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Abstract

The hyperoctahedral group Bn is the group of symmetries of the hypercube [−1, 1]n

of Rn. For instance permutations, or symmetries along each of the n canonical planes
of Rn all belong to Bn. Now, many sets of equations contain symmetries in Bn. This
is the case of the addition constraint : x1 + x2 = x3 or the multiplication x1 · x2 = x3.
In robotics, many specific geometrical constraints such as for instance constraints
involving distances or angles used for localization also have these symmetries. This
paper shows the fundamental role of the hyperoctahedral group for interval-based
methods. These methods use operators, called contractors, which contract axis-aligned
boxes, without removing any point of the solution set defined by a conjunction of
constraints (typically equations, or inequalities). More precisely, the paper presents
an algorithm which allows us to build minimal contractors associated to constraints
with symmetries in Bn. As an application, we will consider the geometrical constraint
associated to the angle between vectors. The corresponding contractor will then be
used in a constraint propagation framework in order to localize a robot using several
radars.

1 Introduction

Contractor programming [7] is an efficient tool to solve rigorously complex non-
linear problems involving bounded uncertainties [6] [26] [35] . It is based on the
notion of contractor which is an operator which shrinks an axis-aligned box [x]
of Rn without removing any point of the subset X of Rn to which it is associated.
The set X is assumed to be defined by equations or inequalities involving the
components x1, . . . , xn of x.

As a result, combined with a paver [37] which bisects boxes, the contractor
will allow us to build an outer approximation of the set X. This outer approxi-
mation is represented as a list of boxes L with sides parallel to the coordinate
axes. This list L contains as few elements not from X as possible. The resulting
methodology can be applied in several domains of engineering such as identifi-
cation [33], localization [23] [32], SLAM [31] [36], vision [18], reachability [22]
[28], control [34] [41], calibration [17], motion planning [13], etc.
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Contractor programming relies on a catalog of efficient elementary contrac-
tors which are usually built using interval arithmetic [30]. Basically, interval
computation allows us to compute the range of a function the input of which
are known to be inside intervals. Take for instance, f(x) = x2 − x where
x ∈ [x] = [x−, x+]. We have f(x) = a − x, where a = x2. To enclose f(x), we
first compute the smallest interval [a] which contains all feasible a = x2, x ∈ [x].
Then, we compute the smallest interval [y] which encloses the set of feasible a−x,
assuming that a ∈ [a] and x ∈ [x]. Interval computation can be used to build
contractors for elementary equations. There contractors shrink intervals of fea-
sible values for the variables, without removing a single feasible value. Note
that straightforward (naive) interval arithmetic which simply replaces all arith-
metic operations with corresponding operations of interval arithmetic leads to
pessimistic contractors. As explained in [29] more accurate enclosure can be
obtained using centered form, monotonicity checking, and other ideas now used
in effective interval packages.

Combining all available elementary contractors, we can construct a more
sophisticated one consistent with the solution set of the problem we want to
solve. This operation introduces a pessimism which has to be balanced by
additional bisections performed by the paver [40]. For more efficiency, it is
important to extend the catalog by adding some new specific contractors.

In this paper, we propose to use the hyperoctahedral group Bn of symmetries
[2] to build optimal contractors for different types of constraints used in the
field of robotics [14][25][27]. The fundamental role of this group in the domain
of interval computation is here demonstrated for the first time. The important
role of symmetries in constraint programming has already been underlined by
several authors in the case where the solution set is symmetric (see, e.g., [20] or
[21]). In our applications, the problem is not symmetric but involves constraints
that contain symmetries.

To illustrate our approach, we consider the rotate constraint which links two
vectors p = (p1, p2) and y = (y1, y2) of the plane and the angle θ between them.
The corresponding contractor aims to contract the intervals [p1], [p2], [θ], [y1],
[y2], for p1, p2, θ, y1, y2, without loosing any feasible value.

This rotate constraint can be used for localization of mobile robots when
bearing measurements are collected [10, 16]. A test case will show that our
approach is able to obtain an outer approximation of the solution set in a much
more efficient manner than simply composing elementary interval contractors.

This paper is organized as follows. Section 2 presents some notions of the
theory of hyperoctahedral groups. Section 3 shows how these groups can be
used as an operator to manipulate sets of Rn. More precisely, we introduce the
semigroup of actions (or acts) to create complex sets using the symmetry oper-
ators. Section 3 presents an algorithm than can be used to compute minimal
contractors in the case where hyperoctahedral symmetries exist. The method-
ology will be illustrated on two elementary constraints: the square x2 = x21 and
the multiplication x1 · x2 = x3. Section 5 gives an optimal contractor for a con-
straint which relates two vectors and their angles. This geometrical constraint,
ubiquitous in robot localization, cannot be treated optimally without consider-
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ing our approach. Section 6 considers the localization problem of a robot with
several radars. Section 7 concludes the paper.

2 Theory

2.1 Hyperoctahedral group

The hyperoctahedral group Bn is the group of symmetries of the hypercube
[−1, 1]n [12] of Rn. It corresponds to the group of n × n orthogonal matrices
whose entries are integers and contains 2n ·n! elements. For instance, for n = 2,
we have 22 · 2! = 8 elements. If we use the matrix form, the elements of B2 are

σ0 =

(
1 0
0 1

)
σ1 =

(
−1 0
0 1

)
σ2 =

(
0 1
1 0

)
σ3 =

(
−1 0
0 −1

)
σ4 =

(
1 0
0 −1

)
σ5 =

(
0 1
−1 0

)
σ6 =

(
0 −1
1 0

)
σ7 =

(
0 −1
−1 0

)
(1)

Matrices associated to Bn are called hyperoctahedral matrices. Each line and
each column should contain one and only one non-zero entry which should be 1
or −1. It is trivial to check that Bn is a group with respect to the multiplication,
or equivalently, for the composition ◦. In this paper, a symmetry σ will be seen
both as a linear function from Rn to Rn or as a n× n matrix. For instance, we
will write equivalently

σ5 =

(
0 1
−1 0

)
or σ5 :

{
R2 7→ R2

(x1, x2) 7→ (x2,−x1)
(2)

Figure 1 corresponds to the multiplication table (known as Cayley table [5]).

Fig. 1: Multiplication table

Now, due to the fact that we have a group, the transitivity and the inversion
property should be satisfied. As a consequence, the entries of the table are
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dependent. We can easily check that from the second and the third lines, we can
reconstruct the whole table. We say that the two elements σ1, σ2 are generators
of the group B2 or equivalently, we write B2 = 〈σ1, σ2〉.

Compute for instance σ6 ◦ σ7 using these two lines (red and blue in the
figure). We get:

σ6 ◦ σ7 = σ1 ◦ σ2 ◦ σ1 ◦ σ2 ◦ σ1︸ ︷︷ ︸
σ5︸ ︷︷ ︸

σ7︸ ︷︷ ︸
σ3

= σ4

(3)

To prove that {σ1, σ2} is a generator pair of B2, we build the Cayley graph [11]
(see Figure 2). We first draw a node for each of the 8 symmetries. Then we
draw the arcs by reading the lines of the multiplication table corresponding to
σ1, σ2. For instance, since we read σ7 = σ1 ◦ σ5, we draw an arc labeled by σ1
between σ5 and σ7. Since the graph is strongly connected, we conclude that all
symmetries can be obtained by compositions of σ1, σ2.

Fig. 2: Cayley graph associated to the hyperoctahedral group B2

An important property that will be used later for building optimal contrac-
tors is that any σ ∈ Bn is box-conservative [15], i.e, if for all A ⊆ Rn,

σ (JAK) = Jσ (A)K . (4)

where JAK is the hull operator, i.e., the smallest box which encloses A. An
illustration is given by Figure 3.
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Fig. 3: (Left) σ is hyperoctahedral and the equality σ (JAK) = Jσ (A)K is satisfied.
(Right) The equality is not anymore satisfied when σ is not hyperocta-
hedral

2.2 Hyperoctahedral symmetries for a set

Consider a set X of Rn. We define the stabilizer subgroup of Bn with respect to
X as

Bn(X) = {σ ∈ Bn |σ(X) = X}. (5)

The elements of Bn(X) are called hyperoctahedral stabilizers for X. Equivalently,
we say that Bn(X) corresponds to the hyperoctahedral symmetries of X. It can
easily be checked that Bn(X) is a subgroup of Bn.

Figure 4 represents a set X with exactly 8 hyperoctahedral stabilizers. As
seen previously (see Figure 2), the set B2(X) can be generated from two axis
symmetries: σ1, σ2 (see (1)). In this situation, Bn(X) = Bn. Now, very often in
practice, the set X has less symmetries and we only have the inclusion Bn(X) ⊂
Bn.

Fig. 4: We count 8 hyperoctahedral stabilizers for the set X. On the right, we
applied the corresponding symmetries to the box [x]
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2.3 Checking that a symmetry is a stabilizer: the polynomial
case

Assume that the set X ⊂ Rn is described by a set of polynomial equations.
Checking that σ ∈ Bn is a stabilizer of X, i.e., σ(X) = X amounts to checking
that two polynomial equations are equivalent. For instance, assume that X is
described by the following equations:

X :

 x3x1 − x4x2 − x5 = 0
x4x1 + x3x2 − x6 = 0
x23 + x24 − 1 = 0

(6)

For

σ =


0 0 0 0 1 0
0 0 0 0 0 1
0 0 1 0 0 0
0 0 0 −1 0 0
1 0 0 0 0 0
0 1 0 0 0 0

 (7)

the equality σ(X) = X holds. Indeed x3x1 − x4x2 − x5 = 0
x4x1 + x3x2 − x6 = 0
x23 + x24 − 1 = 0

⇔

 x3x5 + x4x6 − x1 = 0
−x4x5 + x3x6 − x2 = 0
x23 + (−x4)2 − 1 = 0

(8)

The equality has the form P1(x) = 0
P2(x) = 0
P3(x) = 0

⇔

 Q1(x) = 0
Q2(x) = 0
Q3(x) = 0

(9)

where x = (x1, . . . , x6). To check the equivalence, it suffices to check that the
Gröbner bases, computed by the Buchberger’s algorithm [4], for {P1, P2, P3}
and for {Q1, Q2, Q3} are the same. This can easily be checked using symbolic
calculus [24].

2.4 Finding the subgroup of stabilizers

Consider a set X ⊂ Rn described by a set of polynomial equations. The set
Bn(X) is a subgroup of Bn. To find this subgroup, a naive method [11] is to
check all 2n · n!, which is a tedious work. To find the generators for Bn(X), we
could take randomly elements of Bn and check if they can generate the whole
subgroup Bn(X).

3 Hyperoctahedral acts

In the previous section, we have introduced the group of hyperoctahedral sym-
metries for a set X. Such a group can be used to move a box from one zone on
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Rn to another and in a reversible way, without changing its status with respect
to X. In this section, we will still use the symmetries as a way to move boxes,
but we will adapt the composition in a way to build a set X. For this purpose,
we will introduce the notion of act to build a set. Analogously, the set X can be
seen as a house to be built with bricks. The elements of the group of symmetries
can be used to move one brick from one place to another in a cut-paste manner.
Instead, the act operator works in a copy-paste manner. It uses a symmetry to
copy and move the brick, making the operation monotonic (the house inflates)
and non invertible (a brick cannot be removed). This describes the behavior of
a semigroup instead of a group used in the previous section. This construction
process will now be explained and used for building contractors for sets with
symmetries.

3.1 Act for sets

For σ ∈ Bn, we define the act operator:

σ • X = X ∪ σ(X). (10)

We say that σ acts on the set X. This operation produces a larger set (see
Figure 5).

Fig. 5: σ acts on the set X to generate σ • X = X ∪ σ(X)

Given a set X ⊂ Rn, we define the set An as the set of all operators σ :
P(Rn) 7→ P(Rn) which can be written as

σ(X) = σ • X = αm • (· · · • (α2 • (α1 • X)) . . . ) (11)

where α1, . . . , αm all belong to Bn. If σ1 and σ2 belong to An, we define the
operator ? as follows:

(σ2 ? σ1) • X = σ2 • (σ1 • X). (12)

It can be shown that the structure (An, ?, •) is a semigroup action [9]. It satisfies:

σ ∈ Bn ⇒ σ ∈ An
σ ∈ Bn, α ∈ An ⇒ (α ? σ) ∈ An and (α ? σ) • X = α • (σ • X).

(13)



3 Hyperoctahedral acts 8

From this definition we see that each element of Bn is associated to an
element of An, but inverse is not true. The second condition in (13) is called
the compatibility condition. It is trivial to prove that (An, ?) is a semigroup.
For instance, the associativity is checked as follows:

(σ3 ? (σ2 ? σ1)) • X = ((σ3 ? σ2) ? σ1) • X = σ3 • (σ2 • (σ1 • X)). (14)

Figure 6 provides an illustration of the ? operator in the case where two sym-
metries σ1, σ2 of B2 are involved.

Fig. 6: Illustration of the ? operator

3.2 Contractors

We define a box of Rn as the Cartesian product of n intervals. A box will be
written as follows:

[x] = [x−1 , x
+
1 ]× · · · × [x−n , x

+
n ] = [x−,x+]. (15)

Denote by IRn the set of boxes of Rn. A contractor C for a set X ⊆ Rn is an
operator IRn 7→ IRn such that

C([x]) ⊆ [x] (contractance)
[x] ⊆ [y] ⇒ C([x]) ⊆ C([y]). (monotonicity)
C([x]) ∩ X = [x] ∩ X (consistency)

(16)
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We define the inclusion between two contractors C1 and C2 as follows:

C1 ⊆ C2 ⇔ ∀[x] ∈ IRn, C1([x]) ⊆ C2([x]). (17)

There exists a unique minimal contractor for X, given by

C([x]) = J[x] ∩ XK (18)

The quantity C([x]) corresponds to the smallest box that can be obtained by a
contraction of [x] without removing a single point of X, as illustrated by Figure
7.

Fig. 7: Minimal contractor C for the set X

Define the box union of two boxes [x]t [y] as the smallest box which encloses
both [x] and [y], i.e.,

[x] t [y] = J[x] ∪ [y]K. (19)

Given C1 a contractor for the set X1 ⊂ Rn and if C2 is contractor for the set
X2 ⊂ Rn, we define the union of the two contractors as

(C1 t C2)([x]) = C1([x]) t C2([x]). (20)

In [15], it has been proved that if C1 and C2 minimal, then C1 t C2 is a minimal
contractor for X1 ∪ X2.

The following proposition shows that the minimality is also true for the
projection. This result, which seems intuitive, is new to my knowledge. Since
it will be used later in our application, we formalize this claim as a proposition
and we prove it.

Proposition 1. Define the set

X = {x ∈ Rn | ∃y ∈ [y], z = (x,y) ∈ Z} (21)



3 Hyperoctahedral acts 10

which corresponds to the projection of the set Z ∩ (Rn × [y]) onto Rn. If CZ is
a minimal contractor for Z then

CX([x]) = projxCZ([x], [y]) (22)

is a minimal contractor for X.

Proof. We have
CX([x]) = projxCZ([x], [y])

= projx J([x]× [y]) ∩ ZK
= Jprojx(([x]× [y]) ∩ Z)K
= J[x] ∩ XK

(23)

Thus, CX([x]) = projxCZ([x],Rm) is the minimal contractor for the set X.

Example. Consider the set

X = {x ∈ Rn | ∃y ∈ [1, 5], z = (x, y) ∈ Z} (24)

where
Z =

{
(x1, x2, y)|x21 + x22 + y2 ∈ [0, 16]

}
. (25)

Take [x] = [1, 5]× [1, 5]. The minimal contractor associated to Z yields

J([x]× [y]) ∩ ZK = [1,
√

14]× [1,
√

14]× [1,
√

14] (26)

which corresponds to the red three dimensional box in Figure 8. The projection
of this box on the x space is

Jprojx(([x]× [y]) ∩ Z)K = [1,
√

14]× [1,
√

14] (27)

which corresponds to the optimal contraction with respect to X (see the red two
dimensional box).
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Fig. 8: The minimality of a contractor is conserved by projection

3.3 Contractor Acts

If C is a contractor in Rn, and σ ∈ Bn, we define the contractor act of σ on C as

σ • C = C t (σ ◦ C ◦ σ−1). (28)

Fig. 9: Minimal contractor σ • C for the set σ • X
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Proposition 2. If C is a minimal contractor for X and if σ ∈ Bn then σ • C is
a minimal contractor for σ • X, i.e.,

σ • C([x]) = J[x] ∩ σ • XK. (29)

An illustration of the proposition is given by Figure 9.

Proof. We have

(σ • C)([x])
(28)
= C([x]) t (σ ◦ C ◦ σ−1)([x])
= C([x]) t (σ(C(σ−1([x])))
= C([x]) t σ(Jσ−1([x]) ∩ XK) since C is minimal
(4)
= C([x]) t Jσ(σ−1([x]) ∩ X)K
= C([x]) t Jσ(σ−1([x])) ∩ σ(X)K since σ bijective
= C([x]) t J[x] ∩ σ(X)K
= J[x] ∩ XK t J[x] ∩ σ(X)K since C is minimal
= J([x] ∩ X) ∪ ([x] ∩ σ(X))K
= J[x] ∩ (X ∪ σ(X))K
= J[x] ∩ σ • XK

3.4 Expansion theorem

In Subsection 3.1, we have shown how the ? operator can be used to produce
minimal contractors. In this section, we provide a new theorem (called expansion
theorem) which can be used to build a minimal contractor for a specific set X
using an expression involving symmetries connected by the ? operator.

Theorem 3. Consider a set X ⊂ Rn, a box [a] ∈ IRn and a sequence {σ1, . . . , σm}
of Bn(X). Define the two sequences

X(0) = [a] ∩ X
X(k + 1) = σk+1 • X(k)

(30)

and
A(0) = [a]

A(k + 1) = σk+1 • A(k)
(31)

We have
X ⊆ A(m)⇒ X(m) = X. (32)

Moreover, if X ⊆ A(m), the contractor Cm defined by the sequence

C0([x]) = J[x] ∩ X(0)K
Ck+1 = σk+1 • Ck

(33)

is the minimal contractor for X.
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Proof. (i) In order to prove (32), we first prove by induction that

X(k) = A(k) ∩ X. (34)

For k = 0, the equality holds. Assume that (34) is true for k. Since

X(k + 1) = σk+1 • X(k)
(10)
= X(k) ∪ σk+1(X(k))
(34)
= (A(k) ∩ X) ∪ σk+1(A(k) ∩ X)
= (A(k) ∩ X) ∪ (σk+1(A(k)) ∩ σk+1(X)) (since σk+1 is injective)
= (A(k) ∩ X) ∪ (σk+1(A(k)) ∩ X) (since σk+1 ∈ Bn(X))
= (A(k) ∪ σk+1(A(k))) ∩ X
(10)
= (σk+1 • A(k)) ∩ X
(31)
= A(k + 1) ∩ X

the property (34) is also true for k + 1.
(ii) Assume now that for k = m, we have X ⊆ A(m). From (34), X(m) =

A(m) ∩ X. And thus, X(m) = X.
(iii) We prove by induction that for all k,

Ck([x]) = J[x] ∩ X(k)K. (35)

For k = 0, this relation is C0([x]) = J[x]∩X(0)K which is true from (33). Assume
that (35) is true for k. We have

Ck+1([x])
(33)
= (σk+1 • Ck)([x])
(29)
= J[x] ∩ σk+1 • X(k)K
= J[x] ∩ X(k + 1)K

(36)

Figure 10 illustrates the two first steps of the sequence for X(k).

Fig. 10: Construction of the sequence X(k) using the symmetries

Figure 11 shows how the minimal contractor can be obtained for X(1).
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Fig. 11: Construction of the optimal contractor C1 for X(1)

Corollary 4. If X 6⊆ A(m) then Cm is not a contractor for X.

Proof. The operator Cm is an optimal contractor for X(m). Now, X(m) ⊆
A(m) 6⊇ X. If [x] is box in X\X(m), we will have Cm([x]) = ∅.

4 Algorithm

Consider a set X of Rn described by a set of polynomial equations with hype-
roctahedral symmetries described by Bn(X). Assume that we have a box [a]
such that an optimal contractor C0([x]) = J[x] ∩ [a]∩ XK is available for X ∩ [a].
Take a sequence of symmetries Σ ={σ1, σ2, . . . , σm} for X. Algorithm 1 checks
if we can generate from [a] using Σ, a set which encloses X.
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Algorithm 1 ValidSequence

Input: {σ1, σ2, . . . , σm}, [a]

1 A(0) = [a]
2 For k ∈ {0, . . . ,m− 1}
3 A(k + 1) = σk+1 • A(k),
4 If X 6⊆ A return “Fail: not enough symmetries”.
5 Else return Success

If the algorithm terminates, we know that we can reach any point of X from
a point of [a] by a sequence of acts made with symmetries. We want a valid
sequence which is as small as possible. This sequence can be found by the
following algorithm.

Algorithm 2 FindSequence

Input: S,[a]

1 For m ∈ {0, 1, 2, 3, . . . }
2 For all sequences Σ = {σ1, σ2, . . . , σm} taken in S
3 If ValidSequence(Σ) successes return Σ

If Algorithm 2 returns the sequence Σ, then from Theorem 3, the minimal
contractor for X is

C = (σm ? · · · ? σ1) • C0. (37)

Moreover, from Corollary 4, we also know that there is no sequence with a
length smaller than m which leads to a contractor for X.

4.1 Square constraint

Denote by X the set of all x = (x1, x2) which satisfy the constraint.

ϕ(x1, x2) = x21 − x2 = 0. (38)

Due to the monotony of ϕ, on [a] = R+ × R+ , the minimal contractor on
[a] for the constraint ϕ(x1, x2) = 0 is

C0
(

[x1]
[x2]

)
=

 [x1] ∩
[√

x−2 ,
√
x+2

]
[x2] ∩

[
x−2
1 , x+2

1

]
 . (39)

For n = 2, the set B2 has 22 ∗ 2! = 8 elements given by (1). The symmetries for
X are B2(X) = {σ0, σ1}. If we apply σ1 to (38), the equation remains satisfied.

x21 − x2 = 0⇔ (−x1)2 − x2 = 0. (40)

The algorithm ValidSequence({σ1}, [a]) returns True, which means that σ1 •
C0 is the minimal contractor for X.
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4.2 Product constraint

Denote by X the set of all x = (x1, x2, x3) which satisfy the constraint:

ϕ(x1, x2, x3) = x1x2 − x3 = 0, (41)

as illustrated by Figure 12. Take

[a] = R+ × R+ × R+. (42)

The part of X which is inside [a] is painted red.

Fig. 12: Product constraint: x1x2 = x3

Due to the monotonicity, a minimal contractor on [a] for the constraint
ϕ(x1, x2, x3) = 0 is

C0

 [x1]
[x2]
[x3]

 =


[x1] ∩

[
x−3
x+2

,
x+3
x−2

]
[x2] ∩

[
x−3
x+1

,
x+3
x−1

]
[x3] ∩ [x−1 · x

−
2 , x

+
1 · x

+
2 ]

 . (43)

For n = 3, the set B3 has 23 ∗ 3! = 48 elements. One of them is

σ1 =

 −1 0 0
0 −1 0
0 0 1

 (44)
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Among all hyperoctahedral matrices, some of them are stabilizers for X, some
not. To test if σ1 ∈ B3(X), we apply σ1 to (41) and we check if the equation
remains satisfied:

x1x2 − x3 = 0⇔ (−x1) · (−x2)− x3 = 0. (45)

The symmetry σ1 allows us to build the green part of X. Other symmetry
matrices could be found. At least two of them should be added to generate
B3(X). For instance, we can take

σ2 =

 0 1 0
1 0 0
0 0 1

 and σ3 =

 −1 0 0
0 1 0
0 0 −1

 . (46)

Note that 〈σ2, σ3〉 = B3(X) ⊂ B3. This means that two symmetries are sufficient
to generate B3(X), but if we restrict the symmetries to σ2, σ3, the length of the
sequence will not be optimal. The algorithm FindSequence({σ1, σ2, σ3}, [a])
finds two expressions of minimal length for the minimal contractor for X: (σ3 ?
σ1) • C0 and (σ1 ? σ3) • C0. This means that σ3 allows us to complete the
construction of X, as illustrated by the blue part of X on Figure 12. Note that
even if σ2 is needed to generate B3 we do not need it to build X from X ∩ [a].

As an illustration, consider the set P of all p = (x1, x2) ∈ R2, such that
x1 · x2 = x3, where x3 ∈ [−9,−2]. We choose here to characterize the two
dimensional set P to visualize the minimality of the contractor C = (σ2 ?σ0)•C0,
which could not be possible in a three dimensional representation. If we use a
paver which bisects only on the (x1, x2)-space, we get Figure 13, where the
frame box is [p](0) = [x1](0) × [x2](0) = [−20, 20] × [−20, 20]. Note that C is
a three dimensional contractor, but since P is two dimensional, we only select
the two first components of the contractor. We thus build the projection of the
contractor Cp([p]) = projpC([p], [−9,−2]). From Proposition 1, Cp is a minimal
contractor for P.

The principle of the procedure is a branch and prune method which takes
subboxes of [p](0) stored inside a list L. For each of [p] in L, the minimal
contractor C is called, with [x3] = [−9,−2]. The part of [p] that has been
pruned by C is painted blue. If the width of Cp([p]) is smaller than a given
ε > 0, [p] is painted yellow. Otherwise, [p] is bisected and the two resulting
boxes are stored in L to be treated later. At the initialization of the procedure,
L contains a single element corresponding to [p](0). We observe that we do not
have any isolated blue boxes that do not touch any tiny yellow box. This is
consistent with the fact that the contractor is minimal.
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Fig. 13: Paving obtained using the minimal contractor for x1 · x2 ∈ [−9,−2]

5 Rotate constraint

In this section, we consider the constraint rotate which tells us that the vector
y = (y1, y2) of R2 can be obtained from the rotation of angle θ of the vector
p = (p1, p2). This constraint occurs for instance when we want to localize a
robot from bearing measurements. Assume that p1 ∈ [p1], p2 ∈ [p2], θ ∈ [θ],
y1 ∈ [y1], y2 ∈ [y2], we want a minimal contractor which is able to contract all
five intervals as much as possible, without removing any value consistent with
the rotate constraint.

Many hyperoctahedral symmetries exist for the rotate constraint and this is
the reason why it has been chosen to illustrate the methodology developed in
this paper. In the following Subsection 5.1, we rewrite the rotate constraint into
polynomial equations to fit with the formalism developed previously. In order
to find a minimal contractor for our constraint, we consider in Subsection 5.2 a
simpler constraint called angle, which can be interpreted as a two-dimensional
projection of rotate. Taking into account the monotonicity of the angle con-
straint, we build a minimal contractor on a restricted domain. We then explain
in Subsection 5.3 how the restricted angle contractor can be used to build a
restricted contractor for rotate. An extension of this restricted contractor, valid
for any interval entries, is built in Subsection 5.4. This extension uses the sym-
metries to cover the whole space.



5 Rotate constraint 19

5.1 Definition

Consider the rotate constraint(
y1
y2

)
︸ ︷︷ ︸

y

=

(
cos θ − sin θ
sin θ cos θ

)
︸ ︷︷ ︸

Rθ

(
p1
p2

)
︸ ︷︷ ︸

p

(47)

Note that if p2 = 0 then, we get the Polar constraint [15] given by(
y1
y2

)
=

(
p1 cos θ
p1 sin θ

)
. (48)

To fit with the formalism of the previous section, we rewrite the constraint
(47) as  x3x1 − x4x2 − x5 = 0

x4x1 + x3x2 − x6 = 0
x23 + x24 − 1 = 0

(49)

where x1, x2, x3, x4, x5, x6 stand for p1, p2, cos θ, sin θ, y1, y2, respectively. De-
fine by X the solution set of (49). This constraint can be expressed into the form

ϕ(x1, x2, x3, x4, x5, x6) = 0. (50)

To my knowledge, the minimal contractor for rotate constraint (47) has
never been proposed in the literature and it would be very difficult to get it
without using the tools derived from the semigroup action of hyperoctahedral
symmetries presented in this paper.

5.2 Angle contractor

Consider the constraint y = Rθ ·p given by (47) and assume that [y] ⊂ R+×R+

and [θ] = [θ−, θ+] ⊂ [0, π2 ]. The set of all feasible p = (p1, p2) is given by

P = {p = (p1, p2) | ∃θ ∈ [θ],∃y ∈ [y],p = f(θ,y)}
= f([θ], [y])

(51)

where

f(θ,y) =

(
cos θ sin θ
− sin θ cos θ

)(
y1
y2

)
. (52)

The constraint p ∈ P is called the angle constraint, and we would like to find a
minimal contractor CP for P. This minimal contractor is given by

CP : [p]→ J[p] ∩ f([θ], [y])K. (53)

We thus need to characterize the set P = f([θ], [y]). Since [θ], [y1], [y2] are all
positive, the set P has a boundary ∂P delimited by edges (arcs and segments)
as illustrated by Figure 14(a). The intersection between two adjacent edges is
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called a vertex and are denoted by ai, i ∈ {1, 2, . . . }. Denote by m1,m2,m3,m4

the corners of [y]. The set P has vertices given by:

a1 = f(θ−,m1)
a2 = f(θ−,m2)
a3 = f(θ−,m3)
a4 = f(proj[θ]θR,m3), where θR = atan(

m3y

m3x
)

a5 = f(θ+,m3)
a6 = f(θ+,m4)
a7 = f(θ+,m1)
a8 = f(proj[θ]θL,m1) where θL = atan(

m1y

m1x
)

where proj[θ]α is the element in [θ] which is the nearest to α.
The corresponding edges are

segm(a1,a2)
segm(a2,a3)
arc(a3,a4) if θ− < θR
arc(a4,a5) if θR < θ+

segm(a5,a6)
segm(a6,a7)
arc(a7,a8) if θL < θ+

arc(a4,a5) if θ− < θL

(54)

where segm(ai,aj) is the segment which links the two vertices ai and aj . Note
that some arcs may not exist when the corresponding conditions (see the right
hand side of (54)) are not satisfied. Take a box [p] as shown in Figure 14(b).
We want to compute the contracted box CP([p]) = J[p] ∩ PK painted red. For
this purpose, we compute the contracted boxes associated to each existing arc
or segment. We get all small boxes represented in Figure 14(c). The contracted
box CP([p]) is is obtained by taking the interval hull of all these boxes, as shown
in Figure 14(d). To be more correct, the procedure does not compute CP([p]).
Instead, it computes the optimal contractor C∂P([p]) on the boundary ∂P of
P. This is illustrated by Figure 14(e), where we use the contractor C∂P inside
a paver. To get the contractor CP([p]) for P or the contractor CP([p]) for the
complementary set P of P, we need the test the membership of corners of [p].
This allows us to get an inner and an outer approximation of the set P as
illustrated by Figure 14(f).
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Fig. 14: Angle contractor

5.3 Generator

There is no general procedure to build efficient contractors for monotonic con-
straints. A possibility is to use the contractor based on the monotonicity given
in [1] [8] but the method is limited to the case of a single monotonic constraint.
The use of the axis convexity has been been proposed in [38], but the axis
property is not always easy to prove and the combination of two axis-convex
constraints is not always axis-convex.

Now, for many monotonic set of constraints, the monotonicity property helps
to build analytically the minimal contractor, but a rigorous analysis has to be
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performed, similar to that presented in Subsection 5.2. Most of the time, we
have to proceed componentwise.

To illustrate the procedure, consider the constraint (49) and take as a gen-
erator, the box

[a] = R+ × R+ × R+ × R+ × R+ × R+. (55)

To get a minimal contractor on [a], we need (see Theorem 3) an expression
for the contractor

C0 : [x]→ J[x] ∩ [a] ∩ XK, (56)

for instance under the form of an algorithm. Assume that we want to get the
two first components of C0. We rewrite the rotate constraint as

(i)

(
x5
x6

)
=

(
cos θ − sin θ
sin θ cos θ

)(
x1
x2

)
(ii)

{
0 = x3 − x4 · tanθ
0 = x23 + x24 − 1

(57)

Since the only variable shared by (i) and (ii) is θ, the combination of (i) and
(ii) will not generate a wrapping effect. Equivalently, if we have a minimal con-
traction [θi] for (i) and a minimal contraction [θii] for (ii), then the intersection
[θi]∩ [θii] corresponds to the minimal contraction for the conjunction of (i) and
(ii). As a consequence, the interval hull of the set

{(x1, x2) ∈ [x1], [x2] | ∃xi ∈ [xi] ⊂ [ai], i ∈ {3, . . . , 6}, rotate(x)}

is computed by the following algorithm:

Input: ([x1], . . . , [x6]) ⊂ [a]

Step 1. [x3] = [x3] ∩
√

1− [x4]2

Step 2. [x4] = [x4] ∩
√

1− [x3]2

Step 3. [θ] =
[
atan

x−
4

x+
3

, atan
x+
4

x−
3

]
Step 4. [p] = [x1]× [x2]; [y] = [x5]× [x6]

Step 5. [x1], [x2] = C[θ],[y]angle ([p])

Return ([x1], [x2])

In this algorithm, C[θ],[y]angle ([p]) is the angle contractor developed in Section
5.2.

A similar work has to be developed for the contraction of the four other
component of C0:x3, x4, x5, x6.

5.4 Computing the symmetries of the rotate constraint

Since the rotate constraint involves 6 variables, we have to consider the hype-
roctahedral group B6 which contains 26 · 6! = 46080 elements. Take one of
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them:

σ1 =


0 0 0 0 1 0
0 0 0 0 0 1
0 0 1 0 0 0
0 0 0 −1 0 0
1 0 0 0 0 0
0 1 0 0 0 0

 . (58)

It has been shown in Section 2.3 that σ1 is a stabilizer for (49), i.e.,

 x3x1 − x4x2 − x5 = 0
x4x1 + x3x2 − x6 = 0
x23 + x24 − 1 = 0

⇔

 x3x5 + x4x6 − x1 = 0
−x4x5 + x3x6 − x2 = 0
x23 + (−x4)2 − 1 = 0

(59)

This equivalence is illustrated geometrically by Figure 15. The associated
symmetry means that if we permute u = (x1, x2) and v = (x5, x6) then the
angle θ between the two vectors changes its sign. The red vector corresponds
to the angle θ on the trigonometric circle.

Fig. 15: One possible symmetry for the rotate constraint

Other elements of B6(X) could be found. If we add the four following sym-
metries

σ2 : (x1, x2, x3, x4, x5, x6) 7→ (x2,−x1,−x4, x3, x5, x6)
σ3 : (x1, x2, x3, x4, x5, x6) 7→ (x1,−x2, x3,−x4, x5,−x6)
σ4 : (x1, x2, x3, x4, x5, x6) 7→ (−x1,−x2,−x3,−x4, x5, x6)
σ5 : (x1, x2, x3, x4, x5, x6) 7→ (−x1, x2, x3,−x4,−x5, x6)

(60)

we can check that we are able to generate B6(X). If we run the algorithm
FindSequence, we get that it is impossible to validate any sequence with a
length strictly smaller than 5. We were able to validate 54 sequences of length
5 among the 5!=720 existing ones. One of them is σ5 ? σ4 ? σ3 ? σ2 ? σ1. As a
consequence, a minimal contractor is given by C∗ = (σ5 ? σ4 ? σ3 ? σ2 ? σ1) • C0.
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5.5 Illustration

Consider the set of all p ∈ R2, such that Constraint (47) is satisfied with
θ ∈ [θ] = [1, 5], y ∈ [y] = [−4,−2]× [10, 14]. The angle θ is expressed in radian.
More precisely, we want to characterize the set

P = {(p1, p2) | ∃θ ∈ [θ],∃y ∈ [y], y = Rθ · p} . (61)

To apply the minimal contractor C∗ = (σ5 ? σ4 ? σ3 ? σ2 ? σ1) • C0 developed
previously, we set [x3] = cos([θ]) and [x4] = sin([θ]) and we make the transfor-
mation

(p1, p2, y1, y2) 7→ (x1, x2, x5, x6). (62)

For a comparison, we tested several algorithms and the results are depicted on
Figure 16. The frame box is [p] = [−20, 20] × [−20, 20]. The blue boxes are
all proved to have an empty intersection with P. All yellow boxes have a width
smaller than 0.5.

Method 1 (Figure 16, Left). We bisect on the (p1, p2)-space and we used
the HC4-revised contractor [3] which can be considered as the state of the art.
Since the contractor is not minimal, the approximation is poor.

Method 2 (Figure 16, Center). We still use the HC4-revised contractor,
but we also bisect on the (x3, x4, x5, x5)-space to control the precision. Due to
the fact that the projection algorithm bisects in R6, the computing time is large
(more than three minutes).

Method 3. (Figure 16, Right). We bisect on the (p1, p2)-space and we
call the minimal contractor C∗. We obtain the approximation in less than 2
sec. Since the projection of a minimal contractor is minimal (see Proposition
1), we get a minimal contractor for P. This can be checked on the figure by
the fact that rejected blue boxes touch at least one tiny yellow box. Moreover,
due to the minimality of the contractor, we know that each of the yellow boxes
contains at least one point of P. Equivalently, we can claim that the Hausdorff
distance between our approximation (yellow) and P is less than the diameter of
the yellow boxes (here 0.5).

Fig. 16: Approximation of P obtained by different methods. Left: the classical
HC4-revised contractor, Center: Using a projection-based paver, Right:
the minimal contractor for the rotate constraint
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6 Application

Consider three radars at locations ai observing a robot at position x in a 2
dimensional world. The ith radar is able to measure its distance di to the robot
using the time of flight. Using the Doppler effect, it is also able to collect a
measure of ḋi, the time derivative of di. The angle αi is measured with a poor
accuracy (here 1 rad) and corresponds to the direction of arrival of the echo
of the radio-wave on the robot. The data collected at a given time instant are
given by the following table.

i 1 2 3

a(i) (−10, 0) (5, 0) (10, 0)
d(i) ∈ [28, 30] [20, 22] [19, 21]

ḋ(i) ∈ [42, 44] [29, 31] [20, 22]
α(i) ∈ [0, 1] [1, 2] [1, 2]

Figure 17 represents the robot (red) with the 3 radars (on the same horizontal
line). In yellow is represented the set of all feasible positions for the robot that
we want to compute. The frame box is [−30, 30]× [−5, 30].

Fig. 17: Three radars observing a robot (red) in the 2D world

For the ith radar measurements, we have

x− ai = di ·
(

cosαi
sinαi

)
(63)

and

ẋ =

(
cosαi − sinαi
sinαi cosαi

)
·
(

ḋi
di · α̇i

)
. (64)

We thus get the system of constraints

pi = x− ai ∀i ∈ {1, . . . , 3}
ci = cosαi
si = sinαi

rotate(di, 0, ci, si, pi1, pi2)

rotate(ḋi, wi, ci, si, ẋ1, ẋ2)

(65)
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In the previous equation, wi = α̇i is not measured. Thus, its domain will be
set to [wi] = [−∞,∞].

We apply the corresponding contractors inside a paver and we get Figure
18, Left, in the x1, x2-space in less than 5 sec. The tiny yellow boxes enclose
the solution set. All these boxes have a width smaller than 0.5. The frame
box is [−30, 30] × [−5, 30]. Note that due to the fact that the projection of
minimal contractors is a minimal contractor (see Proposition 1), there is no
need to bisect with respect to the variables ci, si,pi, di, i.e., the procedure will
characterize the solution set X with an arbitrary precision as soon as we accept
to bisect in the x-space sufficiently. It is not the case with a classical interval
method which yields Figure 18, Right with a similar computing time. We could
improve the accuracy of the characterization but for this, the classical interval
method will have to bisect with respect to variables ci, si,pi, di. In such a case,
we could obtain a result comparable to the left figure, but in a time longer than
10 minutes.

Fig. 18: Left: set obtained using the symmetry-based contractor; Right using
classical interval contractors

7 Conclusion

Contractor methods are particularly attractive when solving engineering appli-
cations, due to the fact that they can handle and propagate uncertainties. The
results are guaranteed even if the problem is non-linear and non-convex. Now,
the performances of paving methods are extremely sensitive to the accuracy of
the contractors.

In this paper, we proposed a new approach that could help to build more
easily minimal contractors associated with some specific constraints containing
hyperoctahedral symmetries. The resulting minimal contractors could not have
been built using existing interval approaches.

The main contribution of this paper is to build a bridge between the hype-
roctahedral group of symmetries and interval analysis. To our knowledge, this
link has not been done before and is proven here to be efficient to compute outer
approximation of the solution set of non linear problems. This efficiency has
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been illustrated on the problem of the bearing localization of a robot.
A perspective of the work would be to build minimal contractors for ubiqui-

tous constraints which contain hyperoctahedral symmetries such as the matrix
multiplication A ·B = C. This could drastically improve the efficiency of exist-
ing interval solvers such as [19] or [39].

Note. The Python programs associated with all examples are given in [24].
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