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Abstract

Testing models for structural identi�ability is particularly

important for knowledge-based models. If several values of

the parameter vector lead to the same observed behavior of

the model, then one may try to modify the experimental

setup to eliminate this ambiguity (qualitative experiment

design). The tediousness of the algebraic manipulations in-

volved makes computer algebra particularly attractive. The

purpose of this paper is to explore an alternative route based

on guaranteed numerical computation. A new de�nition of

identi�ability in a domain allows testing to be cast into the

framework of constraint-satisfaction problems, and makes it

possible to use the tools of interval analysis and interval con-

straint propagation to get guaranteed answers. When the

data have already been collected, the notion of structural

identi�ability may not be the most pertinent concept. This

paper shows how interval analysis and interval constraint

propagation can again be used to bypass the identi�ability

study and estimate even parameters that are not identi�able

uniquely.

Keywords: constraint satisfaction problems, compart-
mental models, experiment design, guaranteed numer-
ical computation, identi�ability, identi�cation, interval
analysis, parameter estimation.

1 Introduction

Underlying the notion of identi�ability is the question of
whether one can hope uniquely to estimate the param-
eters of a model from the experimental data that can
be collected. This question is particularly relevant for
knowledge-based models, where these parameters have
a concrete meaning, and whenever decisions are to be
taken on the basis of their numerical values. The impor-
tance of the notion has been recognized more than 50
years ago [1], but much remains to be done to convince
potential users and to provide them with tools to test
their models for identi�ability. As the algebraic manip-
ulations involved in identi�ability testing can become
31
really tedious, the use of computer algebra and elimi-
nation theory to obtain reliable results is particularly
attractive, see, e.g., [2]-[7].

The purpose of the present paper is to explore an al-
ternative route, mainly based on numerical computa-
tion, and discuss its advantages and disadvantages. The
paper is organized as follows. The notion of structural
identi�ability is brie
y recalled in Section 2, where some
limits of a formal approach are also mentioned. These
limits are the rationale for the development of an al-
ternative numerical approach based on interval analysis
and interval constraint propagation in Section 3. Sec-
tion 4 shows that these tools may make it possible to
bypass the structural identi�ability study altogether by
allowing one to characterize, in a guaranteed way, the
set of all values of the parameter vector that are con-
sistent with the experimental data collected on the sys-
tem to be modeled. It thus becomes possible to identify
unidenti�able models.

2 Formal approach to structural identi�ability

Structural identi�ability is studied in an idealized con-
text where the data are assumed to be generated by a
model with the same structure M(:) as the model to
be identi�ed. The unknown true value of the parameter
vector is denoted by p�, and is assumed to belong to
some prior feasible set P � Rdim p. From noise-free data
generated byM(p�), one wants to estimate the param-
eters of a model M(bp). In these idealized conditions,
it is always possible to tune bp so as to ensure that the
outputs generated by the \model" M(bp) are identical
to those generated by the \process" M(p�) for all in-
puts and times. The identity of these external behaviors
will then be expressed concisely by

M(bp) =M(p�): (1)

The identi�ability of bp only depends on the number of
solutions of (1) for bp in P. If the set S of all these solu-
tions reduces to the singleton fp�g, then bp is globally (or
22
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uniquely) identi�able at p�. If S is denumerable (most
often �nite), then bp is locally (or countably) identi�able
at p�. If S is not denumerable, then bp is unidenti�able
at p�. Of course, a given entry bpi of bp may be locally
or globally identi�able even when the entire parameter
vector is unidenti�able.

Now this identi�ability study may take place before data
collection. This is actually advisable, as the results of
the identi�ability study may impact on the experiments
to be conducted [8]. No numerical value is then available
for p�, and we would like our conclusions to be valid
whatever the value of p� may be. Unfortunately, this is
not always possible, which led to the notion of structural
(or generic) identi�ability. A parameter pi is structurally
globally identi�able (s.g.i.) if, for almost any p� in P,
the set S of the solutions of (1) for bpi reduces to the
singleton p�

i
. It is structurally locally identi�able (s.l.i.)

if, for almost any p� in P, S is denumerable or �nite. If
S is not denumerable, for almost any p� in P, then pi is
structurally unidenti�able. Of course, p is s.g.i. or s.l.i.
if all of its components are s.g.i. or s.l.i.

When testing model structures for identi�ability, the
standard approach is in two steps. During the �rst step,
the equations to be satis�ed by bp for (1) to hold true
are established, and this is usually much facilitated by
the use of computer algebra. Very often, (1) translates
into a set of equations:

r(bp) = r(p�): (2)

During the second step, the set of all solutions of (2)
for bp is sought for. When each component of r(p) is
polynomial in the entries of p; elimination theory can
be used to put this set of polynomial equations into a
triangular form

t(bp) = t(p�); (3)

where again each component of t(p) is polynomial in the
entries of p. It then becomes possible, at least in prin-
ciple, to solve (3) by solving a succession of polynomial
equations in a single unknown, in a way similar to that
used to solve linear systems of equations by triangular-
ization, and thus to obtain the set S of all the parameter
vectors bp that satisfy these equations. The method used
to build (3) from (2) guarantees that no solution can be
lost, so if the degree of each of the polynomial equations
to be solved in the process is generically one, then it has
been proven that p is s.g.i. Even when this is not so,
it is sometimes possible to generate the set of all solu-
tions of (2) for bp as an explicit function of p�, what has
been called exhaustive modeling [9]. Provided that the
cardinal of this set keeps the same value for almost any
value of p�, this formal approach allows one to conclude
about the structural identi�ability of the model under
study.

Testing models for structural identi�ability is a very in-
teresting domain of application for computer algebra,
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because one looks for a simple answer to the simple qual-
itative question of whether the model is s.g.i. There are,
however several reasons why the approach may turn out
not to be satisfactory.
{ (1) may not translate into polynomial equations, or
the translation may make the problem exceedingly com-
plicated to solve.
{ Reaching a conclusion may require formal manipula-
tions that are much more complicated than allowed by
present-day computers.
{ The degree of some of the univariate polynomials to
be solved may be too large for an analytic expression to
exist, which then imposes the use of numerical methods
and the loss of the formal nature of the solution.
{ The number of real solutions for the bpi's (the only ones
in which we are interested) may depend on the value of
p� in such a way that no conclusion of a structural na-
ture can be reached. The following example will serve
to illustrate this point. It will be treated in Section 3
with the alternative approach advocated in this paper.
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Figure 1: Output of the polynomial model of Example 1;
the grey zone corresponds to the values of p� for
which the model is not uniquely identi�able

Example 1 Consider the model

�(p) = p(p� 1)(p+ 1);

with one parameter p in P = [�2; 2] and no input. For
any (bp; p�) in P� P, M(bp) =M(p�) if and only if

p�(p� � 1)(p� + 1)� bp(bp� 1)(bp+ 1) = 0:

The set of feasible values for bp is a singleton for p� 2
]�2;�a[ [ ]a; 2[, a pair for p� = a or p� = �a, and
a triple for p� in ]�a; a[, with a = 2p

3
(see Figure 1).

So unique identi�ability is not a structural property in
P. �

3 Alternative guaranteed numerical approaches

The route to be followed will depend on whether a nu-
merical value can be given to p�.
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3.1 A numerical value can be given to p�

This will be the case, for instance, when a satisfactory
model with structure M(:) has already been identi�ed
from experimental data and one is interested in estimat-
ing all the models with the same structure and the same
external behavior. It then suÆces to take for p� the nu-
merical value of the vector of the estimated parameters,
and to get a reliable estimate of the number of solutions
of (2) for bp by using a guaranteed solver. This can be
done by means of interval analysis [10], [11]. Solving (2)
amounts to �nding the zeros of the function f de�ned
in P by

f(bp) = r(bp)� r(p�): (4)

When dimp = dim f(p), under the hypothesis that f
is continuously di�erentiable, an interval Newton solver
can be employed to enclose all these zeros in a union
L of interval vectors (or boxes) [bp] [12]. The width of
these boxes depends on a tuning parameter with a di-
rect impact on the amount of computation required. In
this solver we used the Newton-Gauss-Seidel operator
NGS([p]) [12], which has the following properties:
(i) each zero bp of (4) in any box [p] satis�es bp 2
NGS([p]);
(ii) if NGS([p]) = ;, then there is no zero of (4) in [p];
(iii) if NGS([p]) is strictly inside [p], then [p] contains
exactly one zero of f .
Properties (i) and (ii) indicate that the result is reliable
in the sense that no zero can be lost. Property (iii) is
used to evaluate the actual number of zeros. If L is re-
duced to a single box [bp] and (iii) is satis�ed for [bp],
then the model is globally identi�able at p�. Else, [bp]
may contain one or more zeros. A solution is then to
split [bp] into two subboxes [p1] and [p2] and to apply
NGS again on [p1] and [p2]. If all boxes in L are such
that (iii) is satis�ed, then the model is locally identi�-
able at p�.

3.2 A prior domain can be given to p�

One of the interest of structural identi�ability is that
it can be tested before experimentation and thus serve
as a tool for qualitative experiment design [8]. On the
other hand, the experimenter may feel uncomfortable
with the fact that global identi�ability is not necessar-
ily a structural property (as shown in Example 1) and
that, even if the model is s.g.i., there may be atypical
regions where the conclusion reached may be false. This
motivates the following new de�nition.

De�nition 1 The parameter pi is globally identi�able
in P ( g.i.i.P) if

8(p�; bp) 2 P� P; M(bp) =M(p�)) bpi = p�
i
; (5)

and the parameter vector p is g.i.i.P if all its components
are g.i.i.P.
31
De�nition 1 no longer allows the existence of atypical
regions in P and underlines the importance of the search
domain P. If the problem

M(bp) =M(p�); kbp� p�k1 > 0 (6)

has no solution for (bp;p�) in P�P, then p is g.i.i.P. This
makes it easy to express the test of global identi�ability
as a constraint satisfaction problem (CSP). A CSP con-
sists of a set of variables (here, fbp1; :::; bpn; p�1; :::; p�ng), a
set of domains assumed to contain these variables (here
we shall consider intervals, and P will be taken as a
box, but more sophisticated search domains, such as
unions of boxes, could also be considered), and a set
of constraints to be satis�ed (here, those in (6)). In-
terval constraint propagation (ICP) has been developed
to deliver guaranteed outer approximations of the solu-
tions of CSP's (see, e.g., [13] and the references therein).
ICP contracts the initial domains into smaller ones. If a
deadlock is reached, bisection of the domain of interest
can once again be applied, at the cost of an increase in
complexity.

In practice, (6) is replaced by

M(bp) =M(p�); kbp� p�k1 > "; (7)

where " is some positive coeÆcient to be set by the
user to express a distance below which parameter vec-
tors will not be distinguished. We shall then talk of "-
g.i.i.P parameters or models. For "-g.i.i.P models, ICP
may allow a conclusion to be reached without a sin-
gle bisection, which is particularly attractive for large-
dimensional problems.
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Figure 2: L, as computed in the (bp� p
�) space for Exam-

ple 2, and the domains D 1 and D 2 ; since D 2 �D 2

intersects L, M may not be "-g.i.i.D2 , whereas
it is "-g.i.i.D1

Example 2 Consider again the model of Example 1,
and the domains D 1 = [0:8; 2] and D 2 = [0:3; 2]. With
" = 0:02, in 1ms on a Pentium 350, ICP proved thatM
is "-g.i.i.D 1 ; but could not conclude about whether M is
"-g.i.i.D 2 . Figure 2 presents an outer approximation L

of all solutions of (7) for (bp;p�) in [�2; 2]� [�2; 2], as
24



computed in 2:2 s by ICP. Since D 2 � D 2 intersects L,
it may exist (bp; p�) in D 2 � D 2 satisfying (7). It can be
shown on this simple example that the actual solution
set S of (7) is included in the ellipse de�ned by (bp +
p�)2� bp� p� = 1. The constraint kbp� p�k1 > " in (7)
implies that a part of this ellipse does not belong to S.
This analysis con�rms that M is not "-g.i.i.D 2 . �

Example 3 Consider the following compartmental
model, used to describe the behavior of a drug such as
Glafenine administered orally:

M(p) :

8>>>><
>>>>:

_q1 = �(p1 + p2)q1 + u;

_q2 = p1q1 � (p3 + p5)q2;
_q3 = p2q1 + p3q2 � p4q3;

�1 = p6q2;

�2 = p7q3:

(8)

The initial conditions on the state variables qi are all
taken to be zero. M(bp) = M(p�) translates into (2)
where the components of r(p) are the coeÆcients of the
transfer matrix associated with (8). For this to be valid,
the entries of this matrix should be expressed in some
canonical form. For P = [0:6; 1]

�7
and " = 10�9; ICP

�nds in 0:01 s that the model is "-g.i.i.P. On P = R
7 ;

the model is not s.g.i. [8]. �

4 Bypassing the identi�ability study

When the data have already been collected, it is no
longer so important to obtain conclusions that are valid
for all (or almost all) possible values of p�. Instead, one
would like to characterize the set Sof all values of bp that
are consistent with these data, in a sense to be speci�ed.
Interval analysis can also be used for this purpose, as
illustrated by the next two sections. The identi�ability
analysis is thus bypassed, to address the actual prob-
lem of interest directly, namely �nding all optimal or
acceptable models based on the data. The results are
guaranteed, irrespective of whether the model structure
is globally identi�able, contrary to those provided by
traditional local numerical methods.

4.1 Global optimization

Assume that the set S of interest is the set of all global
minimizers of a suitable cost function J(:; :), obtained,
e.g., by a maximum-likelihood approach based on hy-
potheses about the noise corrupting the data

S= fbp 2 P j J(bp;y) 6 J(p;y) 8p 2 Pg; (9)

where y is the (numerically known) vector of all the
data containing information about p.

One of the main numerical diÆculties attached with this
approach is the fact that J(p;y) is usually not convex
with respect to p, so there may be several global mini-
mizers bp, as well as parasitic local minimizers that may
31
trap any estimation algorithm based on local iterative
search only. Even with more global tools such as simu-
lated annealing, adaptive random search or genetic al-
gorithms, one will never be sure in a �nite time that
all global minimizers have been located. Deterministic
global optimization based on interval analysis, exampli-
�ed by Hansen's algorithm [11], does not su�er from the
same limitations. It allows one to eliminate parts of the
prior search space P that cannot contain any global min-
imizer of the cost function, and to reduce the boxes of
parameter space that cannot be eliminated. The results
obtained are guaranteed, in the sense that an outer ap-
proximation of S is obtained. It may even be possible to
estimate parameters that are not globally identi�able,
as evidenced by the following example.

p
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Figure 3: Two-compartment model of Example 4

Example 4 As in [14], consider the system described

by Figure 3. The evolution of the vector q = (q1; q2)
T

of the quantities of material in the two compartments is
described by the linear time-invariant state equation�

_q1 = � (p1 + p3) q1 + p2q2 + u;

_q2 = p3q1 � p2q2:
(10)

Take the system in zero initial condition (q(0�) = 0),
and assume that a Dirac input u(t) = Æ(t) is applied to
Compartment 1, so q1(0+) = 1 and q2(0+) = 0. Assume
also that the content of Compartment 2 is observed at
16 instants of time, according to

yi = q2 (ti) + ni; i = 1; :::; 16; (11)

where ni is some measurement noise. It is trivial to show
that the corresponding model outputs satisfy

�
i
(p) = � (exp(��1ti)� exp(��2ti)) ; i = 1; :::; 16;

(12)
where �, �1 and �2 are simple functions of p1; p2 and
p3. The parameter vector to be estimated is p =
(p1; p2; p3)

T. The experimental data yi, together with the
times ti at which they have been collected are given in
Table 1. No prior information is available about p, and
the measurements yi are all deemed equally reliable, so
the cost function is chosen as

J(p;y) =

16X
i=1

(yi � �i(p))
2
: (13)

For P = [0:01; 2:0] � [0:05; 3:0] � [0:05; 3:0], and with
its precision parameters "p and "J both equal to 10�9,
25



Hansen's algorithm guarantees that all global minimizers
in P are in the boxes

[1:925402; 1:925404]� [0:232717; 0:232719]

� [0:145075; 0:145077]

and

[0:232717; 0:232719]� [1:925402; 1:925404]

� [0:145075; 0:145077] :

Note that these boxes can be deduced from one another
by exchanging their interval values for p1 and p2. This is
consistent with the conclusion of an identi�ability study.
It seems important to stress that the conclusion of the
present estimation was not based on such a study, which
can therefore be dispensed with. Optimizing �rst with re-
spect to �; �1 and �2 and then estimating p with a guar-
anteed interval-based method, takes about one minute
[14]. �

Table 1: Experimental data

ti yi ti yi
1 0:0532 9 0:0099
2 0:0478 10 0:0081
3 0:0410 11 0:0065
4 0:0328 12 0:0043
5 0:0323 13 0:0013
6 0:0148 14 0:0015
7 0:0216 15 0:0060
8 0:0127 16 0:0126

Instead of looking for all global minimizers of the cost
function, one may look for the set S of all values of p
such that the value of the cost function is below some
threshold. This may be important in practice, as there
does not seem to be any serious reason to eliminate val-
ues of p that would correspond to values of the cost
function almost equal to the absolute minimum. S is
then de�ned by an inequality, and the methods to be
used are those of the next section. Note that such values
of p could not be obtained by a structural identi�ability
study based on purely algebraic manipulations.

4.2 Sets de�ned by inequalities

Assume now that

S= fbp 2 P j g(bp;y) 6 0g; (14)

where g(bp;y) 6 0 is to be understood componentwise.
S may be a con�dence region (at some level of con�-
dence to be speci�ed by the user). The (usually scalar)
inequality g(bp;y) 6 0 de�ning S is then deduced by
probabilistic considerations from hypotheses about the
statistical distribution of the noise corrupting the data.
The inequalities in (14) may also express that the errors
31
between the components yi of the data vector and the
corresponding model outputs �

i
(p) lie between known

bounds. This corresponds to parameter bounding or set-
membership estimation [15].

In both cases, characterizing S can be cast into the
framework of set inversion and performed using the al-
gorithm SIVIA [16]. In this algorithm, a positive ac-
curacy coeÆcient " must also be tuned by the user, to
choose the width below which uncertain boxes will not
be bisected.

0 5
0

5

p
1

p
2

Figure 4: Projection of S onto the plane (p1, p2)

Example 5 Consider again the problem of Example 4.
Take P = [0; 5]

�3
. Assume now that bp is accept-

able if the absolute deviations between the data yi and
corresponding model outputs �

i
satisfy jyi � �

i
(bp)j 6

0:002; i = 1; : : : ; 16, which can of course be reformu-
lated as g(bp;y) 6 0. For " = 0:0025, in 2 mn on a
Pentium 233, SIVIA computes an outer approximation
S of the set S de�ned by (14): S consists of two discon-
nected subsets contained in the boxes

[1:5046; 2:9546]� [0:22245; 0:25954]� [0:12061; 0:22069]

and

[0:22245; 0:25954]� [1:5046; 2:9546]� [0:12061; 0:22069] :

The projection of S onto the plane (p1; p2) is given in
Figure 4. The fact that p1 and p2 can be exchanged with-
out modifying the model behavior explains the symmetry
of the �gure. �

5 Conclusions

Testing models for identi�ability is important in at least
three cases:
{ when the parameters to be identi�ed have a physical
meaning and one wants to estimate their actual values,
{ when state variables that cannot be measured directly
are to be estimated from the available measurements
and the model being built,
{ when a decision is to be taken based on the numerical
values of the parameters or state variables.
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Two situations should then be distinguished.

When the data have not been collected yet, one is inter-
ested in a conclusion that is as independent as possible
from the numerical value of p�. This conclusion may
lead one to modify the location and nature of the sen-
sors and actuators in an e�ort to improve identi�ability
[8]. We have shown here that it may depend on the
value of p� in such a way that no generic conclusion
can be reached. This led us to proposing an alternative
approach based on a new de�nition of identi�ability. A
parameter vector p is said to be globally identi�able in
P if it is globally identi�able for all values of p� in P. We
have brie
y explained how interval analysis and inter-
val constraint propagation can be used to test whether
a model structure is globally identi�able in P for a given
set P.

When the data have already been collected, the actual
question of interest is: what is the set of all values of
the parameter vector that are acceptable, given the data
and what we know about the noise? Identi�ability then
becomes a way to get a partial answer to this question,
in an idealized context. We have shown that interval
analysis may make it possible to reach a guaranteed
conclusion in a more realistic context. There are, of
course, limitations to the complexity of the problems
that can be handled, and one of the challenges of inter-
val analysis is to enlarge the class of the problems that
can be treated. The notion of interval constraint prop-
agation, for instance, allows one to limit the number
of bisections needed, which is an extremely important
contribution to repelling the curse of dimensionality.

We have only considered the notion of identi�ability,
where the structures of the model and process are as-
sumed to be identical. The same type of study could be
conducted in the context of distinguishability, where it
is assumed that the structure of the model may di�er
from that of the process [17]. The notion of structural
distinguishability could similarly be replaced by a no-
tion of distinguishability in P, and the tools of interval
analysis could again be used to test whether a given
model structure is distinguishable from another one in
this new sense.
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