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Disclaimer

This presentation
I borrows material from Magnus Egerstedt (Georgia Tech)
I comes from discussion with Julien Alexandre dit Sandretto, Emmanuel

Battesti, David Filliat, François Pessaux, Olivier Mullier.
I is based on some part of material produced by Julien Alexandre dit Sandretto

In other terms no much idea really comes from me :-)
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Introduction
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Goal try to understand main pieces of the system to validate their behavior and
the behavior of the overall system.
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Introduction - cont’

Heterogeneous components
System model of the vehicle, possibly with models of actuators

Various kinds of models more or less abstracted from the reality

Controller shall put the system into a given configuration (e.g., position,
orientation)
Many algorithms: PID, MPC, optimal controller, etc.

Sensor+fusion+analysis data centred algorithms to produce pertinent information
about the system, e.g., speed, position, etc.
Note: information may be incomplete/perturbed so need of
observer methods or filters

Trajectory planing from a given mission, try to compute a path (optimal or not)
Many possibilities: depending on the availability of a map or not, if
there are some obstacles (static or dynamic) and so on
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Cinematic of a Robot 2D

Various way of modelling the dynamic of a robot, mainly from Physics law, e.g.,
Newton 2nd law

Example of a differential drive robot

R

L

(x,y)

phi

ẋ = R
2 (vr + v`) cosφ

ẏ = R
2 (vr + v`) sinφ

θ̇ = R
L (vr − v`)
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Cinematic of a Robot 2D – abstraction
A common basis for a two wheel robots

ẋ = v cos(θ) (1)
ẏ = v sin(θ) (2)
θ̇ = ω (3)

with possible constraints
Unicycle v ∈ [−1, 1] and ω ∈ [−π, π]

Dubins v = 1 and ω ∈ [−π, π]

Note need of a relation between this abstraction and the more realistic model
(i.e., a link with actuators)

Example

vr = 2v + ωL
2R and v` = 2v − ωL

2R
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More abstracted dynamics in 2D

Some simpler models can also be used, in particular, during the trajectory
planning.

More precisely, the dynamics of particle is described by

ẋ = u

with x ∈ R2.

We assume hence that we can control directly the position and the speed of a
vehicle.

Note: u represents a trajectory that the particle has to follow
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A hierarchical control

path planing

motion planing

low-level control

I Path planing generates a set of way points (does not take into account the
dynamics of the vehicle) from a map (totally or partially) known, take into
account obstacles (static)

I Motion planing generates a set of trajectories feasible for the dynamics
considered and take into account obstacles (static and dynamic)

I Low-level controller tries to follow the (discretized) trajectory w.r.t. the
dynamic of the vehicle
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General scheme for algorithms

Controller or trajectory planner follow the main loop algorithm

while true do
read sensors
compute function with constraints/properties to respect
write output

done

Notes:
I read sensors: shall consider uncertainties or noise
I apply function: shall respect properties (as stability, real-time, etc.) but

properties differ between controller and trajectory planner
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Path planning

From a (discrete) map, i.e., a (weighted) graph,

Real word Topological map Occupancy grid

Goal generates path according to the mission and the initial starting point.

Properties (?)
I Prove the existence or not of a path w.r.t. some constraints, e.g., forbidden

area, check points, etc.
I Optimize criteria, e.g., time, fuel consumption, etc.

Algorithms A∗, RRT, Interval-based search, etc.
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Motion planing

Goal from a list of way points, generate trajectory that the vehicle can follow
while avoiding obstacles.

May use a simple model of dynamic such as a particle ẋ = u

Main behaviors that compose a motion planner
Go To Goal from a given initial position and a final position F , generates a

trajectory t for which the vehicle can reach F .
Obstacle avoidance the trajectory t shall avoid obstacles

Challenge: combine these behaviors to make the vehicle go to goal safely.
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Motion planing – Go to goal

A particle ẋ = u at position x shall reach position pg

x

pg

with
e = pg − x

then we can define a control such that

u = −Ke with K > 0
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Motion planing – Obstacle avoidance

A particle ẋ = u at position x shall avoid position po

x

po

with
e = x − po

then we can define a control such that

u = Ke with K > 0
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Motion planing – Combination of behaviors
A particle ẋ = u at position x shall reach position pg while avoid position po

pr

po pg

do

Note: different strategies can be used (hard vs blend behaviors)

ẋ = Kg (pr − x) ẋ = Ko(x − po)

do 6 ∆

do > ∆ + ε
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Motion planing – Combination of behaviors
A particle ẋ = u at position x shall reach position pg while avoid position po

pr

po pg

do

Note: different strategies can be used (hard vs blend behaviors)

With σ a blending function in [0, 1] we can define

ẋ = σ(do)Kg (pr − x) + (1− σ(do))Ko(x − po)

Note we can loose convergence

14 / 19



Motion planing – Combination of behaviors
An other solution of combine behaviors using sliding mode

pg pg

x
∆

Define a switching surface such that

g(x) = 1
2
(
‖ x − xO ‖2 −∆2) = 0

considering two functions:

f1 = Kg (pg − x)
f2 = KO(x − pO)
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Motion planing – Combination of behaviors

The induced mode is a convex combination such that

ẋ = 1
Lf2g − Lf1g

(Lf2g f1 − Lf1g f2)

with Lfg the Lie derivative of g along f i.e., ∂g
∂x f

∂g
∂x = (x − xO)T , Lf1g = Kg (x − pO)T (pg − x), Lf2g = Ko ‖ x − po ‖2

Note induced method can get rid of bump behavior
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Motion planing – Combination of behaviors

u = 0

ẋ = 1
Lf2g−Lf1g

(Lf2g f1 − Lf1g f2)

ẋ = Kg (pg − x)

ẋ = Ko(x − po)

g < 0g > 0

g = 0 ∧ Lf1g < 0 ∧ Lf2g > 0

g = 0 ∧ Lf1g < 0 ∧ Lf2g > 0

g > 0

g < 0

‖ xg − x ‖6 ε

Properties to prove (?): safety, no deadlock, reachability, etc.
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Connecting motion planing and low-level controller

Motion Low-level Robot

Way-points

(u1, u2) (v , ω) (v`, vr )

If the trajectory reference is given by u = (u1, u2) we know that

φd = tan
(

u1
u2

)
then

e′ = arctan 2(sin(e), cos(e)) with e = φd − φ
ω = PID(e′)

v =
√

u2
1 + u2

2

Properties to prove (?):
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Conclusion

I Presented a small example of autonomous vehicle
I Shew some algorithms in the control hierarchy

Next
I Instantiate on a more realistic vehicle
I Define properties we wan/can prove
I Model this system in an appropriate language

Under development
I DynIBEX and contractor on tubes and predicate on tubes (Julien Alexandre

dit Sandretto)
I Extension to n-dimensional case of Dominique Monnet’s implementation for

viability computation (Olivier Mullier)
I Combining OpenSMT2 and DynIBEX ⇒ SMT modulo ODE (Robin Morier)
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