Contractors in lattices for solving generalized constraint satisfaction problems

Journée calcul ensembliste et interprétation abstraite

L. Jaulin ENSTA-Bretagne, Lab-STICC, Brest CNAM, 19 mars 2015, Paris

http://www.ensta-bretagne.fr/jaulin/

Presentation available at http://youtu.be/rRh8azmaWqc

1 Contractors

The operator \mathcal{C} : $\mathbb{IR}^n \to \mathbb{IR}^n$ is a *contractor* for the equation $f(\mathbf{x}) = 0$, if

 $\left\{ \begin{array}{ll} \mathcal{C}([\mathbf{x}]) \subset [\mathbf{x}] & (\text{contractance}) \\ \mathbf{x} \in [\mathbf{x}] \text{ and } f(\mathbf{x}) = \mathbf{0} \Rightarrow \mathbf{x} \in \mathcal{C}([\mathbf{x}]) & (\text{consistence}) \end{array} \right.$

Example. Consider the primitive equation:

 $x_2 = \sin x_1.$

${\cal C}$ is monotonic if	$[\mathbf{x}] \subset [\mathbf{y}] \Rightarrow \mathcal{C}([\mathbf{x}]) \subset \mathcal{C}([\mathbf{y}])$
${\cal C}$ is <i>idempotent</i> if	$\mathcal{C}\left(\mathcal{C}([\mathbf{x}]) ight)=\mathcal{C}([\mathbf{x}])$

Contractor algebra

intersection	$\left(\mathcal{C}_{1}\cap\mathcal{C}_{2} ight)\left(\left[\mathbf{x} ight] ight)\overset{def}{=}\mathcal{C}_{1}\left(\left[\mathbf{x} ight] ight)\cap\mathcal{C}_{2}\left(\left[\mathbf{x} ight] ight)$
union	$\left(\mathcal{C}_{1}\cup\mathcal{C}_{2} ight)\left(\left[\mathbf{x} ight] ight)\stackrel{def}{=}\left[\mathcal{C}_{1}\left(\left[\mathbf{x} ight] ight)\cup\mathcal{C}_{2}\left(\left[\mathbf{x} ight] ight) ight]$
composition	$(\mathcal{C}_1 \circ \mathcal{C}_2)([\mathbf{x}]) \stackrel{def}{=} \mathcal{C}_1(\mathcal{C}_2([\mathbf{x}]))$
reiteration	$\mathcal{C}^{\infty} \stackrel{def}{=} \mathcal{C} \circ \mathcal{C} \circ \mathcal{C} \circ \ldots$

Contractor associated with a database

The robot with coordinates (x_1, x_2) is in the water.

2 Solver

Example. Solve the system

$$y = x^2$$
$$y = \sqrt{x}.$$

We build two contractors

$$\begin{aligned} \mathcal{C}_1 &: \left\{ \begin{array}{l} [y] = [y] \cap [x]^2 \\ [x] = [x] \cap \sqrt{[y]} \end{array} \right. \text{ associated with } y = x^2 \\ \mathcal{C}_2 &: \left\{ \begin{array}{l} [y] = [y] \cap \sqrt{[x]} \\ [x] = [x] \cap [y]^2 \end{array} \right. \text{ associated with } y = \sqrt{x} \end{aligned} \end{aligned}$$

3 Generalized contractors

A *lattice* (\mathcal{E}, \leq) is a partially ordered set, closed under least upper and greatest lower bounds.

The *join*: $x \lor y$. The *meet*: $x \land y$. An interval [x] of a complete lattice ${\mathcal E}$ is a subset of ${\mathcal E}$ which satisfies

$$[x] = \{x \in \mathcal{E} \mid \land [x] \le x \le \lor [x]\}.$$

Both \emptyset and \mathcal{E} are intervals of \mathcal{E} .

An interval function (or tube) and a set interval

A generalized CSP is composed of variables $\{x_1, \ldots, x_n\}$, constraints $\{c_1, \ldots, c_m\}$ domains $\{X_1, \ldots, X_n\}$.

The domains \mathbb{X}_i should belong to a lattice (\mathcal{L}_i, \subset) .

Define $\mathcal{L} = \mathcal{L}_1 \times \cdots \times \mathcal{L}_n$. An element \mathbb{X} of \mathcal{L} is the Cartesian product of n elements of \mathcal{L}_i : $\mathbb{X} = \mathbb{X}_1 \times \cdots \times \mathbb{X}_n$. The set \mathbb{X} will be called *hyperdomain*. A generalized *contractor* is an operator

$$\mathcal{C}: egin{array}{ccc} \mathcal{L} & o & \mathcal{L} \ \mathbb{X} & o & \mathcal{C}(\mathbb{X}) \end{array}$$

which satisfies

$$\mathbb{X} \subset \mathbb{Y} \Rightarrow \mathcal{C}(\mathbb{X}) \subset \mathcal{C}(\mathbb{Y})$$

 $\mathcal{C}(\mathbb{X}) \subset \mathbb{X}$

(monotonicity) (contractance)

4 Graph intervals

The set of graphs of ${\mathcal A}$ with the relation

$$\mathcal{G} \leq \mathcal{H} \Leftrightarrow orall i, j \in \{1, \dots, m\}, \ g_{ij} \leq h_{ij},$$

corresponds to a complete lattice. Intervals of graphs of \mathcal{A} can thus be defined.

Example

$$\begin{pmatrix} 1 & 1 & 0 \\ 1 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \in \begin{pmatrix} [0,1] & [0,1] & 0 \\ 1 & [0,1] & [0,1] \\ [0,1] & [0,1] & [0,1] \end{pmatrix}$$
Define the minimal contractor ${\cal C}$ associated the constraint equivalence relation. We have

5 Set intervals

5.1 Definition

Given two sets \mathbb{A}^- and \mathbb{A}^+ of \mathbb{R}^n , the pair $[\mathbb{A}] = [\mathbb{A}^-, \mathbb{A}^+]$ which encloses all sets \mathbb{A} such that

$$\mathbb{A}^- \subset \mathbb{A} \subset \mathbb{A}^+$$

is a set interval.

Lattice $\left(\mathcal{P}\left(\mathbb{R}^{n}
ight) ,\subset
ight)$

The set interval $[\emptyset, \emptyset]$ is a singleton : $\emptyset \in [\emptyset, \emptyset]$. The set interval $[\emptyset, \mathbb{R}^n]$ encloses all sets of \mathbb{R}^n . The empty set interval is denoted by $[\mathbb{R}^n, \emptyset]$. Given two sets A and B of \mathbb{R}^n . The smallest set interval which contains A and B is

$$\Box \left\{ \mathbb{A}, \mathbb{B} \right\} = \left[\mathbb{A} \cap \mathbb{B}, \mathbb{A} \cup \mathbb{B} \right]$$

5.2 Arithmetic

(h) $([\mathbb{A}] \cup [\mathbb{B}]) \setminus ([\mathbb{A}] \cap [\mathbb{B}])$

-) $[\mathbb{A}] \cap [\mathbb{B}]$
- (f) $[\mathbb{A}] \cup [\mathbb{B}]$
- (e) $[\mathbb{A}] \setminus [\mathbb{B}] \cup [\mathbb{B}] \setminus [\mathbb{A}]$
- (d) $[\mathbb{B}] \setminus [\mathbb{A}]$
- $\llbracket \mathbb{A} \rrbracket \setminus \llbracket \mathbb{B} \rrbracket$
- $\mathbb{B} \in \ \left[\mathbb{B}^{-}, \mathbb{B}^{+}
 ight]$
- (a) $\mathbb{A} \in \left[\mathbb{A}^{-}, \mathbb{A}^{+}\right]$

5.3 Contractors

Consider the CSP

$$\left(\begin{array}{c} \mathbb{A} \subset \mathbb{B} \\ \mathbb{A} \in [\mathbb{A}], \mathbb{B} \in [\mathbb{B}]. \end{array}\right.$$

The optimal contractor is

$$\begin{cases} (i) & [\mathbb{A}] := [\mathbb{A}] \sqcap ([\mathbb{A}] \cap [\mathbb{B}]) \\ (ii) & [\mathbb{B}] := [\mathbb{B}] \sqcap ([\mathbb{A}] \cup [\mathbb{B}]) \end{cases}$$

Consider the CSP

$$\left\{\begin{array}{c} \mathbb{A} \cap \mathbb{B} = \mathbb{C} \\ \mathbb{A} \in [\mathbb{A}], \mathbb{B} \in [\mathbb{B}], \mathbb{C} \in [\mathbb{C}]. \end{array}\right.$$

The optimal contractor is

$$\begin{cases} (\mathsf{i}) & [\mathbb{C}] := [\mathbb{C}] \sqcap ([\mathbb{A}] \cap [\mathbb{B}]) \\ (\mathsf{ii}) & [\mathbb{A}] := [\mathbb{A}] \sqcap ([\mathbb{C}] \cup ([\emptyset, \mathbb{R}^n] \setminus ([\mathbb{B}] \setminus [\mathbb{C}]))) \\ (\mathsf{iii}) & [\mathbb{B}] := [\mathbb{B}] \sqcap ([\mathbb{C}] \cup ([\emptyset, \mathbb{R}^n] \setminus ([\mathbb{A}] \setminus [\mathbb{C}]))). \end{cases}$$

5.4 Application

Consider the following CSP

$$\begin{cases} (i) & \mathbb{X} \subset \mathbb{A} \\ (ii) & \mathbb{B} \subset \mathbb{X} \\ (iii) & \mathbb{X} \cap \mathbb{C} = \emptyset \\ (iv) & f(\mathbb{X}) = \mathbb{X}, \end{cases}$$

where $\mathbb X$ is an unknown subset of $\mathbb R^2,\ f$ is a rotation with an angle of $-\frac{\pi}{6},$ and

$$\begin{cases} \mathbb{A} &= \left\{ (x_1, x_2), x_1^2 + x_2^2 \leq 3 \right\} \\ \mathbb{B} &= \left\{ (x_1, x_2), (x_1 - 0.5)^2 + x_2^2 \leq 0.3 \right\} \\ \mathbb{C} &= \left\{ (x_1, x_2), (x_1 - 1)^2 + (x_2 - 1)^2 \leq 0.15 \right\} \end{cases}$$

6 SLAM with indistinguishable marks

 $\begin{array}{l} \text{Robot: } \dot{\mathbf{x}} = \mathbf{f}(\mathbf{x},\mathbf{u}), \ \mathbf{x}\left(\mathbf{0}\right) = \mathbf{0}.\\ \text{Marks } \mathcal{M} = \left\{\mathbf{m}\left(\mathbf{1}\right), \mathbf{m}\left(\mathbf{2}\right), \dots \right\} \subset \mathbb{R}^2. \end{array}$

Context: indistinguishable point marks that are partially observable

Our SLAM is a *chicken and egg* problem of cardinality three:

(i) if the map and the associations are known, we have localization problem,

(ii) if the trajectory and the associations are known, we have a mapping problem

(iii) if the trajectory and the map are known we have an association problem.

The unknown variables have an heterogenous nature: (i) marks $\mathbf{m}(j) \in \mathbb{R}^2$ (ii) trajectory $\mathbf{x}(t) : \mathbb{R} \to \mathbb{R}^n$, (iii) the free space $\mathbb{F} \in \mathcal{P}(\mathbb{R}^2)$ (iv) the data associations is a graph \mathcal{G} .

A sector $\mathbb H$ is a subset of $\mathbb R^2$ which contains a single mark.

Our SLAM problem:

$$\begin{cases} \dot{\mathbf{x}} = \mathbf{f}(\mathbf{x}, \mathbf{u}) & (\text{evolution equation}) \\ (t_i, \mathcal{H}_i(\mathbf{x})) & (\text{sector list}) \end{cases}$$

where $t \in [0, t_{\max}]$, $\mathbf{u}(t) \in [\mathbf{u}](t)$. Each set $\mathcal{H}_i(\mathbf{x}(t_i)) \subset \mathbb{R}^2$ contains a unique mark. We have an egocentric representation. We define $\mathbb{H}_i = \mathcal{H}_i(\mathbf{x}(t_i))$. **Example 1**. A robot moving in a plane and located at (x_1, x_2) . At t_3 the robot detects a unique mark at a distance $d \in [4, 5]$. We have

 $\mathcal{H}_{3}(\mathbf{x}) = \left\{ \mathbf{a} \in \mathbb{R}^{2} | (x_{1} - a_{1})^{2} + (x_{2} - a_{2})^{2} \in [16, 25] \right\}.$

Example 2. We have two sectors \mathbb{H}_i and \mathbb{H}_j . Since $\mathbb{H}_i \subset \mathbb{H}_j$, $\mathbb{H}_j \setminus \mathbb{H}_i$ has no mark. Thus we can associate \mathbb{H}_i with \mathbb{H}_j .

Theorem. Define the free space as $\mathbb{F} = \{ \mathbf{p} \in \mathbb{R}^2 \mid \mathbf{p} \notin \mathcal{M} \}$. Consider *m* sectors $\mathbb{H}_1, \ldots, \mathbb{H}_m$. Denote by $\mathbf{a}(i)$ the mark in \mathbb{H}_i . We have

(i)
$$\mathbb{H}_i \subset \mathbb{H}_j \Rightarrow \mathbf{a}(i) = \mathbf{a}(j)$$

(ii) $\mathbb{H}_i \cap \mathbb{H}_j = \emptyset \Rightarrow \mathbf{a}(i) \neq \mathbf{a}(j)$
(iii) $\mathbb{H}_i \subset \mathbb{H}_j \Rightarrow \mathbb{H}_j \setminus \mathbb{H}_i \subset \mathbb{F}.$

Example.

The two black zones contain a single mark and no mark exists in the hatched area.

Association graph. Consider m detections $\mathbf{a}(1), \ldots, \mathbf{a}(m)$. The *association graph* is the graph with nodes $\mathbf{a}(i)$ such that $\mathbf{a}(i) \to \mathbf{a}(j)$ means that $\mathbf{a}(i) = \mathbf{a}(j)$.

7 SLAM as a CSP

Variables

(i) the trajectory of the robot \mathbf{x} .

(ii) the sectors \mathbb{H}_i

(iii) the location of the mark $\mathbf{a}(i)$ detected at time t_i

(iv) the association graph ${\cal G}$

(v) the free space \mathbb{F} .

Domains

$$egin{aligned} \mathbf{x} \in [\mathbf{x}] &= \left[\mathbf{x}^{-}, \mathbf{x}^{+}
ight] \ \mathbf{a}\left(i
ight) \in \mathbb{A}\left(i
ight) \ \mathbb{H}_{i} \in [\mathbb{H}_{i}] &= \left[\mathbb{H}_{i}^{-}, \mathbb{H}_{i}^{+}
ight] \ \mathbb{F} \in [\mathbb{F}] &= \left[\mathbb{F}^{-}, \mathbb{F}^{+}
ight] \ \mathcal{G} \in [\mathcal{G}] &= \left[\mathcal{G}^{-}, \mathcal{G}^{+}
ight]. \end{aligned}$$

Initialization

$$\begin{split} & [\mathbf{x}] \left(t \right) = [-\infty, \infty] \text{ if } t > 0 \text{ and } [\mathbf{x}] \left(0 \right) = \mathbf{0}. \\ & \mathbb{A} \left(i \right) = \mathbb{R}^2. \\ & \mathbb{H}_i \in \left[\emptyset, \mathbb{R}^2 \right]. \\ & \mathbb{F} \in \left[\emptyset, \mathbb{R}^2 \right]. \\ & \mathcal{G} \in \left[\emptyset, \top \right]. \end{split}$$

Constraints

(i)
$$\dot{\mathbf{x}} = \mathbf{f}(\mathbf{x}, \mathbf{u})$$

(ii) $\mathbb{H}_i = \mathcal{H}_i(\mathbf{x}(t_i))$
(iii) $\mathbf{a}(i) \in \mathbb{H}_i$
(iv) $\mathbf{a}(i) = \mathbf{a}(j) \Leftrightarrow g_{ij} = \mathbf{1}$
(v) $\mathbf{a}(i) \in \mathbb{H}_j \Leftrightarrow g_{ij} = \mathbf{1}$
(vi) $g_{ij} = \mathbf{1} \Rightarrow \mathbb{H}_j \setminus \mathbb{H}_i \subset \mathbb{F}$
(vii) $\mathbf{a}(i) \notin \mathbb{F}$

8 Test-case

Generation of the data.

A simulated robot follows a cycloid for 100sec.

10 marks inside $[-8, 8] \times [-8, 8]$.

A rangefinder collects the distance \tilde{d} to the nearest mark.

Resolution. The robot is

$$\begin{cases} \dot{x}_1 = u_1 \cos u_2 \\ \dot{x}_2 = u_1 \sin u_2. \end{cases}$$

The sector functions are

$$\begin{aligned} \mathcal{H}_i\left(\mathbf{x}\left(t_i\right)\right) &= \left\{\mathbf{a} \mid \left\|\mathbf{a} - \mathbf{x}\left(t_i\right)\right\| \in \left[d_i\right]\right\} \\ \mathcal{H}_{i+1}\left(\mathbf{x}\left(t_{i+1}\right)\right) &= \left\{\mathbf{a} \mid \left\|\mathbf{a} - \mathbf{x}\left(t_{i+1}\right)\right\| < \delta_{i+1}\right\}. \end{aligned}$$

Illustration of the propagation. Left: the tube becomes more and more accurate. Right: The association graph has more and more arcs.

Superposition of the width of the tube $[\mathbf{x}](t)$

Associations. At the fixed point, 3888 associations have been found, 29128 pairs $(\mathbf{a}(i), \mathbf{a}(j))$ have been proven disjoint and 5400 pairs $(\mathbf{a}(i), \mathbf{a}(j))$ have not been classified.

Free space \mathbb{F} .