Robustness analysis of finite precision implementations

Eric Goubault and Sylvie Putot Cosynus, LIX, Ecole Polytechnique

Journée MEA, calcul ensembliste et interprétation abstraite, 19/03/2015

Context: automatic validation of numerical programs

- Infer invariant properties both in floating-point and real number semantics
 - Abstract interpretation based static analysis (affine arithmetic/zonotopes)
- Bound the implementation errors
- Implemented in the abstract interpreter FLUCTUAT

A difficulty in error analysis: unstable tests

- When finite precision and real control flows are potentially different
- If discontinuity of treatment between branches, joining error analyses from each branch is unsound
- When considering sets of executions, most tests are potentially unstable (just issuing a warning is not practical)

We propose here to compute discontinuity errors in unstable tests

- Bound the difference between the computation in two branches under conditions of unstable tests (mix constraint solving / affine arithmetic)
- Makes our error analysis sound in presence of unstable tests
- Provides a robustness analysis of the implementation

A typical example of unstable tests: affine interpolators

All tests are unstable, but the implementation is robust, the conditional block does not introduce a discontinuity

But discontinuities also actually occur (sqrt approx.)

Test interpretation

Fluctuat: computes rounding errors and propagates errors and uncertainties

- Relying on affine forms both for real value and error terms;
- With two sets of constraints on the noise symbols, resp. corresponding to real and finite control flows

Main idea to interpret test, informally

- $\bullet\,$ Affine forms are unchanged, translate the test condition as a condition on the noise symbols ε_i
- The test condition is interpreted as a restriction of the set of inputs, that lead to an execution satisfying the condition: functional interpretation

Example

```
real x = [0, 10];
real y = 2*x;
if (y \ge 10)
y = x;
```

- Affine forms before tests: $x = 5 + 5\varepsilon_1$, $y = 10 + 10\varepsilon_1$
- In the if branch $\varepsilon_1 \geq 0$: condition acts on both x and y

Test interpretation and set operations - informally

Example

$$\begin{array}{c} x = [1,3] + u; \ // \ [1] \\ \text{if } (x <= 2) \ // \ [2-1] \\ y = x+2; \ // \ [2] \\ \text{else} \ // \ [3-1] \\ y = x; \ // \ [3] \\ // \ [4] \end{array}$$

$$\begin{array}{c} x \leq 2 \\ y = x; \ // \ [3] \\ // \ [4] \end{array}$$

$$\begin{array}{c} x \leq 2 \\ y = x; \ // \ [4] \end{array}$$

$$\begin{array}{c} x \leq 2 \\ y = x; \ // \ [4] \end{array}$$

$$\begin{array}{c} x \leq 2 \\ y = x = y \\ y = x = y \\ y = x \\ (x_{21}, y_{21}) = (x_{1}, y_{1}) \cap (x \le 2); \ \varepsilon_{1} \in \Phi_{21}^{x} = [0, 1] \\ (x_{21}, y_{21}) = (x_{1}, y_{1}) \cap (x \le 2); \ \varepsilon_{1} \in \Phi_{21}^{x} = [0, 1] \\ (x_{31}, y_{31}) = (x_{1}, y_{1}) \cap (x > 2); \ \varepsilon_{1} \in \Phi_{31}^{x} = [-1, 0] \\ (x_{3}, y_{3}) = (x_{31}, x_{31}); \ \varepsilon_{1} \in \Phi_{4}^{x} = [-1, 1] \end{array}$$

Abstract domain in Fluctuat

Abstract value at each control point c

• For each variable, affine forms for real value and error:

Unstable test condition = intersection of constraints $\varepsilon^r \in \Phi_r^X \sqcap \Phi_f^Y$:

- unstable test: for a same execution (same values of the noise symbols ε_i) the control flow is different
- restricts the range of the ε_i: allows us to bound accurately the discontinuity error

Abstract value

An abstract value X, for a program with p variables x_1, \ldots, x_p , is a tuple $X = (R^X, E^X, D^X, \Phi_r^X, \Phi_f^X)$ composed of the following affine sets and constraints, for all $k = 1, \ldots, p$:

 $\left\{ \begin{array}{ll} R^{X} : \hat{r}_{k}^{X} &= r_{0,k}^{X} + \sum_{i=1}^{n} r_{i,k}^{X} \varepsilon_{i}^{r} & \text{where } \varepsilon^{r} \in \Phi_{r}^{X} \\ E^{X} : \hat{e}_{k}^{X} &= e_{0,k}^{X} + \sum_{i=1}^{n} e_{i,k}^{X} \varepsilon_{i}^{r} + \sum_{j=1}^{m} e_{n+j,k}^{X} \varepsilon_{j}^{e} & \text{where } (\varepsilon^{r}, \varepsilon^{e}) \in \Phi_{r}^{X} \\ D^{X} : \hat{d}_{k}^{X} &= d_{0,k}^{X} + \sum_{i=1}^{o} d_{i,k}^{X} \varepsilon_{i}^{d} & \\ \hat{f}_{k}^{X} &= \hat{r}_{k}^{X} + \hat{e}_{k}^{X} & \text{where } (\varepsilon^{r}, \varepsilon^{e}) \in \Phi_{r}^{X} \end{array} \right.$

 E^{X} is the propagated rounding error, D^{X} the propagated discontinuity error

New discontinuity errors computed when joining branches of a possibly unstable test

$$Z = X \sqcup Y$$
 is $Z = (\mathbb{R}^Z, \mathbb{E}^Z, \mathbb{D}^Z, \Phi_r^X \cup \Phi_r^Y, \Phi_f^X \cup \Phi_f^Y)$ such that

$$\begin{array}{l} (R^{Z}, \Phi_{r}^{Z} \cup \Phi_{f}^{Z}) = (R^{X}, \Phi_{r}^{X} \cup \Phi_{f}^{X}) \sqcup (R^{Y}, \Phi_{r}^{Y} \cup \Phi_{f}^{Y}) \\ (E^{Z}, \Phi_{f}^{Z}) = (E^{X}, \Phi_{f}^{X}) \sqcup (E^{Y}, \Phi_{f}^{Y}) \\ D^{Z} = D^{X} \sqcup D^{Y} \sqcup (R^{X} - R^{Y}, \Phi_{f}^{X} \sqcap \Phi_{r}^{Y}) \sqcup (R^{Y} - R^{X}, \Phi_{f}^{Y} \sqcap \Phi_{r}^{X}) \end{array}$$

At cpt 1: $\hat{r}_{[1]}^{x} = 2 + \varepsilon_{1}^{r}$; $\hat{e}_{[1]}^{x} = u$

$$\begin{array}{l} x := [1,3] + u; \ // \ [1] \\ \text{if } (x \leq 2) \\ y = x + 2; \ // \ [2] \\ \text{else} \\ y = x; \ // \ [3] \\ // \ [4] \end{array}$$

$$\hat{r}_{[1]}^{x} = 2 + \varepsilon_{1}^{r}; \ \hat{e}_{[1]}^{x} = u$$

Test x \leq 2, real flow: $\Phi_r^{[2]}$: $\hat{r}_{[1]}^x = 2 + \varepsilon_1^r \leq 2$

$$\begin{array}{l} x := [1,3] + u; \ // \ [1] \\ \text{if } (x \leq 2) \\ y = x + 2; \ // \ [2] \\ \text{else} \\ y = x; \ // \ [3] \\ // \ [4] \end{array}$$

$$\hat{r}_{[1]}^{x} = 2 + \varepsilon_{1}^{r}; \ \hat{e}_{[1]}^{x} = u$$

Real at [2]: $(\hat{r}_{[2]}^{y} = 4 + \varepsilon_{1}^{r}, \Phi_{r}^{[2]})$ Real at [3]: $(\hat{r}_{[3]}^{y} = 2 + \varepsilon_{1}^{r}, \Phi_{r}^{[3]})$

$$\begin{array}{l} x := [1,3] + u; \ // \ [1] \\ \text{if } (x \leq 2) \\ y = x + 2; \ // \ [2] \\ \text{else} \\ y = x; \ // \ [3] \\ // \ [4] \end{array}$$

$$\hat{r}_{[1]}^{x} = 2 + \varepsilon_{1}^{r}; \ \hat{e}_{[1]}^{x} = u$$

Real at [2]: $(\hat{r}_{[2]}^{y} = 4 + \varepsilon_{1}^{r}, \Phi_{r}^{[2]})$ Real at [3]: $(\hat{r}_{[3]}^{y} = 2 + \varepsilon_{1}^{r}, \Phi_{r}^{[3]})$

Test x \leq 2, float flow: $\Phi_f^{[2]}$: $\hat{r}_{[1]}^x + \hat{e}_{[1]}^x = 2 + \varepsilon_1^r + u \leq 2$

 $\begin{array}{l} \mathsf{x} := [1,3] + \mathsf{u}; \; // \; [1] \\ \text{if } (\mathsf{x} \leq 2) \\ \mathsf{y} = \mathsf{x}{+}2; \; // \; [2] \\ \text{else} \\ \mathsf{y} = \mathsf{x}; \; // \; [3] \\ // \; [4] \end{array}$

 $\begin{array}{l} \text{Real at [2]:} \ (\hat{r}_{[2]}^{y} = 4 + \varepsilon_{1}^{r}, \Phi_{r}^{[2]}) \\ \text{Real at [3]:} \ (\hat{r}_{[3]}^{y} = 2 + \varepsilon_{1}^{r}, \Phi_{r}^{[3]}) \end{array}$

 $\begin{array}{l} \text{Error at [2]: } \hat{e}_{[2]}^{y} = \hat{e}_{[1]}^{x} + \delta \varepsilon_{2}^{e} \\ \text{Error at [3]: } \hat{e}_{[3]}^{y} = \hat{e}_{[1]}^{x} \end{array}$

$$\begin{split} x &:= [1,3] + u; \ // \ [1] \\ \text{if } (x \leq 2) \\ y &= x+2; \ // \ [2] \\ \text{else} \\ y &= x; \ // \ [3] \\ // \ [4] \end{split}$$

Real at [2]:
$$(\hat{r}_{[2]}^{\gamma} = 4 + \varepsilon_{1}^{r}, \Phi_{r}^{[2]})$$

Real at [3]: $(\hat{r}_{[3]}^{\gamma} = 2 + \varepsilon_{1}^{r}, \Phi_{r}^{[3]})$

Error at [2]:
$$\hat{e}_{[2]}^y = u + \delta \varepsilon_2^{\varepsilon}$$

Error at [3]: $\hat{e}_{[3]}^y = u$

Unstable test, first possibility: $\Phi_r^{[2]} \sqcap \Phi_f^{[3]} : -u < \varepsilon_1^r \le 0$

$$\begin{array}{l} x := [1,3] + u; \ // \ [1] \\ \text{if } (x \leq 2) \\ y = x + 2; \ // \ [2] \\ \text{else} \\ y = x; \ // \ [3] \\ // \ [4] \end{array}$$

Real at [2]:
$$(\hat{r}_{[2]}^{y} = 4 + \varepsilon_{1}^{r}, \Phi_{r}^{[2]})$$

Real at [3]: $(\hat{r}_{[3]}^{y} = 2 + \varepsilon_{1}^{r}, \Phi_{r}^{[3]})$

$$\begin{array}{c} \begin{array}{c} & & \\$$

Error at [2]:
$$\hat{e}_{[2]}^{y} = u + \delta \varepsilon_{2}^{\varepsilon}$$

Error at [3]: $\hat{e}_{[3]}^{y} = u$

Unstable test, second possibility: $\Phi_r^{[3]} \sqcap \Phi_f^{[2]} = \emptyset$

٠.

$$\begin{array}{c} x := [1,3] + u; // [1] \\ \text{if } (x \leq 2) \\ y = x+2; // [2] \\ \text{else} \\ y = x; // [3] \\ // [4] \end{array}$$

$$\begin{array}{c} x := [1,3] + u; // [1] \\ \text{if } (x \leq 2) \\ y = x+2; // [2] \\ \text{else} \\ y = x; // [3] \\ // [4] \end{array}$$

$$\begin{array}{c} x := [1,3] + u; // [1] \\ \text{for } (x \leq 2) \\ y = x+2; // [2] \\ \text{else} \\ y = x; // [3] \\ // [4] \end{array}$$

$$\begin{array}{c} y \\ f_{[2]} \\ f_{[2]} \\ f_{[2]} \\ f_{[3]} \\ f_{[3]}$$

$$\text{Error at } [4]: \hat{e}_{[2]}^{y} \sqcup \hat{e}_{[3]}^{y} \sqcup \big(\underbrace{\hat{f}_{[3]}^{y} - \hat{r}_{[2]}^{y}}_{\hat{r}_{[3]}^{y} + \hat{e}_{[3]}^{y} - \hat{r}_{[2]}^{y}}, \Phi_{f}^{[3]} \sqcap \Phi_{r}^{[2]} \big) = \hat{e}_{[2]}^{y} \sqcup \hat{e}_{[3]}^{y} + (\hat{r}_{[3]}^{y} - \hat{r}_{[2]}^{y}, \Phi_{f}^{[3]} \sqcap \Phi_{r}^{[2]} \big)$$

$$\begin{array}{l} x := [1,3] + u; // [1] \\ \text{if } (x \leq 2) \\ y = x+2; // [2] \\ \text{else} \\ y = x; // [3] \\ // [4] \end{array}$$

$$\begin{array}{l} \text{Real at } [2]: (\hat{r}_{[2]}^{y} = 4 + \varepsilon_{1}^{r}, \Phi_{r}^{[2]}) \\ \text{Real at } [3]: (\hat{r}_{[3]}^{y} = 2 + \varepsilon_{1}^{r}, \Phi_{r}^{[3]}) \end{array}$$

$$\begin{array}{l} y \\ f_{[2]} \\ f_{[3]} \\ f_{[3]$$

Error at [4] :
$$\hat{e}_{[2]}^{y} \sqcup \hat{e}_{[3]}^{y} + \underbrace{(\hat{r}_{[3]}^{y} - \hat{r}_{[2]}^{y}, \Phi_{f}^{[3]} \sqcap \Phi_{r}^{[2]})}_{\hat{e}_{[4]}^{y}} = u + \delta \varepsilon_{2}^{e} - 2\chi_{[-u,0]}(\varepsilon_{1}^{r})$$

Error at [4] :
$$\hat{e}_{[2]}^{y} \sqcup \hat{e}_{[3]}^{y} + (\hat{r}_{[3]}^{y} - \hat{r}_{[2]}^{y}, \Phi_{f}^{[3]} \sqcap \Phi_{r}^{[2]}) = \underbrace{u + \delta \varepsilon_{2}^{e}}_{\hat{e}_{[4]}^{y}} + \underbrace{-2\chi_{[-u,0]}(\varepsilon_{1}^{r})}_{\hat{d}_{[4]}^{y}}$$

Real value $\hat{r}_{[4]}^{y} = 3 + \varepsilon_{4}^{r} \in [2, 4]$
Float value $\hat{f}_{[4]}^{y} = \hat{r}_{[4]}^{y} + \hat{e}_{[4]}^{y} = 3 + \varepsilon_{4}^{r} + u + \delta \varepsilon_{2}^{e} \in [2 + u - \delta, 4 + u + \delta]$

Householder algorithm for square root

P 000	luctuat – Householder_sqrt	
	Adal effor rether	
1 #include "daed_builtins.h" 2 #include <math.h> 3 #define _EPS 0.00000001 /* 10^-8 */</math.h>	8,45e-07	
4 int <u>main</u> 0 5 { 6 float xn, xnpl, residu, Input, <u>Output</u> , should be zero:	6,33e-07	
7 int j; 8 Input = FBETWEEN(16.0,16.002); 9 xn = 1.0/Input; xnpl = xn;	4,22e-07	
$\begin{array}{llllllllllllllllllllllllllllllllllll$	2,11e-07	
1000000000000000000000000000000000000	0,00e+00 _	25 50
16 <u>i</u> ++;	Variables / Files	Variable Interval
<pre>17 } 18 Output = 1.0 / xnp1; 19 should_be_zero = Output-sqrt(Input); 20 return 0;</pre>	Input (float) Output (float) i (integer)	Float : -1.18123876e-6 1.18123956e-6 Real :
21 } O O Warnings	main (integer) residu (float)	-1.02630258e-8 1.02636675e-8 Global error :
Potential overflows : Error at top in i	should_be_zero (float) signgam (integer)	-1.17097598e-6 1.17097576e-6 Relative error :
Value at top in i	Householder_sqrt.c	-oo +oo Higher Order error :
Threats :		0 0 At current point (17) : *
Type 1 Unstable test (machine and real value do not take the set)		-9.17837e-07 9.17837e-07
2 🔇 Unstable test (machine and real value do not take the si		
3 SBUILTIN bounds not exactly represented		
	Last anal	vsis : 0.42 sec / 28672 Kilo Bytes

- Error bounds now sound even with unstable tests
- Candidate input values for unstable tests given by $\Phi_f^X \sqcap \Phi_r^Y$
- Robustness analysis and discontinuity error bounds applicable to general uncertainties (not only finite precision)
- A.I. techniques allow to extend error analyses compared to more classical interval-like techniques
- Natural potential on these robustness aspects for more interaction with constraint-based approaches to the verification of finite-precision implementations such as, e. g. O. Ponsini, C. Michel, M. Rueher: Refining Abstract Interpretation Based Value Analysis with Constraint Programming Techniques. CP 2012