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Numerical CSP

Traditional CSP definition

〈V , D, C〉 where
I V = {x1, . . . , xn}
I D = {D1, . . . , Dn}
I C = {c1, . . . , cm}

→ Variable assignments that satisfy constraints

Numerical CSP Definition

Continuous domains (usually intervals)
〈x, [x], C〉 where

I x = (x1, . . . , xn) ∈ R
n

I [x] = [x1] × · · · × [xn] ⊆ R
n

I C = {c1, . . . , cm} with
ck : R

n → {0, 1}

→ Solution set:

{x ∈ [x] : c1(x) ∧ · · · ∧ cm(x)} ⊆ R
n c(x) ≡ (∀n ∈ N, f (n)(x) ≤ 0)

Infinitely complex solution sets
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Numerical CSPs with Manifolds of Solutions

Equality Constraints

c(x) ≡ f (x) = 0 with f compound of usual differentiable elementary functions

Typically: {c1, . . . , cm} with m ≤ n

=⇒ solution set = manifold of dimension n − m

Focus : n − m ≥ 1

f1(x) = x2
1 + x2

2 − x2
3

(dim = 2)
f2(x) = x2

1 + x2
2 + x2

3 − 1
(dim = 1)

f3(x) = x1

(dim = 0)
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Traditional Resolution of NCSP

The Branch and Prune Algorithm

Input: Set of constraints and one box domain

Output: List of boxes which contains all solutions

Algorithm: Succession of filtering and branching

Example

f (x) = x2
1 + x2

2 − 1

[x1] = [0.3, 0.7] and
[x2] = [0.6, 1]

=⇒ n = 2 and m = 1

=⇒ dim = n − m = 1
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Issues in the Branch and Bound Algorithm

Locality of Filtering

Several constraints =⇒ local filtering ⊕ propagation
I Possible slow convergence to a fixed point
I Fixed point possibly a poor quality enclosure

→ Global constraint through preconditioning when dim = 0
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Issues in the Branch and Bound Algorithm

Locality of Filtering

Several constraints =⇒ local filtering ⊕ propagation
I Possible slow convergence to a fixed point
I Fixed point possibly a poor quality enclosure

→ Global constraint through preconditioning when dim = 0

Existence of Solutions

Non rational solutions

Numerical evaluation (using floating points) of the constraints cannot prove
existence

→ Existence theorems (e.g. interval Newton) when dim = 0
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Issues in the Branch and Bound Algorithm

Locality of Filtering

Several constraints =⇒ local filtering ⊕ propagation
I Possible slow convergence to a fixed point
I Fixed point possibly a poor quality enclosure

→ Global constraint through preconditioning when dim = 0

Existence of Solutions

Non rational solutions

Numerical evaluation (using floating points) of the constraints cannot prove
existence

→ Existence theorems (e.g. interval Newton) when dim = 0

Wrapping Effect

Solution set not parallel to some axis

=⇒ not efficiently enclosed inside a box

Not an issue when dim = 0
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Parallelepiped domains

Parallelepipeds

Image of a box through an affine map
I A ∈ R

n×n

I [u] ∈ IR
n

I x̃ ∈ R
n

(

A, [u], x̃
)

= {A · u + x̃ : u ∈ [u]}

Widely used in Interval Analysis:
I Class of sets larger than boxes
I Still tractable (n2 + 2n floating point numbers)

New NCSP Definition

〈x, (A, [u], x̃), C〉

Tasks: Define
I Filtering parallelepiped domains
I Bisecting parallelepiped domains
I Updating parallelepiped domains orientations
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Filtering Parallelepiped Domains: Decreasing the Wrapping Effect
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Filtering the Auxiliary NCSP

Many occurrences of variables: f (a11u1 + a12u2 + x̃1, . . .) = 0

→ Derivative based filtering (interval Newton, or box-consistency)
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Filtering Parallelepiped Domains: A Global Constraint

Box Domain

Each constraint has
solutions on every sides

⇒ No possible contraction
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Filtering Parallelepiped Domains: A Global Constraint

Box Domain

Each constraint has
solutions on every sides

⇒ No possible contraction

Parallelepiped Basis

Constraints are parallel to axes

⇒ Perfect contraction (up to rounding errors)

Global constraint + no wrapping effect
+ existence of solution proved

Nonlinear constraints: asymptotically same
behavior
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Bisecting and Updating Parallelepiped Domains

Bisecting Parallelepiped Domains

[u] → [u′]) and [u′′]
with [u] = [u′] ∪ [u′′]
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Bisecting Parallelepiped Domains

[u] → [u′]) and [u′′]
with [u] = [u′] ∪ [u′′]
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Bisecting and Updating Parallelepiped Domains

Bisecting Parallelepiped Domains

[u] → [u′]) and [u′′]
with [u] = [u′] ∪ [u′′]

Updating Parallelepiped Domains

Recenter : x̃ = A · mid[u] and [u] = [u] − mid[u]

Update A using Df(x̃)

(Addition of linear inequalities to prevent overlapping)
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Bisecting Parallelepiped Domains
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Outline

1 NCSPs with Parallelepiped domains

2 Experiments
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Experiments

Surfaces Intersection in 3D

Intersection of a sphere and a cylinder

After 100 bisections using box domains and parallelepiped domains
Parallelepiped domains provide

I Sharper enclosure
I Existence proof along all parallelepipeds
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Experiments

Test Problems from the Literature

The Layne-Watson Exponential Cosine Curve (n = 3, m = 2 ⇒ dim = 1 )

The Parametrized Broyden Tridiagonal (n = 5, m = 4 ⇒ dim = 1 )

Comparison: Log-log plots of time vs reduced volumea of the enclosure

aReduced volume= n√volume
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Comments

Parallelepiped domains: at least 100 times quicker to obtain the same volume

Lines in log-log plots ⇒ time increases polynomially w.r.t. (reduced volume)−1

Parallelepiped domains improve the degree of the polynomia l complexity
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Conclusion

Abstract

Preconditioning: Key global constraint for NCSP with discrete solution set

Contribution: New preconditioning process for under-constrained systems of
equations

→ Global constraint for under-constrained systems of equations
I Strong contraction
I Strongly decreased wrapping effect
I Proof of Solution Existence

Perspectives

Current experiments: dim = m − n = 1

Theory ok for dim > 2, experiments?

Applications: Robotics, global optimization,
3D geometric modelers, etc...
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