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62 avenue Notre Dame du Lac 49 000 Angers, France jaulin@univ-angers.fr

http://www.istia.univ-angers.fr/∼jaulin/

Abstract. This paper recalls that the problem of estimating the state
vector of a nonlinear dynamic system can be interpreted as a constraint
satisfaction problem over continuous domains with a large number (sev-
eral thousands) of variables and constraints. Consistency techniques are
then shown to be particularly efficient to contract the domains for the
variables involved. This is probably due to the large number of redundan-
cies naturally involved in the constraints of the problem. The approach is
illustrated on the estimation of the position of a satellite in orbit around
the earth.

1 Introduction

The problem of estimating the position of a satellite in orbit around the earth
is a problem of state estimation of a nonlinear dynamic system (see Section 3).
The aim of this paper is to show that basic consistency techniques working on
continuous domains [3], [4], [8], [7], [19] can be particularly efficient to solve this
problem.

Most of the existing methods for state estimation compute their solutions
on a linear approximation of the dynamic system ([13], [17], see also [15] in the
context of localization). These methods are very efficient. The results obtained
are solutions of the linear approximation and are expected to be also an ap-
proximation of the solution of the initial nonlinear problem. This is usually false
when strong nonlinearities are involved. Some interval methods (but without
propagation) have also been proposed in the context of state estimation (see,
e.g., [14]) but, to get an acceptable accuracy, a large number of bisections have
to be performed, making the approach limited to low dimensional problems.

As linearization approaches, consistency techniques also compute an approx-
imation of the solutions of the nonlinear problem. But their results are correct
(i.e., no solution is lost) and are not sensitive to strong nonlinearities or nondif-
ferentiabilities in the dynamic system.

One of the main critic that can be done to consistency techniques is that they
compute a superset of all solutions of the problem that may be huge even if the
solution set is small. For state estimation, this pessimism is limited by presence of
a large number of redundant constraints and the treatment of difficult nonlinear
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state estimation problems can thus be considered. This can help to popularize
consistency techniques. Note that some interesting results have already been
obtained by consistency methods for the state estimation of a mobile robot in
[12] or for the localization of a car in [2].

In Section 2 state estimation is shown to be a constraint satisfaction problem
with many variables taking their values in the set of real numbers R. In Section
3, the obtention of the state equations of the satellite is presented in details. A
resolution of the localization problem is performed by the solver RealPaver
[6] in Section 4. Section 5 presents some possible improvements to increase the
efficiency of consistency techniques.

2 State estimation is a constraint satisfaction problem

A huge class of dynamic systems can be described, after discretization of the
corresponding differential equation, by the following equations:

{
x(k + 1) = f(x(k),w(k),u(k))
y(k) = g(x(k)). (1)

See Figure 1 for an illustration.

– k ∈ [0, kmax] is an integer which corresponds to discrete time. If t is the
continuous time, we have the relation t = kδ where δ is the sampling time.

– u(k) ∈ R
nu is the input vector at time k. It can be chosen arbitrarily and is

assumed to be known exactly.
– y(k) ∈ R

ny is the output vector at time k. It is measured with a given
precision depending on the sensors used, i.e., for each components yi(k) of
y(k) a bounding interval [yi](k) is available.

– x(k) ∈ R
nx is the state vector at time k. It can be assimilated to the memory

of the system. It cannot be measured directly and nothing is known about
it. State estimation aims at estimating its value, for all k.

– w(k) ∈ R
nw is the perturbation vector at time k. It is unknown but bounded.

Its components can usually be assumed to belong to a small interval [wi](k)
containing zero. This vector takes into account unmodeled dynamics of the
actual plant (relativist effects, . . . ), unknown inputs (wind, . . . ) or an error
due to the discretization procedure.

– The first equation x(k + 1) = f(x(k),w(k),u(k)) is called the evolution
equation and describes the evolution of the system. Its form shows that the
future of the system depends only of the state vector x(k) at the current
time k and the present and future inputs u(k),u(k + 1), . . . and pertur-
bations w(k),w(k + 1), . . . Thus, the vector x(k) summarizes everything
that happened to the system in the past and that may influence the future
behavior of the system.

– The second equation y(k)= g(x(k)) is the observation equation. Each output
yi(k) is a function the state vector at time k.
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Remark 1. In practice, it is impossible to give a reliable measure of the error
between the actual plant and the unperturbed model obtained by assuming that
w(k) = 0 in (1). Thus the domains [wi](k) chosen for the perturbation variables
are not guaranteed to contain the true values for wi(k). The results obtained by
a reliable method may thus be unreliable. When no solution exists for our state
estimation problem, we are certain that too optimistic bounds have been chosen
for wi(k). The associated domains should then be enlarged (see Section 5).

Fig. 1. Illustration of a discrete-time dynamic system

Our problem can be represented (see [12]) by a constraint satisfaction problem
(CSP) where the set of (kmax + 2) nx + (kmax + 1) (nw + ny) variables is

V = {x1(0), . . . , xnx(0), x1(1), . . . , xnx(1), . . . ,
. . . , x1(kmax + 1), . . . , xnx(kmax + 1),
w1(0), . . . , wnw(0), w1(1), . . . , wnw(1), . . . ,
. . . , w1(kmax), . . . , wnw(kmax),
y1(0), . . . , yny(0), y1(1), . . . , yny(1), . . . ,
. . . , y1(kmax), . . . , yny(kmax)},

(2)

the set of domains is

D = {[x1] (0), . . . , [xnx ] (0), [x1] (1), . . . , [xnx ] (1), . . . ,
. . . , [x1] (kmax + 1), . . . , [xnx ] (kmax + 1),
[w1] (0), . . . , [wnw ] (0), [w1] (1), . . . , [wnw ] (1), . . . ,
. . . , [w1] (kmax), . . . , [wnw ] (kmax),
[y1] (0), . . . ,

[
yny

]
(0), [y1] (1), . . . ,

[
yny

]
(1), . . . ,

. . . , [y1] (kmax), . . . ,
[
yny

]
(kmax)},

(3)

and the set of (kmax + 1) (nx + ny) constraints is

C = {x1(1) = f1 (x1(0), . . . , xnx(0), w1(0), . . . , wnw(0), u1(0), . . . , unu(0)) ,
. . . ,
xnx(1) = fnx (x1(0), . . . , xnx(0), w1(0), . . . , wnw(0), u1(0), . . . , unu(0)) ,
y1(0) = g1 (x1(0), . . . , xnx(0)) , . . . ,
yny(0) = gny (x1(0), . . . , xnx(0)) ,

... },
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where f1, . . . , fnx and g1, . . . , gny are the coordinate functions associated with f
and g. Note that since the ui(k) are assumed to be exactly known, they have
not been considered as a variable of the CSP. In our formulation, it as been as-
sumed that for all k, domains [xi] (k), [wi] (k) and [yi] (k) containing the variables
xi(k), wi(k) and yi(k) are available. This is true for the measured outputs yi(k),
this is also true for the bounded perturbations wi(k), but nothing is known about
the values of the values of the state variable xi(k). Therefore, the corresponding
domains should be taken as [xi] (k) =] −∞,∞[.

3 Formulation of satellite localization’s problem

As an application, consider the satellite, with coordinates (x1, x2) in orbit around
the earth as illustrated on Figure 2.

Fig. 2. Earth at coordinate (0, 0) and the satellite at coordinate (x1, x2)

Newton’s universal law of gravitation states that the earth exerts a gravita-
tional force f of attraction on the satellite. The direction of f is along the unit
vector u directed by the line joining the two objects. The magnitude of the force
is proportional to the product of the gravitational masses of the objects, and
inversely proportional to the square of the distance between them. We have

f = −G
Mm

x2
1 + x2

2

u, (4)
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where M is the mass of the earth, m is the mass of the satellite and G =
6.67x10−11Nm2kg−2 is the Newton’s constant. Since

u =
1√

x2
1 + x2

2

(
x1

x2

)
, (5)

we have

f = −G
Mm√

x2
1 + x2

2

3

(
x1

x2

)
. (6)

Now, from the Newton’s second law, we have

f = m
dv
dt

= m

(
ẍ1

ẍ2

)
. (7)

where v is the velocity of the satellite. Thus
(

ẍ1

ẍ2

)
= −G

M√
x2

1 + x2
2

3

(
x1

x2

)
(8)

Set α = GM , then 


ẍ1 = − αx1√
x2
1+x2

2
3

ẍ2 = − αx2√
x2
1+x2

2
3

(9)

For simplicity, we shall assume that α = 1. To obtain a first order equation (to
get state equations), we have to introduce two other variables x3 and x4 which
satisfy {

ẋ1 = x3

ẋ2 = x4
(10)

Then we have the following continuous state equations:



ẋ1 = x3

ẋ2 = x4

ẋ3 = − x2√
x2
1+x2

2
3

ẋ4 = − x1√
x2
1+x2

2
3

(11)

In practice, we are not able to measure the state directly. Instead, we shall
assume that we are able to measure three quantities:

– y1 : the angle between the direction satellite and a fixed direction (here, we
took the tangent y1 of the angle to get polynomial relations);

– y2 : the radius speed of the satellite (which is equal to zero if the distance
between the satellite and the earth remains constant). This can be done
by the Doppler shift method which applies to electromagnetic waves in all
portions of the spectrum. Radiation is blueshifted when the satellite moves
away, and is redshifted when it comes near the earth;
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– y3 : the distance between the satellite and the earth.

The observation equations can thus be described by:



y1 = x2/x1

y2 = x1x3 + x2x4

y3 = x2
1 + x2

2

(12)

In order to get discrete-time state equation, a discretization of the continuous
state equation (11) should be performed. Using a first order approximation:

x(t + δ) 
 x(t) + δf (x (t)) , (13)

where the sampling time is taken as δ = 0.5 sec, from (11) and (12), we get:




x1(k + 1) = x1(k) + 0.5 x3(k) + w1(k)
x2(k + 1) = x2(k) + 0.5 x4(k) + w2(k)
x3(k + 1) = x3(k) − 0.5 x1(k)√

x2
1(k)+x2

2(k)
3 + w3(k)

x4(k + 1) = x4(k) − 0.5 x2(k)√
x2
1(k)+x2

2(k)
3 + w4(k)

y1(k) = x2(k)/x1(k)
y2(k) = x1(k)x3(k) + x2(k)x4(k)
y3(k) = x2

1(k) + x2
2(k)

(14)

Here, we have added perturbation variables w1, w2, w3 and w4 to take into
account errors due to the discretization procedure and other unmodeled dy-
namics (presence of other planets, tide effects, ...). Note that it is impossi-
ble in practice to find rigorous bounds for wi. For our example, we shall take
[wi](k) = [−0.01, 0.01]. For the output, the sensors are usually capable of giving
rigorous intervals for the actual output yi(k). Here, we shall assume that the
domains [yi(k)] for yi(k) is given by [y̌i(k) − 0.1, y̌i(k) + 0.1], where y̌i(k) is the
measure (i.e., an approximation) of yi(k).

Again, the formulation of our system is a constraint satisfaction problem.
For kmax = 200, the set of 2215 variables is

V = {x1(0), x2(0), x3(0), x4(0), . . . , x1(201), x2(201), x3(201), x4(201),
w1(0), w2(0), w3(0), w4(0), . . . , w1(200), w2(200), w3(200), w4(200),
y1(0), y2(0), y3(0), . . . , y1(200), y2(200), y3(200)},

(15)

the set of domains is

D = {] −∞,∞[, ] −∞,∞[, . . . , ] −∞,∞[,
[−0.01, 0.01], [−0.01, 0.01], . . . , [−0.01, 0.01],
[y̌1(0) − 0.1, y̌1(0) + 0.1], . . . , [y̌3(200) − 0.1, y̌3(200) + 0.1]}.

(16)

The set of 1407 constraints of the CSP is given by the state equations given in
formula (14).
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Remark 2. The measurements y̌i(k) have been generated by simulation (with
(14)) with the following initial conditions

x(0) = (4, 0.5, −0.2, 0.5)T.

Note that other initial conditions could have lead to the same measures. This is
the case for the initial vector

x′(0) = (−4, −0.5, 0.2, −0.5)T.

The fact that different initial solutions can generate the same measurements
(even in a noise-free context) is known as an identifiability problem [20]. There-
fore, even without noise we will never be able to compute the initial conditions in
a unique way. To avoid this identifiability problem we shall restrict the domains
for x1(0), x2(0), x3(0) and x4(0) to [0,∞[, [0,∞[, ]−∞, 0] and [0,∞[, respectively.

Remark 3. Although the CSP described above contains 1407 constraints for 2215
variables, it can be considered as redundant. This is due to the fact that many of
these variables (here exactly 1407 : the measurements yi(k) and the perturbation
wi(k)) have small domains and can thus be considered as approximately known.

4 Resolution

The contraction of the domains have been performed by the solver RealPaver
by using a basic local consistency method. Some lines of the program accepted
by RealPaver are given by:

Bisection none;
x1_0 in [0,+oo[,
x2_0 in [0,+oo[,
x3_0 in [-oo,0[,
x4_0 in [0,+oo[,
w1_0 in [-0.01,0.01],
w2_0 in [-0.01,0.01],
w3_0 in [-0.01,0.01],
w4_0 in [-0.01,0.01],
y1_0 in [0.107329,0.307329],
y2_0 in [-0.71049,-0.51049],
y3_0 in [16.117,16.317],
x1_1 in ]-oo,+oo[,
x2_1 in ]-oo,+oo[,
x3_1 in ]-oo,+oo[,
x4_1 in ]-oo,+oo[,
...
w1_200 in [-0.01,0.01],
w2_200 in [-0.01,0.01],
w3_200 in [-0.01,0.01],
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w4_200 in [-0.01,0.01],
y1_200 in [-2.42001,-2.22001],
y2_200 in [-0.925105,-0.725105],
y3_200 in [136.612,136.812],
x1_201 in ]-oo,+oo[,
x2_201 in ]-oo,+oo[,
x3_201 in ]-oo,+oo[,
x4_201 in ]-oo,+oo[;

Constraints

x1_1=x1_0+0.5*x3_0+ w1_0,
x2_1=x2_0+0.5*x4_0+ w2_0,
x3_1=x3_0-0.5*x1_0/(sqrt(x1_0^2+x2_0^2))^3+w3_0,
x4_1=x4_0-0.5*x2_0/(sqrt(x1_0^2+x2_0^2))^3+w4_0,
y1_0=x2_0/x1_0,
y2_0=x1_0*x3_0+x2_0*x4_0,
y3_0=x1_0^2+x2_0^2,
...
x1_201=x1_200+0.5*x3_200+ w1_200,
x2_201=x2_200+0.5*x4_200+ w2_200,
x3_201=x3_200-0.5*x1_200/(sqrt(x1_200^2+x2_200^2))^3+w3_200,
x4_201=x4_200-0.5*x2_200/(sqrt(x1_200^2+x2_200^2))^3+w4_200,
y1_200=x2_200/x1_200,
y2_200=x1_200*x3_200+x2_200*x4_200,
y3_200=x1_200^2+x2_200^2;

The whole program can be downloaded at http://www.istia.univ-angers.fr/˜jaulin/satellite.txt.
On a Pentium 300, RealPaver returns the following lines

x1_0 in [3.8914121266466 , 4.017994154622222]
x2_0 in [0.4176613721408529 , 0.9567337119326976]
x3_0 in [-0.4113978603389778 , -0.1470621703041645]
x4_0 in [0.2009142731412085 , 0.9312204034312483]
y1_0 in [0.107329 , 0.2536019303090482]
y2_0 in [-0.7104900000000001 , -0.51049]
y3_0 in [16.117 , 16.317]

...
x1_200 in [4.385557786959884 , 4.885898743627584]
x2_200 in [-10.84674406984067 , -10.61309370002079]
x3_200 in [-0.1485890863687774 , +0.541771027979396]
x4_200 in [-0.0002353318428811776 , +0.3258643220373622]
y1_200 in [-2.42001 , -2.22001]
y2_200 in [-0.9251050000000001 , -0.725105]
y3_200 in [136.612 , 136.812]

...
END OF SOLVING
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Property: reliable process (no solution is lost)
Elapsed time: 810 ms

Figure 3 represents the actual values for the positions (x1(k), x2(k)) for the
satellite and for k ∈ [0, 200] that have been obtained by a simulation.

Fig. 3. Actual position of the satellite for k varying from 0 to 200

Figure 4 represents the boxes [x1](k)× [x2](k). This figure is consistent with
the fact that for all k, the actual position vector (x1(k), x2(k)) obtained by the
simulation is an element of the box [x1](k)× [x2](k). For some k, the approxima-
tion obtained is too rough. This is probably due to the fact that in the associated
regions for the satellite, the measures are not informative enough and that the
local consistency used is not strong enough to get an accurate enclosure for the
state vector.

Figure 5 (left) represents the computing time (tc) of RealPaver for different
kmax. The right part represents tc/kmax with respect to kmax. These experimental
results suggest that the complexity of the local consistency algorithm used by
RealPaver could be quadratic with respect the number of variables. Note that
when kmax = 800, the CSP treated by RealPaver is huge since it contains 8815
variables for 5607 constraints. To my knowledge, such a huge CSP related to an
application has never been treated before.

Remark 4. The constraint graph has here a rather uncommon structure (stud-
ied in [11]) which is not taken into account by RealPaver. A more efficient
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Fig. 4. Set of boxes generated by Realpaver containing the actual positions for the
satellite for different k in [0, 200]

Fig. 5. Left: computing time tc (in ms) with respect to kmax ; Right, tc/kmax with
respect to kmax
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approach would be to alternate a forward and a backward propagation until a
fixed point is reached. This approach has been presented in [10].

5 Possible improvements

5.1 Using linear consistencies

The contraction method used for the localization of the satellite is based on
hull consistency. Now, hull consistency is local (it considers the constraints in-
dependently) and pessimism exists when a variable occurs more than once in a
constraint (due to the dependency problem). This pessimism can be reduced by
using box-consistency [1]. More global (i.e., taking the dependency between two
or more constraints into account) consistency approaches can also be considered
[16], [18], but most of them are very sensitive to the number of variables which
is very high for state estimation problems.

Now, for most state estimation problems, it is always possible to find large
subnetworks of the associated problem which involve only linear constraints. The
domains for the variables of the linear subnetworks can then be contracted by
linear techniques and propagated back to the original CSP. This is illustrated
by the following example

Example 1. Consider the example of a polynomial CSP, inspired by our satellite
localization problem, with 7 variables and 3 constraints given by

C :




x′
1 = x1 + x3

x′
2 = x4

x′
3 = x3 − x1√

x2
1+x2

2
3

(17)

This set of constraints can be decomposed into the 8 following primitive con-
straints:

Cp :




x′
1 = x1 + x3

x′
2 = x4

x′
3 = x3 − z5

z1 = x2
1

z2 = x2
2

z3 = z1 + z2

z4 = z
−3/2
3

z5 = x1z4

(18)

Assume that all domains of the nonlinear variables of Cp are included in ]0,∞[.
If this is not the case, the constraint involving a variable that may be negative
should be removed. Then Cp can be decomposed as follows:

C1 :




x′
1 = x1 + x3

x′
2 = x4

x′
3 = x3 − z5

z3 = z1 + z2

C2 :




ẑ1 = log(z1)
ẑ2 = log(z2)
ẑ4 = log(z3)
ẑ5 = log(z4)
x̂1 = log (x1)
x̂2 = log (x2)

C3 :




ẑ1 = 2x̂1

ẑ2 = 2x̂2

ẑ4 = − 3
2 ẑ3

ẑ5 = x̂1 + ẑ4

(19)
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A linear solver can thus be used to contract optimally C1 and C3. A local con-
sistency technique is here optimal for C2. The resulting contraction can then be
used to contract the original CSP (17).

5.2 Tuning the initial size for the domains

In practice, an efficient contraction method is needed but global consistency is
not always desirable. Indeed, our model is only an approximation of the reality
and ignores many unknown effects. As a result, the solution set of the CSP is
often empty and global consistency would result in a loss of any information we
had about the position of the satellite. A possible way to keep a satisfactory
result is to use a parameter β to tune the size of the perturbation and output in-
tervals. This parameter is decreased until the envelope generated by our favorite
contraction method is accurate enough. For our satellite problem, the following
algorithm can be chosen.

1. β = β0, � = 1;
2. for i ∈ {1, 2, 3, 4}, k ∈ {0, . . . , 200}, [wi(k)] = [−0.01β, 0.01β];
3. for i ∈ {1, 2, 3}, k ∈ {0, . . . , 200}, [yi(k)] = [y̌i(k) − 0.1β, y̌i(k) + 0.1β];
4. S (�) = approximation of the solution set of the CSP obtained by the avail-

able consistency method;
5. if S (�) = ∅, � = � + 1; decrease β, go to 2;
6. else return S (� − 1); END;

In this algorithm, β0 is large enough to make to CSP satisfiable at the first
step. This algorithm

– never returns the empty set. This is important for the engineer, who often
needs a punctual estimation of for state vectors in order to take his decision,

– can tackle nonlinear constraints much more easily than most existing meth-
ods which are not based on consistency algorithm,

– can produce a result with an accurate approximation in a short time, de-
pending on the consistency used.

Of course, the algorithm is not anymore correct but the correctness is not
as fundamental for engineer: since many unknown effects (relativity, presence of
other planets, shape of the earth, ...) are always neglected in the equations, the
model is never correct. However, I believe that the above algorithm may often
produce more correct results than most existing nonlinear approaches which are
generally based on the linearization of the equations of the dynamic system.

6 Conclusion

In this paper, consistency techniques have been used to deal with the difficult
problem of nonlinear state estimation which has been recalled to be a constraint
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satisfaction problem with continuous variables. The large number of measure-
ments that can generally be performed on the dynamic system introduces many
redundancies which benefit to constraint propagation methods. Moreover, since
in practice bounds of some variables can be violated and since many other un-
known effects of the dynamic system are neglected, the solution set of the CSP
to be solved is generally empty. The pessimism of consistency methods may thus
counterbalance the fact that no solution exists. An elementary algorithm to tune
the balance parameter β has been proposed to give satisfaction to engineers who
need a reasonably small (but nonempty) envelope for the state vectors to the
detriment of the correctness of the results.

The approach presented here has supposed that the dynamic system was
described by a discrete-time state equation. Now, in practice, the system is
described by nonlinear differential equations. The discretization procedure adds
some errors that could be avoided. An efficient approach working directly on the
differential equation could be obtained by combining the approach presented in
[5] with that in [9].
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232–238

17. Ljung, L.: Asymptotic Behavior of the Extended Kalman Filter as a Parameter
Estimator for Linear Systems. IEEE Transactions on Automatic Systems, 24, (1979)
36–50

18. Sam-Haroud, D.J., Faltings, B.: Consistency Techniques for Continuous Con-
straints. Constraints, 1(1-2), (1996) 85–118

19. VanEmden, M.: Algorithmic Power from Declarative Use of Redundant Con-
straints. Constraints, 4(4), (1999) 363–381

20. Walter, E.,Identifiability of state space models, Springer-Verlag, Berlin, Germany,
(1982)


