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Objective of our team: Promote interval methods and
constraint propagation within the robotics community
(build solvers, solve applications, ... )



1 What is control theory ?

Many systems can be represented a state space equation
x = f(x,u)

where X Is the state vector and u is the control vector.

Control problem: Find a controller
u=r(x,w),

where w is the new input vector, such that the closed
loop system behaves as desired.



More can be found on the book

Jaulin L. (2005) « Représentation d’état pour la mod-
élisation et la commande des systémes » (Coll. Au-
tomatique de base), Hermes , 198p



2 Interval constraints propagation



2.1 Interval arithmetic



If o € {4, —,., /, max, min}

[zl oyl = Qzoy | = € lz],y € [y]}].

For instance,

[—1,3].[2,5] = [7,7],



If o € {4, —,., /, max, min}

[zl oyl = Qzoy | = € lz],y € [y]}].

For instance,

[—1,3]+[2,5] =[1,8],
[—1,3].[2,5] =[-5,15],
r ' 1
[_173]/:275: — :_27% ’
[—1,3] VvV [2,5] =[2,5].



If f € {cos, sin,sqr, sqrt, log, exp, ...}

fl=]) = [{f(z) [z € [=]}].

For instance,

sin ([0, 7]) = 7,7
sqr ([-1,3]) = 7,7
abs([-7,1]) = 7, 7]

sqrt ([—10,4]) = 7, 7],
log ([—2,-1]) = 7, 7]




If f € {cos, sin,sqr, sqrt, log, exp, ...}

fl=]) = [{f(z) [z € [=]}].

For instance,

sin ([0, 7]) = [0,1],
sar ([-1,3]) = [-1,3]*=[0,9],
abs ([-7,1]) = [0,7],
sqrt ([—10,4]) = /[-10,4] = [0, 2],
log ([-2,—1]) = 0.



2.2 Constraint projection

Let x,y, z be 3 variables such that

r € [—o0,b],
y € [—o0,4],
z € [6,00],
zZ = T+Y.

The values < 2 for =, < 1 for y and > 9 for z are
Inconsistent.



Since x € [—00,5],y € [-00,4],2 € [6,00] and z =
x + vy, we have

z=x+y= z€ [6,00]N([~00,5]+ [—00,4])

r=z—y= x€ [—00,5]N([6,0]—[—00,4])
= [—o0,5] N [2, 00] = [2,5].
Yy=z—r= yc _0074]ﬂ([6700__0075)
= [—00,4] N [1, 0] = [1, 4].




For the constraint

y =sinz, = € [z],y € [y]

the problem is more difficult.
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2.3 Constraint propagation

Consider the three constraints
(C1):  y=2a?
(C2):  =zy=1
(C3): y=-2x+1

To each variable we assign the domain [—o0, c0].
Constraint propagation amounts to project all constraints
until equilibrium.
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For more complex constraints, a decomposition is re-

quired. For instance,

x 4+ sin(y) — xz <0,
S [_17 1]7y < [_171]72 S [_171]

can be decomposed into the following one.

[ a = sin(y) r €[-1,1] a €] — oo, 0|
b=x+4a y €[-1,1] b€]— oo, 00]
c=u1xz  ze[-1,1] c€]— oo,

|l b—c=d d €] — 00, 0]




2.4 Constraint propagation for estimation

Assume that

E € [23V,26V], I € [4A,8A], Uy € [10V, 11V],
Uy € [14V,17V], P € [124W,130W],

The constraints are

P = FEI, E=(R1+ Ry)I;
Ui = Ril; Up= Ryl; E=U;j+ U>s.



IntervalPeeler gets

1.8492,2.31Q], R, € [2.58,3.354)]
4.769A,5.417A], U € [10V;11V],
14V;16V], E € [24V;26V],
1241, 130W] .
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2.5 Solving nonlinear equations

Consider the system

y = 3sin(x)
y =z
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2.6 Proving that a set of constraint is

always satisfied

We use the negation of the constraints.

For instance, showing that

vz € [z].Vy € [y], f(z,y) <0 and g(z,y) <0,

amounts to proving that

{(z,y) €[] x [y] | f(z,y) > O0or g(x,y) >0} =0

l.e.,

{(z,y) € [z] X [y] | max(f(=x,y),g9(z,y)) > 0} = 0.



Show SetDemo



3 Application to path planning
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4 Control of a sailboat

(Collaboration with M. Dao, M. Lhommeau, P. Herrero,
J. Vehi and M. Sainz).



Projection of an equality.

Consider the set

SE{pecP|3IqecQ, f(p,q)=0}.

where P and Q) are boxes and f is continuous.

Since Q is a connected set and f is continuous, we have

SZ{PEP | 3(a1,a2) € Q% f(p.a1) <0, f(p,a2) 20}-



Sailboat :

(b)




v cos 6,
vsinf — BV,
w)
ui,

up,
fssinds— frsin 5r—oszv

m Y
(E—TS COoSs 53)f3—7afr' Ccos 5rfr—a9w

J )
as (V cos(0 4 ds) — vsinds),

QU SIN Op.




Polar speed diagram of a sailboat.

The set of feasible chosen input vectors is

W:{ (97U)| El(fsafraé’l“:és)
0— fssinds—frsindr— Qv
0— (b—rs coséngfs Tr COS Or fr

fs = as (V cos (0 +8s) —vsinds)

f/r' — 7Y, sin 57“




An elimination of fs, fr and 6, yields

W={ (6,)]
365 € [-3, 5],
((Oér—l—2ozf)v‘—|/—2asv sin®§s 25 cos (0 + ) sin (5522
(2‘)‘8 ({ — rscosds) (cos (0 + ds) — 17 sin 53))
—04724"'}—22 =0}



This picture has been obtained using modal interval

techniques.
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5 Control of a wheeled stair-climbing

robot

(Collaboration with students and colleagues from EN-
SIETA)



Consider the class of constrained dynamic systems:
(i) x(t) = £(x(¢),u(t))
(i) (x(t),v(t)) €V,

where v(t) € R™ is the viable input vector and V is
the viable set.




Assume that the robot has a quasi-static motion.

1) When the robot does not move, we have

y

H
—pi1mj A p1J + pica A f_)- p1m3 A puz] =
—pP2my A o) — P2Co A f.+P2P3 A T3
\ —Pomyg A fig]
— . o
'y — (1 +u3)j+ f
\ To— £ —(uo+ua)j+ T3 =




This system can be written into a matrix form as

Ai(z).y = bi(),

where

T
y = (rlxa’rlya’rZa:ar2y7r3w7r3y7f$7fy7m3£mm4:c) -



2) None of the wheels will slide if all T'; belong to their
corresponding Coulomb cones:
det(T';,u; ) <0 and det(u;r, T;) <0,

where u, and uj’ denote the two vectors supporting
the 2th Coulomb cone C;. These inequalities can be

rewritten into

Ao(z).y <0.






3) There is a relation between y and v of the form
v =c(y).

Finally,

Aq(x).y
As(z).y

b1 ()
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The figure below represents the robot built by the ro-
botics team of the ENSIETA engineering school that
has won the 2005 robot cup ETAS. The robot can be
seen as a three-dimensional version of the robot treated
above. It has been proven to be very competitive on
irregular grounds but failed to cross over some compul-
sory obstacles (such as stairs).




6 Localization of an AUV

Collaboration with the GESMA (Groupe d’Etude Sous-

Marine de I'Atlantique). The sensors are composed by a
DGPS when the AUV is at the surface of the ocean, an
accelerometer and a camera oriented toward the bottom

The state space equations are given by

(& = wcos6
y = wsinf
< .
0 = u
(v = U




An estimation of the state vector can be obtained by

integration :
d :f v cc.)sg
— = sin
dt g b
ui

This state estimation is used by our controller.



The controller to be used is given by

uq _sinf cosd - z + &4 — vecos b + &
— U, UV .
u cosf sinf yd y—|—yd—vsm9—|—yd

The figure below represents the actual trajectory in

the situation where the desired trajectory is a cycloid.
The white AUV represents the location where the AUV
thinks it is located. The grey AUV represents the actual
location.




An envelope containing the actual trajectory can be ob-
tained using an interval simulation.




In the case where the output location is considered for
the propagation, we get the following envelope.




If the camera is taken into account, we get :




