Cody & Waite Flocq Coq.Interval Gappa Conclusion

Formal verification
of a floating-point elementary function

Guillaume Melquiond
Inria Saclay—fle—de—France & LRI, Université Paris Sud, CNRS

2015-03-19

Guillaume Melquiond Formal verification of a FP elementary function

Cody & Waite Flocq Cogq.Interval Gappa Conclusion Setting Algorithm Implementation Testing Motivation

Example: Approximating Exponential

Goal: a binary64 code that approximates exp within a few ulps.

Guillaume Melquiond Formal verification of a FP elementary function

Cody & Waite Flocq Cogq.Interval Gappa Conclusion Setting Algorithm Implementation Testing Motivation

Example: Approximating Exponential

Goal: a binary64 code that approximates exp within a few ulps.

@ Architectures only support basic operations such as +, x, +.

o So one needs a polynomial/rational approximation of exp.
o Effective domain: [-710;710].
e No sane approximation on such a large domain.

Guillaume Melquiond Formal verification of a FP elementary function

Cody & Waite Flocq Cogq.Interval Gappa Conclusion Setting Algorithm Implementation Testing Motivation

Example: Approximating Exponential

Goal: a binary64 code that approximates exp within a few ulps.

@ Architectures only support basic operations such as +, x, +.

o So one needs a polynomial/rational approximation of exp.
o Effective domain: [-710;710].
e No sane approximation on such a large domain.

e Cody & Waite's code (1980):

o Clever argument reduction to [—0.35; 0.35].
o Degree-5 rational approximation of exp, suitably factored.
e Trivial reconstruction.

Guillaume Melquiond Formal verification of a FP elementary function

Cody & Waite Flocq Cogq.Interval Gappa Conclusion Setting Algorithm Implementation Testing Motivation

Example: Approximating Exponential

Goal: a binary64 code that approximates exp within a few ulps.

@ Architectures only support basic operations such as +, x, +.

e So one needs a polynomial/rational approximation of exp.
o Effective domain: [-710;710].
e No sane approximation on such a large domain.

e Cody & Waite's code (1980):

o Clever argument reduction to [—0.35; 0.35].
o Degree-5 rational approximation of exp, suitably factored.
e Trivial reconstruction.

Correctness condition: the relative error between cw_exp(x) and
the mathematical value exp x is less than 2751,

Guillaume Melquiond Formal verification of a FP elementary function

Cody & Waite Flocq Cogq.Interval Gappa Conclusion Setting Algorithm Implementation Testing Motivation

Algorithm Overview and Error Analysis

expx =

Guillaume Melquiond Formal verification of a FP elementary function

Cody & Waite Flocq Cogq.Interval Gappa Conclusion Setting Algorithm Implementation Testing Motivation

Algorithm Overview and Error Analysis

expx = exp(x —k-log2)-2K with k = |x/log2]~

Guillaume Melquiond Formal verification of a FP elementary function

Cody & Waite Flocq Cogq.Interval Gappa Conclusion Setting Algorithm Implementation Testing Motivation

Algorithm Overview and Error Analysis

expx = exp(x —k-log2)-2K with k = |x/log2]~
= expt-exp(—e;)-2K with t ~ x — k- log?2

Guillaume Melquiond Formal verification of a FP elementary function

Cody & Waite Flocq Cogq.Interval Gappa Conclusion Setting Algorithm Implementation Testing Motivation

Algorithm Overview and Error Analysis

expx = exp(x —k-log2)-2K with k = |x/log2]~
= expt-exp(—e;)-2K with t ~ x — k- log?2
= f(t)-(1+e¢) ' -exp(—er)- 2K with f ~exp

Guillaume Melquiond Formal verification of a FP elementary function

Cody & Waite Flocq Cogq.Interval Gappa Conclusion Setting Algorithm Implementation Testing Motivation

Algorithm Overview and Error Analysis

expx = exp(x —k-log2)-2K with k = |x/log2]~
expt-exp(—e¢)- 2K with t ~ x — k - log2
F(t)-(14¢e£)7 1 exp(—er) - 2K with f ~exp
= f(t)- (L+e7) b (L+er)™ - exp(—er) - 2

Guillaume Melquiond Formal verification of a FP elementary function

Cody & Waite Flocq Cogq.Interval Gappa Conclusion Setting Algorithm Implementation Testing Motivation

Algorithm Overview and Error Analysis

expx = exp(x —k-log2)-2K with k = |x/log2]~

expt-exp(_gt).Qk with t ~ x — k - log 2
F(t)- (1+er)7 - exp(—e) -2 with f ~ exp
= F(t) (1+ 5?)71 (14 Ef)fl -exp(—ey) - e

So f(t) - 2 approximates exp x with a relative error ~ ef +ef +ex.

Guillaume Melquiond Formal verification of a FP elementary function

Cody & Waite Flocq Cogq.Interval Gappa Conclusion Setting Algorithm Implementation Testing Motivation

Algorithm Overview and Error Analysis

expx = exp(x —k-log2)-2K with k = |x/log2]~
expt-exp(—e¢)- 2K with t ~ x — k - log2
F(t) - (14¢ef)7t - exp(—er) - 25X with f ~exp
= f(t)- (L4+e7) ™t (1 +er) - exp(—er) - 2

So f(t) - 2 approximates exp x with a relative error ~ ef +ef +ex.

Goal: design the function and bound the following expressions
@ reduced argument t, (f depends on the range of t)
@ argument reduction error e; = t — (x — k - log 2),
o relative method error ¢ = f(t)/expt — 1,
e relative round-off error ez = f(t)/f(t) — 1.

Guillaume Melquiond Formal verification of a FP elementary function

Cody & Waite Flocq Cogq.Interval Gappa Conclusion Setting Algorithm Implementation Testing Motivation

C Implementation

double cw_exp(double x)
{
if (fabs(x) > 710.) return x < 0. ? 0. : INFINITY;
double Log2h = 0xb.17217£7d1c00p-4;
double Log2l = 0xf.79abc9e3b398p -48;
double InvLog2 = 0x1.71547652b82fep0;
double pl = 0x1.c70e46fb3f692p-8;
double p2 = 0x1.152a46f58dclcp-16;
double ql Oxe .38c738a128d98p -8;
double 0x2.07£32dfbc7012p-12;

Q
N
1

double k = nearbyint(x * InvLog2);
double t = x - k * Log2h - k * Log2l;
double t2 =t * t;

double p = 0.25 + t2 * (pl + t2 * p2);
double q = 0.5 + t2 *x (gl + t2 * q2);
double t x (p/ (@ -t *p)) + 0.5;
return ldexp(f, (int)k + 1);

[}
]

Guillaume Melquiond Formal verification of a FP elementary function

Cody & Waite Flocq Cog.Interval Gappa Conclusion Setting Algorithm Implementation Testing Motivation

Total Relative Error

2,56-16 , ! : - T
2e-16
1.5e-16
1e-16

5e-17

-5e-17
-le-16

-15e-16

-26-16) o

-25e-16 ! L ! L L ! L
-600 -400 -200 0 200 400 €00

Guillaume Melquiond Formal verification of a FP elementary function

Cody & Waite Flocq Cogq.Interval Gappa Conclusion Setting Algorithm Implementation Testing Motivation

Formal Proofs and Interval Arithmetic

[ssue

Algorithms are intricate, so
correctness proofs are
error-prone.

Guillaume Melquiond Formal verification of a FP elementary function

Cody & Waite Flocq Cogq.Interval Gappa Conclusion Setting Algorithm Implementation Testing Motivation

Formal Proofs and Interval Arithmetic

Issue Solution
Algorithms are intricate, so Verify the algorithms using a
correctness proofs are formal system.

error-prone.

Guillaume Melquiond Formal verification of a FP elementary function

Cody & Waite Flocq Cogq.Interval Gappa Conclusion Setting Algorithm Implementation Testing Motivation

Formal Proofs and Interval Arithmetic

Issue Solution
Algorithms are intricate, so Verify the algorithms using a
correctness proofs are formal system.

error-prone.

[ssue

Formal proofs are tedious,
time-consuming, and reserved
to experts.

Guillaume Melquiond Formal verification of a FP elementary function

Cody & Waite Flocq Cogq.Interval Gappa Conclusion

Setting Algorithm Implementation Testing Motivation

Formal Proofs and Interval Arithmetic

[ssue

Algorithms are intricate, so
correctness proofs are
error-prone.

[ssue

Formal proofs are tedious,
time-consuming, and reserved
to experts.

Guillaume Melquiond

Solution

Verify the algorithms using a
formal system.

Solution

Let the proof assistant perform
(parts of) the proof
automatically.

Formal verification of a FP elementary function

Cody & Waite Flocq Cogq.Interval Gappa Conclusion Setting Algorithm Implementation Testing Motivation

Formal Proofs and Interval Arithmetic

Issue Solution
Algorithms are intricate, so Verify the algorithms using a
correctness proofs are formal system.

error-prone.

Issue Solution

Formal proofs are tedious, Let the proof assistant perform
time-consuming, and reserved (parts of) the proof

to experts. automatically.

Issue

How do you automate proofs
on real and FP numbers?

Guillaume Melquiond Formal verification of a FP elementary function

Cody & Waite Flocq Cogq.Interval Gappa Conclusion Setting Algorithm Implementation Testing Motivation

Formal Proofs and Interval Arithmetic

Issue Solution
Algorithms are intricate, so Verify the algorithms using a
correctness proofs are formal system.

error-prone.

Issue Solution

Formal proofs are tedious, Let the proof assistant perform
time-consuming, and reserved (parts of) the proof

to experts. automatically.

Issue Solution

How do you automate proofs Use interval arithmetic.

on real and FP numbers?

Guillaume Melquiond Formal verification of a FP elementary function

Cody & Waite Flocq Coq.Interval Gappa Conclusion Flocq Specification Proof structure

Flocq: a Floating-Point Formalization for Coq

Support

e multi-radix (2, 10, exotic),
multi-format (fixed-point, floating-point, exotic).
axiomatic rounding operators (no overflow),

computable |IEEE-754 operators, including + and /-,

comprehensive library of generic theorems.

Guillaume Melquiond Formal verification of a FP elementary function

Cody & Waite Flocq Coq.Interval Gappa Conclusion Flocq Specification Proof structure

Coq Implementation and Correctness Property

Flocg-based description

Definition cw_exp (x : R) :=
let k := nearbyint (mul x InvLog2) in
let t := sub (sub x (mul k Log2h)) (mul k Log2l) in

let t2:= mul t t in

let p add p0 (mul t2 (add pl (mul t2 p2))) in

let q add q0 (mul t2 (add q1 (mul t2 g2))) in

let f:= add (mul t (div p (sub q (mul t p)))) 1/2 in
pow2 (Zfloor k + 1) % f.

Theorem exp_correct
forall x : R,
generic_format radix2 (FLT_exp (-1074) 53) x ->
Rabs x <= 710 ->
Rabs ((cw_exp x - exp x) / exp x) <= 1 * pow2 (-51).

Guillaume Melquiond Formal verification of a FP elementary function

Cody & Waite Flocq Coq.Interval Gappa Conclusion Flocq Specification Proof structure

Intermediate Lemmas

Lemma method_error
forall t

let t2
let p
let q
let f
Rabs t

R,

=t *x t in

<

pO + t2 * (pl + t2 * p2) in

Q0 + t2 * (ql + t2 x g2) in

2 x (t *x (p/ (g -t * p)) + 1/2) in
= 355 / 1024 ->

Rabs ((f - exp t) / exp t) <= 23 x pow2 (-62).

Lemma argument_reduction

forall
generic
Rabs x
let k
let t
Rabs t
Rabs (t

X

I Al

<

R9
format radix2 (FLT_exp (-1074) 53) x ->
= 710 ->
nearbyint (mul x InvLlog2) in
sub (sub x (mul k Log2h)) (mul k Log2l) in
= 355 / 1024 /\
- (x - k * 1n 2)) <= 65537 * pow2 (-71).

Guillaume Melquiond Formal verification of a FP elementary function

Cody & Waite Flocq Cogq.Interval Gappa Conclusion Coq.Interval Method error

Automatic Proof using Coq.Interval

Support
Quantifier-free formulas of enclosures of expressions using
@ basic arithmetic operators: +, —, X, =, /-,

@ elementary functions: cos, sin, tan, arctan, exp, log.

Guillaume Melquiond Formal verification of a FP elementary function

Cody & Waite Flocq Cogq.Interval Gappa Conclusion Coq.Interval Method error

Automatic Proof using Coq.Interval

Support
Quantifier-free formulas of enclosures of expressions using
@ basic arithmetic operators: +, —, X, =, /-,

@ elementary functions: cos, sin, tan, arctan, exp, log.

Approach
Fully formalized in Coq:
o efficient multi-precision FP arithmetic,
@ interval arithmetic with univariate Taylor models,

o reflexive tactic.

Guillaume Melquiond Formal verification of a FP elementary function

Cody & Waite Flocq Coq.Interval Gappa Conclusion Cog.Interval Method error

Bounding Errors Automatically

Naive interval arithmetic cannot compute tight bounds for

f(t) —expt . [0.7,1.5] — [0.7,1.5] [-0.8,0.8]
expt [0.7,1.5] ~ [0.7,1.5]

C [-1.2,1.2]

due to the dependency effect.

Guillaume Melquiond Formal verification of a FP elementary function

Cody & Waite Flocq Coq.Interval Gappa Conclusion Cog.Interval Method error

Bounding Errors Automatically

Naive interval arithmetic cannot compute tight bounds for

f(t) —expt _ [0.7,15] - [0.7,1.5] _ [-0.8,08]

= Cc[-1.2,1.2
exp t [0.7,1.5] [0.7,1.5] <l 1]

due to the dependency effect.

But one can automatically compute a polynomial P and an
interval A such that

f(t) —expt B

o P(t)+6(t) with 6(t) € A

and then use naive interval arithmetic to compute tight bounds for
P(t) 4 6(t) € [-23-27%2,23.2762],

Guillaume Melquiond Formal verification of a FP elementary function

Cody & Waite Flocq Coq.Interval Gappa Conclusion Gappa Argument reduction User hints

Automatic Proof using Gappa

Support
Quantifier-free formulas of enclosures of expressions using
@ binary floating-/fixed-point rounding operators,

@ basic arithmetic operators: +, —, X, =, /-

Guillaume Melquiond Formal verification of a FP elementary function

Cody & Waite Flocq Coq.Interval Gappa Conclusion Gappa Argument reduction User hints

Automatic Proof using Gappa

Support
Quantifier-free formulas of enclosures of expressions using
@ binary floating-/fixed-point rounding operators,

@ basic arithmetic operators: +, —, X, =, v/-.

Approach
@ symbolic proof search of relevant theorems,
@ numerical application of selected instances,

© proof minimization and output.

Guillaume Melquiond Formal verification of a FP elementary function

Cody & Waite Flocq Coq.Interval Gappa Conclusion Gappa Argument reduction User hints

Automatic Proof using Gappa

Support
Quantifier-free formulas of enclosures of expressions using
@ binary floating-/fixed-point rounding operators,

@ basic arithmetic operators: +, —, X, =, v/-.

Approach
@ symbolic proof search of relevant theorems,
@ numerical application of selected instances,

© proof minimization and output.

Database of ~ 150 theorems
@ naive interval arithmetic,

@ rewriting of errors between structurally-similar expressions.

Guillaume Melquiond Formal verification of a FP elementary function

Cody & Waite Flocq Coq.Interval Gappa Conclusion Gappa Argument reduction User hints

Argument Reduction

How to compute x — k - log 2?

Naive implementation

double k = nearbyint(x * 0x1.71547652b82fep0) ;
double t = x - k * 0xb.17217£f7d1cf78p -4;

For x =700, we get kK = 1010 and &; ~ P

Guillaume Melquiond Formal verification of a FP elementary function

Cody & Waite Flocq Coq.Interval Gappa Conclusion Gappa Argument reduction User hints

Argument Reduction

How to compute x — k - log 2?

Naive implementation

double k = nearbyint(x * 0x1.71547652b82fep0) ;
double t = x - k * 0xb.17217£f7d1cf78p -4;

For x =700, we get kK = 1010 and &; ~ P

Cody & Waite's trick

double k = nearbyint(x * 0x1.71547652b82fep0);
double Log2h = 0xb.17217f7dlcp-4; // 42 bits out of
double Log2l = 0xf.79abc9e3b398p -48;

double t = (x - k * Log2h) - k * Log2l;

For x =700, we get kK = 1010 and &; ~ 9381

Guillaume Melquiond Formal verification of a FP elementary function

53

Cody & Waite Flocq Coq.Interval Gappa Conclusion Gappa Argument reduction User hints

Bounding Errors Automatically (1/2)

Gappa cannot compute tight bounds for
x — | x - InvLog2] - Log2h

due to the dependency effect inherent to interval arithmetic.

Guillaume Melquiond Formal verification of a FP elementary function

Cody & Waite Flocq Coq.Interval Gappa Conclusion Gappa Argument reduction User hints

Bounding Errors Automatically (1/2)

Gappa cannot compute tight bounds for
x — | x - InvLog2] - Log2h
due to the dependency effect inherent to interval arithmetic.
But it can compute tight bounds for
(x - InvLog2) - InvLog2 ! — | x - InvLog2] - Log2h

since it is an error between two structurally-similar expressions.

Guillaume Melquiond Formal verification of a FP elementary function

Cody & Waite Flocq Coq.Interval Gappa Conclusion Gappa Argument reduction User hints

Bounding Errors Automatically (1/2)

Gappa cannot compute tight bounds for
x — | x - InvLog2] - Log2h
due to the dependency effect inherent to interval arithmetic.
But it can compute tight bounds for
(x - InvLog2) - InvLog2 ! — | x - InvLog2] - Log2h

since it is an error between two structurally-similar expressions.

User hint: x = (x - InvLog2) - InvLog2 .

Guillaume Melquiond Formal verification of a FP elementary function

Cody & Waite Flocq Coq.Interval Gappa Conclusion Gappa Argument reduction User hints

Bounding Errors Automatically (2/2)

Gappa cannot compute tight bounds for
((x — k -Log2h) — k - Log21) — (x — k - log 2)

due to the dependency effect and the use of log.

Guillaume Melquiond Formal verification of a FP elementary function

Cody & Waite Flocq Coq.Interval Gappa Conclusion Gappa Argument reduction User hints

Bounding Errors Automatically (2/2)

Gappa cannot compute tight bounds for
((x — k - Log2h) — k - Log21) — (x — k - log 2)
due to the dependency effect and the use of log.
But it can compute tight bounds for
((x — k- Log2h) — k - Log21) — ((x — k - Log2h) — k - i)

since it is an error between two structurally-similar expressions,
as long as the user gives some bounds on p = log2 — Log2h.

Guillaume Melquiond Formal verification of a FP elementary function

Cody & Waite Flocq Coq.Interval Gappa Conclusion Gappa Argument reduction User hints

Bounding Errors Automatically (2/2)

Gappa cannot compute tight bounds for
((x — k - Log2h) — k - Log21) — (x — k - log 2)
due to the dependency effect and the use of log.
But it can compute tight bounds for
((x — k- Log2h) — k - Log21) — ((x — k - Log2h) — k - i)

since it is an error between two structurally-similar expressions,
as long as the user gives some bounds on p = log2 — Log2h.

User hints: x — k - Log2h = x — k - Log2h — k - (log 2 — Log2h)
and Log21 — (log2 — Log2h) € [-27192 0].

Guillaume Melquiond Formal verification of a FP elementary function

Cody & Waite Flocq Cogq.Interval Gappa Conclusion

Proof Summary

Relative method error:

e multi-precision interval arithmetic using Taylor models,
e fully automated proof.

@ Relative round-off error:

e naive interval arithmetic + forward error analysis,
e fully automated proof.

Argument reduction (tricky code):

e naive interval arithmetic + forward error analysis,
e partly automated proof, user interactions:

@ a case analysis for excluding x ~ 0,
@ two trivial identities, (developer knowledge)
@ some bounds on log 2 using interval arithmetic.

Result reconstruction and total error:
e straightforward manual proof + interval arithmetic.

Guillaume Melquiond Formal verification of a FP elementary function

Cody & Waite Flocq Coq.Interval Gappa Conclusion

Questions?

Flocq: http://flocq.gforge.inria.fr/
Gappa: http://gappa.gforge.inria.fr/
Interval: http://cog-interval.gforge.inria.fr/

Guillaume Melquiond Formal verification of a FP elementary function

http://flocq.gforge.inria.fr/
http://gappa.gforge.inria.fr/
http://coq-interval.gforge.inria.fr/

	Cody & Waite
	Setting
	Algorithm
	Implementation
	Testing
	Motivation

	Flocq
	Flocq
	Specification
	Proof structure

	Coq.Interval
	Coq.Interval
	Method error

	Gappa
	Gappa
	Argument reduction
	User hints

	Conclusion

