characterize

Ψq =

{
p ∈ P such that

m

∑
i=1

τi (p)> q

}
, (19)

¿1(p)=1

¿5(p)=1

q=1 (80 %) q=2 (60 %) q=3 (40 %)
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Guaranteed characterization via interval analysis

Guaranteed characterization

¿1(p)=1

¿5(p)=1

q=1 (80 %) q=2 (60 %) q=3 (40 %)

Characterization

approximate using gridding in [1, 3, 2].

guaranteed using interval analysis here.
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Guaranteed characterization via interval analysis

SIVIA

To characterize Ψq = {p ∈ P such that ∑
m
i=1 τi (p)> q}, one uses SIVIA

and an inclusion function [10, ?] [τ] ([p]) of

τ (p) =
m

∑
i=1

τi (p) .

?

p2

p1

P

[ ]¿ ([ ])p

¿([ ])p

q0
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Guaranteed characterization via interval analysis

SIVIA

To characterize Ψq = {p ∈ P such that ∑
m
i=1 τi (p)> q}, one uses an

inclusion function [τ] ([p]) of

τ (p) =
m

∑
i=1

τi (p) .
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Guaranteed characterization via interval analysis

SIVIA

To characterize Ψq = {p ∈ P such that ∑
m
i=1 τi (p)> q}, one uses an

inclusion function [τ] ([p]) of

τ (p) =
m

∑
i=1

τi (p) .

p2

p1

P

[ ]¿ ([ ])p

¿([ ])p

q0

?
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Example (LSCR)

System and Model

Consider the two-compartment model

1

k
01

k
21

k
12

2

u
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Example (LSCR)

System and Model

System output obtained from

yt = α (p∗)(exp(λ1 (p
∗) t)− exp(λ2 (p

∗) t))+wt , (20)

where p= (k01,k12,k21)
T,

α (p) =
k21√

(k01−k12+k21)
2+4k12k21

,

λ1,2 (p) =−
1

2

(
(k01+k12+k21)±

(
(k01−k12+k21)

2+4k12k21
)−1/2)

and wt 's are realizations of iid N
(
0,σ2

)
variables, for

t = 0,T , . . . ,(n−1)T .
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Example (LSCR)

System and Model

Data generated with p∗ = (1,0.25,0.5)T, σ2 = 10−4.
Sampling period is T = 0.02 s and n = 64.
Only k01 et k12 are estimated, value k∗21 of k21 assumed known.
Measurement noise is additive, LSCR method applies directly.
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Example (LSCR)

Con�dence region obtained by LSCR

P= [0,5]× [0,5] and ε = 0.0025.

90 % confidence region
LSCR - SIVIA
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Contractors

Contractors
Introduction

Contractor Cf,Y associated with generic set-inversion problem

X= [x]∩ f−1 (Y) , (21)

takes [x] as input and returns

Cf,Y ([x])⊂ [x] (22)

such that
[x]∩X= Cf,Y ([x])∩X, (23)

so no part of X in [x] is lost.
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Contractors

Contractors
Examples

Various types of contractors

by interval constraint propagation,

by parallel linearization,

the Newton contractor,

the Krawczyk contractor, etc.
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Contractors

Contractors
With LSCR and SPS

Ψq = P∩ τ
−1 ([q,m]) , (24)

The τs are not di�erentiable and forbid use of classic contractors.

τi (p) =

{
1 if fi (p)> 0,

0 else,
(25)

New proposed contractor assumes fi s are di�erentiable.

1 build set of m possibly overlapping subboxes of [p], trying to remove
all values of p from [p] such that fi (p)< 0, i = 1, . . . ,m.

2 compute union of all non-empty intersections of at least q of these
boxes.
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Contractors

Box contraction using the fi 's, suitable for LSCR and SPS

First step uses centered inclusion function of fi . For some m ∈ [p], may be
written as

[fi ,c] ([p]) = fi (m)+([p]−m)T [gi ] ([p]) (26)

= fi (m)+
np

∑
j=1

([pj ]−mj) [gi ,j ] ([p]) , (27)

where gi is gradient of fi .
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Contractors

Box contraction using the fi 's, suitable for LSCR and SPS

For k-th component [pk ] of [p], when 0 /∈ [gi ,k ] ([p]), Cfi ,[0,∞[ associates the
contracted interval[

p′i ,k
]
= [pk ]∩ ((([fi ,c] ([p])∩ [0,∞[)− fi (m)

−
np

∑
j=1,j 6=k

([pj ]−mj) [gi ,j ] ([p])

)
/ [gi ,k ] ([p])+mk

)
. (28)

When 0 ∈ [gi ,k ] ([p]), Cfi ,[0,∞[ leaves [pk ] unchanged, i.e.,[
p′i ,k
]
= [pk ] . (29)
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Contractors

Box contraction using the fi 's, suitable for LSCR and SPS

Considering the m functions fi and applying all the contractors Cfi ,[0,∞[,
i = 1, . . . ,n, to [p], one obtains list of m possibly contracted boxes

L =
{
Cf1,[0,∞[ ([p]) , . . . ,Cfm,[0,∞[ ([p])

}
(30)

=
{[
p′1
]
, . . . ,

[
p′m
]}

. (31)

Here, [p′i ] = /0 indicates that there is no p ∈ [p] such that fi (p)> 0.

Our aim is to evaluate a subbox [p′] of [p] such that Ψq ∩ [p′] =Ψq ∩ [p].
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Contractors

Box contraction suitable for SPS only
Main idea

Takes advantage of si (p), i = 0, . . . ,m a�ne in p to

reduce number of occurrences of p in si (p),

reduce pessimism of corresponding inclusion functions.
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Contractors

Box contraction suitable for SPS only

One may rewrite

s0 (p) =
n

∑
t=1

ϕt

(
yt −ϕ

T
t p
)
,

as

s0 (p) =
n

∑
t=1

ytϕt −

(
n

∑
t=1

ϕtϕ
T
t

)
p

= b0−A0p

with b0 = ∑
n
t=1 ytϕt and A0 =

(
∑
n
t=1ϕtϕ

T
t

)
.
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Contractors

Box contraction suitable for SPS only

Similarly, one may write
si (p) = bi −Aip

with bi = ∑
n
t=1αi ,tytϕt and Ai =

(
∑
n
t=1αi ,tϕtϕ

T
t

)
.
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Contractors

Box contraction suitable for SPS only

Using
s0 (p) = b0−A0p

si (p) = bi −Aip

one gets

zi (p)− z0 (p) = (bi −Aip)
T (bi −Aip)− (b0−A0p)

T (b0−A0p)

The matrices A2
i −A2

0 are symmetric

A2
i −A2

0 =UTDU.

Using the change of variables π =Up, zi (p)− z0 (p) becomes

zi (p)− z0 (p) = π
TDπ−2β

T
π + γ,

with β
T =

(
bTi Ai −bT0A0

)
UT and γ = bTi bi −bT0 b0.
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Contractors

Box contraction suitable for SPS only

One then obtains

zi (p)− z0 (p) =
np

∑
i=1

di

(
πi −

βi

di

)2

+ γ−
np

∑
i=1

β 2
i

di
.

If p ∈
[
p,p
]
, one is able to get π ∈ [π,π] =U

[
p,p
]
.

Whenever di 6= 0, a contractor for [πi ] is then obtained

[
π
′
i

]
= [π i ]∩

±
√√√√(([zi − z0] ([p])∩ [0,∞[)−

np

∑
j=1,j 6=i

dj

(
πj −

βj

dj

)
2

− γ +
np

∑
i=1

β 2

i

di

)
/di +

βi

di

 .

If di = 0, [πi ] is left unchanged. Then, a contractor for [p] is obtained as[
p′
]
= [p]∩

(
UT
[
π
′]) .
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Contractors

Building a q-relaxed intersection

Second step: contractor builds a box [p′] enclosing the q-relaxed
intersection P [7, 5, 6] of the boxes in L = {[p′1] , . . . , [p′m]}

P =
q⋂

j∈{1,...,m}

[
p′j
]
. (32)

=
⋃

J ⊂ [1, . . . ,m]
card(J)> q

⋂
j∈J

[
p′j
]
, (33)

and satisfying
P ⊂

[
p′
]
⊂ [p] . (34)
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Contractors

Evaluating the q-relaxed intersection

Consider a list L = {[p1] , . . . , [pm]} of m intervals.

p
2

p
1
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Contractors
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Contractors

Evaluating the q-relaxed intersection
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Contractors

Evaluating the q-relaxed intersection

Consider a list L = {[p1] , . . . , [pm]} of m intervals.
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Contractors

Evaluating the q-relaxed intersection
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Contractors

Evaluating the q-relaxed intersection

Consider a list L = {[p1] , . . . , [pm]} of m intervals.
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Example (SPS)

System and model

Consider system such that

ut = αut−1+ vt , (35)

yt = a∗ut +b∗ut−1+wt , (36)

with α = 0.5 and u0 = 0.

For t = 1, . . . ,n, vt and wt are iid N
(
0,σ2

)
.

Take as a model
ymt (p) = aut +but−1, (37)

which is linear in p= (a,b)T.
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Example (SPS)

With SPS

In linear regression form, one gets

yt = ϕ
T
t p
∗+wt (38)

with ϕt = (ut ,ut−1)
T and p∗ = (a∗,b∗)T.

Characterization of Σq addressed using SIVIA.

Inclusion functions for τi 's are introduced

[τi ] ([p]) =


1 if inf ([fi ] ([p]))> 0,

0 if sup([fi ] ([p]))< 0,

[0,1] else,

(39)

where
[fi ] ([p]) = [zi − z0] ([p]) . (40)
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Example (SPS)

Natural inclusion function

Paving of the search set P= [−2,2]× [−2,2] obtained when a= 0.2,
b = 0.3, σ2 = 0.25, n = 256, m = 255, and q = 20.
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Example (SPS)

Centred forms

Paving of the search set P= [−2,2]× [−2,2] obtained when a= 0.2,
b = 0.3, σ2 = 0.25, n = 256, m = 255, and q = 20.
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Example (SPS)

Using the LSCR/SPS contractor
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the LSCR/SPS contractor
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Example (SPS)

Using the SPS contractor
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Example (SPS)

System and Model

Consider the system
yt = ymt (p)+wt ,

with the FIR model

ymt (p) =
na−1

∑
i=0

aiut−i ,

where p= (a0, . . . ,ana−1)
T and un = 0 for n 6 0. For t = 1, . . . ,n, the wts

are iid noise samples.
In linear regression form, one has

yt = ϕ
T
t p
∗+wt

with ϕt = (ut , . . . ,ut−na+1)
T and p∗ =

(
a∗0, . . . ,a

∗
na−1

)T
.
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Example (SPS) Low-dimensional model

Inclusion function

When the dimension of p is small, Σq may be characterized using SIVIA
and inclusion functions for τi

[τi ] ([p]) =


1 if inf ([zi − z0] ([p]))> 0,

0 if sup([zi − z0] ([p]))< 0,

[0,1] else,

where [zi − z0] ([p]) is an inclusion function for the di�erence between zi (p)
and z0 (p).
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Example (SPS) Low-dimensional model

Simulation conditions

Data are generated for a∗0 = 0.2, a∗1 = 0.3, and a∗2 = 0.4 considering:

1 a �ltered Gaussian input ut = αut−1+ vt , with α = 0.2 and
vt ∼N (0,0.65)

2 a random iid sequence of ±1 (D-optimal input when input has to
remain in [−1,1].

wt zero-mean Laplacian with standard deviation σw tuned to get a
signal-to-noise ratio (SNR) of 15 dB.
We choose n = 1024, m = 255, and q = 13 (95 % con�dence region),
ε = 2.5×10−3.
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Example (SPS) Low-dimensional model

Results
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Example (SPS) Low-dimensional model

Results
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Example (SPS) Higher-dimensional model

Simulation conditions

FIR models with na = 20 random parameters in [−2,2]na are generated,
then

n = 512, 1024, 2048, 4096, and 8192 noise-free data points are
generated

white Laplacian noise is added to the data.

Standard deviation of noise set up to get an SNR of 5 dB to 40 dB.
We choose n = 1024, m = 255, and q = 13 (95 % con�dence. Only outer
approximations may be obtained.
Initial search box P=

[
−104,104

]20
.
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Example (SPS) Higher-dimensional model

Results
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Example (SPS) Higher-dimensional model

Results
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Slope is about −1/2, consistent with ML estimation with additive Gaussian
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Conclusions and perspectives

Conclusions and perspectives

Interval analysis provides guaranteed outer- and inner-approximations
of non-asymptotic con�dence regions de�ned by LSCR and SPS.

Illustrations provided for FIR and non-linear models.

Accurate inclusion functions are particularly di�cult to obtain for the
functions involved in SPS,

Symbolic manipulations of the involved expression to reduce the
number of occurrences of the parameters are particularly useful to

improve the e�ciency of SIVIA
to design better contractors

Code available at http://www.l2s.supelec.fr/perso/kieffer-0
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