Examen localisation, ENSTA-Bretagne, ENSI 2. 13 janvier 2015,

Polycopié et notes manuscrites autorisés. Calculatrice interdite. Durée: 1h15.

Exercise 1. We consider two random variables a, b of \mathbb{R} that are independent and centered (i.e., $\bar{a} = \bar{b} = 0$). Their variance is $\Gamma_a = E((a - \bar{a})^2) = 1$ et $\Gamma_b = E((b - \bar{b})^2) = 4$. Define c = 2a - 3b + 4.

- 1) Give the expected value \bar{c} and the variance Γ_c of c.
- 2) Define the random vector $\mathbf{x} = (a, b, c)^T$. Give the expected value $\bar{\mathbf{x}}$ and the covariance matrix $\mathbf{\Gamma}_{\mathbf{x}}$ for \mathbf{x} .

Exercise 2. We consider the model

$$y(t) = p_1 t^2 + p_2 t + p_3 \cdot t^2 (t - 1) + \beta(t)$$

where $\mathbf{p} = (p_1, p_2, p_3)$ is the parameter vector and β is a white noise, centered and with a variance $\Gamma_{\beta} = 4$. At different times t, we collect the measurements y(t) as given by the following table:

t	-1	0	1	2	3
y	4	2	-1	3	5

- 1) Give an expression of the least-square estimation of the parameters p_1, p_2, p_3 . Give the value of the matrices involved in your calculus.
- 2) We assume that the prior values for the parameters is $p_1 = p_2 = p_3 = 0$ with a covariance matrix equal to $10^4 \cdot \hat{I}$ where I is the identity matrix. Using a linear unbiased orthogonal estimator, provide an expression of the estimation $\hat{\mathbf{p}}$ of \mathbf{p} and provide the associated covariance matrix. If you prefer, you can also write directly the MATLAB code.
- 3) Assume that you can use the MATLAB function
 [xhat1,Gx1]=kalman(xhat,Gx,u,y,Galpha,Gbeta,A,C);

as seen in the lesson. Write a small Matlab program which provides in one step an estimation of \mathbf{p} , with the associated covariance matrix.

4) Answer once more to Question 3, but now, in 5 steps (since we have 5 measurements).

Correction of Exercise 1

1) We have $\bar{c} = 2\bar{a} - 3\bar{b} + 4 = 4$ and

$$\Gamma_c = E((c - \bar{c})^2) = E((2a - 3b)^2) = 4E(a^2) + 9E(b^2) + 12E(a \cdot b) = 4 + 36 = 40.$$

2) Since $E((a - \bar{a})(c - \bar{c})) = E(a(2a - 3b)) = 2$ and

$$E((b - \bar{b})(c - \bar{c})) = E(b(2a - 3b)) = -3E(b^2) = -12.$$

We have:

$$\bar{\mathbf{x}} = \begin{pmatrix} 0 \\ 0 \\ 4 \end{pmatrix} \text{ and } \Gamma_{\mathbf{x}} = \begin{pmatrix} 1 & 0 & 2 \\ 0 & 4 & -12 \\ 2 & -12 & 40 \end{pmatrix}.$$

Correction of Exercise 2. 1) We have

$$\begin{pmatrix}
4 \\
2 \\
-1 \\
3 \\
5
\end{pmatrix} = \begin{pmatrix}
1 & -1 & -2 \\
0 & 0 & 0 \\
1 & 1 & 0 \\
4 & 2 & 4 \\
9 & 3 & 18
\end{pmatrix} \mathbf{p} + \beta.$$

For a least-square estimation, the MATLAB code is the following

2) The Matlab code is the following. GO = 10000 * eye(3,3); pO = [0;0;0];

$$\texttt{Gbeta} = 4 * \texttt{eye}(5,5); \ \texttt{S} = \texttt{C} * \texttt{G0} * \texttt{C}' + \texttt{Gbeta}; \ \texttt{K} = \texttt{G0} * \texttt{C}'/\texttt{S}; \ \texttt{ytilde} = \texttt{y} - \texttt{C} * \texttt{p0};$$

 $\mathtt{phat} = \mathtt{p0} + \mathtt{K} * \mathtt{ytilde}; \ \mathtt{Gp} = \mathtt{G0} - \mathtt{K} * \mathtt{C} * \mathtt{G0};$

We get the same value for $\hat{\mathbf{p}}$ as for Question 1.

3) We get
$$A = eye(3,3)$$
; $Galpha = 0 * eye(3,3)$; $u = 0 * p0$; $[phat, Gp] = kalman(p0, G0, u, y, Galpha, Gbeta, A, C)$;

The covariance matrix corresponds to Gp. The results are the same as for Question 2.

4) We have the following code:

$$\begin{split} & phat = [0;0;0]; \texttt{A} = \texttt{eye}(3,3); \texttt{Galpha} = \texttt{0} * \texttt{eye}(3,3); \\ & u = \texttt{0} * \texttt{p0}; \texttt{Gp} = \texttt{G0}; \texttt{Gbeta} = \texttt{4}; \\ & \texttt{for} \, \texttt{k} = \texttt{1} : \texttt{5}, \\ & [\texttt{phat}, \texttt{Gp}] = \texttt{kalman}(\texttt{phat}, \texttt{Gp}, \texttt{u}, \texttt{y}(\texttt{k}), \texttt{Galpha}, \texttt{Gbeta}, \texttt{A}, \texttt{C}(\texttt{k},:)); \\ & \texttt{end} \end{split}$$

The results are the same as for Question 3.