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Introduction

Continuous state discrete time dynamical system

Definitions
Dynamical system: f : Rn −→ Rn

Initial value: y0 ∈ Rn

Initial value problem (IVP): estimate the
orbit fk (y0)

Aims
Prove rigorously that the system is chaotic
We revisit a technique proposed by Stoffer and Palmer in 1999

→ Prove that the system contains a full shift on two symbols
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Introduction

Forward and backward error analysis

Pseudo orbits

δ-pseudo orbit:
(
y0,y1,y2, . . .

)
such that ||yk+1 − f(yk )|| ≤ δ

Forward error analysis

Watch the global error ||yk − fk (y0)||
Chaotic system: ||yk − fk (y0)|| growth exponentially

→ Forward error analysis useless

Backward error analysis

Find a new IVP (̃f, ỹ0) ≈ (f,y0) for which (yk ) is an accurate
approximate solution
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Introduction

Shadowing

Backward error analysis

Shadowing
Keep the dynamical system unchanged
Change the initial value

Application

Shadows are exact trajectories
Chaotic shadows⇒ chaotic system
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Interval enclosures

Interval enclosure

From finite to uncountable
Computations with floating point numbers

→ Rigorous proof of some properties on an uncountable set of reals
Basic usage

Given a set X = {x ∈ Rn : P(x)}
Compute an enclosure [x, x] ⊇ X (→ 2n floating point numbers)

The wrapping effect

Intervals are too crude to enclose
accurately
Parallelepiped can drastically
improve the enclosure
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Interval enclosures

Interval extensions

Definition

Let f : Rn −→ Rn and [f] : IRn −→ IRn

[f] is an interval extension of f iff [f]([x]) ⊇ {f(x) : x ∈ [x]}

Computation

Interval arithmetic: [x , x ] ◦ [y , y ] := {x ◦ y : x ∈ [x , x ], y ∈ [y , y ]}
Natural extension: replace real operators by interval operators

[x]2 − [x] + 1 ⊇ {x2 − x + 1 : x ∈ [x]}

Mean-value extension: use derivatives to potentially improve the
enclosure
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Existence proof

Solution of systems of equations

Intermediate value theorem

f (−1) ≤ 0 ∧ f (1) ≥ 0 =⇒ (∃x ∈ [−1,1])(f (x) = 0)

Usage of interval extensions

[f ]([−1,−1]) ≤ 0⇒ f (−1) ≤ 0
[f ]([1,1]) ≥ 0⇒ f (1) ≥ 0

→ (∃x ∈ [−1,1])(f (x) = 0)
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Existence proof

Solution for a system of equations

Poincaré-Miranda theorem

Poincaré-Miranda theorem (≈ Brouwer fixes point theorem)
Check signs of function taken on the sides of the boxes(

∀i ∈ {1, . . . ,n}
∀x ∈ [−1,1]n

) (
xi = −1⇒ fi(x) ≤ 0
xi = 1⇒ fi(x) ≥ 0

)
=⇒ (∃x ∈ [−1,1]n)(f(x) = 0)
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A new containment theorem

The idea of inductive containment

Propagation of one dimensional path

Choose a line in the expanding direction
Each application of the map stretches the line vertically
We keep only the part that remains in the next box
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A new containment theorem

A new containment theorem

Simplified Inductive Containment Property (ICP)

Pseudo trajectory around 0
Axis aligned stable and unstable directions
More general situation→ change of basis

Definition: (S,U)-ICP

Let f : Rn −→ Rn, and S and U be a partition of
{1, . . . ,n}. Then, f satisfies the (S,U)-ICP iff

∀j ∈ U and for all x ∈ [−1,1]n

xj = −1 =⇒ fj(x) < −1
xj = 1 =⇒ fj(x) > 1.

∀j ∈ S, x ∈ [−1,1]n =⇒ −1 < fj(x) < 1.

A. Goldsztejn and W. Hayes University of California Irvine

A New Containment Method For Rigorous Shadowing



Introduction Interval analysis Containment for rigorous shadowing Applications Conclusion

A new containment theorem

A new containment theorem

Containment Theorem (CT)

Let fi : Rn → Rn, for i ∈ {1, . . . ,m − 1}, be some continuous maps
satisfying the (S,U)-ICP
Then there exists an exact orbit (x1,x2, . . . ,xm) such that xi ∈ [−1,1]n

proof

x1 = f0(x0) ∧ x2 = f1(x1) ∧ · · · ∧ xm = fm−1(xm−1)

→ (m − 1)n equations, mn unknowns
Fix x0,k for k ∈ U and xn,k for k ∈ S (E.g. in dimension 2 where
we consider a line in the expanding direction)
Use ICP to check the hypothesis of Poincaré-Miranda theorem
inside [−1,1]n
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A new containment theorem

Example

System

f(x) =

(
0.5x1 + 0.1 cos(10(x2

1 + x2
2 ))

2x2 + 0.1 sin(10(x2
1 + x2

2 ))

)

Interval evaluations
Interval evaluations:

[f]([−1,1], [−1,1]) = ([−0.6,0.6], [−2.1,2.1])

[f]([−1,1], [−1,−1]) = ([−0.6,0.6], [−2.1,−1.9])

[f]([−1,1], [1,1]) = ([−0.6,0.6], [1.9,2.1])

Containment Theorem: ∀m ∈ N, there exists an orbit (xi)0≤i≤m
with xi ∈ [−1,1]2
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Parallelepipeds for containment

General pseudo trajectory

Pseudo orbit: (x0,x1, . . . ,xm)

Stable and unstable directions: A0,A1, . . . ,Am (A:j is a stable
direction if j ∈ S; A:j is unstable if k ∈ U)

x
fk // y

u

Ak ·u+xk

OO

f̃k

// v

Ak+1·v+xk+1

OO

f̃k = A−1
k+1 ·

(
f
(
Ak · u + xk

)
− xk+1

)
f̃k can satisfy the ICP
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Contracting and expanding directions

Computation of expanding and contracting directions

Goal: Find Ak+1 such that

Ak+1 close to Jk · Ak

||Jk · (Ak ):j || < ||(Ak ):j || for j ∈ S
||Jk · (Ak ):j || > ||(Ak ):j || for j ∈ U
Ak have good condition numbers

Problems
We can’t just compute Ak+1 = Jk · Ak because all directions
collapse on the most contracting

→ Compute Ak+1 using an Gram-Schmidt orthogonalization on
Jk · Ak
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Plotting strange attractors

Plotting strange attractors

Problem
We think we know Henon’s attractor→ self
contradiction!
The plot uses double precision and several
thousands of steps
Strange attractor⇒ chaos⇒ exponential
divergence⇒ plot completely false!

Solution: long term shadowing

Henon and Gingerbreadman pseudo-orbits
→ shadowed for millions of steps
The plotted attractor is accurate for a close
initial condition⇒ good representation of
the attractor
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Embedded shift map

δ-pseudo periodic orbit

Infinite length shadow

δ-pseudo periodic orbit: ||x0 − f(xm)|| ≤ δ
→ Infinite length δ-pseudo orbit:

(x0,x1, . . . ,xm,x0,x1, . . .)

Containment rigorously proved for (x0,x1, . . . ,xm,x0) also valid
for the infinite length pseudo orbit
Note that the shadow may not be periodic!
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Embedded shift map

Branching δ-pseudo periodic orbits

Following Stoffer and Palmer 1999

Two δ-pseudo periodic orbit: ||x0 − f(xm)|| ≤ δ and
||y0 − f(ym)|| ≤ δ such that x0 ≈ y0

Containment rigorously proved for (x0,x1, . . . ,xm,x0) and
(y0,y1, . . . ,ym,y0)

→ also valid for all infinite length pseudo orbits

(x0,x1, . . . ,xm,y0,y1, . . . ,y0,y1, . . . ,x0,x1, . . .)

Any sequence of symbols XXXYXYYYXY · · · gives rise to a
specific exact orbit
Applying fm is a shift on these symbols
In particular: Pn (number of periodic orbits of length n) grows
exponentially with n
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Real world applications

Real world applications

ODE
Validation of galaxy simulation (Wayne Hayes) initial condition
chosen randomly
Non rigorous Fixed motion shadowing

Give some confidence in simulation
Explain why simulations look so close to cosmos observations

PDE
Validation of fluid mixing: Monte-Carlo simulations show mixing
quality initial condition chosen randomly
Shadowing→ validation of simulations

ODE: ∂tu(t , x) = f(u)
PDE: f defined as the solution of a PDE
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Conclusion

New containment method
More simple framework (new proof of the containment theorem
using Poincaré-Miranda theorem), more simple algorithm
Very efficient

Forthcoming work

Attack more dynamical systems, including continuous time

Discussion
Possible application in automatic?
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