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Formal verification

» Formal verification is a key aspect of the analysis of systems, it
goal is to prove that certain properties are respected.

» In particular safety properties which ensure that the system
will never have an unsafe behavior.

» Proving a safety property can be translated as proving that an
unsafe region can never be reached from an initial region.
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Dynamical system

A dynamical system which state x € R” evolves according to :

x(t) = f(x(t)) (1)

Solution

| A\

Given an initial state x(0) = xg, a solution for the previous system
is a continuous derivable function Q(t) such that Q(0) = xo and
Q(t) = f(Qt)) Vt >0

\
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Problematic

Consider an initial region X; C R", an unsafe region X, C R". The
dynamical system remains in the safe region (or is safe).

If ¥x; € X; and Vt > 0, x(t,%;) & Xy, i.e.,the system cannot reach
X, starting from X;.

| \

Different Approach
» Computation of the reachable set (SpaceEx,Althoff al.).

» Finding an invariant for the system(Tiwari al.).

» Barrier certificate(Prajna al.).
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Computation of the reachable set

» This approach consist of explicit computation of the reachable
set starting from an initial region.

> |t tries to compute an over-approximation of the reachable set
using geometrical representation propagated through the
dynamical system.

» And if the computed set will not intersect with the unsafe
region that will mean that the system is safe.
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Computation of the reachable set
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Computation of the reachable set
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Computation of the reachable set
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Computation of the reachable set
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Computation of the reachable set
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Computation of the reachable set

» Can compute the reachable set only for a bounded time.

» The computation of the reachable set can be computationally
heavy for non linear dynamics.
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Invariant

Consider the dynamical system : x(t) = f(x(t)) with x € R” . An
invariant set S C R” verifies :

Vxg € S and Vt > 0, x(t) € S (2)

And if SN X, = 0 then system is safe.

» Equilibrium points.

» Limit cycles.

> Level sets of Lyapunov function i.e.. {x: V(x) < W} for a
constant V.
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Invariant

Let consider the Van-der-pol equation :

(ﬁ) - (Xo —~ (Ix—l xg)x1>

The following invariant is given by the Lyapounov inequality
x3 — 0.34x0x1 + 0.85x7 < 2
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© Barrier certificate
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Barrier certificate

Approach

The barrier certificate approach does not require the computation
of the reachable set, instead it searches a function that separates
an unsafe region from all the trajectories starting form a given
initial region.

! " s
_ Gioal region
B(x) =0 [  Initial region
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ELE

Example

Let us consider the dynamical system :

() =(2)

With the initial region X; = [—2.5, —2.1] x [3,3.5] and the unsafe
region X, = [—1,—0.5] x [1.5,2]. A valid barrier certificate is :
B(x) = 1.79xp — 0.86x; + 6.1607
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Barrier certificate

A barrier certificate is a function B : R" — R defined by those
constraints :

V.
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Template Barrier Certificate

Problematic

To find such function it implies to search over the functional spaces
which can be hard.

Template

A template of a barrier certificate B(x, p) defined
B :R" x R™ — R, can be an approach to solve such problem. We
will have to search for parameter p that satisfies the constraints

(3)-(5)
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Reformulation

Reformulation

So the constraints (3)-(5) can be reformulate as :

IJpeR”:
Vx € X; B(x,p) <0
Vx € Xy B(x,p) >0 . (6)
¥x € Xs s.t. B(x,p) =0 (%B(x,p),f(x)) <0

For example consider the template B(x, p) = poxo + p1x1 + p2 to
solve the barrier certificate, we just have to find some parameters
(po, p1, p2) € R® that satisfy all the constraints of (6)
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Interval

Interval analysis

We use interval analysis to solve the constraints, so all the variables
are defined by intervals.

| A

Definition

An interval is represented by [x,X] = {x € R/x < x <X}. We
denote T by the set of the bounded interval over R.

We call a box an interval vector e.g.,([1,2],[3.4])

A\
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Interval arithemitic

» All the classical operations of the classical arithmetic have
there equivalent in interval we define :
. X] + [y, ¥yl =[x+ y,x+Y]
[K’Y] - [va] = [K_X7Y_Y]
[x,X] * [y, ¥] = [min{x x y,x * ¥, X x y, X+ YV}, max{x x y, X * ¥, X x y,X * ¥ }]
[x,X]/ly. y] = [min{x/y. x/y.X/y,X/y}, max{x/y, x|y, Xy, X [¥}]
with 0 ¢ [y, ]
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Inclusion function

» Let £ : R” — R an inclusion fonction F : I" — [ is define :

{f(al, ...,a,,)|E|al € Il, ..,33,, S In} C F(Il, ceny /,,) (7)

Let take the real function f(x,y) = x(x — y) and the extension F
over the interval. If we evaluate f with 0 < x<2and 0 <y <2
the result will be —1 < f(x,y) < 4, but for the interval version
F([O7 2]’ [07 2]) = [_4’ 4]

Problematic

Given a inclusion function f , a box [z] and [x] finding :

Ix € [x], f(x)e€]lz] (8)
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Interval

Contractor

A contractor Cjs [ associated with the generic constraint is a
function taking a box [x] as input and returning a box

Cir1,1z) ([X]) € [x] (9)

such that
f([x1) N[zl = f (Crry (X)) N [2] - (10)

v

SEE

Let take the constraint x> —1 < 0 and x = [0.5, 4], using the
forward backward contractor found in the toolbox Ibex, the
contraction gave the interval [0.5,2]. To note that it includes the
real contraction which is [0.5, 1]

A\
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Algorithm

Jp € R
Vx € X; B(x,p) <0 (11)

Vx € Xy B(x,p) >0 (12)

Vx € Xs s.t. B(x,p) = 0< (x, p), f(x)> <o (13)

X

CSC-FPS

To find the parameters that satisfy the constraints we used a
branch and bound algorithm found in (L Jaulin, E Walter 1996) ,
based on two procedures.

Q| Q
@
N

» FPS : searches for vector of parameters pg from an initial box
[p] that satisfies all the constraints.

» CSC : validates or invalidates a box of parameters candidate, it
checks if the middle of box satisfy (6), or tries to invalidate
the whole box.
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WO ~NOOOBWNH-

Input: [p],[x;] , [xu]; [xs]
queue Q := [P];
decidable := true;
while Q not empty do
[p] := dequeue(Q);
[pc] = contract(B([xi] . [pl) > 0);
[pc] := contract(B([xy], [pc]) < 0);
[pc] := contract( ZEf([xs], [pc]) > 0 and B([xs], [Pc]) = 0);
code := CSC([pc].[xi] , [xul [xs]);
if code = true then

| return(mid([pc]));

else
if code = undetermined then
if width([p]) < ef,s then
|  decidable := false
else
([Pc, 1],[Pc, 2]) := bisect([P(]);
enqueue(Q, [Pc, 1]) ;
enqueue(Q, [Pc, 2]);
end
end
end
end
if decidable=true then
| return(0);
else
|  return(undetermined);
end

Algorithm 1: FPS
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CSC

© 00 N O G & W N =

-
N = O

input: [p], {[xi], (], [x:]}
ti == CSCinit([xi],[p]) ;
t, := CSCUnsafe([x,], [p]);
tp := CSCBorder([xs], [p]);
if t;=true and t,=true and tj=true then
‘ return(true);
else
if ti=false or t,=false or tp=false then
‘ return(false);
else
| return(undermined);
end
end
Algorithm 2: CSC
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CSClnit

tnput: [x] , p]

1 m := mid([p]); decidable := true; stack S := [x;];
2 while S not empty do

3 [x] := unstack(S);

4 [xc] := contract(B([x], [p])< 0);

5 if [xc] # [x] then

6 | return(false);

7 end

8 if B(mid([x]), [p])>0 then

9 | return(false);
10 end
11 if B([x], m) < 0 then
12 ‘ continue;
13 else
14 [xc] := contract(B([x] , m) > 0) ;
15 if [xc] # 0 then

16 if width([x].) < ecsc then
17 |  decidable := false;
18 else

19 ([xc,1] 5 [*c,2]) := bisect([xc]);
20 stack(S, [xc,1]) ;
21 stack(S, [xc,2]) ;
22 end
23 end
24 end
25 end
26 if decidable = false then
27 | return(undermined);
28 else
29 | return(true);
30 end

Algorithm 3: CSClnit
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Execution

Let consider the following system :

X0\ X0 + X1
Xl - XoX1 — 0.5X12

Xi =[3,3.1] x [2,2.1], X, = [1,1.1] x [1,1.1]. The template
B(x,p) = poxo + p1x1 + p2 and p € [-10, 10}

The resulting barrier is B(x) = —5xg + 2.5x1 + 5
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Example of execution

DATA :

Barrier: B:(x0,x1,a,b,c)->(((a*x0)+(b*x1))+c)
Differentiated barrier: B:(x0,x1,a,b,c)->((a*(x0+x1))+(b*((x0%x1)-(0.5%x1~2))))

Init: ([3, 3.1]1; [2, 2.1])

Unsafe: ([1, 1.1]1; [1, 1.1])

State-space: ([1, 3.1]; [1, 2.1])

Parameters: ([-10, 10]; [-10, 10]; [-10, 101)

Iteration : 1

Start FPS

currentParams at the beginning ([-10, 10]; [-10, 10]; [-10, 101)
FPS: after contraction ([-10, 10]; [-10, 10]; [-10, 10])

middle of parameter : (0,0,0)

Start CSC

CSC Init ... Done and returned True

CSC Unsafe ... Done and returned Undetermined
CSC Border ... Done and True

CSC Result is Undetermined
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Example of execution

Iteration : 2

FPS result is Undetermined: split parameter box

currentParams at the beginning ([-10, 0] ; [-10, 10]; [-10, 10])
FPS: after contraction ([[-10, 0] ; [-5, 10]; [-10, 10])

middle of parameter : (-5,2.5,0)

Start CSC

CSC Init ... Done and returned True

CSC Unsafe ... Done and returned Undetermined
CSC Border ... Done and True

CSC Result is Undetermined
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Example of execution

Iteration : 3

FPS result is Unknown: split parameter box

currentParams at the beginning ([0, 10]; [-10, 10]; [-10, 10])
FPS: after contraction ([0, 10]; [-10, 10]; [-10, 101)

middle of parameter : (5,0,0)

Start CSC

CSC Init ... Done and returned Undetermined
CSC Unsafe ... Done and returned True

CSC Border ... Done and returned True

CSC Result is Undetermined
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Example of execution

Iteration : 4

FPS result is Undetermined: split parameter box

currentParams at the beginning ([-10, 0] ; [-5, 10]; [-10, 01)
FPS: after contraction ([-6.999999682, 0] ; [-0, 10]; [-10, 01)
middle of parameter : (3.5,5,-5)

Start CSC

CSC Init ... Done and returned True

CSC Unsafe ... Done and returned Undetermined
CSC Border ... Done and returned True

CSC Result is Unknown
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Example of execution

Iteration : 5

FPS result is Unknown: split parameter box

currentParams at the beginning ([-10, 0] ; [-5, 10]; [0, 10]1)
FPS: after contraction ([-10, 0]; [-5, 10]; [0, 101)

middle of parameter : (-5,2.5,5)

Start CSC

CSC Init ... Done and returnedl
CSC Unsafe ... Done and returnedl
CSC Border ... Done and returnedl

CSC Result is True

FPS result is True: we found solution
Solution found with the following parameters: (-5; 2.5; 5)
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Implementation

» The algorithm was implemented in C++ using
Ibex(G.Chabert) interval liberary

» The test was made using a 2.7 ghz intel core i5 processor

» The state space was taken as the convex hull of the initial
region and the unsafe region

> €cc = 1071 and epsilong,s = 1073
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ELE

SEE
Consider the perturbed dynamical system

Xo . X1
X1 —Xo + gxg - X1

With d € [0.9,1.1], X; = [1,2] x [-0.5,0.5] and
X, = [~1.4,—0.6] x [~1.4, —0.6]

The algorithm finds the following barrier in 5 sec
B(x) = 2.5x3 + 7.5x% + 2.5x9x1 — 5x9 — 5x1 — 5.9
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With d = {0.9,1,1.1}
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Consider the perturbed dynamical system

(X-O) _ <_xo 5 e o 1))

X1 —Xo — X1 + Xox1 + Xp cos(xp)

With X; = [-0.5,0.5] x [~1,1] and X, = [2.5,3] x [~0.5,0]

Result

The algorithm finds the following barrier in 5m40 sec
B(x) = 0.825x3 — 0.625x2 — 1.25xgx1 + 1.5x9 + 6.25x3 — 6.25
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Consider the perturbed dynamical system

X0\ _ [ —Xo+ Xox1
X1 o —X1

With X; = [0.5,1] x [0.5,1] and X, = [0.5, 1] x [0.1,0.15]

Result

The algorithm finds the following barrier in 3.868 sec
B(x) = In(Fear) 4 1.25216x

\
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Bench

Table : Computation results

[ Example | Barrier [ Time (in sec.) | Memory |
PO 1.39583x — 1.25y — 7.5 =0 0.7 2.5kb
P1 —7.5x% + 4.04762y> + 5.14286xy + 5x + 5y + 5 = 0 2.3 18.3kb
P2 —0.0639947¢% + 0.820312t + 5.60238x — 5.32227 = 0 104.8 3.9Mb
P3 2.5x% +7.5y% + 2.5xy — 5x — 5y — 5.9 = 0 16.2 36.9kb
P4 1.07143¢ + 3.75y — 7.5 = 0 0.13 1.5kb
P5 —1.25x — 1.25y — 2.5 = 0 0.49 1.0kb
P6 —7.8125x — 6.875y | 9.375z + 2.4375 = 0 16.7 0.4Mb
P7 —0.625x> — 1.25y> — 3.75xy + 6.25x + 8.75y — 8.75 — 0 1184.8 5.8Mb
P8 —2.5x2 —7.5y2 —2.5xy +2.5x+ 7.5y +7.5 =0 55.5 0.17Mb
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© Conclusion and future work
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Conclusion

» We presented a new method to find barrier certificate, based
on the search of parameters of a function.

» The main advantage of our technique is that it does not
restrict the dynamics nor the template of the barrier certificate.

» We were able to find barrier certificates for a large class of
dynamical systems.
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» Find a better strategy for the search of the parameters.

» Find an automatic way to chose a well suited template for
each dynamics.

» Make an extension to handle hybrid systems.
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Thank you for your attention.
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