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1 Contractors



The operator C : IRn → IR
n is a contractor for the

equation f (x) = 0, if
�
C([x]) ⊂ [x] (contractance)
x ∈ [x] and f (x) = 0⇒ x ∈ C([x]) (consistence)



Example. Consider the primitive equation:

x2 = sinx1.











C is monotonic if [x] ⊂ [y]⇒ C([x]) ⊂ C([y])
C is idempotent if C (C([x])) = C([x])



Contractor algebra

intersection (C1 ∩ C2) ([x]) def
= C1 ([x]) ∩ C2 ([x])

union (C1 ∪ C2) ([x]) def
= [C1 ([x]) ∪ C2 ([x])]

composition (C1 ◦ C2) ([x]) def
= C1 (C2 ([x]))

reiteration C∞ def
= C ◦ C ◦ C ◦ . . .



Contractor associated with a database

The robot with coordinates (x1, x2) is in the water.







2 Solver



Example. Solve the system

y = x2

y =
√
x.



We build two contractors

C1 :
�
[y] = [y] ∩ [x]2
[x] = [x] ∩

�
[y]

associated with y = x2

C2 :
�
[y] = [y] ∩

�
[x]

[x] = [x] ∩ [y]2
associated with y =

√
x





















3 Generalized contractors



A lattice (E,≤) is a partially ordered set, closed under least

upper and greatest lower bounds.

The join: x ∨ y.

The meet: x ∧ y.



An interval [x] of a complete lattice E is a subset of E
which satisfies

[x] = {x ∈ E | ∧ [x] ≤ x ≤ ∨[x]} .
Both ∅ and E are intervals of E.



An interval function (or tube) and a set interval

A generalized CSP is composed of

variables {x1, . . . , xn} ,
constraints {c1, . . . , cm}
domains {X1, . . . ,Xn} .

The domains Xi should belong to a lattice (Li,⊂).



Define L = L1 × · · · × Ln.

An element X of L is the Cartesian product of n elements

of Li: X = X1 × · · · ×Xn.

The set X will be called hyperdomain.



A generalized contractor is an operator

C : L → L
X → C (X)

which satisfies

X ⊂ Y⇒ C (X) ⊂ C (Y) (monotonicity)
C (X) ⊂ X (contractance)





4 Graph intervals



The set of graphs of A with the relation

G ≤ H ⇔ ∀i, j ∈ {1, . . . ,m} , gij ≤ hij,
corresponds to a complete lattice. Intervals of graphs of A
can thus be defined.



Example




1 1 0
1 1 0
0 0 1




 ∈





[0, 1] [0, 1] 0
1 [0, 1] [0, 1]

[0, 1] [0, 1] [0, 1]








Define the minimal contractor C associated the constraint

equivalence relation. We have

C





[0, 1] [0, 1] 0
1 [0, 1] [0, 1]

[0, 1] [0, 1] [0, 1]




 =





1 1 0
1 1 [0, 1]
0 [0, 1] 1








5 Set intervals



5.1 Definition



Given two setsA− andA+ ofRn, the pair [A] =
	
A−,A+




which encloses all sets A such that

A
− ⊂ A ⊂ A+

is a set interval.



Lattice (P (Rn) ,⊂)



Machine representation of
	
A−,A+






The set interval [∅, ∅] is a singleton : ∅ ∈ [∅, ∅].
The set interval [∅,Rn] encloses all sets of Rn.

The empty set interval is denoted by [Rn, ∅].



Given two sets A and B of Rn. The smallest set interval

which contains A and B is

� {A,B} = [A ∩ B,A ∪ B]



5.2 Arithmetic



(a) A ∈
	
A−,A+




(b) B ∈
	
B−,B+




(c) [A] \ [B]

(d) [B] \ [A]

(e) [A] \ [B] ∪ [B] \ [A]

(f) [A]∪ [B]

(g) [A] ∩ [B]

(h) ([A]∪ [B]) \ ([A] ∩ [B])



5.3 Contractors





Consider the CSP
�

A ⊂ B
A ∈ [A] ,B ∈ [B] .

The optimal contractor is
�

(i) [A] := [A] ⊓ ([A] ∩ [B])
(ii) [B] := [B] ⊓ ([A] ∪ [B])



Consider the CSP
�

A ∩ B = C
A ∈ [A] ,B ∈ [B] ,C ∈ [C] .

The optimal contractor is





(i) [C] := [C] ⊓ ([A] ∩ [B])
(ii) [A] := [A] ⊓ ([C]∪ ([∅,Rn] \ ([B] \ [C])))
(iii) [B] := [B] ⊓ ([C]∪ ([∅,Rn] \ ([A] \ [C]))) .



5.4 Application



Consider the following CSP





(i) X ⊂ A
(ii) B ⊂ X
(iii) X ∩ C = ∅
(iv) f (X) = X,

where X is an unknown subset of R2, f is a rotation with

an angle of −π6 , and





A =
�
(x1, x2) , x

2
1 + x

2
2 ≤ 3

�

B =
�
(x1, x2) , (x1 − 0.5)2 + x22 ≤ 0.3

�

C =
�
(x1, x2) , (x1 − 1)2 + (x2 − 1)2 ≤ 0.15

�



(a) [A]

(b) [B]

(c) [C]

(d) X ⊂ A

(e) B ⊂ X

(f) X ∩ C = ∅

(g) f (X) = X

(h) (f (X) = X)∞



6 SLAM with indistinguishable marks



Robot: ẋ = f(x,u), x (0) = 0.

Marks M = {m (1) ,m (2) , . . . } ⊂ R2.

Context: indistinguishable point marks that are partially

observable



Our SLAM is a chicken and egg problem of cardinality

three:

(i) if the map and the associations are known, we have

localization problem,

(ii) if the trajectory and the associations are known, we

have a mapping problem

(iii) if the trajectory and the map are known we have an

association problem.



The unknown variables have an heterogenous nature:

(i) marks m (j) ∈ R2
(ii) trajectory x (t) : R→ Rn,

(iii) the free space F ∈ P
�
R2
�

(iv) the data associations is a graph G.





A sector H is a subset of R2 which contains a single mark.





Our SLAM problem:
�
ẋ = f(x,u) (evolution equation)
(ti,Hi (x)) (sector list)

where t ∈ [0, tmax], u (t) ∈ [u] (t).
Each set Hi (x (ti)) ⊂ R2 contains a unique mark.

We have an egocentric representation.

We define Hi = Hi (x (ti)).



Example 1. A robot moving in a plane and located at

(x1, x2) . At t3 the robot detects a unique mark at a dis-

tance d ∈ [4, 5]. We have

H3 (x) =
�
a ∈ R2| (x1 − a1)2 + (x2 − a2)2 ∈ [16, 25]

�
.



Example 2. We have two sectors Hi and Hj.

Since Hi ⊂ Hj, Hj\Hi has no mark. Thus we can asso-

ciate Hi with Hj.



Theorem. Define the free space as F =
�
p ∈ R2 | p /∈M

�
.

Considerm sectorsH1, . . . ,Hm. Denote by a (i) the mark

in Hi. We have

(i) Hi ⊂ Hj ⇒ a (i) = a (j)
(ii) Hi ∩Hj = ∅ ⇒ a (i)  = a (j)
(iii) Hi ⊂ Hj ⇒ Hj\Hi ⊂ F.



Example.

The two black zones contain a single mark and no mark

exists in the hatched area.



Association graph. Considerm detections a (1) , . . . , a (m).

The association graph is the graph with nodes a (i) such

that a (i)→ a (j) means that a (i) = a (j).



7 SLAM as a CSP



Variables

(i) the trajectory of the robot x.

(ii) the sectors Hi
(iii) the location of the mark a (i) detected at time ti
(iv) the association graph G
(v) the free space F.



Domains

x ∈ [x] =
	
x−,x+




a (i) ∈ A (i)
Hi ∈ [Hi] =

	
H
−
i ,H

+
i




F ∈ [F] =
	
F−,F+




G ∈ [G] =
	
G−,G+



.



Initialization

[x] (t) = [−∞,∞] if t > 0 and [x] (0) = 0.

A (i) = R2.

Hi ∈
	
∅,R2



.

F ∈
	
∅,R2



.

G ∈ [∅,⊤]



Constraints

(i) ẋ = f (x,u)
(ii) Hi = Hi (x (ti))
(iii) a (i) ∈ Hi
(iv) a (i) = a (j)⇔ gij = 1
(v) a (i) ∈ Hj ⇔ gij = 1
(vi) gij = 1⇒ Hj\Hi ⊂ F
(vii) a (i) /∈ F





8 Test-case



Generation of the data.

A simulated robot follows a cycloid for 100sec.

10 marks inside [−8, 8]× [−8, 8].
A rangefinder collects the distance d̃ to the nearest mark.



Resolution. The robot is
�
ẋ1 = u1 cosu2
ẋ2 = u1 sinu2.

The sector functions are

Hi (x (ti)) = {a | "a− x (ti)" ∈ [di]}
Hi+1 (x (ti+1)) = {a | "a− x (ti+1)" < δi+1} .



Illustration of the propagation. Left: the tube becomes

more and more accurate. Right: The association graph

has more and more arcs.



Superposition of the width of the tube [x] (t)



Associations. At the fixed point, 3888 associations have

been found, 29128 pairs (a (i) , a (j)) have been proven

disjoint and 5400 pairs (a (i) , a (j)) have not been classi-

fied.



Free space F.


