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1 Contractors



The operator C : IR"™ — IR" is a contractor for the
equation f (x) =0, if

{ C([x]) C [x] (contractance)
x € [x] and f(x) =0=x € C([x]) (consistence)



Example. Consider the primitive equation:

Lo — sin L.















C is monotonic if

x] C [y] = C([x]) C C([y])

C is idempotent if

C (C([x])) = c(x])




Contractor algebra

intersection | (C1 N Cs) ([x]) def C1([x]) NCo ([x])
(C1UC) (x]) £ [C1 ([x]) U C ([x])]
composition | (C1 0 C2) ([x]) & €1 (Ca ([x]))
reiteration C° def CoCoCo...




Contractor associated with a database

The robot with coordinates (1, x2) is in the water.









2 Solver



Example. Solve the system

8



We build two contractors

vl =l N [2]? . L
Cq: { 2] = [2] N \/m associated with y = x

: [y]:[y]ﬂ\/m associated wi = /T
62'{[x1=[x1m[y12 ted with y = vr
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3 Generalized contractors



A lattice (€, <) is a partially ordered set, closed under least
upper and greatest lower bounds.

The join: x V y.

The meet: x N y.



An interval [x] of a complete lattice £ is a subset of £
which satisfies

[z] ={x €& | N[zx] <z < V][x]}.

Both @ and &€ are intervals of &.



T =]

An interval function (or tube) and a set interval

A generalized CSP is composed of
variables {z1,...,zn},

constraints {c1,...,cm}
domains {Xq,...,Xp}.

The domains X; should belong to a lattice (£;, C).



Define L = L1 X --- X L.

An element X of L is the Cartesian product of n elements
Of,CZ'Z XZXl X -+ X Xp.

The set X will be called hyperdomain.



A generalized contractor is an operator

L — L

Cix & e

which satisfies

XCY=C(X)CC(Y) (monotonicity)
C(X)cX (contractance)



(PR"),<)

T
X

X

+




4 Graph intervals



The set of graphs of A with the relation

G<H&Vi,je{l,...,m}, gi; < hyj,

corresponds to a complete lattice. Intervals of graphs of A
can thus be defined.



Example

|

O R R

1 o) ([0,1] [0,1] O )
1 0 |¢c 1 [0,1] [0,1]
0 1 [0,1] [0,1] [0, 1]

o }
L) Jo)




Define the minimal contractor C associated the constraint
equivalence relation. We have

[0,1] [0,1] O 1 1 0
cl 1 [0,1] [0,1] |=|1 1 [o,1]
[0,1] [0,1] [0,1] 0 [0,1] 1



5 Set intervals



5.1 Definition



Given two sets A~ and A™ of R", the pair [A] = [A‘, Aﬂ
which encloses all sets A such that

AT CACAT

Is a set Iinterval.
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Machine representation of [A‘, Aﬂ



The set interval [(), ] is a singleton : 0 € [0, 0].
The set interval [(), R"] encloses all sets of R™.
The empty set interval is denoted by [R", ].



Given two sets A and B of R™. The smallest set interval
which contains A and B is

0{A,B} = [ANB, AUB]

[ANB,AUB]

A / AUB

ANB B




5.2 Arithmetic



(@

T |

[A

I\ [B]
[B]\ [A]
[AT\ [B] U [B] \ [A]

[A]U[B]

[A] N [B]

(h) ([AJUIB])\ ([A] N [B])



5.3 Contractors



(P(R™), <)

E_ c1 (A, B)
N | ﬁx[ﬂg]
_E \
B_E C1(AL[B])
el | | |(7|D(Rn)’C)

[A]



Consider the CSP

ACB
{AE[A],IB%E[IB%].

The optimal contractor is

{ (i) [A] == [A] T ([A] N [B])
(i) [B] := [B] ™1 ([A] U [B])



Consider the CSP

ANB=C
{AE[A],IB%E[IB%],CE[C].

The optimal contractor is
{ (i) [C] = [C] M ([A] N [B])

(i) [A]:=[A] M ([CTU ([0, R™]\ ([B] \ [C])))
(iii) - [B] := [B] 1 ([C] L ([0, R*]\ ([A]\[C]))) -



5.4 Application



Consider the following CSP

(i) XCA
(ii) BCX
(i) XNC=0

(V) fX) =X,

where X is an unknown subset of R? f is a rotation with
an angle of —¢, and

(A = (:cl,:cz),:c%—l—x%SS}
$ B = {(z1,22), (w1 —0.5)* + 23 < 0.3
C = {(z1,22),(x1—1)°+ (22— 1)° < o.15}



[A]

[B]

[C]

XCA

BCX

XNC=40

fX)=X

(h) (5 (X) =X)~




6 SLAM with indistinguishable marks



Robot: x = f(x,u), x(0) = 0.
Marks M = {m (1),m(2),...} C R2

Context: indistinguishable point marks that are partially
observable



Our SLAM is a chicken and egg problem of cardinality
three:

(i) if the map and the associations are known, we have
localization problem,

(ii) if the trajectory and the associations are known, we
have a mapping problem

(i) if the trajectory and the map are known we have an
association problem.



The unknown variables have an heterogenous nature:
(i) marks m (j) € R?

(ii) trajectory x(t) : R — R",

(iii) the free space F € P (R2>

(iv) the data associations is a graph G.






A sector H is a subset of R? which contains a single mark.






Our SLAM problem:

x = f(x,u) (evolution equation)
(t;, H; (x)) (sector list)

where t € [0, tmax], u (t) € [u] (¢).

Fach set H; (x (¢;)) C R? contains a unique mark.

We have an egocentric representation.
We define H; = H; (x (t;)).



Example 1. A robot moving in a plane and located at
(1, x2). At t3 the robot detects a unique mark at a dis-

tance d € [4,5]. We have

Hs (x) = {a e R?| (z1 — a1)? + (z2 — a2)? € [16, 25]} .



Example 2. We have two sectors H; and Hi;.

Since H; C H;, H,;\H; has no mark. Thus we can asso

ciate Hj; with Hj;.

o
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Theorem. Define the free space as F = {p cR’|p¢ ./\/l}
Consider m sectors Hy, ..., H,,. Denote by a (i) the mark
in H;. We have

(i) H; CH; = a(i) =a(y)
(i) H;NH; =0 = a(i) # a(y)
(iii) H; C ]H[j = Hj\Hi C F.



Example.

The two black zones contain a single mark and no mark
exists in the hatched area.



Association graph. Consider m detectionsa(1),...,a(m).
The association graph is the graph with nodes a (%) such
that a (i) — a(j) means that a (i) = a(j).



7 SLAM as a CSP



Variables

(i) the trajectory of the robot x.

(ii) the sectors Hi

(i) the location of the mark a (¢) detected at time ¢;
(iv) the association graph G

(v) the free space F.



Domains

X € [x] = [X_,Xﬂ

a (i) € A ()

H; € [Hy] = [H;, H;]
F € [F] = [F~,F*]
gelgl=|-,07|



Initialization

[x] (t) = [—o0,00] if t > 0 and [x] (0) = O.
A7) =R?

H; € [@,Rﬂ.

F e [0,R?).

Gelo,T]



Constraints

x = f (x,u)

H; = H; (x ()

a(z) ~ ]H[Z

a(t)=a(j) & gi;=1
a(i) e H; < g =1
9ij = 1 :>HJ\HZ CF
a(i)¢F
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8 Test-case



Generation of the data.

A simulated robot follows a cycloid for 100sec.

10 marks inside [—8, 8] x [—8, 8].

A rangefinder collects the distance d to the nearest mark.



Resolution. The robot is

5'81 = Uj COsSun
21'32 u1l sin us.

The sector functions are

H; (x () = {a| [la—x ()| € [d]}
Hiv1(x(tir1)) = {a] [la—x(Cr1)ll < dip1}-



lllustration of the propagation. Left: the tube becomes
more and more accurate. Right: The association graph
has more and more arcs.
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Superposition of the width of the tube [x] (%)




Associations. At the fixed point, 3888 associations have
been found, 29128 pairs (a(z),a(j)) have been proven
disjoint and 5400 pairs (a(z),a(j)) have not been classi-
fied.
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Free space F.




