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Intfroduction
N

The objective of this work is to design a Fault Tolerant Controller (FTC) ensuring trajectory tracking of a
desired reference, in the nominal and faulty cases. The FMPC (Fuzzy Model-based Predictive Control)

approach is proposed:
[ Nonlinear systems subject to faults are described by T-S fuzzy model
[ Model-based Predictive Control: minimization of cost function subject to constraints

[ The proposed FTC design scheme integrates the state estimation using a nonlinear observer and the

dynamic optimizer based on interpolation control to guaranty the stabilization of the faulty plant



T-S fuzzy modeling (1/7):

The modeling choice
436 |

the T-S structure is a universal approximator.

The T-S fuzzy model is based on rules such as: IF PREMISE THEN CONSEQUENCE.
Decomposition of the nonlinear system dynamic behavior around several operational areas.

Each sub-model contributes more or less to approximate the overall system behavior.

o O O O O

Nonlinear weighting functions are based on interpolation mechanism between these submodels



T-S fuzzy modeling (2/7):
Main methods in the literature
s 40|

A T-S model can be established using three main principal method:s :

1. Identification and parametre estimation from experimental data, [Abonyi, 2002].

2. Nonlinearity sector approach: direct transform of an affine model, [Tanaka&Wang, 2001].
Advantage: reducing the local model number

3. Linearisation of the nonlinear model: arround different points, [Johansen, 2000].

The number of N local model depends on the desired precision of the modelisation



T-S fuzzy modeling (3/7):
The global non stationary linearization

-]
{X(t) =TO@uM)
y(®) =g(x(t))

Quasi-LPV system with polytopic form, from the Taylor series X(t) = A(O) x(t)+B(O) u(t) 2
development around an operating point, [Ben Hamouda, 201 3]: y(t) = C(8) x(t)

The nonlinear system state space representation:

Interpolation between the local linear models. X(t) = N

=> (0| AXx(1)+B.u(t)
{Aj,Bj} are the sub-models asymtotically ‘ ZJN_l : ( : : ) (3)
stable matrices. y(t) = ijlllj (6) C;x(t)

Polytope is obtained with N =2" peaks, where r is the number of premise variables.

Variations of the vector 8(X,U) is represented by a set of N peak matrices which define the polytope.



T-S fuzzy modeling (4/7):

Convex polytopique transoformation
736 |

Activation function K, (X(t),u(t)) (weighting) determines the activation degree of the jth associated local model:
N
ijl,uj (x(t),u(t)) =1and0< 1, (x (Ju ()<1

‘ depending on various parameters such as the state and the control vectors.

Polytopic convex transformation: (X, u) = L L M, (X U)=



T-S fuzzy modeling (5/7):

Choice criteria of premise’s variables
. 83 5 |

The quasi-LPV model is not unique. For each quasi-LPV representation corresponds a particular set of
premise’s variables.

The choice affects the number of sub-models and the global model structure, [Nagy, 2010].
‘ This freedom degree is used to facilitate the study of controllability and stability analysis.
1. The control matrix in the quasi-LPV isn’t a nul matrix (necessary condition for systems controllability).

2. A minimal set of premise variables is preferred.

3. Choose premise variables which depend on a minimal number of state variables



T-S fuzzy modeling (6/7):

Example: System )

- ___00__0__0_0_0000000__]
X, (t) ==X, (t) +u(t
U The nonlinear system differential equations: rl() X,(6) +u(t)

X, (1) = X, (1) =%, (t)| X,() -10 (4
y(t) = X, (1)

0 Ox(t) + ! ou(t)
1 _Z‘Xzo‘ 0

 From the Taylor series development around the operating {Jxl(t):{
dy(t)=[0 1]x¢)

point (le X20:Uo yO)‘

1 _ 1
U The quasi-LPV differential equations: : X(1)=AG) xt)+B u(t): (6)
1 y(t) =C x(t) |
L e e e e e |
-1 0 1
with A(@{l _29} , B:M C=[0 ] andg=[x,

The vector G(x,u) is supposed to vary arbitrarily in the interval [O 10] .



T-S fuzzy modeling (7/7):

Example: System )
(/36 § ... |

One premise variable 6(x,u) ‘ two sub-models with polytopic form:

M(6) =Zi2=1:uiMi =M+ 1M,

where =95 and 6=025. ,
X(0) = Y 4, (O)(AX(D) + Bu(t)

y(t) = Cx(1)

The fuzzy model state space representation is written as :

-1 0 /-1 0
with A{l ‘251} ’ Az{l _292}

B=[1 o , C=[0 ]

(7)



Fuzzy-based Model accommodation (1/8):

with stabilized predictions
-0}

Repetitive minimization of cost function :

I(k) =S o lIx(k+1) = %, (k +1 |k)H; + 3 Huk +1R| (8)

. <u(l)=<u

Subject to constraints:

u.. and X . < X()< X .,

cae AU S AU(l)<Au,

The pre-stabilization is an efficient tool to guarantee nominal
closed-loop stability using the MPC controller, [Kale & pred.\CTed ConTrO\
Chipperfield, 2005].

The proposed strategy is to assume fuzzy state feedback as

u

—k, X(k +i[k), i = H,

Ulype (K +ilk) =4i =0, ,H, -1 €)
a baseline controller to which FMPC control signals are

added, [Ben Hamouda, 201 3].



Fuzzy-based Model accommodation (2/8):

Interpolation control
23y

Local controller weighted by the j"activation functions:

(10

J

X(t) = Ax(t) +Bu;(t)
{y(t) =Cx(t)

The fuzzy model control law applied to the nonlinear system:

Control the nonlinear system via the interpolation control laws which are designed from the local controllers

around N different operating points.



Fuzzy-based Model accommodation (3/8):
Actuator fault accommodation by perturbations rejection

(1) = A B.u. I f
The jth linear model described by (10) becomes: {X((?) =é):(((?)+ 40 ® 12
Y= fault

Additive actuator

The considered faults accommodation method is based on the following basic equation, [Rodrigues, 2008] :

i L . . . . I
UL (t) must solve the following equality: :Bjuljz (t)+E; f(t) =0, withB; =E] : (14

System (12) with the control law (13) under the condition (14) is used to:

‘ cancel faults effect in closed loop



Fuzzy-based Model accommodation (4/8):
Interpolation based control using decoupled multiple model

‘H;
i Nonlinear _{
L The MPC optimization is formulated as a Quadratic System
Programming (QP).
MPC 1 [*
L The LQ-optimal gains of the feed back law are obtained set point | ¥,
. e . MPC 2 |4
by solving an algebraic Riccati equation. —— 1l
MPCN
sel point |4

FMPC with Constraints

The interpolation based control, [Ben Hamouda, 201 3]:

(15



Fuzzy-based Model accommodation (5/8):

Example: System )
(1536 4|

Controller tuning parameters

Sample time 0.5
Prediction horizon 8Te
Control horizon 6T,
Input constraints -2<u, <25

~0.358< Au, < 2

Output constraints -3.02< Y, < 3.02, 0k = (
Input weights 0.1
Output weights 1

-
Actuator fault matrix Ea = [1 0]



Fuzzy-based Model accommodation (6/8):

Example: System )
36 |

Nominal operating:

The outputs responses and control inputs from initial condition

x, =(0.32,0.35) y,= 0.35 and, =

0.5 T T T T T
~ 25.65 g e R e -
0 ‘w‘
20+ .
-0.5 !
15% 15 "’ 'y"\'
“The centybl effort is increased, where the fuzzy- Thé FMPL responpse is more stable thanks to the
14 ased/model predictive controller is applied to the  stabilizing_effect:
1017 4
rnon Y
-2
5¢ —MPC
-2.5 —FMPC
: ;ifgrence - u|1=MPc
2
-3 : ‘ ‘ ‘ —FMPC 0 ‘ | | | T Ve
0 10 20 30 40 50 60 0 10 20 30 40 50 60
time (s)

time(s)



Fuzzy-based Model accommodation (7/8):

Example: System )

Actuator scenario fault: Algorithme2 accommodates faults by perturbation rejection.

— Reference ||
— MPC
‘ ‘ —FMPC

30 40 50 60
time (s)

Control

30
time (s)

Contrary to the FMPC, the output cannot track the desired trajectory.



Fuzzy-based Model accommodation (8/8):
Example: System )
I

Variation of the activation functions according to the premise variable vs.time in the nominal operating
(left) and case linked to the first scenario fault (right)

—_,
EERIT) 0.9

I L L
30 40 50 60 0 10 20 30 40 50 60
time (s) time (s)



Nonlinear observer (1/4):

The necessity of the estimation system states
936 |

Fuzzy based-model accommodation maintains good tracking performances for nonlinear system subject to
actuator faults. Obviously it is not sufficient for the sensor faulty case.

In practice, it is assumed that state variables are accessible to control the system.

‘ A reliable estimation of unmeasurable variables is necessary.



Nonlinear observer (2/4):

Thau-Luenberger
B

Transform nonlinear system described by (1) to (16) with: the couple (A, B) is controllable and (A,C) is an
observable pair , [Ben Hamouda, 2014].

X(t) = Ax(t) + Bu(t) + i, (x(1),u(t))

= {y(t) = Ccx(t) (146

Let the observer be, where L is the {)A((t) = AX(t) + Bu(t) + L(y(t) - y(1)) + f (X(1),u(t)) a7
y(t) =CXx(t)

oberver gain matrix:

Assumption: the pair (A,C) is observable, to find an L such that the eigenvalues of A - LC are in the open

left half plane.

L The LQ-optimal gains of the nonlinear observer is obtained by solving an algebraic Riccati equation.



Nonlinear observer (3/4):
Thau-Luenberger

IR I EEE—————————————————————————————.

Let € denote that error between the true state and our estimated state, €= X — X and wish to determine if it

can be made to decay to zero.

The error dynamics are nonlinear:

e=(A-LC)e+ f (e+xu)— f (X u) (18

. '
Non linear error

. '
Linear error

actuators

Control signals

_|Nonlinear -
» sensors
plant
Outputs

A 4 A 4

Nonlinear

observer
FMPC | Estimated states Nominal
controller | Reference | Control

h model

Target trajectory




Nonlinear observer (4/4):

In the faulty (actuator/sensor) case
E f(r) E f(1)

The nonlinear observer: Nonlinear
# i L

X(t) = AX(t) + Bu(t) + E.T 0+ L(y(t) - 9(6)) + f, (X(®),u(®)) \ |
~ ~ ~ (19 ; Control signals Outputs
y(t) =Cx(V) + E (1)
R Nonlinear
Let e =f —f the fault estimation error, the error observer

dynamics, [Ben Hamouda, 2014], are:

FMPC | Estimated states Nominal
jm——————— .
. I \ controller Reference | Control
e=(A-LC)e+(E, —LE)e, (1) + f (x,u)— f (X—e,u) (20 « _ e
——— " e == - ~ Y Target trajectory

Linear error Non linear error



Fuzzy-based Model Predictive Reconfigurable Control (1/10):

Proposed MPC based strategy
(2336 4 |

Repetitive minimization of cost function :

Subject to constraints: u...<u(l)<u.,,, Au_ .. <Au(l)<Au ., and x_ .. < X()< X

The proposed strategy, [Ben Hamouda, 201 4]: Ulype (K +i]k) =<i =0, ,H, -1 (22
kK, &(k+i[K), i 2 H,



Fuzzy-based Model Predictive Reconfigurable Control (2/10):
Measurable premise variables (MPV)

I I EEEE—————————————————————————————————.

The FTC strategy scheme, [Ben Hamouda, 2014], based on T-S fuzzy model with MPV:

Fault
Actuators | Nonlinear
plant
Mesured
outputs S
Measured U
Fault tolerant i Premises P
predicted intputs E
Nonlinear R
observer vV
Target I
Reference trajectory S
T-S T-S F Estimated o
—| Reference P> - uzzy <} states R
model MPC




Fuzzy-based Model Predictive Reconfigurable Control (3/10):

Example: System )
B .,
Nominal operating:

05
h —Pl
.. = = Stabilised MPC
ob tea S —MPC
—FMPC
_05 |
-1
0
5
g
3-15
-2
Pl
5 , , , |—pC
= = Stabilized MPC 2
Output — FWPC Control
-3 ‘ ‘ ‘ |~ = 'Fuzzy reference model | | | | |
0 10 20 30 40 50 60 0 10 20 30 40 50 60
time (s) time (s)

The outputs responses and control inputs from initial condition X, =(0.32,0.35) y, = 0.35 ang|, =



Fuzzy-based Model Predictive Reconfigurable Control (4/10):

MPV
T I EEEEEE———————————————————————————————.

(23)

The fuzzy model control law applied to the nonlinear system is:

where: 8, (x)-8

#(6;) = -0 L M, 6)=1-14,6;)

The T-S reference model:

‘t = N . 9 X(t B.u(t
{X() zFl'uJ( )(AIX()+ Ju()) (24

yt)=>""_ #,(6) Cx(t)
In the presence of the actuator fault, the fuzzy model state space representation is:

{xf (0)=3" 4,6 (Ax ©+Bu)+E!f 1) o5

y; (t) = z:\l:lﬂj (6;) Cx (1)



Fuzzy-based Model Predictive Reconfigurable Control (5/10):

Unmeasurable premise variables(UPV)

The fuzzy model control law, [Ben Hamouda, 2014], applied to the nonlinear system is:

(26} ].;al'llt P;:lt
~ Nonlinear
“ 6. (x. )-8 n R »| Actuators |—» »| Sensors
where: 14(6) #=220= 1 1, 0)=1- 14,6, plant
S
In th f the faults, the f del 5
n the presence of the au fs,.,'r e fuzzy mode Fault tolerant | Estimated [P
state space representation is: predicted intputs Premises | E
Nonlinear - R
e | observer "V
% (=240 [Ax O +BuO+E ) e 1
N ALl i \ Estimated

Y=Y 46)i(Cx O +ELE (D) @ e Es | 15 Fuzzy | Tt o
iv=0 mode! M | | .




Fuzzy-based Model Predictive Reconfigurable Control (6/10):

Example: System )
(2836 4 |

To obtain the representation of the proposed nonlinear observer, the system described by (4) is
transformed to (16) with f (X(t)) 2[0 A0 Xz(t)—loT,
The ranks of the controllability and observability matrices are equal to the system state matrix one. The

conditions of the nonlinear observer are checked where the observer gain matrix is: L = [0.2169 1.197]1

The linear-quadratic controller gains are: K, =[0.4151 0.001B anK,,=[ 0.5425 0.1§

In the presence of the actuator fault, the fuzzy model state space representation is written as:

X (0 =37 4,0 (Ax, () +Bu@) E,f (1)

(28,
Y () =Cx; (1)



Fuzzy-based Model Predictive Reconfigurable Control (7/10):

Example: System )
2936 f |

Actuator fault: MPV /UPV Output resporse vsfime

20 30 40
im

outputs

Control signal vs.time

! MPV
—uPv.

= = Fuzzy reference model
MPV
—UPV

0 10 20 30 40 50 60
time (s)




Fuzzy-based Model Predictive Reconfigurable Control (8/10):

Example: System )

30/36
Estimation error vs.time Variation of the activation functions according
to the premise variable vs.time
1|— ----------- ----ryﬁ —————————————
3|= = ‘Nominal case -
MPV ook 4
—UPV e
25 08!
0.71
Al —u
06f 6
s 28)
04r —1(UPY)
1F 03 - - 12(UPV)
02 J
0.5r
L f\ /W/m
0’ T T 0, I\
0 10 20

0 10 20 30 40 50 60
time (s)



Fuzzy-based Model Predictive Reconfigurable Control (9/10):

Example: System )
Sensor fCIU“" UPV Output response vs.time

30
time (s)

outputs
1

Control signal vs.time

—Pl
—MPC

= = Stahilized MPC
—FMPC

= = Fuzzy reference model

30 40 50 60




Fuzzy-based Model Predictive Reconfigurable Control (10/10):

Example: System )

Estimation error vs.time Variation of the activation functions according
to the premise variable vs.time

3F ! ! | L]« = -Nominal case ir STy T “.-," ------ niniinininiinl iy —H,
— S fault ! *
ensor faulty case 09k ¢ \ a ; -l
me f
25 ~ : 1 08 ' TR
. - .uf
0.7f 2
2r il
0.6r
4
2 15F = = 0.5F
]
0.4r
1 ] 03+
0.2 ;
0.5r : : il
' 0.1
(= r — L L L L L L LR L L L LA L LT 0t
0 10 20 30 40 50 60 0 10 20 30 40 50 60

time (s) time (s)



Conclusion
D

**A new FTC strategy for nonlinear processes is proposed. It integrates the state estimation and the
dynamic optimizer based on interpolation control to guaranty the stabilization of the faulty plant.
**The proposed FTC design scheme cancels faults (Sensors & Actuators) properly.

*»*The reconfigurable FMPC preserves stability conditions in the nominal and faulty cases.

**The method proposed to obtain a convex hull is a very conservative embedding procedure.



Outlook: FTC strategy
Lyapunov-Based Nonlinear Observers (T-S observer):

Q

Q

Estimate the fault, and the unmeasured states
using a T-S observer.

The Gain of the controller , and the gains of
the observer are obtained by solving a linear
matrix inequality (LMI) derived from the
Lyapunov theory.

Application of the proposed approach FMPC
to an electric vehicle fitted with an extension of

auftonomy.

wﬂ w.i‘
Nonlinear
actuators sensors
- plant - Mesured
outputs
Control signals
v L Estimated
Nonlinear states
observer
Predicted
intputs Estimated
FMPC |+ fault Nominal
controller Reference | €ontrol
) Target trajectory model
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