
Analyse par intervalles et interprétation abstraite:
une question de vocabulaire ?

Alexandre Chapoutot

ENSTA ParisTech

GT MEA – March 19, 2015

Interval Analysis and Abstract Interpretation

Starting point of this talk
Interval Analysis: Ramon Moore “Interval Analysis”, 1960.
Abstract interpretation: Patrick Cousot and Radhia Cousot “Abstract

Interpretation: a unified lattice model for static analysis of
programs by construction or approximation of fixpoints”,
1977.

Disclaimer
Goal of this talk: clarifying some vocabulary and concepts used in these
two research fields.

It is not a comparison of them.

2 / 22

Interval analysis

. . . The title refers to a set of concepts and techniques based on
treating an interval of real numbers as a new kind of numbers,
represented by a pair of real numbers, namely, its left and right
endpoints.
The techniques can be programmed for computers in order to
obtain simultaneously upper and lower bounds to exact
solutions of equations of various types. . .

R. Moore, in preface of Interval Analysis, 1966.

3 / 22

Interval numbers and arithmetic

Interval numbers
[a, b] = {x ∈ R | a ≤ x ≤ b}

Simplified version of the interval arithmetic (Moore, p. 8-9)

Operation Interval arithmetic
[a, b] + [c, d] [a + c, b + d]

[a, b]− [c, d] [a − d , b − c]

[a, b]× [c, d] [min(E),max(E)] with E = (ac, ad , bc , bd)

[a, b]÷ [c, d]
[
a
d ,

b
c

]
if 0 6= [c, d]

Theses operations are a computable version of sets operations

[a, b] � [c, d] = {x � y | ∀x ∈ [a, b]∧ y ∈ [c, d]} with � ∈ {+,−,×,÷}

4 / 22

Inclusion function

An inclusion function [f] : IRn → IRm for a function f : Rn → Rm

satisfies for all [x] ∈ IRn,

f ([x]) = {f (x) | x ∈ [x]}
⊆ [f] ([x])

f([x])

[f]([x])

5 / 22

Properties of inclusion function
Interval arithmetic is inclusion isotonic, i.e.,

Theorem (Moore, p. 11)
If [f]([x1], . . . , [xn]) is a rational expression in the interval variables [x1],
. . . , [xn], i.e., a finite combination of x1, . . . , xn and a finite set of
constant intervals with interval arithmetic operations, then

[x ′1] ⊂ [x1], . . . , [x ′n] ⊂ [xn]⇒ [f]([x ′1], . . . , [x ′n]) ⊂ [f]([x1], . . . , [xn])

for every set of interval number [x1], . . . , [xn] for which the interval
arithmetic operations in [f] are defined.

Consequence: “. . . we can bound the range of a real rational function
over intervals. . . ”

If f (x1, . . . , xn) is real rational expression in which each variable x1, . . . ,
xn occurs only once then

[f]([x1], . . . , [xn]) = {f (x1, . . . , xn) | xi ∈ [xi], i = 1, . . . , n} .
6 / 22

Problem solved

IRn can be endowed with a metric and an (inclusion) order
inclusion function can be extended do deal with sin, cos,

∫
, etc.

Examples of considered problem in interval analysis
f (x) � y with � ∈ {≤,=,≥, etc.}

x � f −1(y)
minimize f (x) subject to p(x) < 0 and q(x) = 0

ẋ = f (x)
etc.

A generic algorithm
A big box [x] containing the solution
Walk through [x] to isolate solution

Usually combined with methods such as bisection, contraction or paving.

7 / 22

Abstract interpretation

A program denotes computations in some universe of objects.
Abstract interpretation of programs consists in using that
denotation to describe computations in another universe of
abstract objects, so that the results of abstract execution give
some information on the actual computations. . .

P. Cousot and R. Cousot, in abstract of POPL article, 1977.

8 / 22

Abstract interpretation
Abstract interpretation is semantics-based program analysis.

The main ingredients
the standard meanings of a program.
a simplified meaning (used to answer specific questions) of a
program.
a mathematical relations between these two meaning to guarantees
correctness (or soundness).

The standard meaning is usually given by an operational semantics.

A simplified (or approximated) meaning is usually based on a set
representation of the operational semantics, i.e. collecting semantics.

A mathematical approach (ordered sets) guarantee:
the correction of the approximation w.r.t. the standard meaning
(Galois connections).
a computable approximation.

9 / 22

A small introductory example – 1

Example settings
A small program for which we want to prove that at control-point p3
the values of variable x are always positive.

Source code with program
points
p0: while x > 0 do
p1: x = x / 2

done
p2: x = -4 * x
p3: exit

Note: p0 is the entry point and
p3 is the exit point

Control flow graph

p0p1

p2

p3

x > 0

x = x/2

x ≤ 0

x = −4 ∗ x

Control flow graph (CFG) defines a relation between the program
points. It is used to describe an execution.

10 / 22

A small introductory example – 1

Example settings
A small program for which we want to prove that at control-point p3
the values of variable x are always positive.

Source code with program
points
p0: while x > 0 do
p1: x = x / 2

done
p2: x = -4 * x
p3: exit

Note: p0 is the entry point and
p3 is the exit point

Control flow graph

p0p1

p2

p3

x > 0

x = x/2

x ≤ 0

x = −4 ∗ x

Trace of execution: At each program point is associated the values of
the variables. For example,

At the entry point x = 5:
p0, 5→ p1, 5→ p0, 2→ p1, 2→ p0, 0→ p2, 0→ p3, 0

10 / 22

A small introductory example – 2

Example settings
A small program for which we want to prove that at control-point p3
the values of variable x are always positive.

Control flow graph

p0p1

p2

p3

x > 0

x = x/2

x ≤ 0

x = −4 ∗ x

Note: x ∈ Z so possible infinite number of
traces of execution.

As consequence,
Software testing will never produces a
100% affirmative answer.

One solution
Manipulates set of values to reduce the number of executions we have
to check to answer the question.

11 / 22

A small introductory example – 3 (Set of executions)

Example settings
A small program for which we want to prove that at control-point p3
the values of variable x are always positive.

Control flow graph

p0p1

p2

p3

x > 0

x = x/2

x ≤ 0

x = −4 ∗ x

Note: each operation is applied
on each value of the set.

For example, if x ∈ {3, 4} we have:
p0, {3, 4} p1, {3, 4} p0, {1, 2}

p1, {1, 2}

p0, {0, 1}

p1, {1} p2, {0}

p0, {0}p2, {0} p3, {0}p3, {0}

Problem
Set of values are usually not representable in computers.

12 / 22

A small introductory example – 4 (Abstract values)

Example settings
A small program for which we want to prove that at control-point p3
the values of variable x are always positive.

Control flow graph

p0p1

p2

p3

x > 0

x = x/2

x ≤ 0

x = −4 ∗ x

Remark: we do not need all the values to
answer the question. Assume, we have
"abstract" values to represent positive
(Pos) and negative (Neg) values.

We need only two "abstract" executions to
answer the question that is abstract
interpretation.

Easy case: all values are negative
p0, Neg p2, Neg p3, Pos

13 / 22

A small introductory example – 4 (Abstract values)

Example settings
A small program for which we want to prove that at control-point p3
the values of variable x are always positive.

Control flow graph

p0p1

p2

p3

x > 0

x = x/2

x ≤ 0

x = −4 ∗ x

Remark: we do not need all the values to
answer the question. Assume, we have
"abstract" values to represent positive
(Pos) and negative (Neg) values.

We need only two "abstract" executions to
answer the question that is abstract
interpretation.

Hard case: All values are positive (non terminating execution)

p0, Pos

p1, Pos

p2, Zero p3, Zero

p0, Pos . . . Solution State-based collecting
semantics: gather all values
encounter at each program points.

13 / 22

A small introductory example – 5 (Collecting semantics)

Example settings
A small program for which we want to prove that at control-point p3
the values of variable x are always positive.

Control flow graph

p0p1

p2

p3

x > 0

x = x/2

x ≤ 0

x = −4 ∗ x

Idea: To avoid infinite abstract traces, we
gather at each control point the set of all
possible values met for all possible
execution trace.

p0, Pos

p1, Pos

p2, Zero p3, Zero

Collecting semantics
It is the solution of a fixed-point of semantic
equations defined over an ordered set.

X0 = Jx = x/2K (X1) ∪ Xinit

X1 = Jx > 0K (X0)

X2 = Jx ≤ 0K (X0)

X3 = Jx = −4 ∗ xK (X2)

14 / 22

Collecting semantics as fixpoint

We can associate a system of semantic equations to the collecting
semantics of the form

X = F (X) with X ∈ (℘(Var→ D))n

with n the number of program points.

Question
Does this system of equation have a solution?

Solution: YES if X is a lattice and F is continuous.
Algorithm based on Kleene method (combined with iteration strategies):

1: ~X0 := ~∅
2: repeat
3: ~Xi := ~Xi−1 ∪̇ F (~Xi−1)

4: until ~Xi ⊆̇ ~Xi−1

15 / 22

Lattice

Definition
A lattice is an ordered set P such that for all couple of elements of P:

a least upper bound exists: ∀x , y ∈ P, x t y ∈ P .

a greatest lower bound exists: ∀x , y ∈ P, x u y ∈ P .

Powerset

{a, c}{a, b} {b, c}

{a, b, c}

{a} {b} {c}

∅

{a, b} ∪ {c} = {a, b, c}

{a, b} ∩ {b, c} = {b}

16 / 22

Functions between ordered sets

Monotony
Let 〈P,vP〉 and 〈Q,vQ〉 two Poset and f : P → Q. The function f is
monotone (or non-decreasing) iff

∀x , y ∈ P, x vP y ⇒ f (x) vQ f (y) .

Continuity
Let 〈P,vP〉 and 〈Q,vQ〉 two Poset and f : P → Q. The function f is
continuous iff

∀ increasing chain X ⊂ P, tQf (X) = f (tPX) .

17 / 22

Relation between concrete and abstract semantics

Abstract values are a symbolic representation of set of values.

∅

{0} {1} {2} . . .{−1}{−2}. . .

{0, 1} . . .{−1, 0}. . .

{−1, 0, 1}

{Z}
>

NEG POS

ZERO

⊥

α

γ

These two words are connected each other with:
Function γ: gives a meaning to abstract values.
Function α: maps each set of values to an abstract value.

which form a Galois connection.

18 / 22

Galois connection
The abstraction and the concretization functions form a Galois
connection between the concrete domain P and the abstract domain Q.

Definition
Let 〈P,vP〉 and 〈Q,vQ〉 two lattices. A Galois connection exists
between P and Q iff there are two functions α and γ such that:

1 α is monotone.
2 γ is monotone.
3 ∀q ∈ Q, q vQ α(γ(q)).
4 ∀p ∈ P, γ(α(p)) vP p.

Remark: Conditions 3 and 4 express that we preserve safety but we may
lose precision.

Notation
〈P,vP〉 −−−→←−−−α

γ
〈Q,vQ〉

19 / 22

Correctnees of abstraction

Abstract semantics is defined on the abstraction of transfer functions
using the Galois connection (α, γ).

For a concrete transfer function f, we consider f] as a sound abstract
version iff

(γ ◦ f])(v]) w (f ◦ γ)(v]) .

Lemma of correctness
Let 〈P,v〉 −−−→←−−−α

γ
〈P],v]〉 a Galois connection. For all p ∈ P, for all

p] ∈ P] if p ∈ γ(p]) then

f(p) v γ
(
f](p])

)
.

20 / 22

Abstract interpretation and interval analysis

Question
Where are the inclusion functions in all that?
In the interpretation of arithmetic expressions

Jvar = expK =

{
(Var→ R) → (Var→ R)
σ 7→ σ [var← JexpK(σ)]

Question
Where are the set theoretic operations in all that?
In the interpretation of conditionals
and in the unions of paths in control flow graph.

Jx < 0K] =
{
(Var→ Sign) → (Var→ Sign)
σ] 7→ σ[var← s] s.t. s = σ](x) ∩] Neg

21 / 22

Conlusion

Both interval analysis and abstract interepretation talk about set of
values but

the mathematical objects considered are not exactly the same.
usually the goal of the computations is not the same;

Locally, a combination of methods and techniques is possible e.g., Ruher
et al.

22 / 22

