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Som esene . Definition
A small n—gon is a n—gon with a diameter 1.

We address in this work: isodiametric problems and questions
about perimeter and area.
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5 Sl @EgTE » Which small polygons have the maximal area?
» Which small polygons have the maximal perimeter?
» Which equilateral small polygons have the maximal area?
» Which equilateral small polygons have the maximal

perimeter?
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Reinhardt’s results 1922

Theorem

The regular n—gons have all the properties of maximal

perimeter and area, for n odd.

Theorem
For all n, a bound for the perimeter is

P, <2nsin ul
2n

Theorem
For all n, a bound for the area is

1 1 2 op
A< =xnXx|——] Xsin—
2 n

T
2 cos n

The bounds are reached when n is odd.
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» Maximal area n = 4:

Figure : A7 = As = %

With bxhy . bxhe _ bx(hithe) _ 1 p— 1 and
hi1+ hy = 1.
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Pr =2v2 ~2.8284 Py =2+4sin%
¢ e ~ 3.0353
Result from Tamvakis 1987 (and Datta 1997).
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Reuleaux Polygons Main Property and
Applications

Same width in every dk ék’:tjons:

Width

Width

\ / \

Figure : Example of width of a Reuleaux triangle.

Applications:
» A Reuleaux triangle is used in the SMART car (for the
injection system)!
» For the design of a dollar: 1$ Canadian is a Reuleaux

polygon with eleven sides.
See "A $1 Problem” paper in AMM of Mossinghoff.
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Four Problems

Reinhardt's results
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Regular hexagon Optimal hexagon
(Ps) = 6sin(g) =3 Ps = Py = 12sin({5) ~ 3.10582854
When n is not a power of 2,
2nsin(5-) < max P < max P, < 2nsin(37).

This result is due to Vincze 1952.
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Examples of Maximal Perimeter Solutions when n

is not a Power of 2

[ : ° ® ® ° ®
Optimal Decagon Optimal Dodecagon
P10 = Pry ~ 3.1287 P1> = P; ~ 3.1326

Figure : Examples of polygons with maximal perimeter when n is
even but n # 2°.
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Graham's Hexagon with Maximal Area, 1975

/ \ P INY
J I I

Regular Hexagon Graham's Hexagon
A5 = 33 ~ 0.6495 Ag ~ 0.6750

Figure : Two hexagons with maximal area.

Gain about 3.9% (comparing to the regular hexagon).

N e 3
\7/ 7
N pd .
pd .

P
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Figure : The ten possible diameter configurations for the hexagonw/ w0
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“It is immediate that in order to maximize area Ry,
it is necessary that ay = «p. It is slightly less
immediate (but equally true) that it is also necessary
that 61 = 0,. (The details are not particularly
interesting and are omitted).”

—> solve a global optimization problem in one variable.
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O O Retrospectively with hypothesis of symmetry, Bieri answers to
this question in 1961. 14 years before Graham!

i Title: "Ungeloste Probleme: Zweiter Nachtrag zu Nr. 12"

i (Open Problem, second supplement to number 12)

Sneapleia answering to Lenz: "Ungeloste Probleme Nr. 12" posed in

oo o= 1956 in Elemente der Mathematik.

with Perimeter Max

Yo e This remark come from Mossinghoff: "a 1$ problem”, AMM.

Bao Yuan give a complete proof in his Report of Master
Degree in 2004: " The Largest Small Hexagon".
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» The solutions to Py, are the disk and all odd Reuleaux
Frédéric Messine
OQ\/\' polygons.
) » When n is odd, the regular n-gon solves the four
problems of maximal perimeter and area.

Some Definitions

e » When n = k2° for k odd and s integer, then the k-gon
P with extra vertices solves the both problems for the
perimeter.

Small Hexagon
with Perimeter Max

Sl G » When n = 4, the square solves P, = 2v/2 ~ 2.828427
and the following solves P4 = 2 + 4sin({5) ~ 3.035276.

» When n = 6, the Graham'’s hexagon solved max Ag and
the regular hexagon solve max Ag’; Vincze's hexagon
(based on a Reulaux triangle) solved max Pg and max Pg .

Open cases, when n = 8: the Octagons.
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> For the area and the perimeter = 31 diameter graphs.
» About 10 cases can be discarded by geometric reasoning.

» Algorithms: Branch and Cut algorithm for quadratic
non-convex programs for the area -CPU—times: about
100h- and IBBA for the perimeter -56h (44h for
discarding case 18)-
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OQ/S » Algorithms: Branch and Cut algorithm for quadratic

non-convex programs for the area -CPU—times: about
100h- and IBBA for the perimeter -56h (44h for
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o discarding case 18)-

Reinhardt's results

Solutions: . .,..

Sma X
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Optimal Octagon (31) Optimal Octagon (29)
Ag =~ 0.726867 Pg ~ 3.121147... 2049
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3 papers in JCTA (2001, 2004, 2007) with Pierre Hansen

and Charles Audet (J. Xiong and S. Perron)

1 Pour la Science with Pierre Hansen and Charles Audet,

June 2009.
1 JOGO with Pierre Hansen and Charles Audet, 2009.

Octagonist Club:
» Pierre Hansen, Charles Audet, Frédéric Messine.
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3 papers in JCTA (2001, 2004, 2007) with Pierre Hansen
and Charles Audet (J. Xiong and S. Perron)

1 Pour la Science with Pierre Hansen and Charles Audet,
June 2009.

1 JOGO with Pierre Hansen and Charles Audet, 2009.
Octagonist Club:

» Pierre Hansen, Charles Audet, Frédéric Messine.
» Junge Xiong, Sylvain Perron, Jordan Ninin(2013, IBBA).

22/ 49



Some stories
about small
octagons

Frédéric Messine

OO0

Some Definitions

Four Problems

Reinhardt's results

Small He on
with Perimeter Max

4 Small Octagons

Publications

v

v

v

3 papers in JCTA (2001, 2004, 2007) with Pierre Hansen

and Charles Audet (J. Xiong and S. Perron)

1 Pour la Science with Pierre Hansen and Charles Audet,

June 2009.

1 JOGO with Pierre Hansen and Charles Audet, 2009.
Octagonist Club:
» Pierre Hansen, Charles Audet, Frédéric Messine.

» Junge Xiong, Sylvain Perron, Jordan Ninin(2013, IBBA).

» Vincze's Wife
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» Kangourou Method...
Stochastic Global Optimization Methods
» Simulated Annealing,
» Genetic Algorithms,
» Evolutionary Algorithms...
Deterministic Global Optimization Methods
» Particular structure of problems:
» Convex functions + Theory,
> Linear programs: Simplex Algorithm (Danzig)
> Quadratic programs: (Sherali, Audet, Hansen et al.)...,
» More General Problems = Branch and Bound
Techniques

> Difference of convex or monotonic functions, (Horst and

Tuy),
> Interval analysis (Ratsheck, Rokne, E. Hansen)...
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w0

Principle of a Branch and Bound Algorithm for a
problem with constraints

» Choice and Subdivision of the box X, (in 2 parts by
step): list of possible solutions,

» Reduction of the sub-boxes, by using a constraint
propagation technique,

» Computation of bounds of the functions F, G;, H; on the
sub-boxes, - inclusion functions -

» Elimination of the sub-boxes which cannot contain the
global optimum: FL(X) > for GH(X) >0 or 0 & H(X),
where f denotes the current solution,

» STOP when accurate enclosures of the optimum are
obtained.
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Rotating Machines with Magnetic Effects
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OQ/B * Criteria :

axrle
o
Vap: g—(D+E-a-L )20+ E+e+l,)
4 i,
o 3
Vo =& Bl —(D-2e-1,)
A
Deterministic D
Global Pj: %G, —(D+ E)Ech
Optimization via 1
Interval Arithmetic i
MAPSE Constraints :
Problem x 2
formulation for Ag C=——7Q- K. )Jk BE,ED(D+ E}B,
Numerical 24
Solutions and
: e+ E 2l P
S By=Al, =kEI2.E, »15p——.B, = :
Lower and Upper D D+2F
Bounds Dlog ﬁ
D-2( +¢
F
a3 B xD
:LD,pz—,em—eSO,Kf—Kfm <0
4pE ., A,
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OO0

Deterministic
Global

» IBBA standard (defined by Ratschek and Rokne 1988)
— 1h35,

» IBBA + propagation due to E. Hansen — 41.5s,
» IBBA + propagation with the calculus tree — 0.5s.
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Problem Formulation for the Largest Small
Octagon

Formulation by a nonconvex quadratic program:

V-ﬁ"; (x1 — x2 + xa,
® i —y2+ ya)

Vi = (X3 — x1, )1 — y3)

vi =(x1—x,0n —}/2)___

(0,0

Figure : Case of n = 8 vertices. Definition of variables.
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A nonconvex quadratic program
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OQ/B e e +x3 — 4x)y1 + (3x1 — 2x3 + X5)y2
+(3x1 — 2x2 + x4)y3 + (X3 — 2x1)ya
+(x2 — 2x1)y5} + x1
Determiisic st. a—x—x+xa+x)+02—y3+tys—y)?=1
dpimization v (3 —2x1 +x2)? + (xr — x)> < 1
e x?+y?=1,i=1,2345
forr?nuelz[:;ion for Ag X2 f— X3 Z O
Solions and y >0
0 <x3 < 0.5

0<x <1, i=234,5.
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Soft.

Year

Accuracy

CPU-time

QP
Gloptipoly
IBBA

1997
2010
2013

10~4
10~ "%
10~ 8%

100h
5s
171s
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Numerical solutions

OQ\/\' Soft. Year | Accuracy | CPU-time
o QP 1997 1074 100h
Gloptipoly | 2010 | 10~ "« 5s

IBBA 2013 | 1078 171s

> QP : A% ~ 0.726867
> Gloptipoly: Aj € [0.72686845,0.72686849]

Numerical
Solutions and

Solvers » IBBA: A3 € [0.726868479732928, 0.7268684897329281]

Lower and Upper

Bounds

Solution: x; = 0.26214172, x2 = 0.67123417, x3 =
0.67123381, x4 = 0.90909242, x5 = 0.90909213
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» QP : (RLT) x;x; = wjj + McCormick constraints
» Gloptipoly:
SDP relaxation (find polynomial bases - 2nd relaxation)
VSDP - rigorous upper bounds.

» IBBA:
max f(x) max 7 (x)
xEXCRM xeXFCF
{ st g(x)<0, —* st. g7 (x)<¢f
hij(x) =0 hjf(x) € [—€f,ef
(P) < (Pr)

Lower bounds : QP = 0.726867, Gloptipoly = 0.72686845,
IBBA = 0.726868479732928
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Solvers

» QP : (RLT) x;x; — wj;j + McCormick constraints

> Gloptipoly:

SDP relaxation (find polynomial bases - 2nd relaxation)

VSDP - rigorous upper bounds.

» IBBA:
Xer;\(ang" f(x) xe)?}-'aéfn ff(x)
st. gi(x)<0, — st. gl (x) < Eg]:,
hi(x) =0, hj]:(x) € [—€¢f, €],
(P) < (Pr)

Lower bounds : QP = 0.726867, Gloptipoly = 0.72686845,
IBBA = 0.726868479732928
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UB (decreases by its) > (Pg) > (P) > LB?
LB:

AZ . floating point solution of (Pg).
AL < (Pg), but
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UB (decreases by its) > (Pg) > (P) > LB?

AL : floating point solution of (Pg).

Ag: < (Pg), but
AL ~ (P)?

AL > (P) or A >> (P)?
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Lower bound: a formulation

Some stories

about small Remark: The solution is almost symmetric!

octagons

Frédéric Messine
OQ/S va = (0,1)

vs = (—x1, y1(x1)).*

v = (a,n(x)

—(_1 S il

v = (=3, y3(x1, %)) ve'= (3, y3(x1, x2))
Deterministic - .
Global
Optimization via
Interval Arithmetic
MAPSE
Problem
formulation for Ag
Numerical g
Solutions and 4
Solvers vi = (,X27 yz(Xl, x2))
Lower and Upper
Bounds

"‘7= (2, y2(x1, x2))
= (0,0)

Figure : Symmetric case. Definition of variables.
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A nonconvex program for LB

Some stories
about small
octagons

max  Xpy3 — %)@ + %}/1 —X1y3+Xx1

Frédéric Messine X1,%0

OO0

0§X1§0.5
0<x <0.5.

Where

Deterministic

Global 2

Opti atiol a — —_

Sy yi(xa) =4/1-x

MAPSE 5
E)rr?vlv)k‘le\:mn for Ag }/2(X1, XZ) = )’1(X1) - 1-— (X1 + Xz)

Numerical

Solutions and 2
Solvers 1

Lower and Upper y3(X1’ X2) = y2(X1’ X2) + 1 — ( + XQ)
Bounds 2

IBBA — AS € 0.7268684827516[265, 365]
Accuracy: 1071% in 0.1s,
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Where
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Solutions and
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Lower and Upper
Bounds

IBBA — AZ € 0.7268684827516[265, 365]
Accuracy: 1071 in 0.1s, certified at 1072 by IBBA in 186s

max Xpy3 — %yz + %yl —Xx1y3 + X1

X1,X2

0§X1§0.5
0<x <0.5.

yi(x1) =14/1 _X12

o3, 2) = y1(xa) — /1= (31 + x2)?

ya(x1, x2) = yo(x1, x2) +14/1 — <

Ly
- X
2 2

;
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Conclusion on the Hansen's Octagon

> 31 diameter graphs: Graham'’s conjecture is proved — 1
case (31). Foster and Szabo Results (2007).

» Bounds:

Gloptipoly = 0.72686849, IBBA = 0.7268684897329

Solutions:

Ag € 0.72686848275[16265, 26265]

Hansen's Octagon
Area ~ 0.72686848275
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