Template-Based Computation of Barrier Certificates

of Continuous Dynamical Systems using Interval
Constraints

Adel Djaballah

ENSTA ParisTech, U2IS
joint work with Olivier Bouissou(CEA), Alexandre Chapoutot(ENSTA) and Michel
Kieffer(Supelec)

Reunion of GT MEA 14/11/2013

1/50

© Context

© Barrier certificate

© Approach

@ Examples

© Conclusion and future work

2/50

© Context

3/50

Formal verification

» Formal verification is a key aspect of the analysis of systems, it
goal is to prove that certain properties are respected.

» In particular safety properties which ensure that the system
will never have an unsafe behavior.

» Proving a safety property can be translated as proving that an
unsafe region can never be reached from an initial region.

4/50

Dynamical system

A dynamical system which state x € R” evolves according to :

x(t) = f(x(t)) (1)

Solution

| A\

Given an initial state x(0) = xg, a solution for the previous system
is a continuous derivable function Q(t) such that Q(0) = xo and
Q(t) = f(Qt)) Vt >0

\

5/50

Problematic

Consider an initial region X; C R", an unsafe region X, C R". The
dynamical system remains in the safe region (or is safe).

If ¥x; € X; and Vt > 0, x(t,%;) & Xy, i.e.,the system cannot reach
X, starting from X;.

| \

Different Approach
» Computation of the reachable set (SpaceEx,Althoff al.).

» Finding an invariant for the system(Tiwari al.).

» Barrier certificate(Prajna al.).

6/50

Computation of the reachable set

» This approach consist of explicit computation of the reachable
set starting from an initial region.

> |t tries to compute an over-approximation of the reachable set
using geometrical representation propagated through the
dynamical system.

» And if the computed set will not intersect with the unsafe
region that will mean that the system is safe.

7/50

Computation of the reachable set

8/50

Computation of the reachable set

9/50

Computation of the reachable set

10 /50

Computation of the reachable set

11/50

Computation of the reachable set

12 /50

Computation of the reachable set

» Can compute the reachable set only for a bounded time.

» The computation of the reachable set can be computationally
heavy for non linear dynamics.

13/50

Invariant

Consider the dynamical system : x(t) = f(x(t)) with x € R” . An
invariant set S C R” verifies :

Vxg € S and Vt > 0, x(t) € S (2)

And if SN X, = 0 then system is safe.

» Equilibrium points.

» Limit cycles.

> Level sets of Lyapunov function i.e.. {x: V(x) < W} for a
constant V.

14 /50

Invariant

Let consider the Van-der-pol equation :

(ﬁ) - (Xo —~ (Ix—l xg)x1>

The following invariant is given by the Lyapounov inequality
x3 — 0.34x0x1 + 0.85x7 < 2

15 /50

© Barrier certificate

16 /50

Barrier certificate

Approach

The barrier certificate approach does not require the computation
of the reachable set, instead it searches a function that separates
an unsafe region from all the trajectories starting form a given
initial region.

! " s
_ Gioal region
B(x) =0 [Initial region

17 /50

ELE

Example

Let us consider the dynamical system :

() =(2)

With the initial region X; = [—2.5, —2.1] x [3,3.5] and the unsafe
region X, = [—1,—0.5] x [1.5,2]. A valid barrier certificate is :
B(x) = 1.79xp — 0.86x; + 6.1607

18 /50

Barrier certificate

A barrier certificate is a function B : R" — R defined by those
constraints :

V.

19/50

Template Barrier Certificate

Problematic

To find such function it implies to search over the functional spaces
which can be hard.

Template

A template of a barrier certificate B(x, p) defined
B :R" x R™ — R, can be an approach to solve such problem. We
will have to search for parameter p that satisfies the constraints

(3)-(5)

20/50

Reformulation

Reformulation

So the constraints (3)-(5) can be reformulate as :

IJpeR”:
Vx € X; B(x,p) <0
Vx € Xy B(x,p) >0 . (6)
¥x € Xs s.t. B(x,p) =0 (%B(x,p),f(x)) <0

For example consider the template B(x, p) = poxo + p1x1 + p2 to
solve the barrier certificate, we just have to find some parameters
(po, p1, p2) € R® that satisfy all the constraints of (6)

21/50

© Approach

22 /50

Interval

Interval analysis

We use interval analysis to solve the constraints, so all the variables
are defined by intervals.

| A

Definition

An interval is represented by [x,X] = {x € R/x < x <X}. We
denote T by the set of the bounded interval over R.

We call a box an interval vector e.g.,([1,2],[3.4])

A\

23 /50

Interval arithemitic

» All the classical operations of the classical arithmetic have
there equivalent in interval we define :
. X] + [y, ¥yl =[x+ y,x+Y]
[K’Y] - [va] = [K_X7Y_Y]
[x,X] * [y, ¥] = [min{x x y,x * ¥, X x y, X+ YV}, max{x x y, X * ¥, X x y,X * ¥ }]
[x,X]/ly. y] = [min{x/y. x/y.X/y,X/y}, max{x/y, x|y, Xy, X [¥}]
with 0 ¢ [y,]

24 /50

Inclusion function

» Let £ : R” — R an inclusion fonction F : I" — [is define :

{f(al, ...,a,,)|E|al € Il, ..,33,, S In} C F(Il, ceny /,,) (7)

Let take the real function f(x,y) = x(x — y) and the extension F
over the interval. If we evaluate f with 0 < x<2and 0 <y <2
the result will be —1 < f(x,y) < 4, but for the interval version
F([O7 2]’ [07 2]) = [_4’ 4]

Problematic

Given a inclusion function f , a box [z] and [x] finding :

Ix € [x], f(x)e€]lz] (8)

25 /50

Interval

Contractor

A contractor Cjs [associated with the generic constraint is a
function taking a box [x] as input and returning a box

Cir1,1z) ([X]) € [x] (9)

such that
f([x1) N[zl = f (Crry (X)) N [2] - (10)

v

SEE

Let take the constraint x> —1 < 0 and x = [0.5, 4], using the
forward backward contractor found in the toolbox Ibex, the
contraction gave the interval [0.5,2]. To note that it includes the
real contraction which is [0.5, 1]

A\

26 /50

Algorithm

Jp € R
Vx € X; B(x,p) <0 (11)

Vx € Xy B(x,p) >0 (12)

Vx € Xs s.t. B(x,p) = 0< (x, p), f(x)> <o (13)

X

CSC-FPS

To find the parameters that satisfy the constraints we used a
branch and bound algorithm found in (L Jaulin, E Walter 1996) ,
based on two procedures.

Q| Q
@
N

» FPS : searches for vector of parameters pg from an initial box
[p] that satisfies all the constraints.

» CSC : validates or invalidates a box of parameters candidate, it
checks if the middle of box satisfy (6), or tries to invalidate
the whole box.

27 /50

WO ~NOOOBWNH-

Input: [p],[x;] , [xu]; [xs]
queue Q := [P];
decidable := true;
while Q not empty do
[p] := dequeue(Q);
[pc] = contract(B([xi] . [pl) > 0);
[pc] := contract(B([xy], [pc]) < 0);
[pc] := contract(ZEf([xs], [pc]) > 0 and B([xs], [Pc]) = 0);
code := CSC([pc].[xi] , [xul [xs]);
if code = true then

| return(mid([pc]));

else
if code = undetermined then
if width([p]) < ef,s then
| decidable := false
else
([Pc, 1],[Pc, 2]) := bisect([P(]);
enqueue(Q, [Pc, 1]) ;
enqueue(Q, [Pc, 2]);
end
end
end
end
if decidable=true then
| return(0);
else
| return(undetermined);
end

Algorithm 1: FPS

28 /50

CSC

© 00 N O G & W N =

-
N = O

input: [p], {[xi], (], [x:]}
ti == CSCinit([xi],[p]) ;
t, := CSCUnsafe([x,], [p]);
tp := CSCBorder([xs], [p]);
if t;=true and t,=true and tj=true then
‘ return(true);
else
if ti=false or t,=false or tp=false then
‘ return(false);
else
| return(undermined);
end
end
Algorithm 2: CSC

29 /50

CSClnit

tnput: [x] , p]

1 m := mid([p]); decidable := true; stack S := [x;];
2 while S not empty do

3 [x] := unstack(S);

4 [xc] := contract(B([x], [p])< 0);

5 if [xc] # [x] then

6 | return(false);

7 end

8 if B(mid([x]), [p])>0 then

9 | return(false);
10 end
11 if B([x], m) < 0 then
12 ‘ continue;
13 else
14 [xc] := contract(B([x] , m) > 0) ;
15 if [xc] # 0 then

16 if width([x].) < ecsc then
17 | decidable := false;
18 else

19 ([xc,1] 5 [*c,2]) := bisect([xc]);
20 stack(S, [xc,1]) ;
21 stack(S, [xc,2]) ;
22 end
23 end
24 end
25 end
26 if decidable = false then
27 | return(undermined);
28 else
29 | return(true);
30 end

Algorithm 3: CSClnit

30/50

Execution

Let consider the following system :

X0\ X0 + X1
Xl - XoX1 — 0.5X12

Xi =[3,3.1] x [2,2.1], X, = [1,1.1] x [1,1.1]. The template
B(x,p) = poxo + p1x1 + p2 and p € [-10, 10}

The resulting barrier is B(x) = —5xg + 2.5x1 + 5

31/50

32/50

Example of execution

DATA :

Barrier: B:(x0,x1,a,b,c)->(((a*x0)+(b*x1))+c)
Differentiated barrier: B:(x0,x1,a,b,c)->((a*(x0+x1))+(b*((x0%x1)-(0.5%x1~2))))

Init: ([3, 3.1]1; [2, 2.1])

Unsafe: ([1, 1.1]1; [1, 1.1])

State-space: ([1, 3.1]; [1, 2.1])

Parameters: ([-10, 10]; [-10, 10]; [-10, 101)

Iteration : 1

Start FPS

currentParams at the beginning ([-10, 10]; [-10, 10]; [-10, 101)
FPS: after contraction ([-10, 10]; [-10, 10]; [-10, 10])

middle of parameter : (0,0,0)

Start CSC

CSC Init ... Done and returned True

CSC Unsafe ... Done and returned Undetermined
CSC Border ... Done and True

CSC Result is Undetermined

33/50

Example of execution

Iteration : 2

FPS result is Undetermined: split parameter box

currentParams at the beginning ([-10, 0] ; [-10, 10]; [-10, 10])
FPS: after contraction ([[-10, 0] ; [-5, 10]; [-10, 10])

middle of parameter : (-5,2.5,0)

Start CSC

CSC Init ... Done and returned True

CSC Unsafe ... Done and returned Undetermined
CSC Border ... Done and True

CSC Result is Undetermined

34 /50

Example of execution

Iteration : 3

FPS result is Unknown: split parameter box

currentParams at the beginning ([0, 10]; [-10, 10]; [-10, 10])
FPS: after contraction ([0, 10]; [-10, 10]; [-10, 101)

middle of parameter : (5,0,0)

Start CSC

CSC Init ... Done and returned Undetermined
CSC Unsafe ... Done and returned True

CSC Border ... Done and returned True

CSC Result is Undetermined

35 /50

Example of execution

Iteration : 4

FPS result is Undetermined: split parameter box

currentParams at the beginning ([-10, 0] ; [-5, 10]; [-10, 01)
FPS: after contraction ([-6.999999682, 0] ; [-0, 10]; [-10, 01)
middle of parameter : (3.5,5,-5)

Start CSC

CSC Init ... Done and returned True

CSC Unsafe ... Done and returned Undetermined
CSC Border ... Done and returned True

CSC Result is Unknown

36 /50

Example of execution

Iteration : 5

FPS result is Unknown: split parameter box

currentParams at the beginning ([-10, 0] ; [-5, 10]; [0, 10]1)
FPS: after contraction ([-10, 0]; [-5, 10]; [0, 101)

middle of parameter : (-5,2.5,5)

Start CSC

CSC Init ... Done and returnedl
CSC Unsafe ... Done and returnedl
CSC Border ... Done and returnedl

CSC Result is True

FPS result is True: we found solution
Solution found with the following parameters: (-5; 2.5; 5)

37 /50

Implementation

» The algorithm was implemented in C++ using
Ibex(G.Chabert) interval liberary

» The test was made using a 2.7 ghz intel core i5 processor

» The state space was taken as the convex hull of the initial
region and the unsafe region

> €cc = 1071 and epsilong,s = 1073

38 /50

@ Examples

39/50

ELE

SEE
Consider the perturbed dynamical system

Xo . X1
X1 —Xo + gxg - X1

With d € [0.9,1.1], X; = [1,2] x [-0.5,0.5] and
X, = [~1.4,—0.6] x [~1.4, —0.6]

The algorithm finds the following barrier in 5 sec
B(x) = 2.5x3 + 7.5x% + 2.5x9x1 — 5x9 — 5x1 — 5.9

40 /50

With d = {0.9,1,1.1}

41/50

Consider the perturbed dynamical system

(X-O) _ <_xo 5 e o 1))

X1 —Xo — X1 + Xox1 + Xp cos(xp)

With X; = [-0.5,0.5] x [~1,1] and X, = [2.5,3] x [~0.5,0]

Result

The algorithm finds the following barrier in 5m40 sec
B(x) = 0.825x3 — 0.625x2 — 1.25xgx1 + 1.5x9 + 6.25x3 — 6.25

42 /50

43 /50

Consider the perturbed dynamical system

X0\ _ [—Xo+ Xox1
X1 o —X1

With X; = [0.5,1] x [0.5,1] and X, = [0.5, 1] x [0.1,0.15]

Result

The algorithm finds the following barrier in 3.868 sec
B(x) = In(Fear) 4 1.25216x

\

44 /50

45 /50

Bench

Table : Computation results

[Example | Barrier [Time (in sec.) | Memory |
PO 1.39583x — 1.25y — 7.5 =0 0.7 2.5kb
P1 —7.5x% + 4.04762y> + 5.14286xy + 5x + 5y + 5 = 0 2.3 18.3kb
P2 —0.0639947¢% + 0.820312t + 5.60238x — 5.32227 = 0 104.8 3.9Mb
P3 2.5x% +7.5y% + 2.5xy — 5x — 5y — 5.9 = 0 16.2 36.9kb
P4 1.07143¢ + 3.75y — 7.5 = 0 0.13 1.5kb
P5 —1.25x — 1.25y — 2.5 = 0 0.49 1.0kb
P6 —7.8125x — 6.875y | 9.375z + 2.4375 = 0 16.7 0.4Mb
P7 —0.625x> — 1.25y> — 3.75xy + 6.25x + 8.75y — 8.75 — 0 1184.8 5.8Mb
P8 —2.5x2 —7.5y2 —2.5xy +2.5x+ 7.5y +7.5 =0 55.5 0.17Mb

46 / 50

© Conclusion and future work

47 /50

Conclusion

» We presented a new method to find barrier certificate, based
on the search of parameters of a function.

» The main advantage of our technique is that it does not
restrict the dynamics nor the template of the barrier certificate.

» We were able to find barrier certificates for a large class of
dynamical systems.

48 /50

» Find a better strategy for the search of the parameters.

» Find an automatic way to chose a well suited template for
each dynamics.

» Make an extension to handle hybrid systems.

49 /50

Thank you for your attention.

50 /50

	Context
	Barrier certificate
	Approach
	Examples
	Conclusion and future work

