
Codac and Vibes documentation

Benôıt Desrochers, Luc Jaulin and Simon Rohou

Errata. Few things have changed in the Python code. The code written in the videos is not always

exactly exact and should be updated. Below are listed the changes.

� The codac library replaces pyIbex as a consequence

from pyIbex import * should be replaced by from codac import *

� The separator SepPolarXY, is obtained by adding : from codac import SepPolarXY

1 Codac

Codac (http://codac.io/) is a Python library which makes it possible to use Ibex under a Python

environment. A documentation on Ibex can be found at http://www.ibex-lib.org/

Elementary interval functions. Basic functions for real numbers such as sin, cos, tan, acos,

asin, atan, log, exp are extended to intervals. For instance:

sin(Interval(0,3))

returns the interval [0, 1].

Import. Use the import statement to import Codac. For instance, to import the classes Interval

and IntervalVector from Codac, write:

from codac import Interval, IntervalVector

Function. To create a new function, use Function from Ibex. For instance,

f = Function("x[2]","(x[0]-1)^2+(x[1]-2)^2")

creates the function

f :
R2 7→ R
x → (x1 − 1)2 + (x2 − 2)2

Equivalently, we could have written

f = Function("x1","x2","(x1-1)^2+(x2-2)^2")

or

f = Function("x1","x2","(x1-%f)^2+(x2-%f)^2"%(1.0,2.0))

For the evaluation

f.eval(IntervalVector([[1,2],[3,4]])))

For vector valued functions, the syntax is similar. For instance a translation by the vector (1,−2) is

defined by:

f=Function("x1","x2","(x1+1;x2-2)")

1

http://codac.io/
http://www.ibex-lib.org/

For the evaluation

f.eval vector(IntervalVector([[1,2],[3,4]])))

Image. The optimal contractor for an image is obtained as follows

C = CtcRaster(image, -5, 5, 0.1, -0.1)

An example is given here: https://replit.com/@aulin/ctcimage

Interval. An interval is defined by its lower and upper bound. For instance, to define the interval

x = [−2, 4], write:

x=Interval(-2,4)

Note that the lower bound must be smaller than upper bound. The statement:

y=Interval(5)

defines the degenerated interval (or singleton) y = [5, 5] = {5} . To define the interval z = R =

[−∞,∞], write

z=Interval.(-oo,oo)

To define the intervals [π, π], ∅ we write: Interval.PI, Interval.EMPTY SET.

The basic methods for intervals are lb() which returns the lower bound, ub() which returns the

upper bound, diam() which returns the width, mid() which returns center and is empty() which

returns true if empty.

IntervalVector. An IntervalVector (also called a box) is a Cartesian product of intervals. In

Codac, it can be defined from a 2D array or a tuple. For instance, to create the box x = [1, 3] ×
[−2, 9]× [1, 103], write

x=IntervalVector([[1,3],[-2,9],[1,10**3]])

or equivalently

x=IntervalVector((Interval(1,3),Interval(-2, 9),Interval(1, 10**3)))

To create the box [−2, 3]⊗n = [−2, 3]× · · · × [−2, 3] write:

IntervalVector(n,Interval(-2,3)).

To create the degenerated box [1, 1]× [2, 2]× [3, 3], write:

x=IntervalVector([1,2,3]).

To access the ith element of an IntervalVector x write x[i-1]. For instance, the first element of

x previously defined can be obtained by x[0].

IntervalMatrix. An IntervalMatrix (also called a box) is matrix of intervals. For instance, to

create the interval matrix

M =

(
1 [2, 3]

[4, 5] [6, 7]

)
write

J=IntervalMatrix(2,2)

J[0][0]=Interval(1,1) J[0][1]=Interval(2,3)

J[1][0]=Interval(4,5) J[1][1]=Interval(6,7)

Interval operators. The intersection ∩, union hull ⊔, sum +, difference −, multiplication ∗ etc. are

made using the overloaded operators &, |,+, -, *, etc. For instance to perform ([1, 2] + [3, 5])∪ [9, 10],

2

https://replit.com/@aulin/ctcimage

write:

(Interval(1,2)+Interval(3,5)) | Interval(9,10)

and you will get the interval [4, 10] .

Relaxed intersection. If L is a list of separators, the q relaxed intersection of L is performed using

SepQInter. For instance is S1,S2,S3 are three separators, we obtain the separator

S =

{1}⋂
Si

as follows:

L=[S1,S2,S3]

S=SepQInter(L)

S.q=1

Own contractor. To build your own contractor, you should build a class that inherits from the

Ibex main class Ctc. For instance if you want to build from scratch the contractor associated with

the equation

x2
1 + x2

2 ∈ [4, 5] ,

class myCtc(Ctc):

def init (C):

Ctc. init (C, 2)

def contract(C, X):

x, y = X[0], X[1]

r2 = Interval(4,5)

x2,y2 = sqr(x),sqr(y)

bwd add(r2,x2,y2)

bwd sqr(x2,x)

bwd sqr(y2,y)

To create an instance of myCtc, write

C1= myCtc()

Since this contractor inherits from Ctc, you will be able to compose it as an actual contractor.

Own flattened contractor. A flattened contractor is a contractor whose input/output of which is

a list of intervals (instead of a box). To build a your own flattened contractor, you should build a

class for it. For instance, assume that you want to build a contractor for the distance equation

(x− a)2 + (y − b)2 ∈ [d]2

where a, b, x, y are the variables the domains of which should be contracted. The interval [d] is an

interval parameter. You should first build the associated class

class my flattenedcontractor():

def init (C):

f=Function("x","y","a","b","d","(x-a)^2+(y-b)^2-d^2")

C.Cm=CtcFwdBwd(f)

def contract(C,x,y,a,b,d):

3

X=IntervalVector(5)

X[0],X[1],X[2],X[3],X[4]=x,y,a,b,d

C.Cm.contract(X)

x,y,a,b =X[0],X[1],X[2],X[3]

return x,y,a,b

Then, you create you contractor:

Cdist=my flattenedcontractor()

and you use it as follows:

for k in range(0,10):

X[k],Y[k],A[k],B[k]=Cdist.contract(X[k],Y[k],A[k],B[k],D[k])

Polar. The optimal separator for the set

P =
{
(x, y) ∈ R2 | ∃ρ ∈ [ρ] , ∃θ ∈ [θ] s.t. x = ρ cos θ and y = ρ sin θ

}
is defined as follows:

S=SepPolarXY(Rho,Theta)

where Rho,Theta correspond to the intervals [ρ] , [θ].

Polygon. The optimal separator of the following polygon

P =

(
6 7 0 −9 −8

−6 9 5 8 −9

)
is constructed as follows:

S = SepPolygon([[6, -6], [7, 9], [0, 5], [-9, 8], [-8, -9]])

Projection. We can build a separator S2 associated to the projection of a set defined by the

separator S1 using SepProj. The following example provides a separator S2 associated with the set{
x ∈ R2 |∃a ∈ [0, 1]2, (x1 − a1)

2 + (x2 − a2)
2 ∈ [4, 9]

}
f = Function("x1","x2","a1","a2","(x1-a1)^2+(x2-a2)^2")

S1=SepFwdBwd(f,Interval(4,9))

A=IntervalVector([[-1,1],[-1,1]])

S2=SepProj(S1,A,0.001)

In this example, S1 is a separator of dimension 4 whereas S2 is of dimension 2. In the same manner,

we can build the projection for a contractor.

Separator. To initialize a separator from a function, use the Ibex syntax. For instance a separator

associated with the set

X = {x|f (x) ∈ [1, 2]}

obtained by a forward-backward procedure is performed as follows:

S=SepFwdBwd(f,Interval(1,2))

Separator operations. The intersection, the union and the complement of separators is obtained

using & , | and ∼. For instance if S1,S2,S3 are three separators, then, the separator S = (S1 ∩ S2)∪

4

(S2 ∩ S3) ∪
(
S1 ∩ S3

)
is obtained by:

S=(S1&S2)|(S2&S3)|(S1&(~S3)).

SIVIA. Sivia admits as an input an initial box [x], a separator S, and an accuracy ε. For instance

to run Sivia with an initial box X, a separator S and an accuracy 0.1, write

pySIVIA(X,S,0.1)

If we want to change the colors :

color = {’color in’:’black[red]’, ’color out’:’blue[cyan]’, ’color maybe’:’white[yellow]’}
pySIVIA(X, S, 0.1, **color)

With codac use SIVIA instead of pySIVIA. For instance:

SIVIA(X,S,0.1,fig name=’name’,color map={SetValue.IN:"red[magenta]",
SetValue.OUT:"blue[cyan]",SetValue.UNKNOWN:"yellow[white]"}).

Transformation of a separator. If f and g are two functions from Rn → Rn such that g is the

reciprocal function of f and if S1 is a separator, then we define the transformation of S by f as follows

S2=SepTransform(S1,f,g)

If S1 is a separator for S1 then S2 is a separator for S2 = f(S1). Note that SepTransform is considered

as "unsupported" in codac. To use it, you should add

from codac.unsupported import *

See also: http://codac.io/dev/codac-unsupported

Own separator from two contractors. From two complementary contractors Cin, Cout, you can

build a separator S. You should first build the associated class

class mySep(Sep):

def init(S):

Sep.init (S, 2)

def separate(S, Xin, Xout):

Cout.contract(Xout)

Cin.contract(Xin)

Then, you create you separator:

S=mySep()

2 Vibes

The library Vibes is used only for drawing. For more details about Vibes, see:

http://enstabretagnerobotics.github.io/VIBES/

Initialization. First, import all functions from Vibes, initialize Vibes, create a new figure and set

the properties of the figure:

from vibes import *

vibes.beginDrawing()

5

http://codac.io/dev/codac-unsupported

vibes.newFigure(’name’)

vibes.setFigureProperties({’x’:200, ’y’:100,’width’:800, ’height’:800})
where x, y corresponds to the upper left corner (in pixel), width, height are also in pixel.

Draw a box. To draw the box [1, 2]× [3, 4] with the boundary blue and painted cyan inside, write

vibes.drawBox(1,2,3,4,’blue[cyan]’)

Draw a circle. To draw a circle with center (1, 2) and a radius 3 with the boundary in red and

painted magenta inside, write

vibes.drawCircle(1,2,3,’red[magenta]’)

Moving in Vibes. Zoom in: press ’+’; Zoom out: press ’−’; Move left: left arrow; Move right:

right arrow.

For more details, have a look to Vibes C++ API

http://enstabretagnerobotics.github.io/VIBES/doxygen/cxx/

6

	Codac
	Vibes

