
2004 IEEE International Symposium on 
Computer Aided Control Systems Design 
Taipei, Taiwan, September 2-4.2004 

Quantified Set Inversion with Applications to Control 

Pau Herrero, Miguel A. Sainz, Josep Vehi and Luc Jaulin 

Abstract-This paper decribes a new reliable method, 
based on Modal Interval Analysis (MZd) and Set Inver- 
sion (SI) techniques, for the characterization of solution 
sets defined by Quantified Constraints Satisfaction Problems 
( Q C S P )  over continuous domains. The presented method- 
ology, called Quantified Set lnvenion (QSI), can be used 
over a wide range of engineering problems involving uncer- 
tain nonlinear models. Finally, an application on parameter 
identification is pmented. 

I. INTRODUCTION 
Many engineering problems, like in control engineering, 

can he formulated in a logical form by means of some 
kind of first order predicate formulas: formulas with the 
logical quantifiers, universal and existential, a set of real 
continuous functions, equalities or inequalities and variables 
ranging over real interval domains. More recently, this for- 
mulation has been referenced by different authors under the 
names: Generalized Constraints Satisfaction Problems [27] 
or Quantified Constraints Satisfaction Problems ( Q C S P )  

A. Stare-of-the-Art 
Up to now, Cylindrical Algebraic Decomposition [29], 

[7] ,  [12], for which a practical implementation exists [4], 
has been the most extended method to solve this type of 
problems. However, this technique is only well suited for 
small or middle-size problems because of its computational 
complexity. Moreover, it often generates huge output 
consisting on highly complicated algebraic expressions 
which are not useful for many applications and it does 
not provide partial information before computing the total 
result. 

~21. ~241. 

Methods that appear lately [ I l l ,  [2] try to avoid some of 
these problems restricting oneself to approximate instead 
of exact solutions, using solvers based on numerical 
methods. However, these algorithms are also restricted to 
very special cases (e.g. quantified variables only occur 
once, only one quantifier,etc.). Recently, some of these 
deficiencies have been partially removed by Ratschan [24] 
but, a lot of work remains to he done before obtaining an 
efficient and general method. 

Many practical examples exist on the resolution of 
Q C S P  using the different existing approaches, for 
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example in control engineering [SI, [181, (91, [251, [201, 
electrical engineering [28], mechanical engineering [ 141, 
[13], biology [6] and various others [3]. 

11. PROBLEM STATEMENT 

A Quantified Constraint (QC) is an algebraic 
expression over the reah which contains quantifiers 
(3,V), predicate symbols (e.g.,=, <, 5). function 
symbols (e.g.+, -, x ,  sin, exp) ,  rational constants and 
variables x = {zl,.  . . , zn} ranging over reds domains 
D = { D I > .  . . >Dn}. 

An example of a QC is the following one, 

Vx E psx4 +pz2 + q z + r  2 0, (1) 

where x is a universally (V) quantified variable and p and 
r are free variable. 

As defined in [27], a numerical constraint satisfaction 
problem, is a triple C S P  = (z, D , C ( z ) )  defined by 

(i) a set of numeric variables z = {ZI, . . . ,zn}, 
(ii) a set of domains D = {Dl, . . . , D,} where Di, a set 

of numeric values, is the domain associated with the 
variable x i .  

(iii) a set of constraints C(z) = { C ~ ( Z ) ,  ... ,&(E)} 
where a constraint Ci(z) is determined by any nu- 
meric relation (equation, inequality, inclusion, etc.) 
linking a set of variables under consideration. 

A solution to a numeric constraint satisfaction problem 
C S P  = (z, D , C ( z ) )  is an instantiation of the variables of 
x for which both inclusion in the associated domains and 
all the constraints of C ( z )  are satisfied. All the solutions 
of a constraint satisfaction problem thus constitute the set 

(2) 

Now suppose that the constraints C ( x )  depend on some 
parameters p 1 , p 2 , .  . . , P I  about which we only know that 
they belong to some intervals P I ,  Pz, . . . , Pl. Moreover, 
these parameters have an associated quantifier Q E {V, 3). 
Taking into account the dual character of interval uncer- 
tainty, the most general definition of the set of solutions 
to such Quantified Constraint Satisfaction problem QCSP 
should have the form 

C = { z  € D I Q i ( p , , , P , , )  . . . Q i ( p , , , P , , ) C ( z ) } ,  (3) 

C = {z E D I C ( x )  i s  satisf ied}.  

where . Qi are logical quantifiers V or 3 (in this paper, only the 
case of universal quantifiers preceding the existential 
ones will he dealt). 
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. ( ~ 1 . ~ 2 , .  . . , P I }  is the set of parameters of the con- 
straints system considered, 
{ P I ,  P2,. . . , Pl} is a set of intervals containing the 
possible values of these parameters, . c< E C I  is a permutation of the numbers 1,. . . ,1. 

The sets of the form (3) will he referred to as quanti- 
fied solutions sets to the numerical quantified constraints 
satisfaction problem QCSP = (x ,D ,C(z ) ) .  

111. METHODOLOGY 

A. Set Inversion 
One way of solving a C S P  is through the 

characterization of its solution set by means of the 
Set lnversion (SI) approach. 

Let CSP he a constraint satisfaction problem 
CSP = (x: D, C(x)). Set inversion aims at characterizing 
the set C of all x such that C is satisfied. 

Remark: All constraints are considered under the form 
C(x) := f (x) = 1. where f a continuous function from 
Rn to Rm.  

Given a box X (ca?esian product of intervals), an 
algorithm which does set inversion is based on a branch- 
and-hound technique and the 3 followings set of rules: 

Rule 1 : V(a, X)C(x) q X i C 

This logic formula, used to prove that a box X is contained 
in the solution set, is equivalent to the following interval 
computation and interval inclusions 

O u t ( f ( X ) )  G y ,  

where f (X) are the ranges of the function components 
over the interval vector X and O u t ( f ( X ) )  are outer 
approximations of f  (X). 

Rule 2 : V(z, X)-C(z) @ X LE. 
This logic formula, used to prove that a box X does not 
belongs to the solution set, is easily proved by means of 
the following interval computation and interval inclusions 

O u t ( f ( X ) )  G T .  

Finally, if Rule 1 and Rule 2 are not accomplished the 
position of the box X is undefined. 

Rule 3 : Otherwise, X i s  undefined. 

Fig. 1 shows a two dimensional example of the three 

Then the algorithm which does set inversion is as follows 

where . c: SI stops the bisecting procedure over X when this 

possible situations corresponding to the 3 rules. 

precision is reached, 

TABLE 1 
SI ALGORITHM 

~ i g ~ l i ~ l m  sr(Ln: c, xo, e ,  out: E-, AX) - 

I )  Initialization: Stack=Xo;C- := 0 A Z  := 0 
2) Repeat 
1) llnrtack X: ~~~~~~~~~~ ~ 

4) if with(xj 5 e ,  then AX := ac U x, 
5) 
6 )  

else if Rule 1 is satisfied, then C- := C- U X, 
else If Rule 2 is satisfied, then X is non solution, 

7) 
8) Until Stack=0 

else Bisect X and stack resulting boxes; I 
. E-: Subpaving (list of nonoverlapping boxes) repre- 

senting an inner approximation of the solution set, . AX: Subpaving representing all the boxes for which 
nothing could he proved. 

These suhpavings provide the following bracketing of the 
solution set: 

e- c c c e- unc 

B. Quanrified Set Inversion via Modal Interval Ana/ysix 

Classical SI is well suited characterizing solution sets 
of the form (2). The problem arises when the sets are of 
the form (3). Several authors have proposed solutions to 
this problem using classical interval analysis and constraint 
propagation approaches [16], 121, [24]. In this section, 
a new algorithm for the characterization of quantified 
solution sets based on Modal Interval Analysis ( M A )  
[IO] is presented. This algorithm will he referred to as 
Quantified Set Inversion (esp. 

Let us consider the case when the constraints are under 
the form C(x) := f ( x )  0, with f a continuous function 
from Rn to E. 

The main difference between the classical SI Algorithm 
and the quantified one lies on the used set of rules. For the 
proposed algorithm the following rules will be used: 

< 

Fig. 1. Solution s a  
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Rule 1 : v (z ,  X)V(PU,  P u ) ~ ( P E ,  P E )  C ( z )  * 
x i E. 

This logic formula, used to prove that a box X belongs 
to the solution set. can not he easily proved by means of 
classical interval computations. For this reason, M I A  is 
proposed. M I A  is a powerful mathematical tool which 
allows the evaluation of quantified interval formulas by 
means of interval computations. Concretely, to evaluate the 
set of logic formulas, the *-semantic theorem given by 
M I A  is used to reduce equivalently the logical formula 
to the interval inclusion 

OUt(r’(X.PU,PE)) i Z. 
where X, Po are proper intervals, PE improper one, 
O u t ( J * ( X ,  P o ,  P E ) )  is an outer approximation of the 
the *-semantic extension of the continuous function f and 
Z = [O,O], Z = [-w,O] or 2 = [O,ca] depending on if 
the constraints are under the form C ( x )  := f ( x )  = 0. 
C ( x )  := f ( z )  < 0 or C ( x )  := f(z) > 0, respectively. 

Remark A modal interval X is defined as a couple 
X = (X’,V) or X = (X’ ,3)  where X’ is its classic 
interval domain, X’ E I@) ,  and the quantifiers ‘d and 3 
are a selection modality The modal intervals of the type 
X = ( X ’ , E )  are called proper intervals or exisrenriul 
intervals, the intervals of the type X = (X’,V) are called 
impmper intervals or universal inrelvals. A modal interval 
can be represented using their canonical coordinates in the 
form { ([a,b]’,3) i f a < b  

([b,a]‘,V) if a 2 b 
X = [a, b] = 

For example, the interval [2,5] is equal to ([Z, 5 ] , 3 )  and 
the interval [8,4] is equal to ([418],V). 

In order to obtain the second rule, used to prove that a 
box X does not belongs to the solution set, the following 
implication is used: 

Rule 2 : 

This logical formula is, analogously, equivalent to the 

- ( ~ ( P u ,  P u ) ~ ( P E ,  P E ) ~ ( x , X )  C ( x ) )  * 
x c E. 

following interval exclusion: 

IMfYx, Pu,  P E ) )  P Z, 

where PO is a proper interval, X ,  PE improper ones, 
I n n ( f ’ ( X , P u , P E ) )  is an inner approximation of the 
the *-semantic extension of the continuous function f ,  and 
Z = [O,O],  2 = [-w,O] or Z = [0, 001 depending on 
if the constraints are under the form C ( x )  := f(r)  = 0, 
C(r)  := f ( z )  < 0 or C ( z )  := f ( z )  > 0, respectively. 

Finally, if none of these rules are accomplished, the box 
X is undefined. 

Rule 3 : otherwise, X is undefined 

Computing the semantic extension of a continuous 
function f by means of any of their interpretable rational 
extensions provokes an overestimation of the interval 
evaluation, due to the multi-occurrences of variable, when 
the rational computations is not optimal. An algorithm, 
based on results of M I A  and branch-and-hound 
techniques which allows to efficiently compute an inner 
and an outer approximation o f f ‘  has been recently built. 

When the constraints are under the form C ( x )  := 
f (x) >= 0, with f a continuous function from B” to Wm 
and each variable existentially quantified appears in only a 
component function, the problem is reduced to m different 
problems, one for each component function. 

< 

IV. APPLICATION 

Interval model based techniques, like robust control [26], 
(171, [301, [151 or robust fault detection [I], requires from 
a well knowledge of the process model to he treated. This 
section describes an application of the QSI algorithm 
which consists on identifying on a guaranteed way 1311 the 
parameter of a nonlinear model. 

A. Parumerer Identification 
The problem treated in this section is a well known 

problem of the literature. It has been taken from [16], 
which at the same time has been inspired from 1231. 

B. Pmblem Srutement 

by two main characteristics: 
The present problem of parameter identification is defined 

i. The process model A nonlinear process which de- 
pends on the variable t and two parameters x1 and x2 
is used. The theoretical model of the process is: 

y ( x .  t )  = 20exp(-z1t)  - 8exp(-xz t )  

ii. The eonctraints to he satisfied The constraints im- 
posed by the system are: 

y ( x :  t i )  E K,t i  E T,, vz E 1, I . . , l o ,  

where Y, corresponds to the uncertainty associated 
to the measure yi and Ti represents the uncertainty 
associated to the measurement time t i .  

Table ll shows the uncertainty associated to y and t. 
Fig. 2 is a graphic representation of the unceaainty 

rectangles associated to the vectors t and y of the table 
n. 

The accepted parameter set is defined by 
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TABLE II 
UNCERTAINTY ASSOCIATED TO t AND y 

I i II T. ". I 

12 

4 2 

0 

Fip. 3. Pavings generated by QSZ algoriuUn 

Grouping the existential quantifiers and expressing it under 
a vectorial form 

which is implied by the following exclusion test 

E =  {Z E X13t E T,3y EY,y(z,tj  - y  = 0) .  
I..(f:(xl, XZ, Ti, Y, j j g [O,O], 

For one sample i ( i  = ( 1 , .  . . ,lo}), the logic formula 
which fulfils the points belonging to the solution set Ci is with XI, X,, Ti and Y,  improper intervals. 

~~ 

~(xl,x:)~((zZ,~~)3(~l,T!)3(2/2, "&,ti) - vi = 0 

which is equivalent to the following inclusion test 

Out ( f : (X i ,Xz .  Ti, Y,)) C [0,01, 

with XI and XZ proper intervals and T; and 
ones. 

improper 

The logic formula which fulfils the points not belonging 
to the solution set Ci is 

.4 -2 I 
I 

0 5 10 15 20 25 't 

Fig. 2.  Graphic representation of the uncnWinry associated 10 the veclors 
t m d y  

Then. 

c = xi n . . . n cl0. 

C. Test Case 

For X = [0,1.2] x [0,0.5] and a precision of e = 0.01. 
QSZ generates in 20 seconds on a Peutium llI lGHz, the 
paving of fig. 3. 

where the darker region corresponds to the solution set 
C, the grey region corresponds to the non solution set E 
and the white region is undefined. 

D. Analysis of the Results 

Comparing the obtained results with the ones obtained 
by other existing algorithms [161, [19], for which an 
efficient implementation [22] exists for the second one, it 
can be said that any relevant difference can be observed 
in terms of the solution and computational performances. 
However, the method proposed in 1191 should be better 
in terms of computational complexity for a higher order 
problem (e.g. more parameter to identify) due to the use 
of constraint propagation techniques [SI, 1211. 

The main difference between the presented algorithm 
and the mentioned ones does not lie on the computational 
complexity but on the conceptual complexity. While in the 
Q S l  algorithm the set tules used to prove if a box X is 
inside or not from the solution set are achieved by means of 
simple interval computations provided by M A  the other 
algorithms needs from more complex strategies to carry on 
the same task. 
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V. CONCLUSIONS AND FUTURE WORKS 

A. Conclusions 

The contribution of this paper has been to introduce a 
new algorithm, based on M I A  and S I  techniques, for 
the characterization of solution sets defined by numerical 
QCSP. The applicability of the method to engineering 
problems has been shown by means of a well known 
problem of the literature on parameter identification. A 
comparison with other existing techniques has also been 
carried out concluding that the presented algorithm intro- 
duces more simplicity to the problem of characterizing the 
set defined by a QCSP. 

B. Future Works 

I )  Reducing the complexity via Constraint Propagation: 
In order to reduce the non polynomial complexity of the 
SI algorithm due to the branching, a narrowing operator 
(a contractor) for quantified constraints will be provided. 
This contractor, based on constraint propagation techniques 
and M I A ,  allows the contraction of an initial box X 
containing the solution set C to another one X' such that 
X' still contains E. 
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