
•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

Reachability computation using set
integration

Thao Dang

VERIMAG, CNRS (France)

•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

Plan

1. Reachability analysis using set integration

2. Reachability analysis of linear systems

3. Reachability analysis of polynomial systems

•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

Introduction

Reachable set computation for differential equations

• often requires symbolic computation (to handle non-determinism)

We propose to use ‘set integration’ which combines ‘traditional’ numerical

integration schemes with set computations

• Numerical integration can be applied to general differential equations

and provides efficient error control mechanisms

• Convenient to approximate single solutions, but we need to character-

ize sets of all possible solutions

•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

Reachability analysis
Direct methods

• Track the evolution of the reachable set under the flow of the system.
Various set representations: e.g. polyhedra, zonotopes, ellipsoids, level
sets

• Exact results, or accurate approximations with error bounds. Using
symbolic or numerical computations

• Tools: Coho, CheckMate, d/dt, HysDel, VeriShift, Vertdict, Requiem,
HJ-solver toolbox, ..

Indirect methods

• Abstraction methods: reducing to a simpler system that preserves the
property (e.g. [Tiwari & Khanna 02; Alur et al. 02; Clarke et al. 03])

• Achieve a proof of the property without computing the reachable set:
e.g. Barrier certificates [Prajna & Jadbabaie04], polynomial invariants
[Tiwari & Khanna 04].

? Scalability is still challenging (complexity and size of real-life systems)

•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

Reachable set computation using
numerical integration

ẋ(t) = g(x(t)); x(0) = x0

Main idea

• A typical numerical scheme:

xk+1 = Yk(g, h,x0,x1, . . . ,xk)

where h is the step size.

• Set integration: computing such schemes with sets, that is xk is not a

single point in Rn but a subset of Rn

In this presentation, we apply this idea to linear and polynomial differential

equations.

These methods were implemented in the reachability analysis tool d/dt.

•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

Reachability operators
Continuous system ẋ = f (x) where x ∈ X ; f : X → Rn continuous vec-
tor field. Let φx(t) be the solution of the diff eq with x as initial condition.

Given a time interval I and a set of states Y , successor operator
δI(Y) = {y | ∃x ∈ Y ∃t ∈ I y = φx(t)}.

The reachable set from Y is δ(Y) = δ[0,∞)(Y) (all states reachable after
any non-negative amount of time).

•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

Polyhedral approximation
To represent reachable sets, we use convex polyhedra and orthogonal poly-
hedra (unions of closed full-dimensional hyper-rectangles)
Orthogonal polyhedra

• Canonical representation ⇒ effective computations of Boolean oper-
ations, equivalence and emptiness checking, membership testing, and
other geometric operations (face detection, etc.).

• Appropriate for over- and under-approximations of non-convex sets

•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

Polynomial differential equations

We consider a polynomial differential equation:

ẋ(t) = g(x(t)) = Ax(t) + f (x(t))

f is the non-linear part

Considering f (x(t)) as independent input, we can write:

xk+1 = eAhxk +

∫ h

0

eA(h−τ)f (x(tk + τ)) dτ.

Approximate x(tk + τ) by α(tk + τ) = xk + g(xk)τ . Then,

x̄k+1 = eAhxk +

∫ h

0

eA(h−τ)g(α(tk + τ)) dτ = eAhxk + Q(xk)

The map Q(xk) is a polynomial in xk. We shall compute this map using

Bézier techniques

Second order approximation scheme

•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

Plan

1. Reachability analysis using set integration

2. Reachability analysis of linear systems

3. Reachability analysis of polynomial systems

•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

Reachability analysis of linear systems
A continuous linear system ẋ = Ax. Initial set Y is a convex bounded
polyhedron Y = conv(V) where V = {v1, . . . , vm} is a finite set of
vertices

• Reachable set at time r δt(Y) = conv{δt(v1), . . . , δt(vm)}, and the
successor of a point v is δt(v) = eAtv

• Reachable set during time interval [0, r],
Lemma: Given a time step r ≥ 0, there exists ε = O(r2) such that
δ[0,r](Y) ⊆ conv(Y ∪ δr(Y)) ⊕ εB (ε-neighborhood of the convex hull of
Y and δr(Y)).

•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

Reachability analysis of linear systems
(cont’d)

No accumulation of error, approximation error is of order O(r2).

•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

Linear systems with uncertain input
(cont’d)

Computing reachable set δt(Y) at time r using the Maximal Principle

• The initial polyhedron can be written as intersection of half-spaces.
Each half-space H = {x | 〈λ, x〉 ≤ 〈λ, y〉}; λ: normal vector, y:
supporting point

• For every half-space H , there exists an input u∗ s.t. calculating its suc-
cessors under u∗ is sufficient to derive a tight polyhedral approximation
of δt(Y).

• Evolution of normal vector λ̇(t) = −ATλ(t) (adjoint system) indepen-
dent of input, u∗(r) ∈ arg max{〈λ(r),u〉 | u ∈ U}.

•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

Linear systems with uncertain input
(cont’d)

Computing reachable set δt(Y) at time r using the Maximal Principle

• The initial polyhedron can be written as intersection of half-spaces.
Each half-space H = {x | 〈λ, x〉 ≤ 〈λ, y〉}; λ: normal vector, y:
supporting point

• For every half-space H , there exists an input u∗ s.t. calculating its suc-
cessors under u∗ is sufficient to derive a tight polyhedral approximation
of δt(Y).

• Evolution of normal vector λ̇(t) = −ATλ(t) (adjoint system) indepen-
dent of input, u∗(r) ∈ arg max{〈λ(r),u〉 | u ∈ U}.

•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

Plan

1. Reachability analysis using set integration

2. Reachability analysis of linear systems

3. Reachability analysis of polynomial systems

•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

Definitions

A multi-index i = (i[1], . . . , i[n + 1]) is a vector of non-negative integers.

The norm ||i|| =
∑n+1

j=1 i[j]

∆ simplex with vertices {v1, . . . ,vn+1}.
x ∈ ∆, λ(x): barycentric coordinates of x w.r.t ∆, that is,

x =
∑

k λk(x)vk and
∑

k λk(x) = 1.

For x ∈ ∆, polynomial π(x) (of degree d) can be expressed as a Bézier

simplex:

π(x) =
∑
||i||=d

piBi,d(λ1(x), . . . , λn+1(x))

where Bi,d(y1, . . . , yn+1) =
(
d
i

)
y
i[1]
1 y

i[2]
2 . . . y

i[n+1]
n+1 (Bernstein polynomials),

with the multimonial coefficient
(
d
i

)
= d!

i[1]!i[2]!...i[n+1]!.

Each vector pi ∈ Rn: Bézier control point. All such pi form the Bézier

control net.

•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

Example - Bézier curves

Dimension n = 1. With d = 2, multi-indices with ||i|| = 2:

{(0, 2), (1, 1), (2, 0)}.

A quadratic Bézier curve is: π(x) =
∑

i piBi,2(λ1(x), λ2(x)), for

x ∈ [v1,v2].

There are 3 control points pi.

Bernstein polynomials

Bi,2(t) = Bi,2(y1, y2) =
(

2
i

)
y
i[1]
1 y

i[2]
2 , y1 = t ∈ [0, 1], y2 = 1− t

•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

Example - Bézier curves (cont’d)

Dimension n = 1.

Bernstein polynomials

Bi,d(t) = Bi,d(y1, y2) =
(
d
i

)
y
i[1]
1 y

i[2]
2 , y1 = t ∈ [0, 1], y2 = 1− t

•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

Bézier simplices - Shape Properties

Any polynomial can be written in form of a Bézier simplex. Given an

arbitrary point x ∈ ∆,

1. Convex hull property: the point π(x) lies inside the convex hull

of the control net

2. End-point interpolation property: the polynomial π interpo-

lates the control net at the corner control points.

Number of control points pi is
(
d+n
n

)
= (d+n)!

d! n! .

⇒ Using the convex hull of the Bézier control net as a tight over-

approximation of π(∆).

•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

Computing the Bézier control points

Problem: For a polynomial π given in monomial form and a simplex

∆ = conv{v1, . . . ,vn+1}, we want to compute the control net of π with

respect to ∆.

Blossoming principe For any polynomial π : Rn → Rn of degree d,

there is a unique symmetric d-affine map β : Rnd → Rn such that for all

x ∈ Rn: β(x, . . . ,x) = π(x).

Recall: q(x1, . . . ,xd) is d-affine if it is affine when all but one of its

arguments are kept fixed; symmetric if its value does not depend on the

ordering of the arguments.

Connection with the Bézier control net:

pi = β(v1, . . . ,v1︸ ︷︷ ︸
i[1]

, v2, . . . ,v2︸ ︷︷ ︸
i[2]

, . . . , vn+1, . . . ,vn+1︸ ︷︷ ︸
i[n+1]

)

⇒ To compute pi we can evaluate the blossom with some particular ar-

guments

•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

Evaluating blossom values

Illustrate the computation of blossom values of polynomial (x[i])h(x[j])k.

βd
h,k(u1, . . . ,ud) =

1(
d
h

)(
d−h
k

) ∑
I ∪ J ⊆ {1, . . . , d},

|I| = h, |J | = k, I ∩ J = ∅

∏
r∈I

ur[i]
∏
s∈J

us[j]

Denote σd
h,k =

1(
d
h

)(
d−h
k

)βd
h,k(u1,u2, . . . ,ud).

The symmetric function σ: choose h ith coordinates of d argument points

and k jth coordinates and form their product, then sum these products

over all possible choices.

{
σd

h,k = σd−1
h,k + ud[i]σ

d−1
h−1,k + ud[j]σd−1

h,k−1 if h, k ≥ 0 and h + k ≥ 1,

σd
0,0 = 0

Complexity O(d3)

•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

Error bound and subdivision

Error in the approximation of the polynomial map π by its Bézier control

points is O(ρ2) (ρ =max side length).

When ∆ is large ⇒ subdivide it into smaller simplices, which creates new

Bézier bases and therefore new control points.

Computation of the new control nets that reuses the results ob-

tained for the original simplex:

1. Partition the simplex ∆ by adding a point x ∈ ∆ and forming new

smaller simplices.

2. We can use de Casteljau algorithm to evaluate π(x) and this compu-

tation also produces the control net for the new simplices.

•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

Reachability algorithm

R0 = X0, k = 0

REPEAT

S∆ = triangulation(vertices(Rk))

C = ∅
FORALL(∆ ∈ S∆)

C = C ∪Bez(∆)

ENDFOR

Rk+1 = conv(C)

k = k + 1

UNTIL(Rk+1 = Rk)

Bez over-approximates P (∆), P is the integration map

•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

Bacteria Vibrio Fisheri ẋ1 = k2x2 − k1x1x3 + u1
ẋ2 = k1x1x3 − k2x2
ẋ3 = k2x2 − k1x1x3 − nx3 + nu2

State variables (x1, x2, x3): cellular concentrations of different species.

Parameters k1, k2, n: binding, dissociation and diffusion constants.

Control objective: steering the system to the face x2 = 2 (activation of
some genes).

Control laws: u1(x) = −10(x2 + x1(−1 + 3) − 4x3) and u2(x) = x1(3 +
x2(−1 + x3))− (−2 + x2)x3.

•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

Bacteria Vibrio Fisheri

The results are more precise than those obtained using abstraction by pro-
jection [Asarin Dang 03].

•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

Bacteria Vibrio Fisheri (cont’d)

Hybrid model with two modes and one additional continuous variable

x4. The continuous dynamics is ẋ = Ax + g(x) + bij where b01 and b10

correspond respectively to the non-luminescent and luminescent modes

A =


−1
Hsp

0 0 rCo

0 0 0 −1
Hsp

− rCo

0 x0rAII
−1
HAI

x0rCo

0 −1
Hsp

0 0

 ; g(x) =


−1

1

−x0

0

 rAIRx1x3

Question: determine the sets of states from which the system can reach

the luminescent equilibrium. The condition for switching between the two

modes is x2 = x2sw.

Qualitative results compatible with the previous study using d/dt (on a

linearized model by fixing x1 constant),

Larger set of states that can reach the equilibrium.

•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

Concluding remarks

Combining the idea of set integration with techniques from CAGD

We achieved a second order approximation method

Higher order methods can be derived (but the resulting polynomials are

more complex, i.e. more monomial terms)

Future directions: using splines??

Questions?? and thank you.

•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

Subdivision
pl

i = β(v1, . . . ,v1︸ ︷︷ ︸
i[1]

, . . . ,vn+1, . . . ,vn+1︸ ︷︷ ︸
i[n+1]

, x1, . . . , xl︸ ︷︷ ︸
l

)

pl
i = λ1(xl)p

l−1
i+e1

+ . . . + λn(xl)p
l−1
i+en

, i[1] + . . . + i[n + 1] + l = d

where e1 = (1, 0 . . . , 0), o = (0, 0 . . . , 0). Note that p0
i are the Bézier

control points, and pd
o = β(x1, . . . , xd).

We run the algorithm from l = 0 to l = d with all xl = x to obtain
pd

o = β(x, . . . , x). In the following example, p1
(2,0,0) = λ1(x)p0

(3,0,0) +

λ2(x)p0
(2,1,0) + λ3(x)p0

(2,0,1)

