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Introduction

Reachable set computation for differential equations

e often requires symbolic computation (to handle non-determinism)

We propose to use ‘set integration” which combines ‘traditional” numerical
integration schemes with set computations

e Numerical integration can be applied to general differential equations
and provides efficient error control mechanisms

e Convenient to approximate single solutions, but we need to character-
ize sets of all possible solutions



Reachability analysis

Direct methods

e Track the evolution of the reachable set under the flow of the system.
Various set representations: e.g. polyhedra, zonotopes, ellipsoids, level
sets

e Exact results, or accurate approximations with error bounds. Using
symbolic or numerical computations

e Tools: Coho, CheckMate, d/dt, HysDel, VeriShift, Vertdict, Requiem,
HJ-solver toolbox, ..

Indirect methods

e Abstraction methods: reducing to a simpler system that preserves the
property (e.g. [Tiwari & Khanna 02; Alur et al. 02; Clarke et al. 03])

e Achieve a proof of the property without computing the reachable set:
e.g. Barrier certificates [Prajna & Jadbabaie04], polynomial invariants
[Tiwari & Khanna 04].

* Scalability is still challenging (complexity and size of real-life systems)



Reachable set computation using
numerical integration

x(t) = g(x(t)); x(0) =x0
Main idea

e A typical numerical scheme:

Xk+1 = yk‘(.ga h7 X0y X1y - - 7Xk:)
where h is the step size.

e Set integration: computing such schemes with sets, that is x; is not a
single point in R” but a subset of R"”

In this presentation, we apply this idea to linear and polynomial differential
equations.
These methods were implemented in the reachability analysis tool d /dt.



Reachability operators

Continuous system x = f(x) where x € X’; f : X — R" continuous vec-
tor field. Let ¢x () be the solution of the diff eq with x as initial condition.

Given a time interval I and a set of states Y, successor operator

oY) ={y|IxeY tely=qox(t)}

The reachable set from Y is 6(Y) = djp)(Y) (all states reachable after
any non-negative amount of time).

_________
-
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Polyhedral approximation

To represent reachable sets, we use convex polyhedra and orthogonal poly-
hedra (unions of closed full-dimensional hyper-rectangles)
Orthogonal polyhedra

e (anonical representation = effective computations of Boolean oper-
ations, equivalence and emptiness checking, membership testing, and
other geometric operations (face detection, etc.).

e Appropriate for over- and under-approximations of non-convex sets




Polynomial differential equations

We consider a polynomial differential equation:

x(t) = g(x(t)) = Ax(t) + f(x())

f is the non-linear part
Considering f(x(t)) as independent input, we can write:

h
Xpi1 = €% + / A=) f(x(ty + 7)) dr.
0
Approximate x(tx + 7) by a(ty + 7) = x;; + g(xx)7. Then,
h
Xps1 = €% + / Al g(a(ty + 7)) dr = exp + Q(x4)
0

The map Q)(xy) is a polynomial in x;. We shall compute this map using
Bézier techniques

Second order approximation scheme
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Reachability analysis of linear systems

A continuous linear system x = Ax. Initial set Y is a convex bounded
polyhedron Y = conv(V) where V' = {vy,...,v,} is a finite set of
vertices

e Reachable set at time r 0,(Y
successor of a point v is §;(v) = e

e Reachable set during time interval [0, ],

Lemma: Given a time step r > 0, there exists ¢ = O(r?) such that
010.,(Y) C conv(Y U ,(Y)) @ eB (e-neighborhood of the convex hull of
Y and §,(Y)).



Reachability analysis of linear systems
(cont’d)

5,,(v1)
Vo
Vi —"
XU -

X1 = conv{s, (vl) F(v2)} C'=conv(X°UXY)  CL=bloat(C'¢)

G! = grid,(C}) Second iteration P? =G'uG?

No accumulation of error, approximation error is of order C’)(TQ).



Linear systems with uncertain input
(cont’d)

Computing reachable set 0;(Y) at time r using the Maximal Principle

e The initial polyhedron can be written as intersection of half-spaces.
Each half-space H = {x | (\,x) < (\,y)}; A: normal vector, y:
supporting point

e For every half-space H, there exists an input u* s.t. calculating its suc-
cessors under u* is sufficient to derive a tight polyhedral approximation

of 9,(Y).

e Evolution of normal vector A(t) = —ATA(t) (adjoint system) indepen-
dent of input, u*(r) € arg max{(A(r),u) | u € U}.




Linear systems with uncertain input
(cont’d)

Computing reachable set d;(Y') at time r using the Maximal Principle

e The initial polyhedron can be written as intersection of half-spaces.
Each half-space H = {x | (\,x) < (\,;y)}; A: normal vector, y:
supporting point

e For every half-space H, there exists an input u* s.t. calculating its suc-
cessors under u* is sufficient to derive a tight polyhedral approzimation

of 5t(Y)

e Evolution of normal vector A(t) = —AT\(t) (adjoint system) indepen-
dent of input, u*(r) € argmax{(A(r),u) | u € U}.
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Definitions

A multi-index i = (i[1], ..., i[n + 1]) is a vector of non-negative integers.
The norm [[if] = X4l
A simplex with vertices {v1,...,Vvu41}.

x € A, Ax): Dbarycentric coordinates of x wrt A, that is,
X =Y, A(x)vi and D>, Ag(x) = 1.

For x € A, polynomial 7(x) (of degree d) can be expressed as a Bézier
simplex:

m(x) = > PiBid(M(x), ..., Ana(x))

|li]|=d

1], 2] i[n+1]

yl2 oyl L1 (Bernstein polynomials),
d!
TRRL. A1)

where Bi,d(:yla s ayn—i—l) — ((11) yi
with the multimonial coefficient (‘ll) =

Each vector p; € R™: Bézier control point. All such p; form the Bézier
control net.



Example - Bézier curves

Dimension n = With d = 2, multi-indices with |[i||] = 2

1.
{(0,2),(1,1),(2,0)}.

A quadratic Bézier curve is: w(x) = Y. PpPiBi2(M(x), Ao(x)), for
X € [vy, val.

There are 3 control points pj.

B; (1)

Bernstein polynomials
Bio(t) = Bia(y1, y2) = (?)?Jimyéma y1=t€(0,1,yp=1~1



Example - Bézier curves (cont’d)

Dimension n = 1.

Bl B, (1)
1 1
0.5

Bernstein polynomials
i[i] if2
Bia(t) = Bia(yr,y2) = (Dwi mh 7 =t € (0,1, pp =1 — ¢



Bézier simplices - Shape Properties

Any polynomial can be written in form of a Bézier simplex. Given an
arbitrary point x € A,

1. Convex hull property: the point 7r(x) lies inside the convex hull
of the control net

2. End-point interpolation property: the polynomial 7 interpo-
lates the control net at the corner control points.

(d+n)!
d'n! -

Number of control points p; is (“7") =

By

= Using the convex hull of the Bézier control net as a tight over-
approximation of w(A).



Computing the Bézier control points

Problem: For a polynomial 7r given in monomial form and a simplex
A = conv{vy,...,V,i1}, we want to compute the control net of 7 with
respect to A.

Blossoming principe For any polynomial v : R" — R" of degree d,
there is a unique symmetric d-affine map 8 : R" — R” such that for all
x € R" ((x,...,x) =m(x).

Recall: q(x1,...,xq) is d-affine if it is affine when all but one of its
arguments are kept fixed; symmetric if its value does not depend on the
ordering of the arguments.

Connection with the Bézier control net:

Pi =0V, .., V1, Vo,..., Vo, oo Vgl -, Vi)
i[1] i[2] i[n+1]

= To compute p; we can evaluate the blossom with some particular ar-
guments



Evaluating blossom values

[lustrate the computation of blossom values of polynomial (x[i])"(x[j])*.

1 : .
5g,k(111,---,ud) = W Z HUTMHUSD]
TuJc{l,...,d}, rel sel
I|=h,|J| =k INJ=10]
1
Denote ag,k = mﬁ,‘f’k(ul, U, ..., Uy).
() ()

The symmetric function o: choose h i coordinates of d argument points
and k §' coordinates and form their product, then sum these products
over all possible choices.

{ Thp = UZ;fl ™ ud[i]ggj,k + ud[ﬂaﬂil if h,k>0 and h + k> 1,
d
o950 = 0

Complexity O(d?)



Error bound and subdivision

Error in the approximation of the polynomial map 7 by its Bézier control
points is O(p?) (p =max side length).

When A is large = subdivide it into smaller simplices, which creates new
Bézier bases and therefore new control points.

Computation of the new control nets that reuses the results ob-
tained for the original simplex:

1. Partition the simplex A by adding a point x € A and forming new
smaller simplices.

2. We can use de Casteljau algorithm to evaluate 7r(x) and this compu-
tation also produces the control net for the new simplices.



Reachability algorithm

Ro= Xo. k=0
REPEAT
Sa = triangulation(vertices(Ry,))
C=10
FORALL(A € Sx)
C = C U Bez(A)
ENDFOR
Rj1 = conv(C)
k=k+1
UNTIL(Ry;1 = Ry)

Bez over-approximates P(A), P is the integration map



Bacteria Vibrio Fisheri

33:1 = kgﬂfg — ]{1331333 + Uy
Ty = kix1w3 — Ko
.73.'3 = ]CQI’Q — k1$1$3 — NT3 + NUs

State variables (x, Ty, x3): cellular concentrations of different species.
Parameters ki, kg, n: binding, dissociation and diffusion constants.

Control objective: steering the system to the face ro = 2 (activation of
some genes).

Control laws: ui(x) = —10(xy + x1(—1 4 3) — 4x3) and uy(x) = z1(3 +
.’13'2(—1 + xg)) — (—2 + .ZUQ).CUg.



Bacteria Vibrio Fisheri

The results are more precise than those obtained using abstraction by pro-
jection [Asarin Dang 03].



Bacteria Vibrio Fisheri (cont’d)

Hybrid model with two modes and one additional continuous variable

x4. The continuous dynamics is x = Ax + g(x) + b;; where by; and by

correspond respectively to the non-luminescent and luminescent modes

1
T, 0
0 0
A p—
0 @orars
1
\ v,

o O

0

TAIRT1X3

Question: determine the sets of states from which the system can reach

the luminescent equilibrium. The condition for switching between the two

modes 1S Ty = Togy.

Qualitative results compatible with the previous study using d/dt (on a

linearized model by fixing 1 constant),

Larger set of states that can reach the equilibrium.



Concluding remarks

Combining the idea of set integration with techniques from CAGD
We achieved a second order approximation method

Higher order methods can be derived (but the resulting polynomials are
more complex, i.e. more monomial terms)

Future directions: using splines??

Questions?? and thank you.



Subdivision

I _
pi_/6<V17'"7V17°"7Vn+17'°'7Vn—|-17X17'°'7Xl)
\ / o /NG ~~ _J

i[1] int1] i

Pi = Mi(X)Pije, + - -« + A(x)Pire,, iU+ +in+1]+1=d

where €, = (1,0...,0), o = (0,0...,0). Note that p{ are the Bézier
control points, and p? = B(x,...,x,).

We run the algorithm from [ = 0 to [ = d with all x; = x to obtain
py = B(x,...,x). In the following example, Piyg = A(X)P(300) T+

>‘2<X)p(()2,1,0) + >‘3<X>p(()2,0,1)

uuu

uuz

Uzz



