
Cody & Waite Flocq Coq.Interval Gappa Conclusion

Formal verification
of a floating-point elementary function

Guillaume Melquiond

Inria Saclay–̂Ile-de-France & LRI, Université Paris Sud, CNRS

2015-03-19

Guillaume Melquiond Formal verification of a FP elementary function

Cody & Waite Flocq Coq.Interval Gappa Conclusion Setting Algorithm Implementation Testing Motivation

Example: Approximating Exponential

Goal: a binary64 code that approximates exp within a few ulps.

Architectures only support basic operations such as +, ×, ÷.

So one needs a polynomial/rational approximation of exp.
Effective domain: [−710; 710].
No sane approximation on such a large domain.

Cody & Waite’s code (1980):

Clever argument reduction to [−0.35; 0.35].
Degree-5 rational approximation of exp, suitably factored.
Trivial reconstruction.

Correctness condition: the relative error between cw exp(x) and
the mathematical value exp x is less than 2−51.

Guillaume Melquiond Formal verification of a FP elementary function

Cody & Waite Flocq Coq.Interval Gappa Conclusion Setting Algorithm Implementation Testing Motivation

Example: Approximating Exponential

Goal: a binary64 code that approximates exp within a few ulps.

Architectures only support basic operations such as +, ×, ÷.

So one needs a polynomial/rational approximation of exp.
Effective domain: [−710; 710].
No sane approximation on such a large domain.

Cody & Waite’s code (1980):

Clever argument reduction to [−0.35; 0.35].
Degree-5 rational approximation of exp, suitably factored.
Trivial reconstruction.

Correctness condition: the relative error between cw exp(x) and
the mathematical value exp x is less than 2−51.

Guillaume Melquiond Formal verification of a FP elementary function

Cody & Waite Flocq Coq.Interval Gappa Conclusion Setting Algorithm Implementation Testing Motivation

Example: Approximating Exponential

Goal: a binary64 code that approximates exp within a few ulps.

Architectures only support basic operations such as +, ×, ÷.

So one needs a polynomial/rational approximation of exp.
Effective domain: [−710; 710].
No sane approximation on such a large domain.

Cody & Waite’s code (1980):

Clever argument reduction to [−0.35; 0.35].
Degree-5 rational approximation of exp, suitably factored.
Trivial reconstruction.

Correctness condition: the relative error between cw exp(x) and
the mathematical value exp x is less than 2−51.

Guillaume Melquiond Formal verification of a FP elementary function

Cody & Waite Flocq Coq.Interval Gappa Conclusion Setting Algorithm Implementation Testing Motivation

Example: Approximating Exponential

Goal: a binary64 code that approximates exp within a few ulps.

Architectures only support basic operations such as +, ×, ÷.

So one needs a polynomial/rational approximation of exp.
Effective domain: [−710; 710].
No sane approximation on such a large domain.

Cody & Waite’s code (1980):

Clever argument reduction to [−0.35; 0.35].
Degree-5 rational approximation of exp, suitably factored.
Trivial reconstruction.

Correctness condition: the relative error between cw exp(x) and
the mathematical value exp x is less than 2−51.

Guillaume Melquiond Formal verification of a FP elementary function

Cody & Waite Flocq Coq.Interval Gappa Conclusion Setting Algorithm Implementation Testing Motivation

Algorithm Overview and Error Analysis

exp x =

exp(x − k · log 2) · 2k with k = bx/ log 2e'
= exp t · exp(− εt) · 2k with t ' x − k · log 2

= f (t) · (1 + εf)−1 · exp(−εt) · 2k with f ' exp

= f̃ (t) · (1 + εf̃)−1 · (1 + εf)−1 · exp(−εt) · 2k

So f̃ (t) · 2k approximates exp x with a relative error ≈ εf̃ + εf + εt .

Goal: design the function and bound the following expressions

reduced argument t, (f depends on the range of t)

argument reduction error εt = t − (x − k · log 2),

relative method error εf = f (t)/ exp t − 1,

relative round-off error εf̃ = f̃ (t)/f (t)− 1.

Guillaume Melquiond Formal verification of a FP elementary function

Cody & Waite Flocq Coq.Interval Gappa Conclusion Setting Algorithm Implementation Testing Motivation

Algorithm Overview and Error Analysis

exp x = exp(x − k · log 2) · 2k with k = bx/ log 2e'

= exp t · exp(− εt) · 2k with t ' x − k · log 2

= f (t) · (1 + εf)−1 · exp(−εt) · 2k with f ' exp

= f̃ (t) · (1 + εf̃)−1 · (1 + εf)−1 · exp(−εt) · 2k

So f̃ (t) · 2k approximates exp x with a relative error ≈ εf̃ + εf + εt .

Goal: design the function and bound the following expressions

reduced argument t, (f depends on the range of t)

argument reduction error εt = t − (x − k · log 2),

relative method error εf = f (t)/ exp t − 1,

relative round-off error εf̃ = f̃ (t)/f (t)− 1.

Guillaume Melquiond Formal verification of a FP elementary function

Cody & Waite Flocq Coq.Interval Gappa Conclusion Setting Algorithm Implementation Testing Motivation

Algorithm Overview and Error Analysis

exp x = exp(x − k · log 2) · 2k with k = bx/ log 2e'
= exp t · exp(− εt) · 2k with t ' x − k · log 2

= f (t) · (1 + εf)−1 · exp(−εt) · 2k with f ' exp

= f̃ (t) · (1 + εf̃)−1 · (1 + εf)−1 · exp(−εt) · 2k

So f̃ (t) · 2k approximates exp x with a relative error ≈ εf̃ + εf + εt .

Goal: design the function and bound the following expressions

reduced argument t, (f depends on the range of t)

argument reduction error εt = t − (x − k · log 2),

relative method error εf = f (t)/ exp t − 1,

relative round-off error εf̃ = f̃ (t)/f (t)− 1.

Guillaume Melquiond Formal verification of a FP elementary function

Cody & Waite Flocq Coq.Interval Gappa Conclusion Setting Algorithm Implementation Testing Motivation

Algorithm Overview and Error Analysis

exp x = exp(x − k · log 2) · 2k with k = bx/ log 2e'
= exp t · exp(− εt) · 2k with t ' x − k · log 2

= f (t) · (1 + εf)−1 · exp(−εt) · 2k with f ' exp

= f̃ (t) · (1 + εf̃)−1 · (1 + εf)−1 · exp(−εt) · 2k

So f̃ (t) · 2k approximates exp x with a relative error ≈ εf̃ + εf + εt .

Goal: design the function and bound the following expressions

reduced argument t, (f depends on the range of t)

argument reduction error εt = t − (x − k · log 2),

relative method error εf = f (t)/ exp t − 1,

relative round-off error εf̃ = f̃ (t)/f (t)− 1.

Guillaume Melquiond Formal verification of a FP elementary function

Cody & Waite Flocq Coq.Interval Gappa Conclusion Setting Algorithm Implementation Testing Motivation

Algorithm Overview and Error Analysis

exp x = exp(x − k · log 2) · 2k with k = bx/ log 2e'
= exp t · exp(− εt) · 2k with t ' x − k · log 2

= f (t) · (1 + εf)−1 · exp(−εt) · 2k with f ' exp

= f̃ (t) · (1 + εf̃)−1 · (1 + εf)−1 · exp(−εt) · 2k

So f̃ (t) · 2k approximates exp x with a relative error ≈ εf̃ + εf + εt .

Goal: design the function and bound the following expressions

reduced argument t, (f depends on the range of t)

argument reduction error εt = t − (x − k · log 2),

relative method error εf = f (t)/ exp t − 1,

relative round-off error εf̃ = f̃ (t)/f (t)− 1.

Guillaume Melquiond Formal verification of a FP elementary function

Cody & Waite Flocq Coq.Interval Gappa Conclusion Setting Algorithm Implementation Testing Motivation

Algorithm Overview and Error Analysis

exp x = exp(x − k · log 2) · 2k with k = bx/ log 2e'
= exp t · exp(− εt) · 2k with t ' x − k · log 2

= f (t) · (1 + εf)−1 · exp(−εt) · 2k with f ' exp

= f̃ (t) · (1 + εf̃)−1 · (1 + εf)−1 · exp(−εt) · 2k

So f̃ (t) · 2k approximates exp x with a relative error ≈ εf̃ + εf + εt .

Goal: design the function and bound the following expressions

reduced argument t, (f depends on the range of t)

argument reduction error εt = t − (x − k · log 2),

relative method error εf = f (t)/ exp t − 1,

relative round-off error εf̃ = f̃ (t)/f (t)− 1.

Guillaume Melquiond Formal verification of a FP elementary function

Cody & Waite Flocq Coq.Interval Gappa Conclusion Setting Algorithm Implementation Testing Motivation

Algorithm Overview and Error Analysis

exp x = exp(x − k · log 2) · 2k with k = bx/ log 2e'
= exp t · exp(− εt) · 2k with t ' x − k · log 2

= f (t) · (1 + εf)−1 · exp(−εt) · 2k with f ' exp

= f̃ (t) · (1 + εf̃)−1 · (1 + εf)−1 · exp(−εt) · 2k

So f̃ (t) · 2k approximates exp x with a relative error ≈ εf̃ + εf + εt .

Goal: design the function and bound the following expressions

reduced argument t, (f depends on the range of t)

argument reduction error εt = t − (x − k · log 2),

relative method error εf = f (t)/ exp t − 1,

relative round-off error εf̃ = f̃ (t)/f (t)− 1.

Guillaume Melquiond Formal verification of a FP elementary function

Cody & Waite Flocq Coq.Interval Gappa Conclusion Setting Algorithm Implementation Testing Motivation

C Implementation

double cw_exp(double x)
{

if (fabs(x) > 710.) return x < 0. ? 0. : INFINITY;
double Log2h = 0xb .17217 f7d1c00p -4;
double Log2l = 0xf.79 abc9e3b398p -48;
double InvLog2 = 0x1 .71547652 b82fep0;
double p1 = 0x1.c70e46fb3f692p -8;
double p2 = 0x1.152 a46f58dc1cp -16;
double q1 = 0xe.38 c738a128d98p -8;
double q2 = 0x2.07 f32dfbc7012p -12;

double k = nearbyint(x * InvLog2);
double t = x - k * Log2h - k * Log2l;
double t2 = t * t;
double p = 0.25 + t2 * (p1 + t2 * p2);
double q = 0.5 + t2 * (q1 + t2 * q2);
double f = t * (p / (q - t * p)) + 0.5;
return ldexp(f, (int)k + 1);

}

Guillaume Melquiond Formal verification of a FP elementary function

Cody & Waite Flocq Coq.Interval Gappa Conclusion Setting Algorithm Implementation Testing Motivation

Total Relative Error

Guillaume Melquiond Formal verification of a FP elementary function

Cody & Waite Flocq Coq.Interval Gappa Conclusion Setting Algorithm Implementation Testing Motivation

Formal Proofs and Interval Arithmetic

Issue

Algorithms are intricate, so
correctness proofs are
error-prone.

Solution

Verify the algorithms using a
formal system.

Issue

Formal proofs are tedious,
time-consuming, and reserved
to experts.

Solution

Let the proof assistant perform
(parts of) the proof
automatically.

Issue

How do you automate proofs
on real and FP numbers?

Solution

Use interval arithmetic.

Guillaume Melquiond Formal verification of a FP elementary function

Cody & Waite Flocq Coq.Interval Gappa Conclusion Setting Algorithm Implementation Testing Motivation

Formal Proofs and Interval Arithmetic

Issue

Algorithms are intricate, so
correctness proofs are
error-prone.

Solution

Verify the algorithms using a
formal system.

Issue

Formal proofs are tedious,
time-consuming, and reserved
to experts.

Solution

Let the proof assistant perform
(parts of) the proof
automatically.

Issue

How do you automate proofs
on real and FP numbers?

Solution

Use interval arithmetic.

Guillaume Melquiond Formal verification of a FP elementary function

Cody & Waite Flocq Coq.Interval Gappa Conclusion Setting Algorithm Implementation Testing Motivation

Formal Proofs and Interval Arithmetic

Issue

Algorithms are intricate, so
correctness proofs are
error-prone.

Solution

Verify the algorithms using a
formal system.

Issue

Formal proofs are tedious,
time-consuming, and reserved
to experts.

Solution

Let the proof assistant perform
(parts of) the proof
automatically.

Issue

How do you automate proofs
on real and FP numbers?

Solution

Use interval arithmetic.

Guillaume Melquiond Formal verification of a FP elementary function

Cody & Waite Flocq Coq.Interval Gappa Conclusion Setting Algorithm Implementation Testing Motivation

Formal Proofs and Interval Arithmetic

Issue

Algorithms are intricate, so
correctness proofs are
error-prone.

Solution

Verify the algorithms using a
formal system.

Issue

Formal proofs are tedious,
time-consuming, and reserved
to experts.

Solution

Let the proof assistant perform
(parts of) the proof
automatically.

Issue

How do you automate proofs
on real and FP numbers?

Solution

Use interval arithmetic.

Guillaume Melquiond Formal verification of a FP elementary function

Cody & Waite Flocq Coq.Interval Gappa Conclusion Setting Algorithm Implementation Testing Motivation

Formal Proofs and Interval Arithmetic

Issue

Algorithms are intricate, so
correctness proofs are
error-prone.

Solution

Verify the algorithms using a
formal system.

Issue

Formal proofs are tedious,
time-consuming, and reserved
to experts.

Solution

Let the proof assistant perform
(parts of) the proof
automatically.

Issue

How do you automate proofs
on real and FP numbers?

Solution

Use interval arithmetic.

Guillaume Melquiond Formal verification of a FP elementary function

Cody & Waite Flocq Coq.Interval Gappa Conclusion Setting Algorithm Implementation Testing Motivation

Formal Proofs and Interval Arithmetic

Issue

Algorithms are intricate, so
correctness proofs are
error-prone.

Solution

Verify the algorithms using a
formal system.

Issue

Formal proofs are tedious,
time-consuming, and reserved
to experts.

Solution

Let the proof assistant perform
(parts of) the proof
automatically.

Issue

How do you automate proofs
on real and FP numbers?

Solution

Use interval arithmetic.

Guillaume Melquiond Formal verification of a FP elementary function

Cody & Waite Flocq Coq.Interval Gappa Conclusion Flocq Specification Proof structure

Flocq: a Floating-Point Formalization for Coq

Support

multi-radix (2, 10, exotic),

multi-format (fixed-point, floating-point, exotic).

axiomatic rounding operators (no overflow),

computable IEEE-754 operators, including ÷ and
√
·,

comprehensive library of generic theorems.

Guillaume Melquiond Formal verification of a FP elementary function

Cody & Waite Flocq Coq.Interval Gappa Conclusion Flocq Specification Proof structure

Coq Implementation and Correctness Property

Flocq-based description

Definition cw_exp (x : R) :=
let k := nearbyint (mul x InvLog2) in
let t := sub (sub x (mul k Log2h)) (mul k Log2l) in
let t2:= mul t t in
let p := add p0 (mul t2 (add p1 (mul t2 p2))) in
let q := add q0 (mul t2 (add q1 (mul t2 q2))) in
let f:= add (mul t (div p (sub q (mul t p)))) 1/2 in
pow2 (Zfloor k + 1) * f.

Theorem exp_correct :
forall x : R,
generic_format radix2 (FLT_exp (-1074) 53) x ->
Rabs x <= 710 ->
Rabs ((cw_exp x - exp x) / exp x) <= 1 * pow2 (-51).

Guillaume Melquiond Formal verification of a FP elementary function

Cody & Waite Flocq Coq.Interval Gappa Conclusion Flocq Specification Proof structure

Intermediate Lemmas

Lemma method_error :
forall t : R,
let t2 := t * t in
let p := p0 + t2 * (p1 + t2 * p2) in
let q := q0 + t2 * (q1 + t2 * q2) in
let f := 2 * (t * (p / (q - t * p)) + 1/2) in
Rabs t <= 355 / 1024 ->
Rabs ((f - exp t) / exp t) <= 23 * pow2 (-62).

Lemma argument_reduction :
forall x : R,
generic_format radix2 (FLT_exp (-1074) 53) x ->
Rabs x <= 710 ->
let k := nearbyint (mul x InvLog2) in
let t := sub (sub x (mul k Log2h)) (mul k Log2l) in
Rabs t <= 355 / 1024 /\
Rabs (t - (x - k * ln 2)) <= 65537 * pow2 (-71).

Guillaume Melquiond Formal verification of a FP elementary function

Cody & Waite Flocq Coq.Interval Gappa Conclusion Coq.Interval Method error

Automatic Proof using Coq.Interval

Support

Quantifier-free formulas of enclosures of expressions using

basic arithmetic operators: +, −, ×, ÷,
√
·,

elementary functions: cos, sin, tan, arctan, exp, log.

Approach

Fully formalized in Coq:

efficient multi-precision FP arithmetic,

interval arithmetic with univariate Taylor models,

reflexive tactic.

Guillaume Melquiond Formal verification of a FP elementary function

Cody & Waite Flocq Coq.Interval Gappa Conclusion Coq.Interval Method error

Automatic Proof using Coq.Interval

Support

Quantifier-free formulas of enclosures of expressions using

basic arithmetic operators: +, −, ×, ÷,
√
·,

elementary functions: cos, sin, tan, arctan, exp, log.

Approach

Fully formalized in Coq:

efficient multi-precision FP arithmetic,

interval arithmetic with univariate Taylor models,

reflexive tactic.

Guillaume Melquiond Formal verification of a FP elementary function

Cody & Waite Flocq Coq.Interval Gappa Conclusion Coq.Interval Method error

Bounding Errors Automatically

Naive interval arithmetic cannot compute tight bounds for

f (t)− exp t

exp t
∈ [0.7, 1.5]− [0.7, 1.5]

[0.7, 1.5]
=

[−0.8, 0.8]

[0.7, 1.5]
⊆ [−1.2, 1.2]

due to the dependency effect.

But one can automatically compute a polynomial P and an
interval ∆ such that

f (t)− exp t

exp t
= P(t) + δ(t) with δ(t) ∈ ∆

and then use naive interval arithmetic to compute tight bounds for

P(t) + δ(t) ∈ [−23 · 2−62, 23 · 2−62].

Guillaume Melquiond Formal verification of a FP elementary function

Cody & Waite Flocq Coq.Interval Gappa Conclusion Coq.Interval Method error

Bounding Errors Automatically

Naive interval arithmetic cannot compute tight bounds for

f (t)− exp t

exp t
∈ [0.7, 1.5]− [0.7, 1.5]

[0.7, 1.5]
=

[−0.8, 0.8]

[0.7, 1.5]
⊆ [−1.2, 1.2]

due to the dependency effect.

But one can automatically compute a polynomial P and an
interval ∆ such that

f (t)− exp t

exp t
= P(t) + δ(t) with δ(t) ∈ ∆

and then use naive interval arithmetic to compute tight bounds for

P(t) + δ(t) ∈ [−23 · 2−62, 23 · 2−62].

Guillaume Melquiond Formal verification of a FP elementary function

Cody & Waite Flocq Coq.Interval Gappa Conclusion Gappa Argument reduction User hints

Automatic Proof using Gappa

Support

Quantifier-free formulas of enclosures of expressions using

binary floating-/fixed-point rounding operators,

basic arithmetic operators: +, −, ×, ÷,
√
·.

Approach

1 symbolic proof search of relevant theorems,

2 numerical application of selected instances,

3 proof minimization and output.

Database of ≈ 150 theorems

naive interval arithmetic,

rewriting of errors between structurally-similar expressions.

Guillaume Melquiond Formal verification of a FP elementary function

Cody & Waite Flocq Coq.Interval Gappa Conclusion Gappa Argument reduction User hints

Automatic Proof using Gappa

Support

Quantifier-free formulas of enclosures of expressions using

binary floating-/fixed-point rounding operators,

basic arithmetic operators: +, −, ×, ÷,
√
·.

Approach

1 symbolic proof search of relevant theorems,

2 numerical application of selected instances,

3 proof minimization and output.

Database of ≈ 150 theorems

naive interval arithmetic,

rewriting of errors between structurally-similar expressions.

Guillaume Melquiond Formal verification of a FP elementary function

Cody & Waite Flocq Coq.Interval Gappa Conclusion Gappa Argument reduction User hints

Automatic Proof using Gappa

Support

Quantifier-free formulas of enclosures of expressions using

binary floating-/fixed-point rounding operators,

basic arithmetic operators: +, −, ×, ÷,
√
·.

Approach

1 symbolic proof search of relevant theorems,

2 numerical application of selected instances,

3 proof minimization and output.

Database of ≈ 150 theorems

naive interval arithmetic,

rewriting of errors between structurally-similar expressions.

Guillaume Melquiond Formal verification of a FP elementary function

Cody & Waite Flocq Coq.Interval Gappa Conclusion Gappa Argument reduction User hints

Argument Reduction

How to compute x − k · log 2?

Naive implementation

double k = nearbyint(x * 0x1 .71547652 b82fep0);
double t = x - k * 0xb .17217 f7d1cf78p -4;

For x = 700, we get k = 1010 and εt ' 2−44.2.

Cody & Waite’s trick

double k = nearbyint(x * 0x1 .71547652 b82fep0);
double Log2h = 0xb .17217 f7d1cp -4; // 42 bits out of 53
double Log2l = 0xf.79 abc9e3b398p -48;
double t = (x - k * Log2h) - k * Log2l;

For x = 700, we get k = 1010 and εt ' 2−58.1.

Guillaume Melquiond Formal verification of a FP elementary function

Cody & Waite Flocq Coq.Interval Gappa Conclusion Gappa Argument reduction User hints

Argument Reduction

How to compute x − k · log 2?

Naive implementation

double k = nearbyint(x * 0x1 .71547652 b82fep0);
double t = x - k * 0xb .17217 f7d1cf78p -4;

For x = 700, we get k = 1010 and εt ' 2−44.2.

Cody & Waite’s trick

double k = nearbyint(x * 0x1 .71547652 b82fep0);
double Log2h = 0xb .17217 f7d1cp -4; // 42 bits out of 53
double Log2l = 0xf.79 abc9e3b398p -48;
double t = (x - k * Log2h) - k * Log2l;

For x = 700, we get k = 1010 and εt ' 2−58.1.

Guillaume Melquiond Formal verification of a FP elementary function

Cody & Waite Flocq Coq.Interval Gappa Conclusion Gappa Argument reduction User hints

Bounding Errors Automatically (1/2)

Gappa cannot compute tight bounds for

x − bx · InvLog2e · Log2h

due to the dependency effect inherent to interval arithmetic.

But it can compute tight bounds for

(x · InvLog2) · InvLog2−1 − bx · InvLog2e · Log2h

since it is an error between two structurally-similar expressions.

User hint: x = (x · InvLog2) · InvLog2−1.

Guillaume Melquiond Formal verification of a FP elementary function

Cody & Waite Flocq Coq.Interval Gappa Conclusion Gappa Argument reduction User hints

Bounding Errors Automatically (1/2)

Gappa cannot compute tight bounds for

x − bx · InvLog2e · Log2h

due to the dependency effect inherent to interval arithmetic.

But it can compute tight bounds for

(x · InvLog2) · InvLog2−1 − bx · InvLog2e · Log2h

since it is an error between two structurally-similar expressions.

User hint: x = (x · InvLog2) · InvLog2−1.

Guillaume Melquiond Formal verification of a FP elementary function

Cody & Waite Flocq Coq.Interval Gappa Conclusion Gappa Argument reduction User hints

Bounding Errors Automatically (1/2)

Gappa cannot compute tight bounds for

x − bx · InvLog2e · Log2h

due to the dependency effect inherent to interval arithmetic.

But it can compute tight bounds for

(x · InvLog2) · InvLog2−1 − bx · InvLog2e · Log2h

since it is an error between two structurally-similar expressions.

User hint: x = (x · InvLog2) · InvLog2−1.

Guillaume Melquiond Formal verification of a FP elementary function

Cody & Waite Flocq Coq.Interval Gappa Conclusion Gappa Argument reduction User hints

Bounding Errors Automatically (2/2)

Gappa cannot compute tight bounds for

((x − k · Log2h)− k · Log2l)− (x − k · log 2)

due to the dependency effect and the use of log.

But it can compute tight bounds for

((x − k · Log2h)− k · Log2l)− ((x − k · Log2h)− k · µ)

since it is an error between two structurally-similar expressions,
as long as the user gives some bounds on µ = log 2− Log2h.

User hints: x − k · Log2h = x − k · Log2h− k · (log 2− Log2h)
and Log2l− (log 2− Log2h) ∈ [−2−102, 0].

Guillaume Melquiond Formal verification of a FP elementary function

Cody & Waite Flocq Coq.Interval Gappa Conclusion Gappa Argument reduction User hints

Bounding Errors Automatically (2/2)

Gappa cannot compute tight bounds for

((x − k · Log2h)− k · Log2l)− (x − k · log 2)

due to the dependency effect and the use of log.

But it can compute tight bounds for

((x − k · Log2h)− k · Log2l)− ((x − k · Log2h)− k · µ)

since it is an error between two structurally-similar expressions,
as long as the user gives some bounds on µ = log 2− Log2h.

User hints: x − k · Log2h = x − k · Log2h− k · (log 2− Log2h)
and Log2l− (log 2− Log2h) ∈ [−2−102, 0].

Guillaume Melquiond Formal verification of a FP elementary function

Cody & Waite Flocq Coq.Interval Gappa Conclusion Gappa Argument reduction User hints

Bounding Errors Automatically (2/2)

Gappa cannot compute tight bounds for

((x − k · Log2h)− k · Log2l)− (x − k · log 2)

due to the dependency effect and the use of log.

But it can compute tight bounds for

((x − k · Log2h)− k · Log2l)− ((x − k · Log2h)− k · µ)

since it is an error between two structurally-similar expressions,
as long as the user gives some bounds on µ = log 2− Log2h.

User hints: x − k · Log2h = x − k · Log2h− k · (log 2− Log2h)
and Log2l− (log 2− Log2h) ∈ [−2−102, 0].

Guillaume Melquiond Formal verification of a FP elementary function

Cody & Waite Flocq Coq.Interval Gappa Conclusion

Proof Summary

Relative method error:

multi-precision interval arithmetic using Taylor models,
fully automated proof.

Relative round-off error:

naive interval arithmetic + forward error analysis,
fully automated proof.

Argument reduction (tricky code):

naive interval arithmetic + forward error analysis,
partly automated proof, user interactions:

a case analysis for excluding x ' 0,
two trivial identities, (developer knowledge)
some bounds on log 2 using interval arithmetic.

Result reconstruction and total error:

straightforward manual proof + interval arithmetic.

Guillaume Melquiond Formal verification of a FP elementary function

Cody & Waite Flocq Coq.Interval Gappa Conclusion

Questions?

Flocq: http://flocq.gforge.inria.fr/

Gappa: http://gappa.gforge.inria.fr/

Interval: http://coq-interval.gforge.inria.fr/

Guillaume Melquiond Formal verification of a FP elementary function

http://flocq.gforge.inria.fr/
http://gappa.gforge.inria.fr/
http://coq-interval.gforge.inria.fr/

	Cody & Waite
	Setting
	Algorithm
	Implementation
	Testing
	Motivation

	Flocq
	Flocq
	Specification
	Proof structure

	Coq.Interval
	Coq.Interval
	Method error

	Gappa
	Gappa
	Argument reduction
	User hints

	Conclusion

