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The objective of this work is to design a Fault Tolerant Controller (FTC) ensuring trajectory tracking of a

desired reference, in the nominal and faulty cases. The FMPC (Fuzzy Model-based Predictive Control)

approach is proposed:

� Nonlinear systems subject to faults are described by T-S fuzzy model

� Model-based Predictive Control: minimization of cost function subject to constraints

� The proposed FTC design scheme integrates the state estimation using a nonlinear observer and the

dynamic optimizer based on interpolation control to guaranty the stabilization of the faulty plant
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Introduction



� the T-S structure is a universal approximator.

� The T-S fuzzy model is based on rules such as: IF PREMISE THEN CONSEQUENCE.

� Decomposition of the nonlinear system dynamic behavior around several operational areas.

� Each sub-model contributes more or less to approximate the overall system behavior.

� Nonlinear weighting functions are based on interpolation mechanism between these submodels
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T-S fuzzy modeling (1/7): 

The modeling choice
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T-S fuzzy modeling (2/7): 

Main methods in the literature

A T-S model can be established using three main principal methods :

1. Identification and parametre estimation from experimental data, [Abonyi, 2002].

2. Nonlinearity sector approach: direct transform of an affine model, [Tanaka&Wang, 2001].

Advantage: reducing the local model number

3. Linearisation of the nonlinear model: arround different points, [Johansen, 2000].

The number of N local model depends on the desired precision of the modelisation



T-S fuzzy modeling (3/7): 

The global non stationary linearization

Interpolation between the local linear models.
are the sub-models asymtotically

stable matrices.
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&Quasi-LPV system with polytopic form, from the Taylor series
development around an operating point, [Ben Hamouda, 2013]:

The nonlinear system state space representation:

Polytope is obtained with peaks, where is the number of premise variables.

Variations of the vector is represented by a set of peak matrices which define the polytope.

2rN = r

( , )x uθ thN



T-S fuzzy modeling (4/7): 

Convex polytopique transoformation
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Polytopic convex transformation:

depending on various parameters such as the state and the control vectors.



8/36

T-S fuzzy modeling (5/7): 

Choice criteria of premise’s variables

The quasi-LPV model is not unique. For each quasi-LPV representation corresponds a particular set of

premise’s variables.

The choice affects the number of sub-models and the global model structure, [Nagy, 2010].

This freedom degree is used to facilitate the study of controllability and stability analysis.

1. The control matrix in the quasi-LPV isn’t a nul matrix (necessary condition for systems controllability).

2. A minimal set of premise variables is preferred.

3. Choose premise variables which depend on a minimal number of state variables



� The nonlinear system differential equations:

� From the Taylor series development around the operating

point :
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T-S fuzzy modeling (6/7):

Example: System ∑
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� The quasi-LPV differential equations:
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T-S fuzzy modeling (7/7):

Example: System ∑

One premise variable two sub-models with polytopic form:

where and .

The fuzzy model state space representation is written as :

with
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Fuzzy-based Model accommodation (1/8): 

with stabilized predictions

Repetitive minimization of cost function :

Subject to constraints:
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The pre-stabilization is an efficient tool to guarantee nominal

closed-loop stability using the MPC controller, [Kale &

Chipperfield, 2005].

The proposed strategy is to assume fuzzy state feedback as

a baseline controller to which FMPC control signals are

added, [Ben Hamouda, 2013].
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Fuzzy-based Model accommodation (2/8): 

Interpolation control

Local controller weighted by the activation functions:         (10)
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The fuzzy model control law applied to the nonlinear system: 1
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Control the nonlinear system via the interpolation control laws which are designed from the local controllers

around different operating points.N

thj



Fuzzy-based Model accommodation (3/8): 

Actuator fault accommodation by perturbations rejection
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The linear model described by (10) becomes:         (12)
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The considered faults accommodation method is based on the following basic equation, [Rodrigues, 2008] :

must solve the following equality:
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Fu t ( ) ( ) 0,  with         (14)j j j

j F a j aB u t E f t B E+ = =

System (12) with the control law (13) under the condition (14) is used to:

cancel faults effect in closed loop
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Fuzzy-based Model accommodation (4/8): 
Interpolation based control using decoupled multiple model

� The MPC optimization is formulated as a Quadratic

Programming (QP).

� The LQ-optimal gains of the feed back law are obtained

by solving an algebraic Riccati equation.

The interpolation based control, [Ben Hamouda, 2013]:
1

( ) ( ) ( ) ( )              (15)
N j j

j FMPC Fj
u t u t u tµ θ

=
 = + ∑
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Fuzzy-based Model accommodation (5/8): 

Example: System ∑

Sample time

Prediction horizon

Control horizon

Input constraints

Output constraints

Input weights

Output weights

Actuator fault matrix [ ]1 0
T

aE =

0.5s

8 eT

6 eT

2 25ku− ≤ ≤

0.358 2ku− ≤ ∆ ≤

3.02 3.02,   0ky k− ≤ ≤ ∀ ≥

0.1

1

Controller tuning parameters
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Fuzzy-based Model accommodation (6/8): 

Example: System ∑

The outputs responses and control inputs from initial condition 0 0 0(0.32,0.35) , 0.35 and 0Tx y u= = =

The control effort is increased, where the fuzzy-
based model predictive controller is applied to the 
nonlinear system.

5%±
16.35s

25.65s

The FMPC response is more stable thanks to the 
stabilizing effect.

Nominal operating: 
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Fuzzy-based Model accommodation (7/8): 

Example: System ∑ 
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Fuzzy-based Model accommodation (8/8): 

Example: System ∑
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In practice, it is assumed that state variables are accessible to control the system.

A reliable estimation of unmeasurable variables is necessary.

Nonlinear observer (1/4):

The necessity of the estimation system states

Fuzzy based-model accommodation  maintains good tracking performances for nonlinear system subject to 
actuator faults. Obviously it is not sufficient for the sensor faulty case.



Nonlinear observer (2/4):

Thau-Luenberger

Transform nonlinear system described by (1) to (16) with: the couple is controllable and is an
observable pair , [Ben Hamouda, 2014].
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Assumption: the pair (A,C) is observable, to find an L such that the eigenvalues of A - LC are in the open

left half plane.

� The LQ-optimal gains of the nonlinear observer is obtained by solving an algebraic Riccati equation.
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Nonlinear observer (3/4):

Thau-Luenberger

   

( ) ( , ) ( , )        (18)NL NL

Linear error Non linear error

e A LC e f e x u f x u= − + + −&
14243 14444244443

The error dynamics are nonlinear:

Let    denote that error between the true state and our estimated state,               and wish to determine if it 
can be made to decay to zero.

ˆe x x= −e
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Nonlinear observer (4/4):

In the faulty (actuator/sensor) case
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Linear error Non linear error

e A LC e E LE e t f x u f x e u= − + − + − −&
14243 14444244443

Let                  the fault estimation error, the error 
dynamics, [Ben Hamouda, 2014], are:

The nonlinear observer:
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Fuzzy-based Model Predictive Reconfigurable Control (1/10):

Proposed MPC based strategy

Repetitive minimization of cost function :

Subject to constraints:
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Fuzzy-based Model Predictive Reconfigurable Control (2/10):

Measurable premise variables (MPV)
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The FTC strategy scheme, [Ben Hamouda, 2014], based on T-S fuzzy model with MPV:
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Fuzzy-based Model Predictive Reconfigurable Control (3/10): 

Example: System ∑

The outputs responses and control inputs from initial condition 0 0 0(0.32,0.35) , 0.35 and 0Tx y u= = =

ControlOutput

Nominal operating: 



Fuzzy-based Model Predictive Reconfigurable Control (4/10): 

MPV
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The fuzzy model control law applied to the nonlinear system is:

where:
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The T-S reference model:

In the presence of the actuator fault, the fuzzy model state space representation is:
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Fuzzy-based Model Predictive Reconfigurable Control (5/10):

Unmeasurable premise variables(UPV)
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In the presence of the faults, the fuzzy model 
state space representation is:

1 2 1

ˆ ( )ˆ ˆ ˆ( )   ;  ( ) 1 ( )f f
f f f

xθ θ
µ θ µ θ µ θ

θ θ
−

= = −
−

The fuzzy model control law, [Ben Hamouda, 2014], applied to the nonlinear system is:

where:
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In the presence of the actuator fault, the fuzzy model state space representation is written as:

Fuzzy-based Model Predictive Reconfigurable Control (6/10): 

Example: System ∑

To obtain the representation of the proposed nonlinear observer, the system described by (4) is

transformed to (16) with .

The ranks of the controllability and observability matrices are equal to the system state matrix one. The

conditions of the nonlinear observer are checked where the observer gain matrix is:

The linear-quadratic controller gains are:
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Fuzzy-based Model Predictive Reconfigurable Control (7/10): 

Example: System ∑

Output response vs.time

Control signal vs.time

Actuator fault: MPV/UPV 
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Fuzzy-based Model Predictive Reconfigurable Control (8/10): 

Example: System ∑

Estimation error vs.time Variation of the activation functions according
to the premise variable vs.time
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Fuzzy-based Model Predictive Reconfigurable Control (9/10): 

Example: System ∑

Output response vs.time

Control signal vs.time

Sensor fault: UPV 
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Fuzzy-based Model Predictive Reconfigurable Control (10/10): 

Example: System ∑

Estimation error vs.time
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Conclusion

�A new FTC strategy for nonlinear processes is proposed. It integrates the state estimation and the

dynamic optimizer based on interpolation control to guaranty the stabilization of the faulty plant.

�The proposed FTC design scheme cancels faults (Sensors & Actuators) properly.

�The reconfigurable FMPC preserves stability conditions in the nominal and faulty cases.

�The method proposed to obtain a convex hull is a very conservative embedding procedure.
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Outlook:  FTC strategy

Lyapunov-Based Nonlinear Observers (T-S observer):

� Estimate the fault, and the unmeasured states

using a T-S observer.

� The Gain of the controller , and the gains of

the observer are obtained by solving a linear

matrix inequality (LMI) derived from the

Lyapunov theory.

� Application of the proposed approach FMPC

to an electric vehicle fitted with an extension of

autonomy.
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