Inner and outer approximation of capture basin using interval analysis

M. Lhommeau ¹ L. Jaulin² L. Hardouin¹

 ¹Laboratoire d'Ingénierie des Systèmes Automatisés ISTIA - Université d'Angers
 62, av. Notre Dame du Lac, 49000 Angers, France

²E³I²
 ENSIETA
 2 rue Françoise Verny, 29806 Brest, France

International Conference on Informatics in Control, Automation and Robotics, 2007

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ・ うへつ

• Let us consider the following dynamical system :

$$\dot{\boldsymbol{x}}(t) \hspace{0.2cm} = \hspace{0.2cm} \boldsymbol{f}(t, \boldsymbol{x}(t), \boldsymbol{u}(t))$$

where

- state vector $oldsymbol{x}(t)$ is not allowed to exit a given compact set $\mathbb{U}\subset\mathbb{R}^n$;
- control vector $oldsymbol{u}(t)$ should belong to a given compact set $\mathbb{U} \subset \mathbb{R}^m$;

・ロト ・ 日本 ・ 日本 ・ 日本

• $\boldsymbol{f} \in \mathcal{C}^1 \left(\mathbb{R} \times \mathbb{R}^n \times \mathbb{R}^m, \mathbb{R}^n \right).$

Flow function

• $\phi^t(\boldsymbol{x}_0, \boldsymbol{u})$ is the solution of (1) for the initial vector \boldsymbol{x}_0 and for the input function \boldsymbol{u} .

 $\phi^{[t_1,t_2]}$ (The up the formet \mathbb{R}^2 to $\exists t_2 \in [defined xby = \phi^t(x_0, u)]$.

• Let us consider the following dynamical system :

$$\dot{\boldsymbol{x}}(t) = \boldsymbol{f}(t, \boldsymbol{x}(t), \boldsymbol{u}(t))$$

・ロット 御マ とほど とほう

-

where

- state vector $oldsymbol{x}(t)$ is not allowed to exit a given compact set $\mathbb{U}\subset\mathbb{R}^n$;
- control vector $\boldsymbol{u}(t)$ should belong to a given compact set $\mathbb{U} \subset \mathbb{R}^m$;
- $\boldsymbol{f} \in \mathcal{C}^1 \left(\mathbb{R} \times \mathbb{R}^n \times \mathbb{R}^m, \mathbb{R}^n \right).$

Flow function

• $\phi^t(\boldsymbol{x}_0, \boldsymbol{u})$ is the solution of (1) for the initial vector \boldsymbol{x}_0 and for the input function \boldsymbol{u} .

 $\phi^{[t_1,t_2]}(\mathbf{\overline{r}he}_{\mathbf{p}a}) \stackrel{\text{def}}{=} \text{from} t \mathbf{r}_{\mathbf{r}} \mathbf{t}_{\mathbf{r}} \mathbf{t}_{\mathbf{$

• Let us consider the following dynamical system :

$$\dot{\boldsymbol{x}}(t) = \boldsymbol{f}(t, \boldsymbol{x}(t), \boldsymbol{u}(t)) \tag{2}$$

・ロッ ・雪 ・ ・ ヨ ・ ・ ヨ ・

-

where

- state vector $oldsymbol{x}(t)$ is not allowed to exit a given compact set $\mathbb{U} \subset \mathbb{R}^n$;
- control vector $oldsymbol{u}(t)$ should belong to a given compact set $\mathbb{U}\subset\mathbb{R}^m$;
- $\boldsymbol{f} \in \mathcal{C}^1 \left(\mathbb{R} \times \mathbb{R}^n \times \mathbb{R}^m, \mathbb{R}^n \right).$

Flow function

• $\phi^t(\boldsymbol{x}_0, \boldsymbol{u})$ is the solution of (1) for the initial vector \boldsymbol{x}_0 and for the input function \boldsymbol{u} .

 $\phi^{[t_1,t_2]}$ (The up the formet \mathbb{R}^2 to $\exists t_2 \in [defined x by = \phi^t(x_0, u)]$.

• Let us consider the following dynamical system :

$$\dot{\boldsymbol{x}}(t) = \boldsymbol{f}(t, \boldsymbol{x}(t), \boldsymbol{u}(t)) \tag{6}$$

・ロッ ・雪 ・ ・ ヨ ・ ・ ヨ ・

-

where

- state vector $oldsymbol{x}(t)$ is not allowed to exit a given compact set $\mathbb{U}\subset\mathbb{R}^n$;
- control vector $oldsymbol{u}(t)$ should belong to a given compact set $\mathbb{U}\subset\mathbb{R}^m$;
- $\boldsymbol{f} \in \mathcal{C}^1 \left(\mathbb{R} \times \mathbb{R}^n \times \mathbb{R}^m, \mathbb{R}^n \right).$

Flow function

• $\phi^t(\boldsymbol{x}_0, \boldsymbol{u})$ is the solution of (1) for the initial vector \boldsymbol{x}_0 and for the input function \boldsymbol{u} .

 $\phi^{[t_1,t_2]}(\mathbf{\overline{t}}_{he}\mathbf{w}) \stackrel{\text{def}}{=} \mathsf{f}_{am} \in t \mathbb{R}^{n} \circ \exists t_2 \in \mathsf{s}[\mathsf{def}_{ne} \mathsf{d}_{aby} = \phi^t(x_0, u)].$

• Let us consider the following dynamical system :

$$\dot{\boldsymbol{x}}(t) = \boldsymbol{f}(t, \boldsymbol{x}(t), \boldsymbol{u}(t))$$

(1

- where
 - state vector $oldsymbol{x}(t)$ is not allowed to exit a given compact set $\mathbb{U}\subset\mathbb{R}^n$;
 - control vector $oldsymbol{u}(t)$ should belong to a given compact set $\mathbb{U}\subset\mathbb{R}^m$;
 - $\boldsymbol{f} \in \mathcal{C}^1 \left(\mathbb{R} \times \mathbb{R}^n \times \mathbb{R}^m, \mathbb{R}^n \right).$

Flow function

- $\phi^t(x_0, u)$ is the solution of (1) for the initial vector x_0 and for the input function u.
- The path from t_1 to t_2 is defined by

 $\boldsymbol{\phi}^{[t_1,t_2]}(\boldsymbol{x}_0,\boldsymbol{u}) \stackrel{\mathsf{def}}{=} \big\{ \boldsymbol{x} \in \mathbb{R}^n, \exists t \in [t_1,t_2], \boldsymbol{x} = \boldsymbol{\phi}^t(\boldsymbol{x}_0,\boldsymbol{u}) \big\}.$

The capture basin of a target \mathbb{T} in $\mathbb{K} \subset \mathbb{R}^n$ is the set of points \mathbb{C} of \mathbb{K} such that there exist a trajectory starting at \mathbb{C} reaching \mathbb{T} in finite time.

Objective

The aim of the paper is to provide an algorithm able to compute an inner and an outer approximation of set

 $\mathbb{C} \stackrel{\text{def}}{=} \left\{ x_0 \in \mathbb{K}, \exists t \geq 0, \exists u, \ \phi^t(\mathbf{x}_0, u) \in \mathbb{T} \text{ and } \phi^{[0,t]}(x_0, u) \subset \mathbb{K} \right\},$ i.e., to find two subsets \mathbb{C}^- and \mathbb{C}^+ such that $\mathbb{C}^- \subset \mathbb{C} \subset \mathbb{C}^+$.

The capture basin of a target \mathbb{T} in $\mathbb{K} \subset \mathbb{R}^n$ is the set of points \mathbb{C} of \mathbb{K} such that there exist a trajectory starting at \mathbb{C} reaching \mathbb{T} in finite time.

Objective

The aim of the paper is to provide an algorithm able to compute an inner and an outer approximation of set

 $\mathbb{C} \stackrel{\text{def}}{=} \left\{ x_0 \in \mathbb{K}, \exists t \geq 0, \exists u, \ \phi^t(\mathbf{x}_0, u) \in \mathbb{T} \text{ and } \phi^{[0,t]}(x_0, u) \subset \mathbb{K} \right\},$ i.e., to find two subsets \mathbb{C}^- and \mathbb{C}^+ such that $\mathbb{C}^- \subset \mathbb{C} \subset \mathbb{C}^+$.

э

The capture basin of a target \mathbb{T} in $\mathbb{K} \subset \mathbb{R}^n$ is the set of points \mathbb{C} of \mathbb{K} such that there exist a trajectory starting at \mathbb{C} reaching \mathbb{T} in finite time.

Objective

The aim of the paper is to provide an algorithm able to compute an inner and an outer approximation of set

 $\mathbb{C} \stackrel{\text{def}}{=} \big\{ \boldsymbol{x}_0 \in \mathbb{K}, \exists t \geq 0, \exists \boldsymbol{u}, \ \boldsymbol{\phi}^t(\mathbf{x}_0, \boldsymbol{u}) \in \mathbb{T} \text{ and } \boldsymbol{\phi}^{[0,t]}(\boldsymbol{x}_0, \boldsymbol{u}) \subset \mathbb{K} \big\},\$ i.e., to find two subsets \mathbb{C}^- and \mathbb{C}^+ such that $\mathbb{C}^- \subset \mathbb{C} \subset \mathbb{C}^+$.

▲□▶ ▲圖▶ ▲国▶ ▲国▶ - 国 - のへで

The capture basin of a target \mathbb{T} in $\mathbb{K} \subset \mathbb{R}^n$ is the set of points \mathbb{C} of \mathbb{K} such that there exist a trajectory starting at \mathbb{C} reaching \mathbb{T} in finite time.

Objective

The aim of the paper is to provide an algorithm able to compute an inner and an outer approximation of set

 $\mathbb{C} \stackrel{\mathsf{def}}{=} \big\{ \boldsymbol{x}_0 \in \mathbb{K}, \exists t \geq 0, \exists \boldsymbol{u}, \ \boldsymbol{\phi}^t(\mathbf{x}_0, \boldsymbol{u}) \in \mathbb{T} \text{ and } \boldsymbol{\phi}^{[0,t]}(\boldsymbol{x}_0, \boldsymbol{u}) \subset \mathbb{K} \big\},$

i.e., to find two subsets \mathbb{C}^- and \mathbb{C}^+ such that $\mathbb{C}^- \subset \mathbb{C} \subset \mathbb{C}^+$.

The studied problem Basic concepts of interval analysis

イロト イポト イヨト イヨト

Ξ.

Definitions

Interval

 $[x] = \{x \in \mathbb{R} \mid \underline{x} \le x \le \overline{x}\}$

• Width

 $w([x]) = \overline{x} - \underline{x}$

Midpoint

$$\operatorname{mid}\left([x]\right) = \frac{\underline{x} + \overline{x}}{2}$$

- Intervals have a dual nature :
 - sets ⇒ set-theoretic operations apply
 - pairs of real-numbers \Rightarrow an arithmetic can be built

The studied problem Basic concepts of interval analysis

Definitions

Interval

 $[x] = \{x \in \mathbb{R} \mid \underline{x} \le x \le \overline{x}\}$

• Width

 $w([x]) = \overline{x} - \underline{x}$

Midpoint

$$\mathsf{mid}\left([x]\right) = \frac{\underline{x} + \overline{x}}{2}$$

- Intervals have a dual nature :
 - sets ⇒ set-theoretic operations apply
 - pairs of real-numbers \Rightarrow an arithmetic can be built

The studied problem Basic concepts of interval analysis

Definitions

Interval

 $[x] = \{x \in \mathbb{R} \mid \underline{x} \le x \le \overline{x}\}$

• Width

 $w([x]) = \overline{x} - \underline{x}$

• Midpoint

$$\operatorname{mid}\left([x]\right) = \frac{\underline{x} + \overline{x}}{2}$$

• Intervals have a dual nature :

- sets ⇒ set-theoretic operations apply
- *pairs of real-numbers* ⇒ an arithmetic can be built

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへの

The studied problem Basic concepts of interval analysis

▲ロト ▲圖ト ▲ヨト ▲ヨト ヨー のへで

Definitions

Interval

 $[x] = \{x \in \mathbb{R} \mid \underline{x} \le x \le \overline{x}\}$

• Width

 $w([x]) = \overline{x} - \underline{x}$

Midpoint

$$\operatorname{mid}\left([x]\right) = \frac{\underline{x} + \overline{x}}{2}$$

• Intervals have a dual nature :

- $sets \Rightarrow$ set-theoretic operations apply
- pairs of real-numbers \Rightarrow an arithmetic can be built

Operations on intervals

$$\begin{array}{ll} [x] + [y] &=& \left[\underline{x} + \underline{y}, \overline{x} + \overline{y}\right] \\ [x] - [y] &=& \left[\underline{x} - \overline{y}, \overline{x} + \underline{y}\right] \\ [x] \times [y] &=& \left[\min\left(\underline{x}, \underline{y}, \underline{x}\overline{y}, \overline{x}\underline{y}, \overline{x}\overline{y}\right), \max\left(\underline{x}, \underline{y}, \underline{x}\overline{y}, \overline{x}\underline{y}, \overline{x}\overline{y}\right)\right] \\ \bullet \quad \text{If } 0 \not\in [y] \text{ then} \end{array}$$

$$[x] / [y] = [x] \times [1/\overline{y}, 1/\underline{y}]$$

 \Rightarrow Specific formulas available for division by interval containing zero.

・ロト ・個ト ・モト ・モト

æ

Operations on intervals

• If $0 \not\in [y]$ then

$$[x] / [y] = [x] \times \left[1/\overline{y}, 1/\underline{y} \right]$$

 \Rightarrow Specific formulas available for division by interval containing zero.

◆□> ◆圖> ◆注> ◆注> 二注:

$[f]^*([x]) = [\{f(x) \mid x \in [x]\}].$

- For any continuous function $[f]^*([x])$ is the image set f([x]).
- Elementary interval functions are expressed in terms of bounds
- For instance

- Specific algorithms for
 - trigonometric functions
 - hyperbolic functions

 $[f]^*([x]) = [\{f(x) \mid x \in [x]\}].$

- For any continuous function $[f]^*([x])$ is the image set f([x]).
- Elementary interval functions are expressed in terms of bounds
- For instance

- Specific algorithms for
 - trigonometric functions
 - hyperbolic functions

 $[f]^*([x]) = [\{f(x) \mid x \in [x]\}].$

- For any continuous function $[f]^{*}\left([x]\right)$ is the image set $f\left([x]\right)$.
- Elementary interval functions are expressed in terms of bounds

For instance

- Specific algorithms for
 - trigonometric functions
 - hyperbolic functions

 $[f]^*([x]) = [\{f(x) \mid x \in [x]\}].$

- For any continuous function $[f]^{*}\left([x]\right)$ is the image set $f\left([x]\right)$.
- Elementary interval functions are expressed in terms of bounds
- For instance

- Specific algorithms for
 - trigonometric functions
 - hyperbolic functions

 $[f]^*([x]) = [\{f(x) \mid x \in [x]\}].$

- For any continuous function $[f]^{*}\left([x]\right)$ is the image set $f\left([x]\right)$.
- Elementary interval functions are expressed in terms of bounds
- For instance

- Specific algorithms for
 - trigonometric functions
 - hyperbolic functions

Definition

Widt

• Interval vector (or box) is a Cartesian product of intervals

$$\begin{bmatrix} \boldsymbol{x} \end{bmatrix} = \begin{bmatrix} x_1 \end{bmatrix} \times \begin{bmatrix} x_2 \end{bmatrix} \times \ldots \times \begin{bmatrix} x_n \end{bmatrix} = (\begin{bmatrix} x_1 \end{bmatrix}, \begin{bmatrix} x_2 \end{bmatrix}, \ldots, \begin{bmatrix} x_n \end{bmatrix})^\mathsf{T}$$

h
$$w\left(\begin{bmatrix} \boldsymbol{x} \end{bmatrix}\right) = \max_{x \in \mathcal{X}} w\left(\begin{bmatrix} x_i \end{bmatrix}\right)$$

Example

• A box $[{m x}] = [x_1] imes [x_2]$ of $\mathbb{I}\mathbb{R}^2$

• The set of all boxes of \mathbb{R}^n is denoted by \mathbb{IR}^n .

Definition

• Interval vector (or box) is a Cartesian product of intervals

$$[x] = [x_1] \times [x_2] \times \ldots \times [x_n] = ([x_1], [x_2], \ldots, [x_n])^{\mathsf{T}}$$

• Width

$$w\left([\boldsymbol{x}]\right) = \max_{1 \le i \le n} w\left([x_i]\right)$$

Example

• A box $[{m x}]=[x_1] imes [x_2]$ of ${\mathbb I}{\mathbb R}^2$

• The set of all boxes of \mathbb{R}^n is denoted by \mathbb{IR}^n .

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ 三臣 - 釣ぬの

Definition

• Interval vector (or box) is a Cartesian product of intervals

$$[\mathbf{x}] = [x_1] \times [x_2] \times \ldots \times [x_n] = ([x_1], [x_2], \ldots, [x_n])^{\mathsf{T}}$$

• Width

$$w\left([\boldsymbol{x}]\right) = \max_{1 \le i \le n} w\left([x_i]\right)$$

Example

• A box $[{m x}]=[x_1] imes [x_2]$ of $\mathbb{I}\mathbb{R}^2$

• The set of all boxes of \mathbb{R}^n is denoted by \mathbb{IR}^n .

<□> <@> < 注→ < 注→ < 注→ < 注→ のへ()

Definition

• Interval vector (or box) is a Cartesian product of intervals

$$[\mathbf{x}] = [x_1] \times [x_2] \times \ldots \times [x_n] = ([x_1], [x_2], \ldots, [x_n])^{\mathsf{T}}$$

• Width

$$w\left([\boldsymbol{x}]\right) = \max_{1 \le i \le n} w\left([x_i]\right)$$

Example

• A box $[\boldsymbol{x}] = [x_1] imes [x_2]$ of $\mathbb{I}\mathbb{R}^2$

• The set of all boxes of \mathbb{R}^n is denoted by \mathbb{IR}^n .

- * ロ * * 個 * * 画 * * 画 * - 三 * の < ⊙

• Classical operations on vectors trivially extend to interval vectors

$$\begin{aligned} \alpha \left[\boldsymbol{x} \right] &= \left(\alpha \left[x_1 \right] \right) \times \ldots \times \left(\alpha \left[x_n \right] \right) \\ \left[\boldsymbol{x} \right]^\mathsf{T} \cdot \left[\boldsymbol{y} \right] &= \left[x_1 \right] \cdot \left[y_1 \right] + \ldots + \left[x_n \right] \cdot \left[y_n \right] \\ \left[\boldsymbol{x} \right] + \left[\boldsymbol{y} \right] &= \left(\left[x_1 \right] + \left[y_1 \right] \right) \times \ldots \times \left(\left[x_n \right] + \left[y_n \right] \right) \end{aligned}$$

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・

æ

and interval matrices

▲ロト ▲圖ト ▲ヨト ▲ヨト ヨー のへで

Inclusion functions

Definition

• [f] is an inclusion function for f if

$orall \left[oldsymbol{x} ight] \in \mathbb{IR}^n \ , \ oldsymbol{f} \left(\left[oldsymbol{x} ight] ight) \subset \left[oldsymbol{f} ight] \left(\left[oldsymbol{x} ight] ight).$

f may be defined by an algorithm or even by a differential equation
Infinitely many inclusion functions for the same function

Inclusion functions

Definition

• [f] is an inclusion function for f if

```
orall \left[ oldsymbol{x} 
ight] \in \mathbb{IR}^n \quad, \quad oldsymbol{f} \left( \left[ oldsymbol{x} 
ight] 
ight) \subset \left[ oldsymbol{f} 
ight] \left( \left[ oldsymbol{x} 
ight] 
ight).
```

- f may be defined by an algorithm or even by a differential equation
 - Infinitely many inclusion functions for the same function

▲ロト ▲圖ト ▲ヨト ▲ヨト ヨー のへで

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト

э.

Subpavings

Intervals and boxes are not general enough to describe all sets S of interest

\Downarrow

Motivates the introduction of subpavings Subpaving of $[m{x}]=$ union of nonoverlapping subboxes of $[m{x}]$

・ロト ・得ト ・ヨト ・ヨト

3

Subpavings

Intervals and boxes are not general enough to describe all sets S of interest

₩

Motivates the introduction of subpavings Subpaving of [x] = union of nonoverlapping subboxes of [x]

・ロト ・ 日本 ・ 日本 ・ 日本

Inner and outer approximations

• If subpaving $\underline{\mathbb{S}}$ and $\overline{\mathbb{S}}$ are such that

 $\underline{\mathbb{S}} \subset \mathbb{S} \subset \overline{\mathbb{S}}$

then \mathbb{S} is bracketed between inner and outer approximations.

- The distance between $\underline{\mathbb{S}}$ and $\overline{\mathbb{S}}$ gives an indication of the quality of the approximation of \mathbb{S}
- Computation on subpavings
 - allows to approximate computation on compact sets
 - basic ingredient of the basin capture algorithm to be presented

・ロッ ・雪 ・ ・ ヨ ・ ・ ヨ ・

Inner and outer approximations

• If subpaving $\underline{\mathbb{S}}$ and $\overline{\mathbb{S}}$ are such that

$\underline{\mathbb{S}}\subset \mathbb{S}\subset \overline{\mathbb{S}}$

then S is bracketed between inner and outer approximations.

- The distance between § and § gives an indication of the quality of the approximation of §
- Computation on subpavings
 - allows to approximate computation on compact sets
 - basic ingredient of the basin capture algorithm to be presented

Inner and outer approximations

• If subpaving $\underline{\mathbb{S}}$ and $\overline{\mathbb{S}}$ are such that

$\underline{\mathbb{S}} \subset \mathbb{S} \subset \overline{\mathbb{S}}$

then \mathbb{S} is bracketed between inner and outer approximations.

- The distance between § and § gives an indication of the quality of the approximation of §
- Computation on subpavings
 - allows to approximate computation on compact sets
 - basic ingredient of the basin capture algorithm to be presented

- 日本 - 4 日本 - 4 日本 - 日本

Interval Analysis allows guaranteed results to be obtained

₩

Considerable advantage over usual numerical methods

Guaranteed numerical integration

Interval flow

The inclusion function of the flow is a function

$$\left[oldsymbol{\phi}
ight]^{[t]} : \left\{ egin{array}{ccc} \mathbb{I}\mathbb{R}^n imes \mathbb{I}\mathbb{R}^n & o & \mathbb{I}\mathbb{R}^n \ \left([oldsymbol{x}], [oldsymbol{u}]) & o & \left[oldsymbol{\phi}
ight]^{[t]} \left([oldsymbol{x}], [oldsymbol{u}]
ight) \end{array}
ight.$$

such that

 $orall t \in [t], orall oldsymbol{x} \in [oldsymbol{x}], oldsymbol{u} \in \mathbb{U}, \ oldsymbol{\phi}^t(oldsymbol{x},oldsymbol{u}) \in [oldsymbol{\phi}]^{[t]}\left([oldsymbol{x}], [oldsymbol{u}]
ight)$

- Guaranteed numerical integration is based on Picard Theorem and Taylor expansion
- Software tools are available to compute Guaranteed numerical integration
 - e.g., AWA, COSY or VNODE

Guaranteed numerical integration

Interval flow

The *inclusion function of the flow* is a function

$$[oldsymbol{\phi}]^{[t]}: \left\{egin{array}{ccc} \mathbb{I}\mathbb{R}^{n} imes\mathbb{I}\mathbb{R}^{m}& o&\mathbb{I}\mathbb{R}^{n}\ ([oldsymbol{x}],[oldsymbol{u}])& o&[oldsymbol{\phi}]^{[t]}\left([oldsymbol{x}],[oldsymbol{u}]
ight) \end{array}
ight.$$

such that

 $orall t \in [t], orall oldsymbol{x} \in [oldsymbol{x}], oldsymbol{u} \in \mathbb{U}, \ oldsymbol{\phi}^t(oldsymbol{x},oldsymbol{u}) \in [oldsymbol{\phi}]^{[t]}\left([oldsymbol{x}],[oldsymbol{u}]
ight)$

- Guaranteed numerical integration is based on Picard Theorem and Taylor expansion
- Software tools are available to compute Guaranteed numerical integration
 - e.g., AWA, COSY or VNODE

The capture basin algorithm is based on the following properties (i) $[x] \subset \mathbb{T} \Rightarrow [x] \subset \mathbb{C}$

 $(\mathsf{iv}) \hspace{0.2cm} [\phi]^t([x],\mathbb{U}) \cap \mathbb{C}^+ = \emptyset \wedge [\phi]^t([x],\mathbb{U}) \cap \mathbb{K} = \emptyset \Rightarrow [x] \cap \mathbb{C} = \emptyset$

- ${\rm (i)} \ \ [x] \subset {\mathbb T} \Rightarrow [x] \subset {\mathbb C}$
- (ii) $[\boldsymbol{x}] \cap \mathbb{K} = \emptyset \Rightarrow [\boldsymbol{x}] \cap \mathbb{C} = \emptyset$
- $\begin{aligned} \text{(iii)} \quad ([\phi]^t ([x], \mathbf{u}) \subset \mathbb{C}^+ \land [\phi]^{[0, t]} ([x], \mathbf{u}) \subset \mathbb{K}) \Rightarrow [x] \subset \mathbb{C} \\ \text{(iv)} \quad [\phi]^t ([x], \mathbb{U}) \cap \mathbb{C}^+ = \emptyset \land [\phi]^t ([x], \mathbb{U}) \cap \mathbb{K} = \emptyset \Rightarrow [x] \cap \mathbb{C} = \emptyset \end{aligned}$

${\sf Algorithm}$

- (i) $[x] \subset \mathbb{T} \Rightarrow [x] \subset \mathbb{C}$
- (ii) $[\boldsymbol{x}] \cap \mathbb{K} = \emptyset \Rightarrow [\boldsymbol{x}] \cap \mathbb{C} = \emptyset$
- $\begin{array}{l} \text{(iii)} \quad ([\phi]^t \, ([\boldsymbol{x}], \mathbf{u}) \subset \mathbb{C}^- \wedge [\phi]^{[0,t]} \, ([\boldsymbol{x}], \mathbf{u}) \subset \mathbb{K}) \Rightarrow [\boldsymbol{x}] \subset \mathbb{C} \\ \text{(iv)} \quad [\phi]^t ([\boldsymbol{x}], \mathbb{U}) \cap \mathbb{C}^+ = \emptyset \wedge [\phi]^t ([\boldsymbol{x}], \mathbb{U}) \cap \mathbb{K} = \emptyset \Rightarrow [\boldsymbol{x}] \cap \mathbb{C} = \emptyset \end{array}$

${\sf Algorithm}$

- (i) $[x] \subset \mathbb{T} \Rightarrow [x] \subset \mathbb{C}$
- (ii) $[\boldsymbol{x}] \cap \mathbb{K} = \emptyset \Rightarrow [\boldsymbol{x}] \cap \mathbb{C} = \emptyset$
- ${\sf (iii)} \ \left(\left[{\bm \phi} \right]^{\bm t} \left(\left[{\bm x} \right], {\bf u} \right) \subset {\mathbb C}^- \land \left[\phi \right]^{\left[{0,t} \right]} \left(\left[{\bm x} \right], {\bf u} \right) \subset {\mathbb K} \right) \Rightarrow \left[{\bm x} \right] \subset {\mathbb C}$
- $(\mathsf{iv}) \hspace{0.2cm} [\phi]^t([x],\mathbb{U}) \cap \mathbb{C}^+ = \emptyset \wedge [\phi]^t([x],\mathbb{U}) \cap \mathbb{K} = \emptyset \Rightarrow [x] \cap \mathbb{C} = \emptyset$

The capture basin algorithm is based on the following properties

- (i) $[x] \subset \mathbb{T} \Rightarrow [x] \subset \mathbb{C}$
- (ii) $[\boldsymbol{x}] \cap \mathbb{K} = \emptyset \Rightarrow [\boldsymbol{x}] \cap \mathbb{C} = \emptyset$
- $(\mathsf{iii}) \ ([\boldsymbol{\phi}]^t ([\boldsymbol{x}], \mathbf{u}) \subset \mathbb{C}^- \land [\boldsymbol{\phi}]^{[0,t]} ([\boldsymbol{x}], \mathbf{u}) \subset \mathbb{K}) \Rightarrow [\boldsymbol{x}] \subset \mathbb{C}$

 $(\mathsf{iv}) \hspace{0.2cm} [\phi]^{t}([x],\mathbb{U}) \cap \mathbb{C}^{+} = \emptyset \wedge [\phi]^{t}([x],\mathbb{U}) \cap \mathbb{K} = \emptyset \Rightarrow [x] \cap \mathbb{C} = \emptyset$

The capture basin algorithm is based on the following properties

- (i) $[x] \subset \mathbb{T} \Rightarrow [x] \subset \mathbb{C}$
- (ii) $[\boldsymbol{x}] \cap \mathbb{K} = \emptyset \Rightarrow [\boldsymbol{x}] \cap \mathbb{C} = \emptyset$
- ${\rm (iii)} \ \left([\boldsymbol{\phi}]^t \left([\boldsymbol{x}], \mathbf{u} \right) \subset \mathbb{C}^- \land [\boldsymbol{\phi}]^{[0,t]} \left([\boldsymbol{x}], \mathbf{u} \right) \subset \mathbb{K} \right) \Rightarrow [\boldsymbol{x}] \subset \mathbb{C}$

 $(\mathsf{iv}) \hspace{0.2cm} [\phi]^{t}([x],\mathbb{U}) \cap \mathbb{C}^{+} = \emptyset \wedge [\phi]^{t}([x],\mathbb{U}) \cap \mathbb{K} = \emptyset \Rightarrow [x] \cap \mathbb{C} = \emptyset$

The capture basin algorithm is based on the following properties

- (i) $[x] \subset \mathbb{T} \Rightarrow [x] \subset \mathbb{C}$
- (ii) $[\boldsymbol{x}] \cap \mathbb{K} = \emptyset \Rightarrow [\boldsymbol{x}] \cap \mathbb{C} = \emptyset$
- $(\mathsf{iii}) \ \left([\boldsymbol{\phi}]^t \left([\boldsymbol{x}], \mathbf{u} \right) \subset \mathbb{C}^- \land [\boldsymbol{\phi}]^{[0,t]} \left([\boldsymbol{x}], \mathbf{u} \right) \subset \mathbb{K} \right) \Rightarrow [\boldsymbol{x}] \subset \mathbb{C}$

 $(\mathsf{iv}) \hspace{0.2cm} [\phi]^t([x],\mathbb{U}) \cap \mathbb{C}^+ = \emptyset \wedge [\phi]^t([x],\mathbb{U}) \cap \mathbb{K} = \emptyset \Rightarrow [x] \cap \mathbb{C} = \emptyset$

- (i) $[x] \subset \mathbb{T} \Rightarrow [x] \subset \mathbb{C}$
- (ii) $[\boldsymbol{x}] \cap \mathbb{K} = \emptyset \Rightarrow [\boldsymbol{x}] \cap \mathbb{C} = \emptyset$
- $\text{(iii)} \ \left(\left[\boldsymbol{\phi} \right]^t \left(\left[\boldsymbol{x} \right], \mathbf{u} \right) \subset \mathbb{C}^- \land \left[\boldsymbol{\phi} \right]^{\left[0, t \right]} \left(\left[\boldsymbol{x} \right], \mathbf{u} \right) \subset \mathbb{K} \right) \Rightarrow \left[\boldsymbol{x} \right] \subset \mathbb{C}$
- $(\mathsf{iv}) \ \ [\phi]^t([x],\mathbb{U})\cap\mathbb{C}^+=\emptyset\wedge[\phi]^t([x],\mathbb{U})\cap\mathbb{K}=\emptyset\Rightarrow[x]\cap\mathbb{C}=\emptyset$

- (i) $[x] \subset \mathbb{T} \Rightarrow [x] \subset \mathbb{C}$
- (ii) $[\boldsymbol{x}] \cap \mathbb{K} = \emptyset \Rightarrow [\boldsymbol{x}] \cap \mathbb{C} = \emptyset$
- $\text{(iii)} \ \left([\boldsymbol{\phi}]^t \left([\boldsymbol{x}], \mathbf{u} \right) \subset \mathbb{C}^- \land [\boldsymbol{\phi}]^{[0,t]} \left([\boldsymbol{x}], \mathbf{u} \right) \subset \mathbb{K} \right) \Rightarrow [\boldsymbol{x}] \subset \mathbb{C}$
- $(\mathsf{iv}) \ [\phi]^t([x],\mathbb{U}) \cap \mathbb{C}^+ = \emptyset \land [\phi]^t([x],\mathbb{U}) \cap \mathbb{K} = \emptyset \Rightarrow [x] \cap \mathbb{C} = \emptyset$

Zermelo navigation problem

- In control theory, Zermelo has described the problem of a boat which wants to reach an island from the bank of a river with strong currents.
 - The magnitude and direction of the currents are known as a function of position.
- Let T ≜ B (0, r) with r = 1 be the island and we set
 K = [-8,8] × [-4,4], where K represents the river.

Illustration

Zermelo navigation problem

• Let us consider the following dynamics for the boat

 $\left\{ \begin{array}{rll} x_1'(t) &=& v\cos(\theta) \\ x_2'(t) &=& v\sin(\theta) \end{array} \right. ,$

where the controls $v \in [0, 0.8]$ and $\theta \in [-\pi, \pi]$.

• The currents are represented by an autonomous vector field, then the global dynamic (boat and currents) is given by

$$\begin{aligned} x_1'(t) &= 1 + \frac{x_2^2 - x_1^2}{(x_1^2 + x_2^2)^2} + v\cos(\theta) \\ x_2'(t) &= \frac{-2x_1x_2}{(x_1^2 + x_2^2)^2} + v\sin(\theta) \end{aligned}$$

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ・ うへつ

Illustration

Zermelo navigation problem

- Let us consider the following dynamics for the boat where the controls $v \in [0, 0.8]$ and $\theta \in [-\pi, \pi]$.
- The currents are represented by an autonomous vector field, then the global dynamic (boat and currents) is given by

Illustration

Results

The figure shows the result of the capture basin algorithm,

where

- the circle delimits the border of the target ${\mathbb T}$;
- \mathbb{C}^- corresponds to the union of all red boxes;
- \mathbb{C}^+ corresponds to the union of both red and yellow boxes;
- finally, $\mathbb{C}^- \subset \mathbb{C} \subset \mathbb{C}^+$.

Conclusions

• A new approach to deal with capture basin problems is presented.

- This approach uses interval analysis to compute an inner an outer approximation of the capture basin for a given target.
- To fill out this work, different perspectives appear. It could be interesting to tackle problems in significantly larger dimensions.
 - Constraint propagation techniques make it possible to push back this frontier and to deal with high dimensional problems (with more than 1000 variables for instance)
- We plan to combine our algorithm with graph theory and guaranteed numerical integration to compute a guaranteed control **u**.

Conclusions

- A new approach to deal with capture basin problems is presented.
 - This approach uses interval analysis to compute an inner an outer approximation of the capture basin for a given target.
- To fill out this work, different perspectives appear. It could be interesting to tackle problems in significantly larger dimensions.
 - Constraint propagation techniques make it possible to push back this frontier and to deal with high dimensional problems (with more than 1000 variables for instance)
- We plan to combine our algorithm with graph theory and guaranteed numerical integration to compute a guaranteed control **u**.

・ロト ・ 日 ・ エ = ・ ・ 日 ・ うへつ

- A new approach to deal with capture basin problems is presented.
 - This approach uses interval analysis to compute an inner an outer approximation of the capture basin for a given target.
- To fill out this work, different perspectives appear. It could be interesting to tackle problems in significantly larger dimensions.
 - Constraint propagation techniques make it possible to push back this frontier and to deal with high dimensional problems (with more than 1000 variables for instance)
- We plan to combine our algorithm with graph theory and guaranteed numerical integration to compute a guaranteed control **u**.

・ロト ・ 日 ・ エ = ・ ・ 日 ・ うへつ

- A new approach to deal with capture basin problems is presented.
 - This approach uses interval analysis to compute an inner an outer approximation of the capture basin for a given target.
- To fill out this work, different perspectives appear. It could be interesting to tackle problems in significantly larger dimensions.
 - Constraint propagation techniques make it possible to push back this frontier and to deal with high dimensional problems (with more than 1000 variables for instance)
- We plan to combine our algorithm with graph theory and guaranteed numerical integration to compute a guaranteed control **u**.

- A new approach to deal with capture basin problems is presented.
 - This approach uses interval analysis to compute an inner an outer approximation of the capture basin for a given target.
- To fill out this work, different perspectives appear. It could be interesting to tackle problems in significantly larger dimensions.
 - Constraint propagation techniques make it possible to push back this frontier and to deal with high dimensional problems (with more than 1000 variables for instance)
- We plan to combine our algorithm with graph theory and guaranteed numerical integration to compute a guaranteed control **u**.