Examen kalman, ENSTA-Bretagne ENSI 2, épreuve de rappel

jeudi 27 mars 2014

La calculatrice est interdite, Seuls les polycopiés et vos notes de cours/td sont autorisés.

Responsable Luc Jaulin

On considère un robot décrit par les équations d'état suivantes

$$\begin{pmatrix} \dot{x}_1 \\ \dot{x}_2 \\ \dot{x}_3 \\ \dot{x}_4 \end{pmatrix} = \begin{pmatrix} x_4 \cos x_3 \\ x_4 \sin x_3 \\ u_2 \\ u_1 \end{pmatrix}.$$

Le vecteur (x_1, x_2) représente les coordonnées du centre du robot, x_3 est le cap du robot et x_4 sa vitesse. Le robot est entouré de 3 amers ponctuelles $\mathbf{m}(1), \mathbf{m}(2), \ldots$ dont les positions sont connues. Le robot mesure dans tous les cas l'angle δ_i (entre son cap et l'amer i) avec une grande précision. De plus, à chaque instant t, le robot mesure l'angle x_3 avec un grande précision. Il est aussi capable de mesurer sa vitesse x_4 avec une erreur de variance 1. Afin de se localiser, on souhaite utiliser un filtre de Kalman.

- 1) Faire un dessin illustrant la situation (avec les x_i et les δ_i).
- 2) Proposer un programme Matlab, utilisant un filtre de Kalman, qui calcule une estimation pour \mathbf{x} . Commenter votre programme.