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Chapter 1

Introduction

Biological, economic, and other mechanical systems surrounding us can often be described by a

di�erential equation such as:{
ẋ(t) = f(x(t),u(t))

y(t) = g(x(t),u(t))

under the hypothesis that the time t in which the system evolves is continuous [1]. The vector u(t)

is the input (or control) of the system. Its value may be chosen arbitrarily for all t. The vector

y(t) is the output of the system and can be measured with a certain degree of accuracy. The vector

x(t) is called the state of the system. It represents the memory of the system, in other words the

information needed by the system in order to predict its own future, for a known input u(t). The �rst

of the two equations is called the evolution equation. It is a di�erential equation which enables us to

know where the state x(t) is headed knowing its value at the present moment t and the control u(t)

which we are currently exerting. The second equation is called the observation equation. It allows us

to calculate the output vector y(t), knowing the state and the control at time t. Note however that,

unlike the evolution equation, this equation is not a di�erential equation since it does not involve

the derivatives of the signals. The two equations above form the state representation of the system.

It is sometimes useful to consider a discrete time k, with k ∈ Z, where Z is the set of integers. If,

for instance, the universe being considered is a computer, it is possible to consider that the time k

is discrete and synchronized to the clock of the microprocessor. Discrete-time systems often obey a

recurrence equation such as:{
x(k + 1) = f(x(k),u(k))

y(k) = g(x(k),u(k))

The �rst objective of this book is to understand the concept of state representation through numerous

exercises. For this, we will consider, in Chapter 2, a large number of varied exercises and show how

to reach a state representation. We will then show, in Chapter 3, how to simulate a given system on

a computer using its state representation.

The second objective of this book is to propose methods to control the systems described by

state equations. In other words, we will attempt to build automatic machines (in which humans
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are practically not involved, except to give orders, or setpoints), called controllers capable of

domesticating (changing the behavior in a desired direction) the systems being considered. For

this, the controller will have to compute the inputs u(t) to be applied to the system from the (more

or less noisy) knowledge of the outputs y(t) and from the setpoints w(t) (see Figure 1).

Figure 1.1: Closed loop concept illustrating the control of a system

From the point of view of the user, the system, referred to as a closed-loop system, with input w(t)

and output y(t) will have a suitable behavior. We will say that we have controlled the system. With

this objective of control, we will, in a �rst phase, only look at linear systems, in other words when

the functions f and g are assumed linear. Thus, in the continuous-time case, the state equations of

the system are written as:{
ẋ(t) = Ax(t) +Bu(t)

y(t) = Cx(t) +Du(t)

and in the discrete-time case, they become:{
x(k + 1) = Ax(k) +Bu(k)

y(k) = Cx(k) +Du(k)

The matrices A,B,C,D are called evolution, control, observation and direct matrices. A detailed

analysis of these systems will be performed in Chapter 4. We will then explain, in Chapter 5, how

to stabilize these systems. Finally, we will show in Chapter 6 that around certain points, called

operating points, non-linear systems behave like linear systems. It will then be possible to stabilize

them using the same methods as those developed for the linear case.
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Exercises

Exercise 1.1.� Underwater robot

See the correction video at https://youtu.be/9GCxgVcWB3k

The underwater robot Saucisse of the ENSTA Bretagne [2], whose photo is given in Figure 1.2, is

a control system. It includes a computer, three propellers, a camera, a compass and a sonar. What

does the input vector u, the output vector y, the state vector x and the setpoint w correspond to in

this context?

Figure 1.2: Controlled underwater robot

Exercise 1.2.� Sailing robot

See the correction video at https://youtu.be/JWUSDrIE7JY

The sailing robot Vaimos (Ifremer and Ensta Bretagne) in Figure 1.3 is also a control system

[3, 4]. It is capable of following paths by itself, such as the one drawn on Figure 1.3. It has a rudder

and a sail adjustable using a sheet. It also has an anemometer on top of the mast, a compass and a

GPS. Describe what the input vector u, the output vector y, the state vector x and the setpoint w

may correspond to.
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a) b)

Figure 1.3: Sailing robot Vaimos a) and a path followed by Vaimos b). The zig-zags in the path

are due to Vaimos having to tack in order to sail against the wind

Exercise 1.3.� Chaos

See the correction video at https://youtu.be/JBIOOykHK9E

We consider the discrete-time state space model described by

x(k + 1) = 4x(k) · (1− x(k)).

This system is an archetypal example of how complex, chaotic behavior can arise from an

apparently simple non-linear dynamical equations. In this system, x(k) ∈ [0, 1] is the population size

(in million, for instance) and k is the year. The model captures two e�ects:

� the growth where the population increases exponentially when the population size is small.

� the starvation where the growth rate will decrease when the theoretical carrying capacity of

the environment is less than the current population.

1) Give the equilibrium points of the system and specify which of them is stable.

2) How many cycles with a length 3 (i.e., x(k + 3) = x(k)). A graphic resolution could be used

for this purpose.

3) Provide a simulation of the system and illustrate the chaotic behavior of the system.
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Exercise 1.4.� Hénon map

See the correction video at https://youtu.be/Tf_IHzvBnyk

Given a discrete-time state space system of the form x(k + 1) = f(x(k)). A set I is said to be

invariant f(I) = I.
1) Prove that if I1 and I2 are both invariant then their union is invariant.

2) Given a set A, show that there exists a largest invariant set which is included in A, denoted
by Inv(A).

3) Show that the sequence of sets de�ned by{
X(k + 1) = f(X(k)) ∩ A

X(0) = A

converges toward Inv(A).
4) Assume that

f(x) =

(
x2 + 1− ax21

bx1

)
where a = 1.4 and b = 0.3. Make a program which draws an approximation the largest invariant set

of the system which is included in the box [−2, 2]× [−2, 2].
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Chapter 2

Modeling

We will callmodeling the step which consists of �nding a more or less accurate state representation

of the system we are looking at. In general, constant parameters appear in the state equations (such

as the mass or the inertial moment of a body, the coe�cient of viscous friction, the capacitance of

a capacitor, etc.). In these cases, an identi�cation step may prove to be necessary. In this book,

we will assume that all the parameters are known, otherwise we invite the reader to consult Eric

Walter's book [5] for a broad range of identi�cation methods. Of course, no systematic methodology

exists that can be used to model a system. The goal of this chapter and of the following exercises is

to present, using several varied examples, how to obtain a state representation.

2.1 Modeling method

To model a system here means to represent the evolution of the system under the form

ẋ(t) = f(x(t),u(t)) (2.1)

if the time t is continuous, or

x(k + 1) = f(x(k),u(k)) (2.2)

if the time k is discrete. The �rst step of the modeling is to �nd what is the memory of the system.

When the system is a physical mechanism, this amounts to �nding where the energy is stored. The

state can also be understood as all quantities we need to know at the current time on the system to

be able to predict the future, from the single knowledge of the input vector u(t) or u(k). For some

applications, it is also needed to �nd the observation equation which is often easier.

The state variables can be

� the degrees of freedom (position, angles) of a mechanical system,

� the speeds, or equivalently, the derivative of the degrees of freedom;

� the quantity of water inside tank;
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� the electric current when it goes through an inductance;

� the charge of a capacitor;

� the temperature of a body.

Then, we apply basic physic rules which tell us how these state variables will change with time.

These rules are often given into a simple �rst order di�erential equation. Examples are

� The kinematic relations ẋ = v or v̇ = a, which tells us that the speed is the derivative of the

position with respect to t or that the acceleration is the derivative of the speed.

� The Newton laws, such as v̇ = f
m
, where f is the force, m is the mass and v is the speed;

� Electric rules such as the Faraday's law of induction d
dt
i = u

L
which states that any change in

�ux through a circuit induces an electromotive force or the relation dv
dt

= i
C
which states that

the current i(t) through a capacitor is proportional to the derivative of the voltage v(t).

� The Fick's laws which postulates a time variation of a quantity (such as the temperature) is

related to the spacial variations.

Combining all these equations, we have to build a single state equation of the form (2.1) or (2.2).

2.2 Linear systems

In the continuous-time case, linear systems can be described by the following state equations:{
ẋ(t) = Ax(t) +Bu(t)

y(t) = Cx(t) +Du(t)

Linear systems are rather rare in nature. However, they are relatively easy to manipulate using linear

algebra techniques and often approximate in an acceptable way the non-linear systems around their

operating point. Moreover, when we combine linear systems (for instance in line, in parallel, or a

loop), we still obtain a linear system. They will we studied in details in Chapter 4.

2.3 Mechanical systems

In this section, we will focus our attention on mechanical systems which are necessary when

modeling robots. The fundamental principle of dynamics allows us to easily �nd the state equations

of mechanical systems (such as robots). The resulting calculations are relatively complicated for

complex systems and the use of computer algebra systems may prove to be useful. In order to obtain

the state equations of a mechanical system composed of several subsystems S1,S2, . . . ,Sm, assumed

to be rigid, we follow three steps.
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1. Obtaining the di�erential equations. For each subsystem Sk, with mass m and inertial matrix

J, the following relations must be applied:∑
i fi = ma∑

i Mfi = Jω̇

where the fi are the forces acting on the subsystem Sk, Mfi represents the torque created by

the force fi on Sk, with respect to its center. The vector a represents the tangential acceleration

of Sk and the vector ω̇ represents the angular acceleration of Sk. After decomposing these 2m

vectorial equations according to their components, we obtain 6m scalar di�erential equations

such that some of them might be degenerate.

2. Removing the components of the internal forces. In di�erential equations there are so-called

bonding forces, which are internal to the global mechanical system, even though they are

external to each subsystem composing it. They represent the action of a subsystem Sk on

another subsystem Sℓ. Following the action-reaction principle, the existence of such a force,

denoted by fk,ℓ, implies the existence of another force f ℓ,k, representing the action of Sℓ on Sk,

such that f ℓ,k = −fk,ℓ. Through a formal manipulation of the di�erential equations and by

taking into account the equations due to the action-reaction principle, it is possible to remove

the internal forces. The resulting number of di�erential equations has to be reduced to the

number n of degrees of freedom q1, . . . , qn of the system.

3. Obtaining the state equations. We then have to isolate the second derivative q̈1, . . . , q̈n from the

set of n di�erential equations in such a way to obtain a vectorial relation such as:

q̈ = f (q, q̇,u)

where u is the vector of external forces which are not derived from a potential (in other words,

those which we apply to the system). The state equations are then written as:

d

dt

(
q

q̇

)
=

(
q̇

f (q, q̇,u)

)
.

2.4 Servomotors

A mechanical system is controlled by forces or torques and obeys a dynamic model which depends

on many poorly known coe�cients. This same mechanical system represented by a kinematic model

is controlled by positions, speeds or accelerations. The kinematic model depends on well-known

geometric coe�cients and is a lot easier to put into equations. In practice, we move from a dynamic

model to its kinematic equivalent by adding servomotors. In summary, a servomotor is a direct

current motor with an electrical control circuit and a sensor (of the position, speed or acceleration).

The control circuit computes the voltage u to give to the motor in order for the value measured by

the sensor corresponds to the setpoint w. In practice, the signal w is generally given in the form of

a square wave called PWM (Pulse-Width Modulation). There are three types of servomotors:
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� the position servo. The sensor measures the position (or the angle) x of the motor and the

control rule is expressed as u = k (x− w). If k is large, we may conclude that x ≃ w ;

� the speed servo. The sensor measures the speed (or the angular speed) ẋ of the motor and the

control rule is expressed as u = k (ẋ− w). If k is large, we have ẋ ≃ w ;

� the acceleration servo. The sensor measures the acceleration (tangential or angular) ẍ of the

motor and the control rule is expressed as u = k (ẍ− w). If k is large, we have ẍ ≃ w.

2.5 Non holonomic systems

A mechanical system whose dynamics can be described by the relation q̈ = f (q, q̇,u) will be

referred to as holonomic. For a holonomic system, q and q̇ are thus independent. If there is a so-

called non-holonomic constraint which links the two of them (of the form h (q, q̇) = 0), the system

will be referred to as non-holonomic. Such systems may be found for instance in mobile robots with

wheels [6]. Readers interested in more details on the modeling of mechanical systems may consult

[7].

Non holonomic system are ubiquitous as soon as we consider vehicles in robotics. To understand

how such system occur, consider the robot tank in Figure 2.1. It is composed of two parallel motorized

crawlers (or wheels) whose accelerations (which form the inputs u1 and u2 of the system) are controlled

by two independent motors. In the case where wheels are considered, the stability of the system is

ensured by one or two idlers, not represented on the �gure. The degrees of freedom of the robot are

the x, y coordinates of its center and its heading θ.

Figure 2.1: Robot tank viewed from above

The state vector cannot be chosen to be equal to (x, y, θ, ẋ, ẏ, θ̇)T, which would seem natural with

respect to Lagrangian theory. Indeed, some states such as(
x = 0, y = 0, θ = 0, ẋ = 1, ẏ = 1, θ̇ = 0

)
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has no meaning since the tank is not allowed to skid. This phenomenon is due to the existence of

wheels which creates constraints between the natural state variables. Here, we necessarily have the

so-called non-holonomic constraint:

ẏ = ẋ tan θ

Mechanical systems for which there are such constraints on the equality of natural state variables

(by natural state variables we mean the vector (q, q̇) where q is the vector of the degrees of liberty

of our system) are said to be non-holonomic. When such a situation arises, it is useful to employ

these constraints in order to reduce the number of state variables and this, until no more constraints

are left between the state variables.

Denote by v1 and v2 the center speeds of each of the motorized wheels. Let us choose as state

vector the vector x = (x, y, θ, v1, v2)
T. This choice of state variables is easily understood in the

sense that these variables allow us to draw the tank (x, y, θ) and the knowledge of v1,v2 allows us to

calculate the variables ẋ, ẏ, θ̇. Moreover, every arbitrary choice of vector (x, y, θ, v1, v2) corresponds

to a physically possible situation. The state equations of the system are:
ẋ

ẏ

θ̇

v̇1
v̇2

 =


v1+v2

2
cos θ

v1+v2
2

sin θ
v2−v1

ℓ

Ru1
Ru2


where ℓ is the distance between the two wheels. The third relation on θ̇ is obtained by the speed

composition rule (Varignon's formula). Indeed, we have:

v2 = v1 +
−−−→
C2C1 ∧ −→ω

where −→ω is the instantaneous rotation vector of the tank and v1 and v2 are the speed vectors of the

centers of the wheels. Let us note that this relation is a vector relation which depends on the observer

but which is independent of the frame. Let us express this in the frame of the tank, represented on

the �gure. We must be careful not to confuse the observer �xed on the ground with the frame in

which the relation is expressed. This equation is written as: v2
0

0


︸ ︷︷ ︸

v2

=

 v1
0

0


︸ ︷︷ ︸

v1

+

 0

ℓ

0


︸ ︷︷ ︸

−−−→
C2C1

∧

 0

0

θ̇


︸ ︷︷ ︸

−→ω

We thus obtain v2 = v1 + ℓθ̇ or θ̇ = v2−v1
ℓ

.
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Exercises

Exercise 2.1.� First and second order system

See the correction video at https://youtu.be/LPnkZJFskjY

We consider an integrator and a second-order system described by

(i) ẏ = u

(ii) ÿ + a1ẏ + a0y = bu

where, u is the input y the output

Find a state representation in matrix form and give the characteristic polynomial for the two

systems.

Exercise 2.2.� Mass-spring system

See the correction video at https://youtu.be/dVdKwrcFpOY

Let us consider a system with input u and output q1 as shown in Figure 2.2 (u is the force applied

to the second carriage, qi is the deviation of the ith carriage with respect to its equilibrium point, ki
is the sti�ness of the ith spring, α is the coe�cient of viscous friction).

Figure 2.2: a) Mass-spring system at rest, b) system in any state

Let us take the state vector:

x = (q1, q2, q̇1, q̇2)
T

1) Find the state equations of the system.
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2) Is this system linear?

Exercise 2.3.� Model a pendulum

See the correction video at https://youtu.be/0rkma1Jin90

Let us consider the pendulum in Figure 2.3. The input of this system is the torque u exerted on

the pendulum around its axis. The output is y(t), the algebraic distance between the mass m and

the vertical axis:

1) Determine the state equations of this system using the Newton law.

2) Express the mechanical energy Em in function of the state of the system. Show that the latter

remains constant when the torque u is nil.

Figure 2.3: Simple pendulum with state vector x = (q, q̇)

Exercise 2.4.� Hamilton's method

See the correction video at https://youtu.be/0LAGI-63-Nw

Hamilton's method allows us to obtain the state equations of a conservative mechanical system

(in other words whose energy is conserved) only from the expression of a single function: its energy.

For this, we de�ne the Hamiltonian as the mechanical energy of the system, in other words the sum

of the potential energy and the kinetic energy. The Hamiltonian can be expressed as a function

H (q,p) of the degrees of freedom q and of the associated momentum p. The Hamilton equations

are written as:
q̇ =

∂H (q,p)

∂p

ṗ = −∂H (q,p)

∂q

1) Let us consider the simple pendulum shown in Figure 2.4. This pendulum has a length of ℓ

and is composed of a single point mass m. Calculate the Hamiltonian of the system. Deduce the

state equations from this.
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2) Show that if a system is described by Hamilton equations, then the Hamiltonian is constant.

Figure 2.4: Simple pendulum as a conservative system

Exercise 2.5.� Model an inverted rod pendulum

See the correction video at https://youtu.be/ZI8EaNBDDp0

Let us consider the so-called inverted rod pendulum system, composed of a pendulum of length ℓ

placed in an unstable equilibrium on a carriage, as represented in Figure 2.5. The value u is the force

exerted on the carriage of mass mc, s indicates the position of the carriage, θ is the angle between

the pendulum and the vertical axis and r is the force exerted by the carriage on the pendulum. At

the extremity b of the rod a point mass mr is �xated. We may ignore the mass of the rod. Finally,

a is the point of articulation between the rod and the carriage and ω = θ̇k is the rotation vector

associated with the rod.

Figure 2.5: Inverted rod pendulum

1) Write the fundamental principle of dynamics as applied on the carriage and the pendulum.

2) Show that the speed vector at point b is expressed by the relation ḃ = (ṡ− θ̇ cos θ) · i− θ̇ sin θ ·j.
Calculate the acceleration b̈ of b.

3) In order to model the inverted pendulum, we will take the state vector x =
(
s, θ, ṡ, θ̇

)
. Justify

this choice.
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4) Find the state equations for the inverted rod pendulum.

Exercise 2.6.� Model the Segway

See the correction video at https://youtu.be/u4cnGvygFPI

The segway represented on the left side of Figure 2.6 is a vehicle with two wheels and a single

axle. It is stable since it is controlled. In the modeling step, we will of course assume that the engine

is not controlled.

Its open loop behavior is very close to that of the planar unicycle represented in Figure 2.6 on

the right hand side. In this �gure, u represents the exerted momentum between the body and the

wheel.

The link between these two elements is a pivoting pin. We will denote by b the center of gravity

of the body and by a that of the wheel. c is a �x point on the disk. Let us denote by s the angle

between the vector −→ac and the horizontal axis and by θ the angle between the body of the unicycle

and the vertical axis. This system has two degrees of freedom s and θ. The state of our system is

given by the vector x = (s, θ, ṡ, θ̇)T. The parameters are:

� for the disk: its mass M , its radius ρ, its moment of inertia JM ;

� for the pendulum: its mass m, its moment of inertia Jp, the distance ℓ between its center of

gravity and the center of the disk.

Find the state equations of the system.

Figure 2.6: The segway has two wheels and an axle

Exercise 2.7.� Modeling a car

See the correction video at https://youtu.be/b9iBhp56OF8

Let us consider the car as shown in Figure 2.7. The driver of the car (on the left hand side on

the �gure) has two controls: the acceleration of the front wheels (assumed to be motorized) and the

rotation speed of the steering wheel. The brakes here represent a negative acceleration. We will
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denote by δ the angle between the front wheels and the axis of the car, by θ the angle made by the

car with respect to the horizontal axis and by (x, y) the coordinates of the middle of the rear axle.

The state variables of our system are composed of:

� the position coordinates, in other words all the knowledge necessary to draw the car, more

speci�cally the x, y coordinates of the center of the rear axle, the orientation θ of the car, and

the angle δ of the front wheels;

� the kinetic coordinate v representing the speed of the center of the front axle (indeed, the sole

knowledge of this value and the position coordinates allows to calculate all the speeds of all

the other elements of the car).

Calculate the state equations of the system. We will assume that the two wheels have the same

speed v (even though in reality, the inner wheel during a turn is slower than the outer one). Thus, as

illustrated on the right hand side �gure, everything happens as if there were only two virtual wheels

situated at the middle of the axles.

Figure 2.7: Car moving on a plane (view from above)

Exercise 2.8.� RLC circuit

See the correction video at https://youtu.be/yD6cwoUQBwI

The electrical circuit of Figure 2.8 has u(t) as input the voltage and y(t) as output the voltage.

Find the state equations of the system. Is this a linear system?

Figure 2.8: Electrical circuit to be modeled
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Exercise 2.9.� DC motor

See the correction video at https://youtu.be/GknV51O80z8

A direct current motor can be described by Figure 2.9, in which u is the supply voltage of the

motor, i is the current absorbed by the motor, R is the resistance, L is the inductance, e is the

electromotive force, ρ is the coe�cient of friction in the motor, ω is the angular speed of the motor

and Tr is the torque exerted by the motor on the load.

Figure 2.9: Direct current motor

Recall the equations of an ideal direct current motor: e = KΦω and T = KΦi. In the case of an

induction-independent motor, or a motor with permanent magnets, the �ow Φ is constant. We are

going to put ourselves in this situation.

1) We take as inputs of the system Tr and u. Find the state equations ;

2) We connect a fan to the output of the system with a characteristic of Tr = αω2. Give the new

state equations of the motor.

Exercise 2.10.� Water tanks

See the correction video at https://youtu.be/Nwacp2T2MLo

Let us consider two containers placed as shown in Figure 2.10. In the left container, the water

�ows without friction in the direction of the right container. In the left container, the water �ows in

a �uid way, as opposed to the right container, where there are turbulences. These are turbulences

which absorb the kinetic energy of the water and transform it into heat. Without these turbulences,

we would have a perpetual back-and-forth movement of the water between the two containers.

1) If a is the cross-section of the canal, show the so-called Torricelli 's law which states that the

water �ow from the right container to the left one is equal to:

QD = a.sign (zA − zB)
√

2g|zA − zB|
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Figure 2.10: Hydraulic system composed of two containers �lled with water and connected with a

canal

2) Let us now consider the system composed of three containers as represented on Figure 2.11.

Figure 2.11: System composed of three containers �lled with water and connected with two canals

The water from containers 1 and 3 can �ow towards container 2, but also towards the outside with

atmospheric pressure. The state variables of this system which may be considered are the heights of

the containers. In order to simplify, we will assume that the surfaces of the containers are all equal to

1m2, thus the volume of water in a container is interlinked with its height. Find the state equations

describing the dynamics of the system.

Exercise 2.11.� Fibonacci sequence

See the correction video at https://youtu.be/T3lL1Pjy2xk

We will now study the evolution of the number y(k) of rabbit couples on a farm in function of

the year k. At year 0, there is only a single couple of newly-born rabbits on the farm (and thus

y(0) = 1). The rabbits only become fertile a year after their birth. It follows that at year 1, there is

still a single couple of rabbits, but this couple is fertile (and thus y(1) = 1). A fertile couple gives

birth, each year, to another couple of rabbits. Thus, at year 2, there is a fertile couple of rabbits and

a newly-born couple. This evolution can be described by Table 2.1, where N means newly-born and

A means adult.
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k = 0 k = 1 k = 2 k = 3 k = 4

N A A A A

N A A

N A

N

N

Table 2.1: Evolution of the number of rabbits

Let us denote by x1(k) the number of newly-born couples, by x2(k) the number of fertile couples

and by y(k) the total number of couples.

1) Give the state equations which govern the system ;

2) Give the recurrence relation satis�ed by y(k).

Exercise 2.12.� Bus network

See the correction video at https://youtu.be/o4eEAhgxTa4

We consider a public transport system of buses with 4 lines and 4 buses. There are only two

stations where travelers can change lines. This system can be represented by a Petri net (see Figure

2.12). Each token corresponds to a bus. The places p1, p2, p3, p4 represent the lines. These places are

composed of a number which corresponds to the minimum amount of time that the token must remain

in its place (this corresponds to the transit time). The transitions t1, t2 ensure synchronization. They

are only crossed when each upstream place of the transition has at least one token which has waited

su�ciently long. In this case, the upstream places lose a token and the downstream places gain one.

This structure ensures that the correspondence will be performed systematically and that the buses

will leave in pairs.

1) Let us assume that at time t = 0, the transitions t1 and t2 are crossed for the �rst time and

that we are in the con�guration of Figure 2.12 (this corresponds to the initialization). Give the

crossing times for each of the transitions.

Figure 2.12: Petri net of the bus system

2) Let us denote by xi (k) the time when the transition ti is crossed for the kth time. Show that

the dynamics of the model can be written using states:

x (k + 1) = f (x (k))
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where x = (x1, x2)
T is the state vector. Remember that here k is not the time, but an event number.

3) Let us now attempt to reformulate elementary algebra by rede�ning the addition and

multiplication operators (see [8]) as follows:{
a⊕ b = max (a, b)

a⊗ b = a+ b

Thus 2 ⊕ 3 = 3 whereas 2 ⊗ 3 = 5. Show that in this new algebra (called max-plus), the previous

system is linear. Discuss.
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Chapter 3

Simulation

In this chapter, we will show how to perform a computer simulation of a non-linear system

described by its state equations:{
ẋ(t) = f(x(t),u(t))

y(t) = g(x(t),u(t))

This step is important in order to test the behavior of a system (controlled or not). Before presenting

the simulation method, we will introduce the concept of vector �elds. This concept will allow us to

better understand the simulation method as well as certain behaviors which could appear in non-linear

systems. We will also give several concepts of graphics necessary for the graphical representation of

our systems.

3.1 Concept of vector �eld

We will now present the concept of vector �elds and show the manner in which they are useful

in order to better understand the various behaviors of systems. We invite the reader to consult the

book of Khalil [9] for further details on this subject. A vector �eld is a continuous function f of Rn

to Rn. When n = 2, a graphical representation of the function f can be imagined. For instance, the

vector �eld associated with the linear function:

f :

R2 → R2(
x1
x2

)
→

(
x1 + x2
x1 − x2

)
is illustrated in Figure 3.1. In order to obtain this �gure, we have taken a set of vectors from the

initial set, following a grid. Then, for each grid vector x, we have drawn its image vector f(x) by

giving it the vector x as origin.

We may recognize on this �gure the characteristic spaces (dotted lines) of the linear application.

We can also see that one eigenvalue is positive and another one is negative. This can be veri�ed by

analyzing the matrix of our linear application given by:

A =

(
1 1

1 −1

)
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Figure 3.1: Vector �eld associated with a linear application

Its eigenvalues are
√
2 and −

√
2 and the associated eigenvectors are:

v1 =

(
0.9239

0.3827

)
et v2 =

(
−0.3827

0.9239

)
Let us note that the vector x represented on the �gure is not an eigenvector since x and f(x) are not

collinear. On the other hand, all the vectors that belong to the characteristic subspaces (represented

as dotted lines on the �gure) are eigenvectors. Along the characteristic subspace associated with the

negative eigenvalue, the �eld vectors tend to point towards 0 whereas these vectors point to in�nity

along the characteristic subspace associated with the positive eigenvalue.

For an autonomous system (i.e., without input), the evolution is given by the equation ẋ(t) =

f(x(t)). When f is a function of R2 to R2, we can obtain a graphical representation of f by drawing

the vector �eld associated with f . The graph will then allow us to better understand the behavior

of our system.

3.2 Graphical representation

In this paragraph, we will give several concepts necessary for the graphical representation of

systems during simulations.

3.2.1 Sketchs

A sketch is a matrix with two or three rows (following whether the object is in the plane or in

space) and n columns which represent the n vertices of a shape-retaining polygon, meant to represent

the object. It is important that the unions of all the segments formed by the two consecutive points

of the sketch form the edges of the polygon that we wish to represent. For instance, the sketch M of

the chassis (see Figure 3.2) of the car (with the rear wheels) is given by:(
−1 4 5 5 4 −1 −1 0 0 −1

−2 −2 −1 1 2 2 −2 −2 −3 −3

1 0 0 −1 1 0 0 3 3 3

−3 −3 3 3 3 3 2 2 3 −3

)
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It is clear on the graph of the car in movement that the front wheels can move with respect to the

chassis, but also with respect to one another. They therefore cannot be incorporated into the sketch

of the chassis. For the graph of the car, we will therefore have to use 3 sketches: that of the chassis,

that of the left front wheel and that of the right front wheel.

Figure 3.2: Car to be represented graphically

3.2.2 Rotation matrix

Let us recall that the jth column of the matrix of a linear application of Rn → Rn represents the

image of the jth vector ej of the standard basis. Thus, the expression of a rotation matrix of angle

θ in the plane R2 is given by (see Figure 3.3):

R =

(
cos θ − sin θ

sin θ cos θ

)
.

Figure 3.3: Rotation of angle θ

Concerning rotations in the space R3, it is important to specify the rotation axis. We can

distinguish between 3 main rotations: the rotation of angle θ around the Ox axis, the one around

the Oy axis and the one around the Oz axis. The associated matrices are, respectively, given by:

Rx =

 1 0 0

0 cos θ − sin θ

0 sin θ cos θ

 , Ry =

 cos θ 0 sin θ

0 1 0

− sin θ 0 cos θ

 et Rz =

 cos θ − sin θ 0

sin θ cos θ 0

0 0 1


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3.2.3 Homogeneous coordinates

Drawing two-dimensional or three-dimensional objects on a screen requires a series of a�ne

transformations (rotations, translations, homotheties) of the form:

fi :
Rn → Rn

x 7→ Aix+ bi

with n = 2 or 3. However, the manipulation of compositions of a�ne functions is not as simple

as that of linear applications. The idea of the transformation into homogeneous coordinates is to

transform a system of a�ne equations into a system of linear equations. Let us note �rst of all that

an a�ne equation of type y = Ax+ b can be re-written in the form:(
y

1

)
=

(
A b

0 1

)(
x

1

)
We will therefore de�ne the homogeneous transformation of a vector as follows:

x 7→ xh =

(
x

1

)
Thus, an equation such as:

y = A3 (A2 (A1x+ b1) + b2) + b3

where there is a composition of 3 a�ne transformations can be re-written as:

yh =

(
A3 b3

0 1

)(
A2 b2

0 1

)(
A1 b1

0 1

)
xh.

Two transformation matrices are useful when dealing with 3D graphics in homogeneous coordinates:

� The rotation around a vector ω of an angle φ = ||ω|| is given by

Rot(ω) =

 exp

 0 −ωz ωy

ωz 0 −ωx

−ωy ωx 0

  0

0

0


(
0 0 0

)
1

 (3.1)

which corresponds to the Rodrigues' formula.

� The translation matrix by a vector v of R3 is:

Tran(v) =


1 0 0 v1
0 1 0 v2
0 0 1 v3
0 0 0 1

 (3.2)
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3.3 Simulation

In this paragraph, we will present the integration method to perform a computer simulation of a

non-linear system described by its state equations:{
ẋ(t) = f(x(t),u(t))

y(t) = g(x(t),u(t))

This method is rather approximative, but remains simple to understand and is enough in order to

describe the behaviors of most of robotized systems.

3.3.1 Euler's method

Let dt be a very small number compared to the time constants of the system and which

corresponds to the sampling period of the method (for example dt = 0.01). The evolution equation

is approximated by:

x(t+dt)−x(t)
dt

≃ f(x(t),u(t))

in other words:

x (t+ dt) ≃ x (t) + f(x(t),u(t)).dt

This equation can be interpreted as an order 1 Taylor formula. From this we can deduce the

simulation algorithm (called Euler's method):

Algorithm Euler(in: x0)

1 x := x0; t := 0; dt = 0.01;

2 repeat

3 read the input u ;

4 y := g(x,u);

5 return y;

6 x := x+ f(x,u).dt;

7 wait for interrupt from timer;

8 t = t+ dt;

9 while true

The timer creates a periodic interrupt every dt seconds. Thus, if the computer is su�ciently fast,

the simulation is performed at the same speed as our physical system. We then refer to real-time

simulation. In some circumstances, what we are interested in is obtaining the result of the simulation

in the fastest possible time (for instance in order to predict how a system will behave in the future).

In this case, it is not necessary to slow the computer down in order to synchronize it with our physical

time.
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We call local error the quantity:

et = ||x(t+ dt)− x̂(t+ dt)|| with x(t) = x̂(t)

where x(t + dt) is the exact solution of the di�erential equation ẋ = f(x,u) and x̂(t + dt) is the

estimated value of the state vector, for the integration scheme being used. For Euler's method, we

can show that et is of order 1, i.e. et = O(dt).

3.3.2 Runge-Kutta method

There are more e�cient integration methods in which the local error is of order 2 or more.

This is the case of the Runge-Kutta method of order 2, which consists of replacing the recurrence

x̂(t+ dt) := x̂(t) + f (x̂(t),u(t)) .dt with:

x̂(t+ dt) = x̂(t) + dt.f

x̂(t) +
dt

2
f(x̂(t),u(t))︸ ︷︷ ︸

x̂E(t+
dt
2
)

,u(t+ dt
2
)


Let us note in this expression the value x̂E(t+

dt
2
) which can be interpreted as the integration obtained

by Euler's method at time t+ dt
2
. The local error et here is of order 2 and the integration method is

therefore a lot more precise. There are Runge-Kutta methods of order higher than 2 which we will

not discuss here.

3.3.3 Taylor's method

Euler's method (which is an order 1 Taylor method) can be extended to higher orders. Let us

show, without loss of generality, how to extend to second order. We have:

x (t+ dt) = x (t) + ẋ(t).dt+
1

2
ẍ(t).dt2 + o

(
dt2
)

But:

ẋ(t) = f(x(t),u(t))

ẍ(t) =
∂f

∂x
(x(t),u(t)).ẋ(t) +

∂f

∂u
(x(t),u(t)).u̇(t)

Therefore, the integration scheme becomes:

x̂(t+ dt) = x̂(t) + dt.f(x̂(t),u(t))

+1
2
dt2.

(
∂f
∂x
(x̂(t),u(t)).f(x̂(t),u(t)) + ∂f

∂u
(x̂(t),u(t)).u̇(t)

)
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Exercises

Exercise 3.1.� Prey-predator model

See the correction video at https://youtu.be/22OD0hPsz7w

The predator-prey system, also called a Lotka-Volterra system, is given by:

{
ẋ1(t) = (1− x2(t))x1(t)

ẋ2(t) = (x1(t)− 1)x2(t)

The state variables x1(t) and x2(t) represent the size of the prey and predator populations. For

example, x1 could represent the number of preys in millions whereas x2 could be the number of

predators, in thousands. Even though the number of preys and predators are integers, we will

assume that x1 and x2 are real values. The quadratic terms of this state equation represent the

interactions between the two species. Let us note that the preys grow in an exponential manner

when there are no predators. Similarly, the population of predators declines when there is no prey.

1) Figure 3.4 corresponds to the vector �eld associated with the evolution function:

f(x) =

(
(1− x2)x1
(x1 − 1)x2

)

on the grid [0, 2]× [0, 2]. Discuss the dynamic behavior of the system using this �gure.

2) Also using this �gure, give the equilibrium point. Verify it through calculation.
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Figure 3.4: Vector �eld associated with the Lotka-Volterra system, in the plane (x1, x2)

Exercise 3.2.� Simple pendulum

See the correction video at https://youtu.be/pzNEuLJmR6A

Let us consider the simple pendulum of Figure 3.5 described by the following state equations:{
ẋ1 = x2
ẋ2 = − sinx1

Figure 3.5: Simple pendulum with state vector x = (x1, x2) = (θ, θ̇)

The vector �eld associated with the evolution function f(x) is drawn on Figure 3.6.

1) From the vector �eld, give the stable and unstable points of equilibrium.

2) Program an Euler integration and draw the trajectory on the state space.

3) Compare the Euler integration with a Runge-Kutta method.
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Figure 3.6: Vector �eld associated with the simple pendulum in the phase plane (x1, x2) = (θ, θ̇)

Exercise 3.3.� Van der Pol system

See the correction video at https://youtu.be/SlQrNliwHIc

Let us consider the system described by the following di�erential equation:

ÿ +
(
y2 − 1

)
ẏ + y = 0

1) Let us choose as state vector x = (y, ẏ). Give the state equations of the system.

2) Linearize this system around the equilibrium point. What are the poles of the system? Is the

system stable around the equilibrium point?

3) The vector �eld associated with this system is represented on Figure 3.7 in the state space

(x1, x2). We initialize the system in x0 = (0.1, 0). Draw on the �gure the path x (t) of the system

on the state space. Give the form of y(t).

4) Can a trajectory have a loop?

5) Simulate this system, with an Euler method and also with a Runge-Kutta method. Compare

both integration schemes.
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Figure 3.7: Vector �eld associated with the Van der Pol system

Exercise 3.4.� Simulation of a car

See the correction video at https://youtu.be/LV9QVSt8ll0

Let us consider the car with the following state equations:
ẋ

ẏ

θ̇

v̇

δ̇

 =


v cos δ cos θ

v cos δ sin θ
v sin δ
L

u1
u2


The state vector is given by x = (x, y, θ, v, δ), where x, y, θ corresponds to the pose of the car (in

other words its position and orientation), v is the speed and δ is the angle of the front wheels. The

parameter L = 3m is the distance between the two axles of the car.

1) Using homogeneous coordinates, design a function which draws a car in a state x =

(x, y, θ, v, δ)T

2) Propose a program which simulates the dynamic evolution of this car during 5 seconds with

Euler's method and a sampling step of 0.01 sec. Take the initial state for the car as x (0) =

(0, 0, 0, 50, 0) , which means that at time t = 0, the car is centered around the origin, with a nil

heading angle, a speed of 50ms−1 and the front wheels parallel to the axis of the car. We assume

that the vectorial control u(t) remains constant and equal to (0, 0.05). Which means that the car

does not accelerate (since u1 = 0) and that the steering wheel is turning at a constant speed of

0.05 rad · s−1.
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Exercise 3.5.� Integration by Taylor's method

See the correction video at https://youtu.be/wtXp0RF8tfQ

Let us consider a robot described by the following state equations:
ẋ1
ẋ2
ẋ3
ẋ4
ẋ5

 =


x4 cosx3
x4 sinx3
x5
u1
u2


1) Propose a second order integration scheme using Taylor's method. The input is:

u =

(
u1
u2

)
=

(
cos t

sin t

)
.

2) Simulate the car for t ∈ [0, 12],with the three following integration schemes: (i) Euler, (ii)

Runge Kutta of order 2 and (iii) the Taylor of order 2. For the initial vector, we take x(0) =

(0, 0, 0, 5,−1
2
) and the sampling time is taken as dt = 0.05s. Compare and discuss.

Exercise 3.6.� Rotating cube

See the correction video at https://youtu.be/a1AwVPjyvkk

Let us consider the three-dimensional cube [0, 1]× [0, 1]× [0, 1].

1) Give its sketch in matrix form.

2) What matrix operation must be performed in order to rotate it with an angle θ around the

Ox axis?

3) Illustrate the rotation with a program where the cube turns with time around the Ox axis.

Exercise 3.7.� Three-dimensional simulation of a tricycle

See the correction video at https://youtu.be/BapNhAtJYe0

The driver of the tricycle of Figure 3.8 has two controls: the acceleration of the front wheel u1
and the rotation rate u2 of the steering angle δ. The state variables of our system are composed of

� the degrees of freedom, i.e., the x, y coordinates of the center of the rear axle, the heading θ

and the steering angle δ;

� the speed v of the center of the front wheel;

� the longitudinal angles of the wheels are s1, s2, s3

The parameters are
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� the distance between the rear axle and the center of the front wheel: L = 3m;

� the distance between each rear wheel and the axis of the tricycle: e = 2m;

� the radius of the wheels is r = 0.5m.

1) Give the state equations of the three dimensional tricycle.

2) Provide a program which draws the tricycle, at a given state. For this, rotate and translate

the sketch in 3D using the homogeneous coordinates and Rodrigues' formula.

3) Provide a simulation of the three-dimensional tricycle.

Figure 3.8: Tricycle to be simulated

Exercise 3.8.� Manipulator robot

See the correction video at https://youtu.be/ig3E1Lyd-Fw

The manipulator robot represented on Figure 3.9 is composed of three arms in series. The �rst

one, of length 3, can rotate around the Oz axis. The second, of length 2, placed at the end of the

�rst one can also rotate around the Oz axis. The third one, of length 1, placed at the end of the

second, can rotate around the axis formed by the second arm. This robot has 3 degrees of freedom

x = (α1, α2, α3), where the αi represent the angles formed by each of the arms. The basic sketch

chosen to represent each of the arms if the unit cube. Each arm is assumed to be a parallelepiped of

thickness 0.3. In order to take the form of the arm, the sketch must be subjected to transformation,

represented by a diagonal matrix. Then, it has to be rotated and translated in order to be correctly

places. Design a program that simulates this system, with a 3D vision inspired from the �gure.
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Figure 3.9: Manipulator robot composed of three arms

Exercise 3.9.� Omni wheel robot

See the correction video at https://youtu.be/sXmcNt5B5zQ

Let us consider the robot with three omni wheels shown on Figure 3.10. An omni wheel is

equipped with a multitude of small rollers over its entire periphery which allow it to slide sideways

(in other words perpendicularly to its nominal movement direction). Let us denote by vi the speed

vector of the contact point of the ith wheel. If ii is the normed direction vector indicating the nominal

movement direction of the wheel, then the component of vi according to ii corresponds to the rotation

ωi of the wheel whereas its complementary component (perpendicular to ii) is linked to the rotation

of the peripheral rollers. If r is the radius of the wheel, then we have the relation rωi = −⟨vi, ii⟩.
If vi and ui are collinear then the wheel behaves like a classical wheel. If ⟨vi, ii⟩ = 0, the wheel no

longer turns and it is in a state of skid.

Figure 3.10: Holonomic robot with omni wheels
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1) Show that ω1

ω2

ω3

 = 1
r

 sin θ − cos θ −a
sin(θ + 2π

3
) − cos(θ + 2π

3
) −a

sin(θ − 2π
3
) − cos(θ − 2π

3
) −a

 ẋ

ẏ

θ̇


2) Give the state equations of the system. We will use the state vector x = (x, y, θ, s1, s2, s3) and

the input vector ω = (ω1, ω2, ω3) where the si are the proper angle of the wheels. Check the behavior

of the system using a 3D simulation.

3) Propose a loop which allows to obtain a model tank described by the following state equations:
ẋ = v cos θ

ẏ = v sin θ

θ̇ = u1

v̇ = u2

Exercise 3.10.� Snake

See the correction video at https://youtu.be/CwZRSnBfo8U

Figure 3.11: Snake or Skating robot

The snake is the skating vehicle represented in Figure 3.11. It is designed to move on a frozen lake

and stands on 5 ice-skates [10]. This system has two inputs: the tangent u1 of angle β of the front

skate we have chosen the tangent as input in order to avoid singularities) and u2 the torque exerted

on the articulation between the two sledges and which corresponds to the angle δ. The propulsion

therefore only comes from the torque u2 and is similar to the mode of propulsion of a snake or an

eel [11]. Any control over u1 therefore doesn't give any energy to the system.

1) Show that the system can be described by the following state equations:

ẋ = v cos θ

ẏ = v sin θ

θ̇ = vu1
v̇ = − (u1 + sin δ)u2 − v

δ̇ = −v (u1 + sin δ)
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where v is the speed of the center of the front axle. This is of course a simpli�ed and normalized

model where, for reasons of simplicity, the coe�cients (masses, viscous friction, inter-axle distances,

etc.) have been chosen unitary.

2) Simulate this system by using Euler's method. Discuss.

3) We will now attempt to control this system using biomimicry, i.e. by attempting to reproduce

the propulsion of the snake. We choose u1 to be of the form:

u1 = p1 cos (p2t) + p3

where p1 is the amplitude, p2 the pulse and p3 the bias. We choose u2 so that the propulsion torque

is always a driving force, in other words δ̇.u2 ≥ 0. Indeed, the term δ̇.u2 corresponds to the power

brought by the robot which is transformed into kinetic energy. Program this control and make the

right choice for the parameters which allow to ensure an e�cient propulsion. Reproduce the two

behaviors illustrated on Figure 3.12 on your computer.

Figure 3.12: Simulations of the controlled skating robot

4) Add a second control loop which controls the parameters pi of your controller in order for your

robot to be able to follow a desired heading θ̄.

Exercise 3.11.� Swimbox

See the correction video at https://youtu.be/k37a_fM8pCs

A swimbox is an imaginary vehicle which swims horizontally at the bottom of the ocean. The

sea �oor is assumed to be �at. The swimbox has no propeller, but contains as a unique actuator a

weight that can move left and right. This is illustrated by Figure 3.13 where

� u the reaction force on the weight made by the hull;

� x1 is the position of the hull;
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� x2 ∈ [−1, 1] is the position of the weight in the hull;

� v1 is the speed of the hull with respect the the sea �oor;

� v2 is the speed of the weight with respect to the hull.

1) Assuming that all coe�cients (mass, frictions, etc) taken as 1, show that a possible model for the

system is given by
ẋ1
ẋ2
v̇1
v̇2

 =


v1
v2

−u− v1 · |v1|
2u+ v1 · |v1|



Figure 3.13: The swimbox is composed of a hull and a weight. The weight (red) can move horizontally

2) Find a controller such that the swimbox swims forward for a long distance always satisfying

the constraint x2 ∈ [−1, 1].

Exercise 3.12.� Virus

See the correction video at https://youtu.be/Gghwa53kQNc

We consider a population of N individuals. We want to study the evolution of the virus in this

population. We denote by

� x1(t), the number of individuals not yet infected with the virus.

� x2(t), the number of infected individuals. All of them are capable of spreading the disease.

� x3(t), the individuals that have been cured from the virus. Those in this category will not be

infected again or transmit the virus to others.

For simplicity, we consider that a the time unit for t is in days. We assume that

� (A1) an individual in the population not yet infected has a probability to become infected at

each unit of time which is proportional to the density of infected individuals.
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� (A2) an individual which is infected at time t has a constant probability to become cured at

time t+ dt.

1) Find state equations for a model describing the evolution of the system. This model has two

parameters related to the assumptions.

2) We assume that

� (A3). If a not-yet-infected individual lives among a population which is completely infected,

then the probability to be infected at time t+ dt is 0.3 · dt.

� (A4). If one individual is infected at time t, then, it has a probability of 0.1 · dt to be cured at

time t+ dt.

Identify the parameters of the state-space model.

3) When t → ∞, can we know what is the percentage of the population that will never been

infected ?

4) Assume that at time t = 0, we have one infected individual for a population of 108 persons.

Using a simulation, predict at which time the peak (the maximum for x2) occurs.

5) Draw the trajectory in the (x1, x2) with the corresponding vector �eld. Discuss.
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Chapter 4

Linear systems

The study of linear systems [12] is fundamental for the proper understanding of the concepts of

stability and the design of linear controllers. Let us recall that linear systems are of the form:{
ẋ(t) = Ax(t) +Bu(t)

y(t) = Cx(t) +Du(t)

for continuous-time systems and:{
x(k + 1) = Ax(k) +Bu(k)

y(k) = Cx(k) +Du(k)

for discrete-time systems. This chapter introduces the notion of stability and makes the link between

a state space representation and the more classical transfer approach.

4.1 Stability

A system of the form ẋ = f(x) is stable if, after a su�ciently long amount of time, the state

no longer depends on the initial conditions, no matter what they are. The de�nition by Lyapunov

formalizes the stability as follows. The system is stable if for every ε > 0, there exists δ > 0 such

that

∥x(0)∥ < δ ⇒ ∀t ≥ 0, ∥x(t)∥ < ε. (4.1)

The system is asymptotically stable if it is Lyapunov stable and there exists δ > 0 such that

∥x(0)∥ < δ ⇒ lim
t→∞

∥x(t)∥ = 0. (4.2)

The same de�nitions are also valid when the time is discrete. In the case of linear systems, the

asymptotic stability translates into:

limt→∞ eAt = 0n if the system is continuous-time

limk→∞ Ak = 0n if the system is discrete-time
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In this expression we can see the concept of matrix exponential. The exponential of a square matrix

M of dimension n can be de�ned through its power series development:

eM = In +M+
1

2!
M2 +

1

3!
M3 + · · · =

∞∑
i=0

1

i!
Mi

where In is the identity matrix of dimension n. It is clear that eM is of the same dimension as M.

Here are some of the important properties concerning the exponentials of matrices. If 0n is the zero

matrix of n× n and if M and N are two matrices n× n, then:

e0n = In
eM.eN = eM+N (if the matrices commute)
d
dt

(
eMt
)
= MeMt

Criterion of stability.� There is a criterion of stability which only depends on the matrix A.

A continuous-time linear system is stable if and only if all the eigenvalues of its evolution matrix

A have strictly negative real parts. A discrete-time linear system is stable if and only if all the

eigenvalues of A are strictly inside the unit circle. This corresponds to the criterion of stability as

proven in Exercise 4.2.

Whether it is for continuous-time or discrete-time linear systems, the position of the eigenvalues of A

is of paramount importance in the study of stability of a linear system. The characteristic polynomial

of a linear system is de�ned as the characteristic polynomial of the matrix A which is given by the

formula:

P (s) = det (sIn −A)

Its roots are the eigenvalues ofA. Indeed, if s is a root of P (s), then det (sIn −A) = 0, in other words

there is a vector v non-nil such that (sIn −A)v = 0. This means that sv −Av = 0 or Av = sv.

Therefore s is an eigenvalue of A. A corollary of the stability criterion is thus the following.

Corollary.� A continuous-time linear system is stable if and only if all the roots of its characteristic

polynomial have negative real parts. A discrete-time linear system is stable if and only if all the roots

of its characteristic polynomial are inside the unit circle.

4.2 Laplace transform

The Laplace transform is a very useful tool for the control engineer in the manipulation of

systems described by di�erential equations. This approach is particularly utilized in the context

of monovariate systems (i.e. systems with a single input and output) and may be regarded as a

competitor to the state-representation approach considered in this book.
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4.2.1 Laplace variable

The space of di�erential operators in d
dt
is a ring and has favorable properties such as associativity.

For example:

d4

dt4

(
d3

dt3
+
d

dt

)
=

d4

dt4
d3

dt3
+
d4

dt4
d

dt
=

d7

dt7
+
d5

dt5

This ring is commutative. For example:

d4

dt4

(
d3

dt3
+
d

dt

)
=

(
d3

dt3
+
d

dt

)
d4

dt4

We may associate with the operator d
dt

the symbol s called Laplace variable. Thus the operator
d4

dt4

(
d3

dt3
+ d

dt

)
will be represented by the polynomial s4 (s3 + s).

4.2.2 Transfer function

Let us consider a linear system with input u and output y described by a di�erential relation

such as:

y(t) = H

(
d

dt

)
· u(t)

The function H(s) is called the transfer function of the system. Let us take for instance the system

described by the di�erential equation:

ÿ + 2ẏ + 3y = 4u̇− 5u

We have:

y(t) =

(
4 d
dt
− 5

d2

dt2
+ 2 d

dt
+ 3

)
· u(t)

Its transfer function is therefore:

H(s) =
4s− 5

s2 + 2s+ 3

If the transfer function H(s) of a system is a rational function, its denominator P (s) is called the

characteristic polynomial.

4.2.3 Laplace transform

We call Laplace transform ŷ(s) of the signal y(t) the transfer function of the system which

generates y(t) from the Dirac delta function δ(t). We will denote it by ŷ(s) = L (y(t)). We also say

that y (t) is the impulse response of the system. The table below shows several systems together

with their transfer function and impulse response.

In this table, E (t) is the unit step which is equal to 1 if t ≥ 0 and 0 otherwise. Thus, the Laplace

transforms of δ (t) , E (t) , δ̇ (t) , δ(t− τ) are respectively 1, 1
s
, s, e−τs.
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System Equation Transfer function Impulse response

Identity y (t) = u (t) 1 δ (t)

Integrator ẏ (t) = u (t) 1
s E (t) (step)

Di�erentiator y (t) = u̇ (t) s δ̇ (t)

Delay y (t) = u (t− τ) e−τs δ (t− τ)

Table 4.1: Transfer function and impulse response of some elementary systems

Remark 1. The transfer function of the delay comes from the relation

y(t) =
∞∑
i=0

y(i)(t0)

i!
(t− t0)

i

If we take τ = t0 − t, the relation translates into

y(t) =
∞∑
i=0

y(i)(τ + t)

i!
(−τ)i

Since y (t) = u (t− τ), or equivalently y(t+ τ) = u(t), we get

y(t) =
∑∞

i=0
u(i)(t)

i!
(−τ)i =

∑∞
i=0

(−τ)i

i!
di

dti
u(t)

=
(∑∞

i=0
1
i!

(
−τ · d

dt

)i) · u(t) = e−τ · d
dt · u(t)

= e−τs · u(t)
But we can go further, as is shown on the following table.

Equation Transfer function Impulse response

y (t) = α1u (t− τ1) + α2u (t− τ2) α1e
−τ1s + α2e

−τ2s α1δ (t− τ1) + α2δ (t− τ2)

y (t) =
∑∞

i=0 αiu (t− τi)
∑∞

i=0 αie
−τis

∑∞
i=0 αiδ(t− τi)

y (t) =
∫∞
−∞ f(τ)u (t− τ) dτ

∫∞
−∞ f(τ)e−τsdτ

∫∞
−∞ f(τ)δ(t− τ)dτ

Table 4.2: Transfer function and impulse response of composed systems

The operation y (t) =
∫∞
−∞ f(τ)u (t− τ) is called convolution. We may notice that the impulse

response of the system described by the last row of the table is:

y (t) =

∫ ∞

−∞
f(τ)u (t− τ) dτ

∣∣∣∣
u(t)=δ(t)

=

∫ ∞

−∞
f(τ)δ (t− τ) dτ = f(t)

Therefore, the Laplace transform of a function f (t) is:

f̂ (s) =

∫ ∞

−∞
f(τ)e−τsdτ

Let us note that the relation:

f(t) =

∫ ∞

−∞
f(τ)δ(t− τ)dτ

illustrates the fact that f (t) can be estimated by the sum of an in�nity of in�nitely approached Dirac

distributions.

Page 46 of 89



Luc Jaulin Automooc

4.2.4 Input-output relation

Let us consider a system with input u, output y and transfer function H(s), as in Figure 4.1.

Figure 4.1: Laplace transform and transfer function

We have:

y(t) = H(
d

dt
).u(t) = H(

d

dt
).û

(
d

dt

)
︸ ︷︷ ︸

ŷ( d
dt)

· δ(t)

Therefore, the Laplace transform of y(t) is:

ŷ(s) = H(s) · û(s)

4.3 Relationship between state and transfer representations

Let us consider the system described by its state equations:{
ẋ = Ax+Bu

y = Cx+Du

The Laplace transform of the state representation is given by:{
sx̂ = Ax̂+Bû

ŷ = Cx̂+Dû

The �rst equation can be re-written as sx̂−Ax̂ = Bû, i.e. sIx̂−Ax̂ = Bû, where I is the identity

matrix. From this, by factoring, we get (sI−A) x̂ = Bû (we must be careful, a notation such as

sx̂−Ax̂ = (s−A) x̂ is not permitted since s is a scalar whereas A is a matrix). Therefore:{
x̂ = (sI−A)−1Bû

ŷ = Cx̂+Dû

And thus:

ŷ =
(
C(sI−A)−1B+D

)
û

The matrix:

G(s) = C(sI−A)−1B+D
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is called transfer matrix. It is a matrix of transfer functions (in other words of rational functions in s)

in which every denominator is a divisor of the characteristic polynomial PA (s) of A. By multiplying

each side by PA(s) and replacing s by d
dt
we obtain a system of input-output di�erential equations.

The state x will no longer appear there.

Reciprocally, in the case of monovariate linear systems (in other words with a single input and a

single output), we can obtain a state representation from an expression of the transfer function, as

it will be illustrated in Exercises 4.12, 4.13 and 4.14.
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Exercises

Exercise 4.1.� Solution of a state equation

See the correction video at https://youtu.be/l0accPUnKZw

1) Show that the continuous-time linear system

ẋ(t) = Ax(t) +Bu(t)

has the solution

x(t) = eAtx(0) +

∫ t

0

eA(t−τ)Bu(τ)dτ.

The function eAtx(0) is called homogeneous, free or transient solution. The function∫ t

0
eA(t−τ)Bu(τ)dτ is called forced solution.

2) Show that the discrete-time linear system

x(k + 1) = Ax(k) +Bu(k)

has the solution

x(k) = Akx(0) +
k−1∑
ℓ=0

Ak−ℓ−1Bu(ℓ).

Again, Akx(0) is homogeneous solution and
∑k

ℓ=0A
k−ℓBu(ℓ) is the forced solution.

Exercise 4.2.� Stability criterion

See the correction video at https://youtu.be/PXO2ojcMpt0

The proof of the stability criterion for linear systems is based on the theorem of correspondence

of the eigenvalues which is articulated as follows. If f is a polynomial (or more generally an integer

series) and if A is an Rn×n matrix then the eigenvectors of A are also eigenvectors of f(A). Moreover

if the eigenvalues of A are {λ1, . . . , λn} then those of f(A) are {f (λ1) , . . . , f(λn)} .
1) Prove the theorem of correspondence of the eigenvalues in the case where f is a polynomial.

2) Let spec(A) = {λ1, . . . , λn} be the spectrum of A, i.e. its eigenvalues. By using the theorem

of correspondence of the eigenvalues, calculate spec(I+A) , spec
(
Ak
)
, spec

(
eAt
)
and spec(f (A)).
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In these expressions, I denotes the identity matrix, k an integer and f the characteristic polynomial

of A.

3) Show that if a continuous-time linear system is stable then all the eigenvalues of its evolution

matrix A have strictly negative real parts (in fact, the condition is necessary and su�cient, but we

will limit the proof to the implication).

4) Show that if a discrete-time linear system is stable then all the eigenvalues of A are strictly

within the unit circle. Again, even though we have the equivalence here, we will limit ourselves to

the proof of the implication.

Exercise 4.3.� Laplace variable

See the correction video at https://youtu.be/SRoMKIjl90g

Let us consider two systems in parallel as illustrated in Figure 4.2.

Figure 4.2: Two linear systems interconnected in parallel

1) Without employing the Laplace transform, and by only using elementary di�erential calculus,

give a di�erential equation which links u with y.

2) Using algebraic manipulations involving the d
dt
operator, obtain the same di�erential equation

again.

3) Obtain the same result by using the Laplace variable s.

Exercise 4.4.� Transfer functions of elementary systems

See the correction video at https://youtu.be/ibOfo-PixlY

Give the transfer function of the following systems with input u and output y:

1) a di�erentiator expressed by the di�erential equation y = u̇;

2) an integrator which obeys the di�erential equation ẏ = u;

3) a delay of τ which is expressed by the input-output relation y(t) = u(t− τ).

Exercise 4.5.� Transfer function of composite systems

See the correction video at https://youtu.be/_L4wGYU1xhg

1) Let us consider two systems of transfer functions H1(s) and H2(s) placed in series as shown

on Figure 4.3.
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Figure 4.3: Two systems in series

Calculate, in function of H1(s) and H2(s), the transfer function of the composite system.

2) Let us place the two systems of transfer functions H1(s) and H2(s) in parallel as shown on

Figure 4.4.

Figure 4.4: Two systems in parallel

Give, in function of H1(s) and H2(s), the transfer function of the composite system.

3) Let us loop the system H(s) as shown on Figure 4.5.

Figure 4.5: Looped system

Give, in function of H(s), the transfer function of the looped system.

Exercise 4.6.� Transfer matrix

See the correction video at https://youtu.be/O7U57PztbGk

Let us consider the continuous-time linear system described by its state representation:
ẋ(t) =

(
1 3

2 0

)
x(t) +

(
1

1

)
u(t)

y(t) =

(
1 2

1 0

)
x(t) +

(
2

0

)
u(t)

1) Calculate its transfer matrix.

2) Give a di�erential relation which links the input to the outputs.
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Exercise 4.7.� Change of basis

See the correction video at https://youtu.be/c6j2TFPoiVw

Let us consider the continuous-time linear system described by its state equations:{
ẋ = Ax+Bu

y = Cx+Du

Let us take the change of basis v = P−1x, where P is a transfer matrix (i.e., square and invertible).

1) What do the system equations become if v is the new state vector ?

2) Let us consider the system described by the following state equations:
ẋ =

 4 −1
2

−1
2

4 1 −1

4 −2 2

x+

 1

2

4

u

y =
(
2 1 1

)
x

We are trying to �nd a simpler representation, i.e. with more zeros and ones (in order for instance

to limit the number of components necessary in the design of the circuitry). We propose to take the

following change of basis:

v =

 1 1 1

2 1 2

2 1 0

−1

x

which brings us to a Jordan normal form. What does the new state representation become ?

3) Calculate the transfer function of this system. What is the characteristic polynomial of the

system ?

Exercise 4.8.� Controllable canonical form

See the correction video at https://youtu.be/pZm7yAA4Npk

Let us consider a system with the input described by the evolution equation:

ẋ = Ax+ bu

Let us note that the control matrix traditionally denoted by B becomes, in our case of a single input,

a vector b. Let us take as transfer matrix (assumed invertible):

P =
(
b | Ab | A2b | . . . | An−1b

)
The new state vector is therefore v = P−1x. Show that, in this new basis, the state equations are

written as:

v̇ =


0 0 0 −a0
1 0 0 −a1
0

... 0 . . .

0 0 1 −an−1

v +


1

0
...

0

u
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where the ai are the coe�cients of the characteristic polynomial of the matrix A.

Exercise 4.9.� State equations of a second order system

See the correction video at https://youtu.be/ZV-4gpKGaVY

Let us consider the system S described by the block diagram of Figure 4.6.

Figure 4.6: Second-order system

1) Give its state equations in matrix form.

2) Calculate the characteristic polynomial of the system. Is the system stable ?

3) Calculate the transfer function of the system.

Exercise 4.10.� Combination of systems

See the correction video at https://youtu.be/bzmd0Ue2DK8

Let us consider the systems S1 and S2 given on top of Figure 4.7.

1) Give the state equations in matrix form of the system Sa obtained by placing systems S1 and

S2 in series. Give the transfer function and characteristic polynomial of Sa.

2) Do the same with the system Sb obtained by placing systems S1 and S2 in parallel.

3) Do the same with the system Sc obtained by looping S1 by S2 as represented on Figure 4.7.
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Figure 4.7: Composition of systems

Exercise 4.11.� Transfer function

See the correction video at https://youtu.be/4sA1C9vXzJQ

Let us consider the system represented by Figure 4.8. Calculate its transfer function.

Figure 4.8: Linear system for which the transfer function must be calculated

Exercise 4.12.� Canonical control form

See the correction video at https://youtu.be/3vI-NVxx58w

Let us consider the order 3 linear system with a single input and a single output, described by

the following di�erential equation:

...
y + a2ÿ + a1ẏ + a0y = b2ü+ b1u̇+ b0u

1) Calculate its transfer function G(s).
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2) By noticing that this system can be obtained by placing the two transfer function systems in

series:

G1(s) =
1

s3 + a2s2 + a1s+ a0
and G2(s) = b2s

2 + b1s+ b0

deduce a block diagram with only three integrators, some adders and ampli�ers.

3) Give the state equations associated with this block diagram.

Exercise 4.13.� Canonical observation form

See the correction video at https://youtu.be/ZNyAHIN9PrQ

Let us consider once more the system described by the di�erential equation:

...
y + a2ÿ + a1ẏ + a0y = b2ü+ b1u̇+ b0u

1) Show that this di�erential equation can be written in integral form as:

y =

∫ ∫ ∫
(b2ü− a2ÿ + b1u̇− a1ẏ + b0u− a0y)

2) Deduce from this a block diagram with only three integrators, some adders and ampli�ers.

3) Give the associated state equations.

4) Compare this with the results obtained in Exercise 4.12.

Exercise 4.14.� Modal form

See the correction video at https://youtu.be/Y9tlXWQrAcQ

A monovariate linear system is in modal form if it can be written as:
ẋ =


λ1 0 · · · 0

0 λ2 0 · · ·
· · · · · · · · · · · ·
0 · · · 0 λn

x+


1

1
...

1

u

y =
(
c1 c2 · · · cn

)
x + d u

1) Draw a block diagram for this system using integrators, adders and ampli�ers.

2) Calculate the transfer function associated with this system.

3) Calculate its characteristic polynomial.

Exercise 4.15.� Jordan normal form
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See the correction video at https://youtu.be/79UbImbjs9Q

The system described by the state equations:

ẋ =


−2 1 0 0 0

0 −2 1 0 0

0 0 −2 0 0

0 0 0 −3 1

0 0 0 0 −3

x+


0

0

1

0

1

u

y =
(
−2 −1 3 −4 7

)
x+ 2u

is in Jordan normal form since its evolution matrix A is a Jordan matrix. In other words, it is

block diagonal and each block (here there are two) has zeros everywhere, except on the diagonal

which contains equal elements and on the opposite diagonal which only contains ones. Moreover, the

control matrix only contains ones and zeros which are positioned at the last row of each block.

1) Draw a block diagram for this system using integrators, adders and ampli�ers.

2) Calculate its transfer function.

3) Calculate its characteristic polynomial as well as the associated eigenvalues.
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Chapter 5

Linear control

In this chapter, we will study the design of controllers for systems given by linear state equations

of the form:{
ẋ = Ax+Bu

y = Cx

We will show in the following chapter that around very particular points of the state space, called

operating points, many non-linear systems genuinely behave like linear systems. The techniques

developed in this chapter will then be used for the control of non-linear systems. Let us denote by

m,n, p the respective dimensions of the vectors u, x and y. Recall that A is called evolution matrix,

B is the control matrix and C is the observation matrix.

Remark 2. We have assumed here, in the interest of simpli�cation, that the direct matrix D involved

in the observation equation was nil. In the case where such a direct matrix exists, we can remove it

with a simple feed-forward loop z = y −Du, as represented on Figure 5.1.

After having de�ned the fundamental concepts of controllability and observability, we will propose

two approaches for the design of controllers. First of all, we will assume that the state x is accessible

on demand. Even though this hypothesis is generally not veri�ed, it will allow us to establish the

principles of the pole placement method. In the second phase, we will no longer assume that the

state is accessible. We will then have to develop state estimators capable of approximating the state

vector in order to be able to employ the tools developed in the �rst phase. The reader should consult

the book of T. Kailath [13]in order to have a wider view of the methods used for the control of linear

systems.

Figure 5.1: Loop allowing the removal of the direct matrix D
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5.1 Controllability and observability

There are multiple equivalent de�nitions for the controllability and observability of linear systems.

A simple de�nition is the following.

De�nition 3. The linear system{
ẋ = Ax+Bu

y = Cx

is said to be controllable if, for every pair of state vectors (x0,x1), we can �nd a time t1 and a control

u(t), t ∈ [0, t1], such that the system, initialized in x0, reaches the state x1, at time t1. It is observable

is the knowledge of y(t) and of u(t) for t ∈ R allows us to determine, in a unique manner, the state

x(t), for all t.

Controllability criterion � The system is controllable if and only if:

rank
(
B | AB | A2B | . . . | An−1B

)︸ ︷︷ ︸
Γcon

= n

where n is the dimension of x. In other words, the matrix Γcon, called the controllability matrix,

obtained by juxtaposing the n matrices B, AB, . . . , An−1B next to one another, has to be of full

rank in order for the system to be controllable. This criterion is proved in Exercise 5.4.

Observability criterion � The linear system is observable if:

rank


C

CA
...

CAn−1


︸ ︷︷ ︸

Γobs

= n

in other words the matrix, called the observability matrix Γobs, obtained by placing the n matrices

C, CA, . . . , CAn−1 below one another, is of full rank. The proof of this criterion is discussed in

Exercise 5.5.

The above de�nitions as well as the criteria are also valid for discrete-time linear systems (see

Exercise 5.3).

5.2 State feedback control

Let us consider the system ẋ = Ax+Bu which is assumed to be controllable and we are looking

to �nd a controller for this system of the form u = w−Kx, where w is the new input. This leads to

the assumption that x is accessible on demand, which is normally not the case. We will see further
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on how to get rid of this awkward hypothesis. The state equations of the looped system are written

as:

ẋ = Ax+B (w −Kx) = (A−BK)x+Bw.

It is reasonable to choose the control matrix K so as to impose the poles of the looped system. This

problem is equivalent to imposing the characteristic polynomial of the system. Let Pcon(s) be the

desired polynomial of degree n. We need to solve the polynomial equation:

det(sI−A+BK) = Pcon(s)

referred to as pole placement. This equation can be translated into n scalar equations. Let us indeed

recall that two monic polynomials of degree n sn + an−1s + · · · + a0 and sn + bn−1s + · · · + b0 are

equal if and only if their coe�cients are all equal, i.e. if an−1 = bn−1, . . . , a0 = b0. Our system of n

equations has m.n unknowns which are the coe�cients kij, i ∈ {1, . . . ,m}, j ∈ {1, . . . , n}. In fact, a

single solution matrix K is su�cient. We may therefore �x (m− 1) elements of K so that we are left

with only n unknowns. However, the obtained system is not always linear. The ppol instruction in

Scilab or place in Matlab or Python allow to solve the pole placement equation.

5.3 Output feedback control

In this paragraph, we are once again looking to stabilize the system:{
ẋ = Ax+Bu

y = Cx

but this time, the state x of the system is is no longer assumed to be accessible on demand. The

controller which will be used is represented on Figure 5.2.

Only the setpoint w and the output of the system y can be used by the controller. The unknowns

of the controller are the matrices K, L and H. Let us attempt to explain the structure of this

controller. First of all, in order to estimate the state x necessary for computing the control u, we

integrate a simulator of our system into the controller. The simulator is a copy of the system and

its state vector is denoted by x̂. The error εy between the output of the simulator ŷ and the output

of the system y allows us to correct, by using a correction matrix L, the evolution of the estimated

state x̂. The corrected simulator is referred to as the Luenberger observer. We can then apply a state

feedback technique which will be carried out using the matrixK. For the calculation ofK we may use

the pole placement method described earlier, which consists of solving det(sI−A+BK) = Pcon(s),

where Pcon(s) is the characteristic polynomial of degree n chosen for the control dynamics. For the

calculation of the correction matrix L, we will try to guarantee a convergence of the error x̂ − x

to 0. The role of the matrix H (square matrix placed right after the setpoint vector w), called a

precompensator is to match the components of the setpoint w with certain state variables chosen

beforehand. We will also discuss how to choose this matrix H in order to be able to perform this

association.
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Figure 5.2: Principle of an output feedback controller

In order to calculate L, let us extract, from the controlled system of the �gure, the sub-system

with input u formed from the system to be controlled and its observer (see Figure 5.3).

The state equations which describe the system are:{
ẋ = Ax+Bu
d
dt
x̂ = Ax̂+Bu− L (Cx̂−Cx)

where the state vector is (x, x̂). Let us create, only by thought, the quantity εx = x̂−x, as represented

on Figure 5.3. By subtracting the two evolution equations, we obtain:

d

dt
(x̂− x) = Ax̂+Bu− L (Cx̂−Cx)−Ax−Bu = A (x̂− x)− LC (x̂− x)

Thus, εx obeys the di�erential equation:

ε̇x = (A− LC) εx

in which the control u is not involved. The estimation error εx on the state tends towards zero if all

the eigenvalues of A − LC have negative real parts. To impose the dynamics of the error (in other

words, its convergence speed) means solving:

det (sI−A+ LC) = Pobs(s)

where Pobs(s) is chosen as desired, so as to have the required poles. Since the determinant of a matrix

is equal to that of its transpose, this equation is equivalent to:

det
(
sI−AT +CTLT

)
= Pobs(s)
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Figure 5.3: Diagram of the output error between the observer and the system

We obtain a pole placement-type equation.

Precompensator.� The precompensator H allows to associate the setpoints (components of w)

with certain values of the state variables that we are looking at. The choice of these state variables

is done by using a setpoint matrix E. Assuming that w(t) = w̄ is constant, at equilibrium we have,

x̂ = x = x̄ and ẋ = 0. Thus

(A−BK) x̄+BHw̄ = 0

or equivalently x̄ = − (A−BK)−1BHw̄. If we want w̄ = Ex̄, we should solve

−E (A−BK)−1BH = I.

Therefore

H = −
(
E (A−BK)−1B

)−1
.

5.4 Summary

The algorithm of the table below summarizes the method which allows to calculate an output

feedback controller with precompensator.
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Algorithm RegulKLH(in: A,B,C,E,p
con
,pobs ; out : R)

1 K := place (A,B,p
con

) ;

2 L := place
(
AT,CT,p

obs

)T
;

3 H := −
(
E (A−BK)−1B

)−1
;

4 R :=


d
dt
x̂ = (A−BK− LC) x̂ +

(
BH L

)( w

y

)
u = −K x̂ +

(
H 0

)( w

y

)

Page 62 of 89



Exercises

Exercise 5.1.� Non-observable states, non-controllable states

See the correction video at https://youtu.be/Vdy3PmyV9kk

Let us consider the system:
ẋ(t) =


−1 1 0 0

0 1 0 0

1 1 1 1

0 1 0 1

 x(t) +


1

0

1

0

 u(t)

y(t) =
(
1 1 0 0

)
x(t) + 1 u(t)

1) Calculate its transfer function.

2) Is this system stable ?

3) Draw the associated block diagram and deduce from this the non-observable and non-

controllable states.

4) The poles of the system (the eigenvalues of the evolution matrix) are composed of transmission

poles (poles of the transfer function) and hidden poles. Give the hidden poles.

Exercise 5.2.� Using the controllability and observability criteria

See the correction video at https://youtu.be/n-5sA7HGH1s

Let us consider the system
ẋ =

 1 1 0

0 1 0

0 0 1

x+

 0 0

1 0

1 a

u

y =

(
1 1 b

0 1 0

)
x

1) For which values of a is the system controllable ?

2) For which values of b is the system observable ?

3) Draw the block diagram of the system.
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Exercise 5.3.� Proof of the controllability criterion in discrete time

See the correction video at https://youtu.be/-B3nfyBQ1U8

Prove the criterion of controllability is discrete time. This theorem states that the system x(k +

1) = Ax(k) +Bu(k) is controllable if and only if:

rank
(
B | AB | A2B| . . . | An−1B

)︸ ︷︷ ︸
Γcon

= n

where n is the dimension of x.

1) Show that:

x(n) = Anx(0) +
(
B | AB | . . . | An−1B

)


u(n− 1)
...

u(1)

u(0)


2) Show that if the matrix (B | AB | . . . | An−1B) is of full rank then, for every initial vector x0, for

every target vector xn, we can �nd a control u(0),u(1), . . . ,u(n− 1) such that the system initialized

in x0 reaches xn, at time k = n.

Exercise 5.4.� Proof of the controllability criterion in continuous time

See the correction video at https://youtu.be/4TWwM0HyHDw

In this exercise, we prove the controllability criterion in continuous time which states that the

system ẋ = Ax+Bu is controllable if and only if:

rank
(
B | AB | A2B | . . . | An−1B

)︸ ︷︷ ︸
Γcon

= n

where n is the dimension of x and Γcon is the controllability matrix.

The proof is in two steps. First, we prove in Question 1 by contradiction that if the system is

controllable then the rank is equal to n. Then, we show in Question 2 that if the rank is equal to n

then the system is controllable.

1) Assume that:

rank
(
B | AB | A2B | . . . | An−1B

)︸ ︷︷ ︸
Γcon

< n

Let z be a non-zero vector such that zT · Γcon = 0. By using the solution of the state equation:

x(t) = eAtx(0) +

∫ t

0

eA(t−τ)Bu(τ)dτ,
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show that the control u cannot in�uence the value zTx. Deduce from this that the system is not

controllable.

2) Show that if rank(Γcon) = n, for every pair (x(0),x(t1)) , t1 > 0, there is a polynomial control

u(t), t ∈ [0, t1] which leads the system from state x(0) to state x(t1). Here, we will limit ourselves to

t1 = 1, knowing that the main principle of the proof remains valid for any t1 > 0.

Exercise 5.5.� Proof of the observability criterion

See the correction video at https://youtu.be/Y6TBDrMf8Eo

Consider the continuous-time linear system:

ẋ = Ax+Bu

y = Cx

1) Show that:
y

ẏ

ÿ
...

y(n−1)

 =


C

CA

CA2

...

CAn−1

x+


0 0 0 0

CB 0 0 0

CAB CB 0
...

. . . . . .

CAn−2B · · · CAB CB




u

u̇

ü
...

u(n−2)


2) Deduce from this that if the observability matrix:

Γobs =


C

CA
...

CAn−1


is of full rank, then we can express the state x as a linear function of the quantities u, y, u̇, ẏ,

. . . ,u(n−2), y(n−2), y(n−1).

Exercise 5.6.� Kalman decomposition

See the correction video at https://youtu.be/reOIIEOPz50

A linear system can always be decomposed, after a suitable change of basis, into four sub-systems

S1,S2,S3,S4 where S1 is controllable and observable, S2 is non-controllable and observable, S3 is

controllable and non-observable and S4 is neither controllable nor observable. The dependencies

between the sub-systems can be summarized by Figure 5.4.

Let us note that, on the �gure, there is no path (respecting the direction of the arrows) leading

from the input u to a non-controllable system. Similarly, there is no path leading from a non-

Page 65 of 89

https://youtu.be/Y6TBDrMf8Eo
https://youtu.be/reOIIEOPz50


Luc Jaulin Automooc

Figure 5.4: Principle of the Kalman decomposition ; C: controllable, O: observable, 	C: non-

controllable, 	O: non-observable

observable system to y. We consider the system described by the state equation:
ẋ(t) =


A11 A12 0 0

0 A22 0 0

A31 A32 A33 A34

0 A42 0 A44

 x(t) +


B1

0

B3

0

 u(t)

y(t) =
(
C1 C2 0 0

)
x(t) + (D) u(t)

Draw a block diagram of the system. Show a decomposition in 4 sub-systems Si corresponding to

the Kalman decomposition.

Exercise 5.7.� Resolution of the pole placement equation

See the correction video at https://youtu.be/65nmtKCWzfw

We will illustrate here the resolution of the pole placement equation when the system only has a

single input. We consider the system:

ẋ =

(
1 2

3 4

)
x+

(
1

2

)
u

that we are looking to stabilize by state feedback of the form: u = w − Kx, with: K = (k1 k2).

Calculate K so that this characteristic polynomial Pcon(s) of the closed-loop system has the roots

−1 and −1.

Exercise 5.8.� Output feedback of a scalar system

See the correction video at https://youtu.be/6jbn4wP8IEU

Let us consider the following state equation:{
ẋ = 3x+ 2u

y = 4x

1) Propose an output feedback controller which puts all the poles in −1 and such that the setpoint

variable corresponding to x (in other words if we �x the setpoint at w̄, we want the state x to converge

towards w̄).
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2) Give the state equations of the looped system. What are the poles of the looped system ?

Exercise 5.9.� Separation principle

See the correction video at https://youtu.be/C71Yfs-mnZ4

Let us consider a system looped by a pole placement method, as represented on Figure 5.5.

Figure 5.5: Output feedback controller

1) Give the state equations of the controller.

2) Find the state equations of the looped system. We will take as state vector the vector (xT x̂T)T.

3) Let us take εx = x̂ − x and take as new state vector (xT εTx )
T. Give the associated state

representation. Show that εx is not controllable.

4) Show that the characteristic polynomial of the looped system is given by:

P (s) = det (sI−A+BK) . det (sI−A+ LC)

What can be deduced from this about the relationship between the poles of this system and the

ones we have placed ?

Exercise 5.10.� Proportional and derivative control of a pump

See the correction video at https://youtu.be/9lFBusPAzfA

We consider the direct current motor of Figure 5.6.
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Figure 5.6: Direct current motor

Its state equations are:
di

dt
= −R

L
i− κ

L
ω +

u

L

ω̇ =
κ

J
i− ρ

J
ω − Tr

J

where κ,R, L, ρ, J are constant parameters of the motor. The inputs are the voltage u and the torque

Tr, the state variables are i and ω. We use this motor to pump water from a well. In this case,

the torque used is Tr = αω, where α is a constant parameter. We will ignore ρ before α. There is

consequently a single input for the motor+pump system: the voltage u.

1) Give the state equations of the motor+pump system.

2) We choose as output y = ω. Calculate the transfer function of the motor+pump system.

3) Give the di�erential equation associated with this transfer function.

4) We take as state vector x = (y, ẏ)T. Give a state representation of the system in matrix form.

5) A proportional-derivative controller is a linear combination of the output y, its derivative ẏ,

and the setpoint w (be careful not to confuse the setpoint w with the speed of the motor shaft ω).

This controller is written in the form:

u = hw − k1y − k2ẏ

Give the state equations of the motor+pump system looped by such a controller.

6) Give the values of k1 and k2 that we need to choose in order to have the poles of the looped

system equal to −1.

7) Find h in such a way that y converges towards w when the setpoint w is constant.

Exercise 5.11.� PID control

See the correction video at https://youtu.be/uwcSOmcADHw

We consider a second-order system of the form described by the following di�erential equation:

ÿ + a1ẏ + a0y = u

1) Give the state equation of the system in matrix form. We will take as state vector x = (y ẏ)T.
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2) Let w be a setpoint that we will assume constant. We would like y (t) to converge towards w.

We de�ne the error by: e (t) = w − y (t). We suggest controlling our system by the following PID

(proportional-derivative-integral) controller:

u (t) = α−1

∫ t

0

e (τ) dτ + α0e (t) + α1ė (t)

where the αi are the coe�cients of the controller. This is a state feedback controller, where we

assume that x (t) is measured. Give the state equations of this PID controller with the inputs x,w

and output u. A state variable z (t) =
∫ t

0
e (τ) dτ will have to be created in order to take into account

the integrator of the control.

3) Draw the block diagram of the looped system. This diagram will only be composed of

integrators, adders and ampli�ers. Encircle the controller on the one hand and the system to be

controlled on the other.

4) Give the state equations of the looped system in matrix form.

5) Choose the coe�cients αi of the control (in function of the ai) so as to have a stable looped

system in which all the poles are equal to −1 ?

6) We slightly change the value of the parameters a0 and a1 while keeping the same controller.

We assume that this modi�cation does not destabilize our system. The new values for a0, a1 are

denoted by a′0, a
′
1. For a value w̄ for given w, what value ȳ does converge y to ? Conclude.

Exercise 5.12.� Canonical control form

See the correction video at https://youtu.be/G6UHzx8dleA

We consider the system described by its canonical control form as in the Figure 5.7.

Figure 5.7: State feedback for a linear system in canonical control form

1) Give the state equations of this system. What is its characteristic polynomial ?

2) We would like to control this system by a state feedback of the form u = −Kx+ hw, where w

is the setpoint. Calculate K in order for all the poles to be equal to −1.
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3) We would like, at equilibrium (i.e., when the setpoint and the output no longer change), to

have y = w. Deduce from this the value to take for the precompensator h.

Exercise 5.13.� State feedback with integral e�ect, monovariate case

See the correction video at https://youtu.be/mp4tF_D5lk4

We consider the system described by the state equations: ẋ =

(
1 1

0 2

)
x+

(
0

1

)
u

y = x1

where u is the input, y the output and x the state vector.

1) Give the characteristic polynomial of the system. Is the system stable ?

2) We loop the system by the following state feedback control:

u = α

∫ t

0

(w(τ)− y(τ)) dτ − Kx, avec K = (k1 k2)

where w is the setpoint. Give the state equations of the controller (we will denote by z the state

variable of the controller). What are the poles of the controller ?

3) Give the state equations of the looped system.

4) Calculate K and α in order for all the poles to be equal to −1.

5) We choose a setpoint w = w̄ constant in time. What values x̄ and z̄, does the state of the

system x and state of the controller z tend to ? What value ȳ does the output y tend to ?

6) We now replace the evolution matrix A by another matrix Ā close to A, while keeping the

same controller. What value y will it converge to ?

Exercise 5.14.� State feedback with integral e�ect, general case

See the correction video at https://youtu.be/rCRQ3IjEE1w

We consider the system described by the state equation ẋ = Ax+Bu+p where p is an unknown

and constant disturbance vector which represents an external disturbance. We will take m = dimu

and n = dimx. A state feedback controller with integral e�ect is of the form:

u = Ki

∫ t

0

(w − y) dt−Kx

where w is the setpoint and y is a vector with same dimension as u representing the setpoint state

variables (in other words those we wish to control directly by using w). The vector y is linked to

the state x by the relation y = Cx.

1) Give the state equations of the looped system. Recall that the state of the looped system will

be composed of the state x of the system to control and of the vector z of the values memorized in

the integrators. Give the dimensions of w,y,p, z,A,B,C,Ki,K.
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2) Find the matrices K and Ki so that all the poles of the looped system are equal to −1.

3) Show that, for a constant setpoint w and disturbance p, we necessarily have y = w, once the

steady state has been reached. What is then the value of p (in function of x and z) ?

4) Give the state equations of the controller.

Exercise 5.15.� Luenberger observer

See the correction video at https://youtu.be/HZmH9Rw9DVw

We consider the system with input u and output y of Figure 5.8.

Figure 5.8: Second order system for which we need to design an observer

1) Give, in matrix form, a state representation for this system. Deduce from this a simpli�cation

for the block diagram.

2) Study the stability of this system.

3) Give the transfer function of this system.

4) Is the system controllable ? Is it observable ?

5) Find an observer which allows to generate a state x̂ (t), such that the error ||x̂−x|| converges
towards zero at e−t (which means to place all the poles at −1). Give this observer in state equation

form.

Exercise 5.16.� Demodulator

See the correction video at https://youtu.be/Onqy3pbPeMw

Consider the sinusoidal signal with pulsation ω

y (t) = a cos (ωt+ b)

where the parameters a and b are unknown. From the measure of y (t), we need to �nd the amplitude

a of the signal y (t).

1) Find an order 2 state equation capable of generating the signal y (t). We will take as state

variables x1 = ωy and x2 = ẏ.

2) Let us assume that at time t, we know the state vector x (t). Deduce from this an expression

of the amplitude a of the signal y (t) in function of x (t).
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3) We only measure y (t). Propose a state observer (by a pole placement method) which generates

an estimation x̂ (t) of the state x (t). We will place all the poles at −1.

4) Deduce from this the state equations of a state estimator with input y and output â which

gives us an estimation â of the amplitude a of a sinusoidal signal with pulsation ω. Build a program

to check the behavior of the observer for the sampled signal

y (t) = 2 cos t+ n (t)

with t ∈ {0, dt, 2dt, . . . , 10} where dt = 0.01 is the sampling period. The signal n (t) is a white

Gaussian noise with standard deviation 0.1. Draw also the �ltered signal ŷ (t) as well as the estimation

â (t) of the amplitude.

5) Draw the Bode diagram of the �lter that generates ŷ (t) from y (t). Discuss.

Exercise 5.17.� Output feedback of a non-strictly proper system

See the correction video at https://youtu.be/X4WRTk4UBIg

We consider the system S with input u and output y described by the di�erential equation:

ẏ − 2y = u̇+ 3u

Since in this case the degree of di�erentiation of u is not strictly smaller than that of y, the system

is not strictly proper.

1) Write this system in a state representation form.

2) In order to make this system strictly proper (in other words with a direct matrix D equal to

zero), we create a new output z = y − αu. Give the appropriate value of α. We will denote by Sz

this new system whose input is u and output is z.

3) Find an output feedback controller for Sz which sets all the poles of the looped system to −1.

4) Deduce from this a controller Sr (in state equation form) for S which sets all the poles of the

looped system to −1. We will denote by Sb the system S looped by the controller Sr.

5) Give the state equations of the looped system Sb.

6) Calculate the transfer function of the looped system Sb.

7) Calculate the static gain of the looped system. This gain corresponds to the ratio ȳ
w̄
in a steady

state. Deduce from this the gain of the precompensator to be placed before the system which would

allow to have a static gain of 1.

Exercise 5.18.� Output feedback with integral e�ect

See the correction video at https://youtu.be/0bpDeghF2Qo

We consider the system described by the state equation:{
ẋ = Ax+Bu+ p

y = Cx
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where p is a disturbance vector, representing an external disturbance which could not be taken into

account in the modeling (wind, the slope of the terrain, the weight of the people in an elevator,

etc.). The vector p is assumed to be known and constant. We will take m = dimu, n = dimx and

p = dimy. We need to control this system using the output feedback controller with integral e�ect

represented on Figure 5.9.

Figure 5.9: Output feedback controller with integral e�ect

On this �gure, w is the setpoint and yc is a vector with the same dimension as u representing

the setpoint output variables (in other words those that we wish to control directly using w and thus

have yc = w, when the setpoint is constant). The vector yc satis�es the relation yc = Ey, where E

is a known matrix.

1) Give the state equations of the looped system in matrix form.

2) Let us take ε = x̂− x. Express these state equations in matrix form by taking, this time, the

state vectors (x, z, ε).

3) Show how we can arbitrarily set all the poles of the looped system.

4) Show that, for a constant setpoint w and disturbance p, in a steady state, we necessarily have

yc = w.

5) Give the state equations of the controller, in matrix form.

Exercise 5.19.� Poincaré map

See the correction video at https://youtu.be/HW9XjU9hJpU

We consider the tank described by the state equation
ẋ1 = cos x3
ẋ2 = sinx3
ẋ3 = u

where (x1, x2) corresponds to the position of the robot and x3 is its heading. The robot has an

heading control of the form u = sin(ψ̄−x3). Moreover, the desired heading ψ̄ obeys to the automaton

(or Petri net) of Figure 5.10. The variable q ∈ {0, 1, 2} is a discrete and c is a clock which is initialized
to 0 each time q changes.

Page 73 of 89

https://youtu.be/HW9XjU9hJpU


Luc Jaulin Automooc

Figure 5.10: Automaton deciding the desired heading

1) Using a simulation, show that the state x(t) converges to a stable limit cycle. Take for the

initial state x(0) = (−3, 1,−1).

2) Given a surface of the state space S de�ned by g(x) = 0 which is transverse to the �eld f , i.e.,

x ∈ S ⇒
(
∂g

∂x
· f
)
(x) ̸= 0

almost everywhere. The surface S is called the Poincaré section. Consider a point a ∈ S such

that
(
∂g
∂x

· f
)
(a) > 0. We de�ne Poincaré map as the application which associates the state p(a)

of the surface S such that the trajectory initialized at a comes back for the �rst time in S, with(
∂g
∂x

· f
)
(p(a)) > 0. See Figure 5.11. Show that for all q = 0. the surface S : x1 + 2 = 0 is transverse

to f where f(x, q) is the �eld associated to the controlled system.

Figure 5.11: Left: the Poincaré map; Right: a view of the Poincaré map restricted to the Poincaré

section S

3) Build a program which estimates the �xed point which satis�es p(ā) = ā. Note that the

trajectory is in the surface S when q switches from q = 2 to q = 0.

4) Compute an estimate of the Jacobian matrix dp
da
(ā). Conclude about the stability of the limit

cycle.
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Chapter 6

Linearized control

In Chapter 5, we have shown how to design controllers for linear systems. However, in practice,

the systems are rarely linear. Nevertheless, if their state vector remains localized in a small zone of

the state space, the system may be considered linear and the techniques developed in Chapter 5 can

then be used. We will �rst show how to linearize a non-linear system around a given point of the

state space. We will then discuss how to stabilize these non-linear systems.

6.1 Linearization

6.1.1 Linearization of a function

Let f : Rn → Rp be a di�erentiable function. In the neighborhood of a point x̄ ∈ Rn the �rst-order

Taylor development of f around x̄ gives us:

f(x) ≃ f(x̄) +
df

dx
(x̄) (x− x̄)

with

df

dx
(x̄) =


∂f1
∂x1

(x̄) ∂f1
∂x2

(x̄) . . . ∂f1
∂xn

(x̄)
∂f2
∂x1

(x̄) ∂f2
∂x2

(x̄) . . . ∂f2
∂xn

(x̄)
...

...
...

∂fp
∂x1

(x̄) ∂fp
∂x2

(x̄) . . . ∂fp
∂xn

(x̄)

 .

This matrix is called the Jacobian matrix. Very often, in order to linearize a function, we use formal

calculus for calculating the Jacobian matrix, then we instantiate this matrix around x̄. When we

di�erentiate by hand, we avoid such proceedings. We save a lot of calculations if we perform the

two operations (di�erentiation and instantiation) simultaneously. Finally, there is a similar method

which is very easy to implement: the �nite di�erence method. In order to apply it to the calculation

of df
dx

at point x̄, we approximate the jth column of the Jacobian matrix as follows:

∂f

∂xj
(x̄) ≃ f (x̄+hej)− f (x̄)

h
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where ej is the j
th vector of the canonical basis of Rn and h a small real number. Thus, the Jacobian

matrix is approximated by:

df

dx
(x̄) ≃

 f(x̄+he1)−f(x̄)
h

∣∣∣∣∣∣∣ f(x̄+he2)−f(x̄)
h

∣∣∣∣∣∣ . . .
∣∣∣∣∣∣∣ f(x̄+hen)−f(x̄)

h


To have a correct approximation, we need to take a very small h. However, if h is too small, numerical

problems appear. This method therefore has to be considered weak.

6.1.2 Linearization of a dynamic system

Let us consider the system described by its state equations:

S :

{
ẋ = f(x,u)

y = g(x,u)

where x is of dimension n, u is of dimension m and y is of dimension p. Around the point (x̄, ū),

the behavior of S is therefore approximated by the following state equations:{
ẋ = f(x̄, ū) +A (x− x̄) +B (u− ū)

y = g(x̄, ū) +C (x− x̄) +D (u− ū)

with:

A = ∂f
∂x

(x̄, ū) , B = ∂f
∂u

(x̄, ū)

C = ∂g
∂x

(x̄, ū) , D = ∂g
∂u

(x̄, ū)

This is an a�ne system called tangent system to S at point (x̄, ū).

6.1.3 Linearization around an operating point

A point (x̄, ū) is an operating point (also called polarization point) if f(x̄, ū) = 0. If ū = 0, we

are in the case of an equilibrium point. Let us note �rst of all that if x = x̄ and if u = ū, then ẋ = 0,

in other words the system no longer evolves if we maintain the control u = ū when the system is in

the state x̄. In this case, the output y has the value y = ȳ = g(x̄, ū). Around the operating point,

(x̄, ū), the system S admits the tangent system:{
ẋ = A (x− x̄) +B (u− ū)

y = ȳ +C (x− x̄) +D (u− ū)

Let us take ũ = u − ū, x̃ = x − x̄ and ỹ = y − ȳ. These vectors are called the variations of u, x

and y. For small variations ũ, x̃, ỹ, we have:{
d
dt
x̃ = Ax̃+Bũ

ỹ = Cx̃+Dũ

The system thus formed is called the linearized system of S around the operating point (x̄, ū).
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6.2 Stabilization of a non-linear system

Let us consider the system described by its state equations:

S :

{
ẋ = f(x,u)

y = g(x)

in which (x̄, ū) constitutes an operating point. In order for our system to behave like a linear system

around (x̄, ū), let us create the variables ũ = u− ū and ỹ = y − ȳ, as represented on Figure 6.1.

Figure 6.1: Polarization of the system: the initial system, locally a�ne (in the neighborhood of the

operating point) is transformed into a locally linear system

The system with input ũ and output ỹ thus designed is called a polarized system. The state

equations of the polarized system can be approximated by:{
ẋ = f(x,u) ≃ A · (x− x̄) +B · (u− ū) = A · (x− x̄) +B · ũ
ỹ = −ȳ + y = −ȳ + g(x) ≃ −ȳ + ȳ +C (x− x̄) = C · (x− x̄)

where A, B, C are obtained by the calculation of the Jacobian matrix of the functions f and g at

point (x̄, ū) . By taking now x̃ = x− x̄ as state vector instead of x, we obtain:{
d
dt
x̃ = Ax̃+Bũ

ỹ = Cx̃

which is the linearized system of the non-linear system. Let xc = Ex be the sub-vector of the setpoint

variables. We can build a controller RL for this linear system using the RegulKLH algorithm

(A,B,C,E,pcon,pobs) described on page 61. We know that when the setpoint w̃ input into RL is

constant, we have Ex̃ = w̃. However, we would like the input of the controller w that we are building

to satisfy w = Ex.We therefore have to build w̃ from w in such a way that w = Ex, at equilibrium.

We have:

w̃ = Ex̃ = E (x− x̄) = w − w̄

where w̄ = Ex̄. The controller thus obtained is represented on Figure 6.2, in the thick frame.

This controller stabilizes and decouples our non-linear system around its operating point. A

summary of the method to calculate a controller for a non-linear system is given below.
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Figure 6.2: Stabilization of a non-linear system around an operating point by a linear controller

Algorithm RegulNL (in: f ,g,E,p
con
,pobs, x̄, ū ; out : R)

1 Check that f (x̄, ū) = 0;

2 ȳ := g (x̄) ; w̄ := Ex̄;

3 A := ∂f
∂x

(x̄, ū) ; B := ∂f
∂u

(x̄, ū) ; C := ∂g
∂x

(x̄, ū) ;

4 K := place (A,B,p
con

) ;

5 L :=
(
place

(
AT,CT,p

obs

))T
;

6 H := −
(
E (A−BK)−1B

)−1
;

7 R :=

{
d
dt
x̂ = (A−BK− LC) x̂+BH (w − w̄) + L (y − ȳ)

u = ū−Kx̂+H (w − w̄)

This algorithm returns our controller with inputs y,w and output u in the form of its state

equations.
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Exercises

Exercise 6.1.� Linearization of the predator-prey system

See the correction video at https://youtu.be/HqmT6kBilZQ

Let us consider the Lotka-Volterra predator-prey system, given by:{
ẋ1 = (1− x2)x1
ẋ2 = (−1 + x1)x2

1) Linearize this system around a non-zero equilibrium point x̄.

2) Among the two vector �elds of Figure 6.3, which one represents the �eld associated with the

Lotka-Volterra system and which one corresponds to its tangent system ?

3) Calculate the poles of the linearized system. Discuss.

Figure 6.3: One of the two vector �elds is associated with the Lotka-Volterra system. The other

corresponds to its tangent system

Exercise 6.2.� Water car

See the correction video at https://youtu.be/o29wNy16XRk
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Consider a car moving horizontally in the water as illustrated by Figure 6.4. Its evolution obeys

the following di�erential equation:

ÿ + ẏ. |ẏ| = u

where y is the position of the car and u is the force exerted on this car.

1) Give the state equation for this system. We will take as state vector x = (y ẏ)T.

2) Linearize around its equilibrium point. Study the stability of the system.

3) In the case of a positive initial speed ẏ (0), give the solution of the non-linear di�erential

equation when u = 0. To which value does y converge to?

Figure 6.4: The car moves on the sea-�oor

Exercise 6.3.� Control of a �rst-order non-linear system

See the correction video at https://youtu.be/NrwbXbThk1M

Let us consider the non-linear system given by the state equations:

S :

{
ẋ = 2x2 + u

y = 3x

which we wish to stabilize around the state x̄ = 2. At equilibrium, we would like y to be equal to its

setpoint w. Moreover, we would like all the poles of the looped system to be equal to −1.

1) Give the state equations of the controller using pole placement which satis�es these constraints.

2) What are the state equations of the looped system?

Exercise 6.4.� State feedback

See the correction video at https://youtu.be/NifPfedkeek

Let us consider the system represented by Figure 6.5.

Figure 6.5: block diagram for a non-linear system
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1) Give the state equations of the system.

2) Calculate its equilibrium points.

3) Linearize this system around an equilibrium point x̄ corresponding to x1 = π. Is this a stable

equilibrium point ?

4) Propose a state feedback controller of the form u = −K (x− x̄) which stabilizes the system

around x̄. Place all poles at −1.

Exercise 6.5.� Control of the segway

See the correction video at https://youtu.be/xKQ9Z64Z0xY

The segway is a vehicle with two wheels and a single axle. We consider �rst of all that the segway

moves in a straight line and therefore a two-dimensional model will su�ce (see Figure 6.6).

Figure 6.6: Segway which is the subject of the controllability study

This system has two degrees of freedom: the angle of the wheel s and the pitch θ. Its state vector

is therefore the vector x = (s, θ, ṡ, θ̇)T. When it is not controlled, the state equations of the segway

are (refer to Exercise 2.6):


ẋ1
ẋ2
ẋ3
ẋ4

 =


x3
x4

µ3(µ2x2
4−µg cosx2) sinx2+(µ2+µ3 cosx2)u

µ1µ2−µ2
3 cos

2 x2

(µ1µg−µ2
3x

2
4 cosx2) sinx2−(µ1+µ3 cosx2)u

µ1µ2−µ2
3 cos

2 x2


y = x1

where:

µ1 = JM + ρ2 (m+M) , µ2 = Jp +mℓ2,

µ3 = ρmℓ, µg = gℓm

The parameters of our system are the mass M of the disk, its radius ρ, its inertial momentum JM ,

the mass m of the body, its inertial momentum Jp, the distance ℓ between its center of gravity and

the center of the disk. We have added the observation equation y = x1 in order to assume a situation
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where only the angle of the wheel s is measured. We will take m = 10 Kg, M = 1 Kg, ℓ = 1 m,

g = 10 ms−2, ρ = 1 m, Jp = 10 Kg.m2 and JM = 1
2
Mρ2. Note that, since ρ = 1, the angle s also

correspond to the displacement of the segway.

1) Calculate the operating points of the system.

2) Linearize the system around an upper equilibrium point, for s = 0.

3) By using the controllability matrix, determine whether the system is controllable.

4) Simulate this system by using Euler's method, in di�erent situations.

5) We assume that we measure the angle s using an odometer. Calculate an output feedback

controller which allows to place the segway at a given position. We will place all the poles around

−2 (be careful, the pole placement algorithm usually does not allow two identical poles). Propose

a simulation to validate the stability of your controller. Validate the robustness of your control by

adding sensor noise to the measure of x, which is white and Gaussian.

6) Given the model of the tank, propose a 3D model for the segway. The chosen state vector will

be:

x = (θ, ṡ, θ̇, x, y, ψ, s1, s2)
T

where s1 is the angle of the right wheel, s2 the angle of the left wheel, ψ is the heading of the segway

and the (x, y) the coordinates of the center of the Segway's axle. The input are the body/wheels pair

u1 and the di�erential between the wheels u2. Here, ṡ represents the average angular speed between

the two wheels, i.e. ṡ = 1
2
(ṡ1 + ṡ2). Propose a control which allows to regulate the segway speed-

and heading-wise.

Exercise 6.6.� Controlling an inverted rod pendulum

See the correction video at https://youtu.be/ft7lOc4r1ws

Let us consider the inverted rod pendulum represented on Figure 6.7, composed of a pendulum

placed in unstable equilibrium on a carriage.

Figure 6.7: Inverted rod pendulum that we need to control

The value u is the force exerted on the carriage of mass mc = 5 kg, s indicates the position of

the carriage, θ is the angle of the pendulum. At the tip b of the pendulum of length ℓ = 4 m is a
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�xated mass mr = 1 Kg. Finally, a is the point of articulation between the rod and the carriage. As

seen in Exercise 2.5, the state equations of this system are:


ẋ1
ẋ2
ẋ3
ẋ4

 =


x3
x4

mr(sinx2)·(g cosx2−ℓx2
4)+u

mc+mr sin2 x2
(sinx2)·((mc+mr)g−mrℓx2

4 cosx2)+cosx2u

ℓ(mc+mr sin2 x2)


y = x1

where:

x = (x1, x2, x3, x4)
T = (s, θ, ṡ, θ̇)T.

The observation equation indicates that only the position of the carriage x1 is measured.

1) Calculate all the operating points of the system.

2) Linearize the system around the operating point x̄ = (0, 0, 0, 0) and ū = 0.

3) Obtain an output feedback controller which sets all the poles of the looped system to −2. We

propose a control in position, which means that the setpoint w corresponds to x1. Illustrate by a

simulation the behavior of the controller.

4) Create a state feedback control which allows to raise the pendulum when it leaves its bottom

position. For this, we will attempt to stabilize the mechanical energy of the pendulum before moving

on to a linear control. We will assume that u ∈ [−umax, umax] . Illustrate on a simulation.

Exercise 6.7.� Linear Quadratic Regulator

See the correction video at https://youtu.be/257kfCdaKhs

Consider the state space system

ẋ = Ax+Bu

and the cost function

J(x(·),u(·)) =
∫ ∞

0

(xTQx+ uTRu) · dt.

It can be shown that a feedback control law that minimizes the value of the cost is given by

u = −Kx where

K = R−1BTP

where P is found by solving the continuous time algebraic Riccati equation given by

ATP+PA− (PB)R−1(BTP) +Q = 0.
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We assume this result that can be found using optimal control theory. The corresponding

controller is called LQR (Linear Quadratic Regulator). The main advantage of the LQR is that it

allows us to give weights to the required dynamics. In general, the matrices are chosen as diagonal.

Consider the inverted pendulum of Exercise 6.6. We assume that the state is measured without

any error.

1) With a pole-placement, propose a controller for the system. Draw the functions s(t), θ(t), u(t).

2) Find a value forK such that the system initialized at x(0) = (2, 0, 0, 0) satis�es ∀t ≥ 5, |x1(t)| <
0.2, |u(t)| ≤ 0.3. Give the poles of the closed loop system. Compare with the pole placement method.

3) Find a value for K such that the system initialized at x(0) satis�es ∀t ≥ 2, |x1(t)| < 0.2.

4) We now have x(0) = (50, 0, 0, 0). How do we have to choose the controller K to be able to get

a stabilization at 0?

Exercise 6.8.� Autonomous car

See the correction video at https://youtu.be/cP5x4wiaFxc

Here, we will address the case of a car which drives on an unknown road. The car is equipped

with (i) a range�nder which measures the lateral distance d between the rear axle of the car and

the edge of the road, (ii) a speed sensor which measures the speed v of the front wheels, and (iii) an

angle sensor which measures the angle δ of the steering wheel (for reasons of simpli�cation, we will

assume that δ corresponds also to the angle between the front wheels and the axis of the car). For

our simulations, we will assume that our car is driving around a closed polygon as shown on Figure

6.8.

Figure 6.8: Car turning around a polygon

1) Let m, a, b be three points of R2 and −→u a vector. Show that the half-line E
(
m,−→u

)
with

vertex m and direction vector −→u intersects the segment [ab] if and only if:{
det
(
a−m,−→u

)
. det

(
b−m,−→u

)
≤ 0

det(a−m,b− a). det(−→u ,b− a) ≥ 0
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Moreover, show that, in this case, the distance from the point m to the segment [ab] following the

vector −→u is given by:

d =
det(a−m,b− a)

det(−→u ,b− a)
.

2) We would like to make the car moving (without using a controller) around the polygon using

Euler's method. As seen in Exercise 2.7, we could take as evolution equation:
ẋ

ẏ

θ̇

v̇

δ̇

 =


v cos δ cos θ

v cos δ sin θ

v sin δ

u1
u2


Here (x, y) represents the coordinates of the center of the car, θ its heading. The polygon representing

the circuit will be represented by the matrix:

P =

(
−10 −10 0 10 20 32 35 30 20 0 −10

−5 5 15 20 20 15 10 0 −3 −6 −5

)
Since the polygon is closed, the �rst and last columns of P are identical. Give an expression of the

observation function of the system which returns the distance measured by the range�nder as well

as v and δ.

3) We would like the car to move with a constant speed along the road. Of course, it is out of

the question to involve the shape of the road in the controller, since it is unknown. Moreover, the

position and orientation variables of the car are not measured (in other words we have no compass

or GPS). These quantities however are often unnecessary in order to reach the given objective, which

is following the road. Indeed, are we not ourselves capable of driving a car on a road without having

a local map, without knowing where we are and where North is ? What we are interested in when

driving a car is the relative position of the car with respect to the road. The world as seen by the

controller is represented on Figure 6.9. In this world, the car moves laterally, like in a computer

game, and the edge of the road remains �xed. This world has to be such that the model used by

the controller has state variables describing this relative position of the car with respect to the road

and that the constancy of the state variables of this model corresponds to a real situation in which

the car follows the road with a constant speed. We need to imagine an ideal world for the controller

in which the associated model admits an operating point which corresponds to the desired behavior

of our real system. For this, we will assume that our car drives at a distance x̄ of the edge. This

model has to have the same inputs u and outputs y as the real system, more precisely two inputs

(the acceleration of the front wheels v̇ and the angular speed of the steering wheel δ̇) and three

outputs (the distance d of the center of the rear axle to the edge of the road, the speed v of the front

wheels and the angle δ of the steering wheel). Given the fact that only the relative position of the

car is of interest to us, our model must only contain four state variables: x, θ, v, δ, as represented on

the �gure. One must be careful though, since the meaning of the variable x has changed since the
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previous model. Find the state equations (in other words, the evolution equation and the observation

equation) of the system imagined by the controller.

4) Let us choose as operating point

x̄ = (5, π/2, 7, 0) et ū = (0, 0)

which corresponds to a speed of 7ms−1 and a distance of 5m between the center of the rear axle and

the edge of the road. Linearize the system around its operating point.

5) We want our setpoints w1 and w2 to correspond to the distance of the edge of the road and

the speed of the car. Design a controller by pole placement. All the poles in the interval [−2,−1].

6) Test the behavior of your controller in the case where the car is turning around the polygon.

Note that the system being controlled (in other words the turning car) by the controller is di�erent

than that it thinks it is controlling (i.e. a car in a straight line). You should obtain a behavior similar

to that illustrated by Figure 6.8.

Figure 6.9: The controller imagines a simpler world than reality, with a straight vertical wall

Exercise 6.9.� Follow the car

See the correction video at tBeIozR3J8M

First part.� (proportional and derivative control). Let us consider a second-order system described

by the di�erential equation ÿ = u, where u is the input and y the output.

1) Give a state representation for this system. The chosen state vector is given by x = (y, ẏ).

2) We would like to control this system using a proportional and derivative control of the type:

u = k1(w − y) + k2 (ẇ − ẏ) + ẅ

where w is a known function (for instance a polynomial) called setpoint and which can here depend

on the time t. Let us note that here, we have assumed that y and ẏ were available for the controller.

Give the di�erential equation satis�ed by the error e = w − y between the setpoint and the output

y.

3) Calculate k1 and k2, allowing to have an error e which converges towards 0 in an exponential

manner, with all the poles equal to −1.
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Second part.� (control of a tank-like vehicle). Let us consider the robotic vehicle on the left hand

side of Figure 6.10, described by:
ẋ = v cos θ

ẏ = v sin θ

θ̇ = u1
v̇ = u2

where v is the speed of the robot, θ its orientation and (x, y) the coordinates of its center. We assume

that we are capable of measuring all the state variables of our robot with great precision.

Figure 6.10: Our robot (with eyes) follows a vehicle (here a car) which has

an attachment point (small white circle) to which the robot has to attach

1) Let us denote by x = (x, y, θ, v) the state vector of our robot and u = (u1, u2) the vector of

the inputs. Calculate ẍ and ÿ in function of x of u. Show that:(
ẍ

ÿ

)
= A(x).u

where A(x) is a 2× 2 matrix.

2) Another mobile vehicle (on the right hand side of Figure 6.10) tell us, in a wireless manner,

the precise coordinates (xa, ya) of a virtual attachment point (in other words one that only exists

mentally), �xed with respect to this vehicle, to which we need to position ourselves. This means that

we want the center of the robot (x, y) to be such that x(t) = xa(t) and y(t) = ya(t). This vehicle also

sends us the �rst two derivatives (ẋa, ẏa, ẍa, ÿa) of the coordinates of the attachment points. Propose

the expression of a control u (x, xa, ya, ẋa, ẏa, ẍa, ÿa) which ensures us that the distance between the

position (x, y) of our robot and that of the attachment point (xa, ya) decreases in an exponential

manner. We will set the poles at −1.

Advice.� Perform a �rst loop as such: u = A−1(x) · q, where q = (q1, q2) is our new input. This

�rst loop will allow you to simplify your system by making it linear. Then, proceed with a second,

proportional and derivative loop.
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