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Cody & Waite Flocq Coq.Interval Gappa Conclusion Setting Algorithm Implementation Testing Motivation

Example: Approximating Exponential

Goal: a binary64 code that approximates exp within a few ulps.

Architectures only support basic operations such as +, ×, ÷.

So one needs a polynomial/rational approximation of exp.
Effective domain: [−710; 710].
No sane approximation on such a large domain.

Cody & Waite’s code (1980):

Clever argument reduction to [−0.35; 0.35].
Degree-5 rational approximation of exp, suitably factored.
Trivial reconstruction.

Correctness condition: the relative error between cw exp(x) and
the mathematical value exp x is less than 2−51.
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Algorithm Overview and Error Analysis

exp x =

exp(x − k · log 2) · 2k with k = bx/ log 2e'
= exp t · exp(− εt) · 2k with t ' x − k · log 2

= f (t) · (1 + εf )−1 · exp(−εt) · 2k with f ' exp

= f̃ (t) · (1 + εf̃ )−1 · (1 + εf )−1 · exp(−εt) · 2k

So f̃ (t) · 2k approximates exp x with a relative error ≈ εf̃ + εf + εt .

Goal: design the function and bound the following expressions

reduced argument t, (f depends on the range of t)

argument reduction error εt = t − (x − k · log 2),

relative method error εf = f (t)/ exp t − 1,

relative round-off error εf̃ = f̃ (t)/f (t)− 1.
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C Implementation

double cw_exp(double x)
{

if (fabs(x) > 710.) return x < 0. ? 0. : INFINITY;
double Log2h = 0xb .17217 f7d1c00p -4;
double Log2l = 0xf.79 abc9e3b398p -48;
double InvLog2 = 0x1 .71547652 b82fep0;
double p1 = 0x1.c70e46fb3f692p -8;
double p2 = 0x1.152 a46f58dc1cp -16;
double q1 = 0xe.38 c738a128d98p -8;
double q2 = 0x2.07 f32dfbc7012p -12;

double k = nearbyint(x * InvLog2);
double t = x - k * Log2h - k * Log2l;
double t2 = t * t;
double p = 0.25 + t2 * (p1 + t2 * p2);
double q = 0.5 + t2 * (q1 + t2 * q2);
double f = t * (p / (q - t * p)) + 0.5;
return ldexp(f, (int)k + 1);

}
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Total Relative Error
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Formal Proofs and Interval Arithmetic

Issue

Algorithms are intricate, so
correctness proofs are
error-prone.

Solution

Verify the algorithms using a
formal system.

Issue

Formal proofs are tedious,
time-consuming, and reserved
to experts.

Solution

Let the proof assistant perform
(parts of) the proof
automatically.

Issue

How do you automate proofs
on real and FP numbers?

Solution

Use interval arithmetic.
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Flocq: a Floating-Point Formalization for Coq

Support

multi-radix (2, 10, exotic),

multi-format (fixed-point, floating-point, exotic).

axiomatic rounding operators (no overflow),

computable IEEE-754 operators, including ÷ and
√
·,

comprehensive library of generic theorems.
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Coq Implementation and Correctness Property

Flocq-based description

Definition cw_exp (x : R) :=
let k := nearbyint (mul x InvLog2) in
let t := sub (sub x (mul k Log2h)) (mul k Log2l) in
let t2:= mul t t in
let p := add p0 (mul t2 (add p1 (mul t2 p2))) in
let q := add q0 (mul t2 (add q1 (mul t2 q2))) in
let f:= add (mul t (div p (sub q (mul t p)))) 1/2 in
pow2 (Zfloor k + 1) * f.

Theorem exp_correct :
forall x : R,
generic_format radix2 (FLT_exp ( -1074) 53) x ->
Rabs x <= 710 ->
Rabs (( cw_exp x - exp x) / exp x) <= 1 * pow2 (-51).
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Intermediate Lemmas

Lemma method_error :
forall t : R,
let t2 := t * t in
let p := p0 + t2 * (p1 + t2 * p2) in
let q := q0 + t2 * (q1 + t2 * q2) in
let f := 2 * (t * (p / (q - t * p)) + 1/2) in
Rabs t <= 355 / 1024 ->
Rabs ((f - exp t) / exp t) <= 23 * pow2 (-62).

Lemma argument_reduction :
forall x : R,
generic_format radix2 (FLT_exp ( -1074) 53) x ->
Rabs x <= 710 ->
let k := nearbyint (mul x InvLog2) in
let t := sub (sub x (mul k Log2h)) (mul k Log2l) in
Rabs t <= 355 / 1024 /\
Rabs (t - (x - k * ln 2)) <= 65537 * pow2 (-71).

Guillaume Melquiond Formal verification of a FP elementary function



Cody & Waite Flocq Coq.Interval Gappa Conclusion Coq.Interval Method error

Automatic Proof using Coq.Interval

Support

Quantifier-free formulas of enclosures of expressions using

basic arithmetic operators: +, −, ×, ÷,
√
·,

elementary functions: cos, sin, tan, arctan, exp, log.

Approach

Fully formalized in Coq:

efficient multi-precision FP arithmetic,

interval arithmetic with univariate Taylor models,

reflexive tactic.
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Bounding Errors Automatically

Naive interval arithmetic cannot compute tight bounds for

f (t)− exp t

exp t
∈ [0.7, 1.5]− [0.7, 1.5]

[0.7, 1.5]
=

[−0.8, 0.8]

[0.7, 1.5]
⊆ [−1.2, 1.2]

due to the dependency effect.

But one can automatically compute a polynomial P and an
interval ∆ such that

f (t)− exp t

exp t
= P(t) + δ(t) with δ(t) ∈ ∆

and then use naive interval arithmetic to compute tight bounds for

P(t) + δ(t) ∈ [−23 · 2−62, 23 · 2−62].
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Automatic Proof using Gappa

Support

Quantifier-free formulas of enclosures of expressions using

binary floating-/fixed-point rounding operators,

basic arithmetic operators: +, −, ×, ÷,
√
·.

Approach

1 symbolic proof search of relevant theorems,

2 numerical application of selected instances,

3 proof minimization and output.

Database of ≈ 150 theorems

naive interval arithmetic,

rewriting of errors between structurally-similar expressions.
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Argument Reduction

How to compute x − k · log 2?

Naive implementation

double k = nearbyint(x * 0x1 .71547652 b82fep0);
double t = x - k * 0xb .17217 f7d1cf78p -4;

For x = 700, we get k = 1010 and εt ' 2−44.2.

Cody & Waite’s trick

double k = nearbyint(x * 0x1 .71547652 b82fep0);
double Log2h = 0xb .17217 f7d1cp -4; // 42 bits out of 53
double Log2l = 0xf.79 abc9e3b398p -48;
double t = (x - k * Log2h) - k * Log2l;

For x = 700, we get k = 1010 and εt ' 2−58.1.
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Bounding Errors Automatically (1/2)

Gappa cannot compute tight bounds for

x − bx · InvLog2e · Log2h

due to the dependency effect inherent to interval arithmetic.

But it can compute tight bounds for

(x · InvLog2) · InvLog2−1 − bx · InvLog2e · Log2h

since it is an error between two structurally-similar expressions.

User hint: x = (x · InvLog2) · InvLog2−1.
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Bounding Errors Automatically (2/2)

Gappa cannot compute tight bounds for

((x − k · Log2h)− k · Log2l)− (x − k · log 2)

due to the dependency effect and the use of log.

But it can compute tight bounds for

((x − k · Log2h)− k · Log2l)− ((x − k · Log2h)− k · µ)

since it is an error between two structurally-similar expressions,
as long as the user gives some bounds on µ = log 2− Log2h.

User hints: x − k · Log2h = x − k · Log2h− k · (log 2− Log2h)
and Log2l− (log 2− Log2h) ∈ [−2−102, 0].
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Proof Summary

Relative method error:

multi-precision interval arithmetic using Taylor models,
fully automated proof.

Relative round-off error:

naive interval arithmetic + forward error analysis,
fully automated proof.

Argument reduction (tricky code):

naive interval arithmetic + forward error analysis,
partly automated proof, user interactions:

a case analysis for excluding x ' 0,
two trivial identities, (developer knowledge)
some bounds on log 2 using interval arithmetic.

Result reconstruction and total error:

straightforward manual proof + interval arithmetic.
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Questions?

Flocq: http://flocq.gforge.inria.fr/

Gappa: http://gappa.gforge.inria.fr/

Interval: http://coq-interval.gforge.inria.fr/
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