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Abstract. This paper proposes a minimal contractor and a minimal sepa-
rator for an area delimited by an hyperbola of the plane. The task is facilitated
using actions induced by the hyperoctahedral group of symmetries. An appli-
cation related to the localization of an object using a TDOA (Time Differential
Of Arrival) technique is proposed.

1 Introduction

Consider the quadratic function

f(q,x) = q0 + q1x1 + q2x2 + q3x
2
1 + q4x1x2 + q5x

2
2 (1)

where q = (q0, . . . , q5) is the parameter vector and x = (x1, x2) is the vector of
variables. Equivalently, we can write the function in a matrix form:

f(q,x) = xT ·
(

q3
1
2q4

1
2q4 q5

)
︸ ︷︷ ︸

Q

· x+ (q1 q2) · x+ q0. (2)

The zeros of this quadratic function is a conic section (a circle or other ellipse,
a parabola, or a hyperbola). The characteristic polynomial of the matrix Q is

P (s) = (s− q3)(s− q5)− 1
4q

2
4

= s2 − (q3 + q5)s+ q3q5 − 1
4q

2
4

Its discriminant is
∆ = (q3 + q5)

2 − 4q3q5 + q24
= q23 + q25 − 2q3q5 + q24
= (q3 − q5)

2 + q24

which is always positive. Which means that the matrix Q has two real values
(this is not a surprise since Q is symmetric). We will assume here that Q has
eigen values with different signs. It means that
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(
q3 + q5 −

√
∆
)(

q3 + q5 +
√
∆
)
< 0

⇔ (q3 + q5)
2 −∆ < 0

⇔ (q3 + q5)
2 − ((q3 − q5)

2 + q24) < 0
⇔ q23 + q25 + 2q3q5 − (q23 + q25 − 2q3q5 + q24) < 0
⇔ 4q3q5 − q24 < 0
⇔ detQ < 0

Define the set
X = {(x1, x2|f(q,x) ≤ 0} . (3)

In our case X has a boundary which is an hyperbola. We wee call it an hyperbolic
area. In this paper, we propose an interval-based method [15] to generate an
optimal separator [11] for the set X. The technique is similar to that proposed
in [13] for ellipses. This separator will be used to generate an inner and an outer
approximations for X. As an application, we will consider the problem of the
localization of an object using a TDOA technique.

This paper is organized as follows. Section 2 introduces the notion of sym-
metries that will be used in the construction of the separators. Section ?? builds
the separator for the hyperbolic area. Section 5 illustrates the use of the sepa-
rator to approximate the set of position for an object. Section 6 concludes the
paper.

2 Symmetries

2.1 Conjugate pair

Define an equation of the form

f(q,x) = 0. (4)

The pair of transformations (σ, γ) is conjugate with respect to f if

f(γ(q), σ(x)) = 0 ⇔ f(q,x) = 0. (5)

2.2 Hyperoctahedral group

Transformations that will be consider are limited to the hyperoctahedral group
Bn [4] which is the group of symmetries of the hypercube [−1, 1]n of Rn. The
group Bn corresponds to the group of n× n orthogonal matrices whose entries
are integers. Each line and each column of a matrix should contain one and only
one non zero entry which should be either 1 or −1. Figure 1 shows different
notations usually considered to represent a symmetry σ of B5. We will prefer
the Cauchy one line notation [20] which is shorter. We should understand the
symmetry σ of the figure as the function:

σ(x1, x2, x3, x4, x5) = (−x2, x1, x5,−x4, x3). (6)
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Fig. 1: Different representations of an element σ of B5. Left: graph; Top right:
Matrix notation; Bottom right: Cauchy one line notation

Even if the matrix representation looks more intuitive, for efficiency reasons,
we use the Cauchy one line representation to compose the symmetries.

In the plane, the group B2 has eight elements. If we use the matrix form,
the elements of B2 are{(

1 0
0 1

)
,

(
−1 0
0 1

)
,

(
0 1
1 0

)(
−1 0
0 −1

)
,

(
1 0
0 −1

)
,

(
0 1
−1 0

)
,

(
0 −1
1 0

)
,

(
0 −1
−1 0

)}
(7)

or equivalently with the Cauchy notation

{(1, 2), (−1, 2), (2, 1), (−1,−2), (1,−2), (−2, 1), (2,−1), (−2,−1)}

Therefore, a symmetry of B2 can also be written as

σ =

(
σ11 σ12
σ21 σ22

)

σ =
(
1 2

)
·
(
σ11 σ12
σ21 σ22

)
= (σ11 + 2σ21, σ12 + 2σ22)

with σ2
ij ∈ {0, 1}, σ2

i1 + σ2
i2 = 1, σ2

1j + σ2
1j = 1.

2.3 Hyperbolic symmetry

Proposition 1. Take a point x = (x1, x2) such

f(q,x)
(1)
= q0 + q1x1 + q2x2 + q3x

2
1 + q4x1x2 + q5x

2
2 = 0

and a symmetry
σ = (σ11 + 2σ21, σ12 + 2σ22) ∈ B2

Define
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γ =
(
q0, σ11q1 + σ21q2, σ12q1 + σ22q2, σ

2
11q3 + σ2

21q5, σ11σ22 + σ12σ21)q4, σ
2
12q3 + σ2

22q5
)

The pair (σ−1, γ) is conjugate with respect to f .

Proof. Define
x1 = σ11 · y1 + σ12 · y2
x2 = σ21 · y1 + σ22 · y2

f(q,x) = q0 + q1x1 + q2x2 + q3x
2
1 + q4x1x2 + q5x

2
2

= q0 + q1(σ11y1 + σ12y2) + q2(σ21y1 + σ22y2) + q3(σ11y1 + σ12y2)
2 + q4(σ11y1 + σ12y2)(σ21y1 + σ22y2) + q5(σ21y1 + σ22y2)

2

= q0 + (σ11q1 + σ21q2) y1 + (σ12q1 + σ22q2) y2 + (σ2
11q3 + σ2

21q5)y
2
1 + (σ11σ22 + σ12σ21)q4y1y2 + (σ2

12q3 + σ2
22q5)y

2
2

Thus
f(q,x) = 0

⇔ f(γ(q),y) = 0
⇔ f(γ(q), σ−1(x)) = 0

2.4 Choice function

We thus get the choice function ψ [10]:

ψσ(q) =
(
q0, α11q1 + α21q2, α12q1 + α22q2, α

2
11q3 + α2

21q5, α11α22 + α12α21)q4, α
2
12q3 + α2

22q5
)

(8)
where α = σ−1.

Given a symmetry σ, this choice function allows us to get a symmetry γ
such that (σ, γ) is a conjugate pair.

Note that in our implementation, the symmetries σ that are considered are
involutive (i.e. α = σ). This is why α does not appear.

3 Cardinal functions

3.1 Some definitions

Definition 1. A cardinal vector of Rn is a vector

e = (e1, . . . , en)
T

such that ∥e∥ = 1 and ei ∈ {−1, 0, 1}.

For instance e3 = (0, 0, 1, 0)T and e−2 = (0,−1, 0, 0) are two cardinal vectors
if R4. For use the notation ei where i ∈ I = {−n, . . . ,−1, 1, . . . , n} to specify
the cardinal vector. For instance e−2 is the vector parallel to the 2 axis and
with a negative direction.
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Definition 2. Given a closed set X of Rn. A cardinal function φi with I =
{−n, . . . ,−1, 1, . . . , n} is defined by

φi(x1, . . . , x|i|−1, x|i|+1, . . . , xn) = max
{
xT · ei |x = (x1, . . . , x|i|−1, xi, x|i|+1, . . . , xn) ∈ X

}
(9)

Figure 2 shows in case of n = 2, a representation of the functions φ1(x2)
(red) and φ−1(x2) (blue). The small squares correspond to cardinal points (East
in red and West in blue).

Fig. 2: Graphs of the functions φ1(x2) (red) φ−1(x2) (blue)

Figure 3 is a representation of the functions φ2(x1) (black) and φ−2(x1)
(orange). The small squares correspond to cardinal points (North in black and
South in orange).
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Fig. 3: Graphs of the functions φ2(x1) (black) φ−1(x2) (orange)

In Figure 2, we observe that graphs of the function φ1 and φ−1 do not cover
the boundary of X. This is due to the fact that X is not row convex. We define
the notion of row convexity (similar to the definition in [19])

Definition 3. A set X ⊂ Rn is said to be row convex the boundary of X
corresponds to the union of the graphs of its cardinal functions, i.e.,

∂X = ∪igraph(φi)

3.2 Case of the hyperbola

For the hyperbola defined by

f(q,x) = q0 + q1x1 + q2x2 + q3x
2
1 + q4x1x2 + q5x

2
2 = 0.

We have four cardinal functions φi, i ∈ {−2,−1, 1, 2}.
To find φ1, we fix x2 and we search for the maximal value for x1 we yields

the following theorem. Other cardinal functions will be obtained by symmetries.

Proposition 2. Take a point x = (x1, x2) such that f(q,x) = 0. Given x2, the
largest x1 such that f(x) = 0 is given by

x1 = φ1(q, x2)

=
−(q1+q4x2)+sign(q3)·

√
(q1+q4x2)2−4q1(q0+q2x2+q5x2

2)

2q3

(10)
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Proof. Given x2, let us compute the possible values for x1. Since

f(q,x) = q3x
2
1 + (q1 + q4x2)x1 + q2x2 + q0 + q5x

2
2, (11)

we get the following discriminant:

∆1 = b21 − 4a1c1 (12)

where
a1 = q3, b1 = q1 + q4x2, c1 = q0 + q2x2 + q5x

2
2 (13)

The largest solution is

x1 =
−b1 + sign(a1) ·

√
∆1

2a1
. (14)

We have thus proved (10) .

Definition 4. The cardinal points are the (x1, x2) which belong to each graph
of three functions φi, i ∈ {−2,−1, 1, 2}.

For instance a North belongs to the graphs of φ1, φ−1, φ2 and a East belongs
to the graphs of φ2, φ−2, φ1. For our hyperbola we easily find that there exist
four cardinal points. Of course, the cardinal points depend on q.

Proposition 3. Define the interval function

ρ(q) =
−2q3q2 + q1q4 + [−1, 1] ·

√
(2q3q2 − q1q4)2 − (4q3q5 − q24)(4q3q0 − q21)

4q3q5 − q24
(15)

If we set [x2] = ρ(q), then the North is (x−2 , φ1(x
−
2 )) and the South is (x+2 , φ1(x

+
2 )).

Note that is the square root is not defined, then there is no cardinal points.

Proof. A value for x2 yields a feasible x1 if ∆1 ≥ 0 (see (3)), i.e.,

b21 − 4a1c1 ≥ 0
⇔ −(q1 + q4x2)

2 + 4q3(q0 + q2x2 + q5x
2
2) ≥ 0

⇔ (4q3q5 − q24)x
2
2 + (4q3q2 − 2q1q4)x2 + 4q3q0 − q21 ≤ 0

which is quadratic in x2. The discriminant is

∆2 = b22 − 4a2c2 (16)

where
a2 = 4q3q5 − q24
b2 = 4q3q2 − 2q1q4
c2 = 4q3q0 − q21

(17)

The corresponding values for x2 is

x2 =
−b2 ±

√
(∆2

2a2
.

and the North corresponds to the smallest one and the South to the largest.
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Corollary. Take symmetry σ = (1, 3, 2, 6, 5, 4) and set [x1] = ρ(σ(q)), the
East is (x−2 , φ1(x

−
2 )) and the West is (x+2 , φ1(x

+
2 )).

Proof. The symmetry σ permutes x1 and x2. The East become the North and
the West becomes the South.

4 Separator for the hyperbola

4.1 Interval extension of the cardinal function

Let us assume that q is fixed. The dependency with respect to the parameter
vector q will omitted for simplicity. As defined in the book of Moore [15], the
interval extension function of φ1(x2) is

[φ1]([x2]) = [{x1|∃x2 ∈ [x2], x1 = φ1(x2)}]

which returns the smallest interval which contains the set φ1([x2]). The same
definition applies for other direction to get [φ−1]([x2]), [φ2]([x1]) and [φ−2]([x1]).

Due to the monotonicity of φ1 between the cardinal points, we have

[φ1]([x2]) = [φ1({x−2 , x
+
2 , c2(1), c2(2), . . . })]

where c(1), c(2), . . . are the cardinal points inside the box [−∞,∞]× [x2].
Take for instance q = (−1, 5, 2,−2, 30,−2), i.e.,

f(x1, x2) = −1 + 5x1 + 2x2 − 2x21 + 30x1x2 − 2x22.

For an interval sampling [x2] =
1
5 · [k, k + 1], k ∈ N, the function [φ1]([x2])

generates the red boxes of Figure 4. If we do the same for [φ−1]([x2]), we get
the blue boxes. The small black square corresponds to the North and small
orange square corresponds to the South.
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Fig. 4: Minimal inclusion for φ1([x2]) (red) and φ−1([x2]) (blue). The frame
box in [−2, 2]

For a similar sampling along x1, Figure 5 represents [φ2]([x1]) (black) and
[φ−2]([x1]) (orange).
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Fig. 5: Minimal inclusion for φ2([x1]) (black) and φ−2([x1]) (orange)

4.2 Seed contractor

From the interval evaluation, we can build a contractor for the set x1 = φ1(x2).
It is is given by

C0 : [x] → [x1]× [φ1]([x2]). (18)

This contractor will be called a seed contractor because it will be used to con-
struct all other contractors using symmetries. The contractor (18) is not mini-
mal. It is only minimal with respect to x1. Since this contractor depends on q,
we will write Cq

0 .
We understand that Cq

0 correspond to a small portion of the hyperbola. The
main challenge is now to build the the separator for the whole hyperbola using
a single parametric contractor Cq

0 and symmetries. Of course, we could add
some other seed contractors, but our idea is to factorize the implementation as
much as possible to avoid bugs and make the code adaptable to other type of
sets.

4.3 Contractor for the hyperbola

We have a contractor Cq
0 which is minimal in the direction of x2. Recall that

Cq
0 ([x]) contracts the box [x] with respect to a small portion of the hyperbola.
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Using the notion of contractor action [8], we show how we can extend this
contractor Cq

0 to other portions. We recall that the action of a symmetry σ to
the contractor C is defined by

σ • C([x]) = σ ◦ C ◦ σ−1([x]).

This means that σ • C is a contractor that has been built from the contractor
C as follows:

• Apply to the box [x] the symmetry σ−1

• Apply the contractor C

• Apply to the resulting box C ◦ σ−1([x]) the symmetry σ.

For the hyperbola, we can make a partition of curve into four portions :

• North-East : X(1,2) = {(x1, x2|x1 = φ1(x2) and x2 = φ2(x1)}

• North-West : X(1,−2) = {(x1, x2|x1 = φ1(x2) and x2 = φ−2(x1)}

• South-East : X(−1,2) = {(x1, x2|x1 = φ−1(x2) and x2 = φ2(x1)}

• South-West : X(−1,2) = {(x1, x2|x1 = φ−1(x2) and x2 = φ−2(x1)}

If we consider the pair (σ, γ) conjugate with respect to the hyperbola, the con-

tractor σ •Cψσ(q)
0 is associated to another part of the hyperbola. The selection

of the symmetries (σ, γ) to be selected is made using the choice function (8).
These symmetries can be understood geometrically but can also be computed
automatically as shown in [8].

To understand the construction, consider the symmetry σ = (2, 1) ∈ B2.
The contractor associated to X(1,2):

Cq
1 ([x]) =

(
σ • Cψσ(q)

0 ∩ Cq
0

)
([x])

It is minimal with respect to both directions x1 and x2 as illustrated by Figure
6. Note that the North-East portion is delimited by the two cardinal points
North (black square) and East (red square).
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Fig. 6: Approximation of the North-East portion of the hyperbola using (2, 1) •
C
ψ(2,1)(q)
0 ∩ Cq

0

The following proposition shows that the contractor for the hyperbola can
be expressed by a simple formula involving symmetries and the seed contractor

C
ψσ(q)
0 . Getting such a formula will ease the implementation of the contractor.

Proposition 4. A minimal contractor associated to f(q,x) = 0 is⋃
σ∈{(1,2),(1,−2),(−1,2),(−1,−2)}

σ •
(
(2, 1) • Cψ(2,1)·ψσ(q)

0 ∩ Cψσ(q)
0

)
Proof. The minimal contractor for the North-East portion X(1,2) is

Cq
1 = (2, 1) • Cψ(2,1)(q)

0 ∩ Cq
0 . (19)

The three other portions can be defined by applying symmetries in {(1,−2), (−1, 2), (−1,−2)}.
Since, the union of contractors is minimal, we get⋃

σ∈{(1,2),(1,−2),(−1,2),(−1,−2)}

σ • Cψσ(q)
1

is a minimal contractor for f(q,x) = 0. Combining with (19), we get the minimal
contractor with respect to the seed contractor Cq

0 .
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Figure 7 illustrates the minimality of the contractor for the hyperbola.

Fig. 7: Illustration of the minimality of the contractor for the hyperbola

4.4 Minimal separator for the hyperbola area

This section proposes an optimal separator for an hyperbola area defined by

X = {x|q0 + q1x1 + q2x2 + q3x
2
1 + q4x1x2 + q5x

2
2 ≤ 0}. (20)

This separator is then used by a paver to compute boxes that are completely
inside or outside the solution set.

As shown in [13], from a contractor on the boundary of a set X and a test for
X, we can obtain a separator. As a consequence, we can get an inner and an outer
approximations for X as illustrated by Figure 8 for q = (−1, 5, 2,−2, 30,−2)T .
The magenta boxes are proved to be inside X and the blue is outside X. The
accuracy is taken as ε = 0.1 and corresponds to the size of the small uncertain
boxes (yellow). The cardinal points (North, South, West, East) are represented
by the small squares (black, orange, blue, red).
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Fig. 8: Approximation of the hyperbola area obtained by our minimal separator
for the hyperbola set

Figure 9 corresponds to the approximation obtained with the same accuracy
with a classical forward-backward contractor. The benefice of our method seems
small, but we will see later, that the improvement can become significant.
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Fig. 9: Hyperbola area computed using a classical forward-backward contractor

For q = (−1, 1, 1, 3, 30,−2) we only have two cardinal points (West and
Eats). The formula provided by Proposition 4 is still valid and we are able
to generate Figure 10. This shows the ability of the symmetries to consider
different situations easily and in elegantly.
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Fig. 10: Illustration of the application of the separator for the hyperbola set

If we compare with a classical forward-backward contractor [2] (see ??) of
other contractors such as [1] our contractor yields a more accurate approxima-
tion.

Remark. We have assumed that we had no uncertainties on q. In case of
interval uncertainty, the set to be characterized becomes

X = {x|∃q ∈ [q], q0 + q1x1 + q2x2 + q3x
2
1 + q4x1x2 + q5x

2
2 ≤ 0}. (21)

The resolution is still possible as shown in [10].

5 Application

Interval methods have been used for localization of robots for several decades
[12][18][3][5]. This section proposes to deal with a specific localization problem
where the sum of distances are measured.

5.1 Hyperbola from foci

Proposition 5. Consider two points a,b of the plane. The set X of all points
such that

∥x− a∥ − ∥x− b∥ ≤ ℓ (22)

is an ellipse with foci points a,b. The set X is defined by the inequality

fa,b,ℓ(x) ≤ 0 (23)
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where
fa,b,ℓ(x) = q0 + q1x1 + q2x2 + q3x

2
1 + q4x1x2 + q5x

2
2 (24)

with
q0 = − a41 − 2a21a

2
2 + 2a21b

2
1 + 2a21b

2
2 + 2a21ℓ

2

−a42 + 2a22b
2
1 + 2a22b

2
2

+2a22ℓ
2 − b41 − 2b21b

2
2 + 2b21ℓ

2 − b42 + 2b22ℓ
2 − ℓ4

q1 = 4a31 − 4a21b1 + 4a1a
2
2 − 4a1b

2
1 − 4a1b

2
2

−4a1ℓ
2 − 4a22b1 + 4b31 + 4b1b

2
2 − 4b1ℓ

2

q2 = 4a21a2 − 4a21b2 + 4a32 − 4a22b2 − 4a2b
2
1

−4a2b
2
2 − 4a2ℓ

2 + 4b21b2 + 4b32 − 4b2ℓ
2

q3 = −4a21 + 8a1b1 − 4b21 + 4ℓ2

q4 = −8a1a2 + 8a1b2 + 8a2b1 − 8b1b2
q5 = −4a22 + 8a2b2 − 4b22 + 4ℓ2

Proof. We have

∥x− a∥ − ∥x− b∥ = ℓ

⇒
(√

(x1 − a1)2 + (x2 − a2)2 −
√
(x1 − b1)2 + (x2 − b2)2

)2

= ℓ2

⇔ (x1 − a1)
2 + (x2 − a2)

2 + (x1 − b1)
2 + (x2 − b2)

2 − 2
√
(x1 − a1)2 + (x2 − a2)2

√
(x1 − b1)2 + (x2 − b2)2

2
= ℓ2

⇔ (x1 − a1)
2 + (x2 − a2)

2 + (x1 − b1)
2 + (x2 − b2)

2 − ℓ2 = 2
√

(x1 − a1)2 + (x2 − a2)2
√
(x1 − b1)2 + (x2 − b2)2

⇔
(
(x1 − a1)

2 + (x2 − a2)
2 + (x1 − b1)

2 + (x2 − b2)
2 − ℓ2

)2 − 4
(
(x1 − a1)

2 + (x2 − a2)
2
) (

(x1 − b1)
2 + (x2 − b2)

2
)
= 0

(25)
i.e.

(
(x1 − a1)

2 + (x2 − a2)
2 + (x1 − b1)

2 + (x2 − b2)
2 − ℓ2

)2
= 4

(
(x1 − a1)

2 + (x2 − a2)
2
) (

(x1 − b1)
2 + (x2 − b2)

2
)

After some trivial symbolic calculus, we get to get rid of the square root to get

4
(
(x1 − a1)

2 + (x2 − a2)
2
) (

(x1 − b1)
2 + (x2 − b2)

2
)

−
(
ℓ2 − (x1 − a1)

2 − (x2 − a2)
2 − (x1 − b1)

2 − (x2 − b2)
2
)2

= 0
(26)

We can develop the expression to get the coefficients of the proposition.

5.2 Localization

We consider an example taken from [7] related to localization which can be seen
as special case of interval data fitting problem [14]. Consider a robot which
emits a sound at an unknown time t0. This sound is received with a delay by
three microphones located points a : (13, 7),b : (4, 6), c : (16, 10) of the plane
(see Figure 11). From the time of flight of the sound we want to estimate the
position of the object.
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Fig. 11: The robot at position x emits a sound received later by three micro-
phones a, b and c

We assume that we were able to collect two distance intervals such that
ℓb ∈ [7.9, 8.1] and ℓc ∈ [3.9, 4.1]. The solution set X is defined by

(i) ∥x− a∥ − ∥x− b∥ = ℓb ∈ [7.9, 8.1]
(ii) ∥x− a∥ − ∥x− c∥ = ℓc ∈ [3.9, 4.1]

(27)

From Proposition 5, we get that X is defined by

X :


fa,b,6(x) ≤ 0
fa,b,4(x) ≥ 0
fa,c,9(x) ≤ 0
fa,c,7(x) ≥ 0

(28)

Using a paver, we are thus able to get in inner and an outer approximations for
the set of X (see Figure ??).The frame box is [−7, 7] × [−7, 7]. Figure 12 rep-
resents the inequality (12,i) and Figure 13 correspond to the inequality (12,ii).
All results are guaranteed since outward rounding is implemented [16].
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Fig. 12: Set of positions consistent with the path a,b

Fig. 13: Set of positions consistent with 2 a, c



5 Application 20

Fig. 14: Set of positions consistent with 2 a, c

Fig. 15: Set of positions consistent with 2 a, c
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Fig. 16: Set of positions consistent 6

(a) Set of positions consistent 6
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6 Conclusion

This paper has proposed a minimal contractor and a minimal separator for an
hyperbola area of the plane. The notion of actions derived from hyperoctahedral
symmetries allowed us to limit the analysis in on part of the constraint where
the monotonicity can be assumed. The symmetries was used to extend the
analysis to the whole plane.

The goal of this paper was to provide a simple example which illustrates how
to use the hyperoctahedral symmetries in order to build minimal separators.
Now, as shown in [10], the use of these symmetries is more interesting when
we deal with projection problems where quantifier elimination is needed. This
type of projection problem is indeed much more difficult to solve with classical
interval approaches [6].

When we build an optimal contractor for a set X using symmetries, the main
difficulty is to find the portion of the set that can be used to reconstruction X
using a copy-paste process yield to the actions of the symmetries. For the
hyperbola, the pattern is a cardinal function and for the ellipse, it was a quarter
of the ellipse. But there is no general procedure to find the right pattern.

The Python code based on Codac [17] is given in[9].
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