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Abstract— This paper deals with feedback controller synthesis
for timed event graphs in dioids, where the number of initial
tokens and time delays are only known to belong to intervals.
The synthesis presented here is mainly based on dioid, interval
analysis and residuation theory.
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I. INTRODUCTION

Discrete Event Systems (DES) appear in many applications
in manufacturing systems [1], computer and communication
systems [4] and are often described by the Petri Net formalism.
Timed-Event Graphs (TEG) are Timed Petri Nets in which all
places have single upstream and single downstream transitions
and appropriately model DES characterized by delay and
synchronization phenomena. TEG can be This specification
means, not more than two tokens can input in the TEG at
the same moment.described by linear equations in the dioid
algebra [2], [5] and this fact has permitted many important
achievements on the control of DES modelled by TEG [5],
[6], [10]. TEG control problems are usually stated in a Just-in-
time context. The design goal is to achieve some performance
while minimizing internal stocks. In [6] linear closed-loop
controllers synthesis are given in a model matching objective,
i.e., a given reference model describes the desired performance
limits, then the goal is to compute a feedback controller in
order to obtain a closed-loop behavior as close as possible
to the reference model and to delay as much as possible the
inputs in the system.
This paper aims at designing robust feedback controller when
the system includes some parametric uncertainties which can
be described by intervals. Intervals allow to describe TEG
with number of tokens and/or time delays, which are assumed
to vary between known bounds. Assuming that there exists a
lower and an upper bound to a specification set, the synthesis
yields a controller set which guarantees that the closed loop
system behavior is both greater than the lower bound of
the specification set and lower than the upper bound of this
same set1. Controller synthesis is obtained by considering
residuation theory which allows the inversion of mapping
defined over ordered sets, and interval analysis which is known
to be efficient to characterize set of robust controllers in a
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1From TEG point of view it is a set of robust controller which ensures that
the controlled system is both slower than a reference model (described as a
TEG) and faster than another one.

guaranteed way [8].
The next Section introduces algebraic tools on dioid and
residuation theory. Section 3 is devoted to a dioid of interval
I(D) and mapping inversion over I(D). The problem of
robust controller synthesis when the system includes interval
parametric uncertainties is stated and solved in Sections 5.
Section 6 presents an illustrative example.

II. DIOIDS AND RESIDUATION

A dioid D is a set endowed with two internal operations
denoted ⊕ (addition) and ⊗ (multiplication), both associative
and both having neutral elements denoted ε and e respectively,
such that ⊕ is also commutative and idempotent (i.e. a⊕ a =
a). The ⊗ operation is distributive with respect to ⊕, and ε is
absorbing for the product (i.e. ε⊗a = a⊗ ε = ε, ∀a). When
⊗ is commutative, the dioid is said to be commutative. The
symbol ⊗ is often omitted.
Dioids can be endowed with a natural order : a � b iff
a = a ⊕ b. Then they become sup-semilattices and a ⊕ b
is the least upper bound of a and b. A dioid is complete if
sums of infinite number of terms are always defined, and if
multiplication distributes over infinite sums too. In particular,
the sum of all elements of the dioid is defined and denoted
� (for ’top’). A complete dioid (sup-semilattice) becomes a
lattice by constructing the greatest lower bound of a and b,
denoted a ∧ b, as the least upper bound of the (nonempty)
subset of all elements which are less than a and b (see [2,
§4]).

Example 1 (Zmax dioid): The set Z = Z ∪ {−∞,+∞}
endowed with the max operator as sum and the classical sum
+ as product is a complete dioid, usually denoted by Zmax,
of which ε = −∞ and e = 0.

Theorem 1: Over a complete dioid D, the implicit equation
x = ax ⊕ b admits x = a∗b as least solution, where a∗ =⊕

i∈N
ai (Kleene star operator) with a0 = e.

Theorem 2 ([6]): Let D be a complete dioid and a, b ∈ D.

a(ba)∗ = (ab)∗a, (1)

(a∗)∗ = a∗ (2)

A. Residuation theory

The residuation theory provides, under some assumptions,
optimal solutions to inequalities such as f(x) � b where f is
an isotone mapping (f s.t. a � b ⇒ f(a) � f(b)) defined over
ordered sets. Some theoretical results are summarized below.
Basic references are [3] and [2, §4.4.2].

Definition 1 (Residual and residuated mapping): An
isotone mapping f : D → E , where D and E are ordered



sets, is a residuated mapping if for all y ∈ E , the least upper
bound of the subset {x|f(x) � y} exists and belongs to this
subset. It is then denoted f �(y). Mapping f � is called the
residual of f . When f is residuated, f � is the unique isotone
mapping such that

f ◦ f � � IdE and f � ◦ f � IdD, (3)

where Id is the identity mapping respectively on D and E .
Property 1: Let f : D → E be a residuated mapping, then

y ∈ f(D) ⇔ f(f �(y)) = y.
Theorem 3 ([2, §4.4.2]): Consider the mapping f : E →

F where E and F are complete dioids of which the bottom
elements are, respectively, denoted by εE and εF . Then, f is
residuated iff f(εE) = εF and f(

⊕
x∈G x) =

⊕
x∈G f(x) for

each G ⊆ E (i.e f is lower-semicontinuous abbreviated l.s.c.).
Corollary 1: The mappings La : x �→ ax and Ra : x �→ xa

defined over a complete dioid D are both residuated.2 Their
residuals are usually denoted, respectively, L�

a(x) = a◦\x and
R�

a(x) = x◦/a in (max,+) literature.3

Theorem 4 ([2, §4.4.4]): The mappings x �→ a◦\x and x �→
x◦/a verify the following properties :

(ab)◦\x = b◦\(a◦\x) x◦/(ba) = (x◦/a)◦/b, (4)

a∗x = a∗◦\(a∗x) xa∗ = (xa∗)◦/a∗, (5)

a◦\(x ∧ y) = a◦\x ∧ a◦\y (x ∧ y)◦/a = x◦/a ∧ y◦/a. (6)

III. DIOID AND INTERVAL MATHEMATICS

Interval mathematics was pioneered by Ramon E. Moore
as a tool for bounding rounding and truncation errors in
computer programs. Since then, interval mathematics had
been developed into a general methodology for investigating
numerical uncertainty in numerous problems and algorithms,
and is a powerful numerical tool for calculating guaranteed
bounds on functions using computers.
In [9] the problem of interval mathematics in dioids is ad-
dressed. The authors give a weak interval extensions of dioids
and show that idempotent interval mathematics appears to
be remarkably simpler than its traditional analog. Below, we
state that residuated theory has a natural extension in dioid of
intervals.

A. Interval arithmetic in dioid

A (closed) interval in dioid D is a set of the form

x = [x, x] = {t ∈ D|x � t � x}
where (x, x) ∈ D2, x (respectively, x) is said to be lower
(respectively, upper) bound of the interval x. In [9] the authors
define from a dioid D a dioid of interval, denoted I(D),
endowed with two coordinate-wise algebraic operations :

x
−⊕ y = [x ⊕ y, x ⊕ y] (7)

x
−⊗ y = [x ⊗ y, x ⊗ y] (8)

2This property concerns as well a matrix dioid product, for instance X �→
AX where A, X ∈ Dn×n. See [2] for the computation of A ◦\B and B◦/A.

3a ◦\b is the greatest solution of ax � b.

where the interval εεε = [ε, ε] (respectively, e = [e, e]) is zero
(respectively, unit) element of I(D).

Since x ⊕ y � x ⊕ y and x ⊗ y � x ⊗ y whenever x � x
and y � y, then I(D) is closed with respect to the operations
−⊕,

−⊗. Dioid I(D) can be completed by considering the
following definition.

Definition 2: Let {xα} be an infinite subset of I(D), the
infinite sum of elements of this subset is :⊕

α

xα = [
⊕

α

xα,
⊕

α

xα]

Dioid I(D) can be endowed with a natural (partial) order :

a �I(D) b ⇔ a = a
−⊕ b ⇔ a �D b and a �D b

An interval for which x = x is called degenerate. Degenerate
intervals allow to represent numbers without uncertainty. In
this case we identify x with its element by writing x ≡ x.

Remark 1: Note that if x and y are intervals in I(D), then

x ⊂ y ⇔ y � x � x � y

In particular, x = y iff x = y and x = y.
Remark 2: I(D) being closed with respect to the operations

−⊕,
−⊗, the Kleene star operator admits a natural extension, thus

x∗ =
⊕
i∈N

xi = [
⊕
i∈N

x∗,
⊕
i∈N

x∗] = [x∗, x∗]

with x0 = e.

B. Residuation of interval linear inequations

Proposition 1: Mapping La : I(D) → I(D),x �→ a
−⊗ x is

residuated. Its residual is equal to

L�
a(b) = a◦\b = [a◦\b ∧ a◦\b, a◦\b]

Proof: Observe that La is l.s.c., i.e.,

La

( −⊕
x∈X x

)
=

−⊕
x∈X La (x), (for every subset X of

I(D)), moreover La(εεε) = La([ε, ε]) = [aε, aε] = [ε, ε] = εεε.
Then La is residuated (see Theorem 3).
It remains to obtain the analytical expression of L�

a(b) = a◦\b.
It is the greatest x solution of ax � b, this inequality can be
written as follows :

[a, a]
−⊗ [x, x] �I(D) [b, b]

⇔ a ⊗ x �D b and a ⊗ x �D b and x �D x

The last inequality ensures that x is not empty. Theorem 11
leads to

x �D a◦\b and x �D a◦\b and x �D x

thus the greatest interval is obviously given by :

x = [x, x] �I(D) [a◦\b ∧ a◦\b, a◦\b]
�

Remark 3: We would show in the same manner that map-

ping Ra : I(D) → I(D),x �→ x
−⊗ a is residuated.



Fig. 1. A uncertain TEG with a controller (bold dotted lines)

IV. INTERVAL ARITHMETIC AND TIMED EVENT GRAPHS

It is well known that the behavior of a TEG can be expressed
by linear state equations over some dioids, e.g., over dioid of
formal power series with coefficients in Zmax and exponents
in Z namely Zmax[[γ]].

X = AX ⊕ BU (9)

Y = CX (10)

Where X ∈ (Zmax[[γ]])n represents the internal transitions
behavior, U ∈ (Zmax[[γ]])p represents the input transitions be-
havior , and Y ∈ (Zmax[[γ]])q represents the output transitions
behavior, and A ∈ (Zmax[[γ]])n×n , B ∈ (Zmax[[γ]])n×p and
C ∈ (Zmax[[γ]])q×n represent the link between transitions. We
refer the reader to [5] for a complete presentation.

The class of uncertain systems, which will be considered,
are TEG where the number of tokens and time delays are
only known to belong to intervals. Therefore uncertainties can
be described by intervals with known lower and upper bounds
and the matrices of Equations (9) and (10) are such that
A ∈ A ∈ I

(
Zmax[[γ]]

)n×n
, B ∈ B ∈ I

(
Zmax[[γ]]

)n×p
and

C ∈ C ∈ I
(
Zmax[[γ]]

)q×n
, each entry of matrices A, B, C are

intervals with bounds in dioid Zmax[[γ]] with only non-negative
exponents and coefficients integer values. By Theorem 1,
Equation (9) has the minimum solution X = A∗BU .
Therefore, Y = CA∗BU and the transfer function of the
system is H = CA∗B ∈ H = CA∗B ∈ I

(
Zmax[[γ]]

)q×p
,

where H represents the interval in which the transfer function
will be lie for all the variations of the parameters .

Figure 1 shows a TEG with 2 inputs and 1 output, which
may represent a manufacturing system with 3 machines.
Machines M1 and M2 produce parts assembled on machine
M3. A token in dotted lines means that the resource can or
not to be available to manufacture part. Durations in bracket
gives the minimal and maximal time spent in the place before
contributing to the enabling of the downstream transition.
For instance, machine M2 can manufacture 2 or 3 parts and
each processing time will last 3 time units. Each manufactured

�

� �
�

�

�

Fig. 2. An uncertain system with a feedback controller

part will spend between 2 and 6 time units in the downstream
place before contributing to the enabling of transition x3.
Entries A2,2 = [3γ3, 3γ2] and A3,2 = [2, 6] describe the
intervals in which these parameters evolve. Therefore, we
obtain the following interval matrices,

A =


[2γ2, 5γ] [ε, ε] [ε, ε]

[ε, ε] [3γ3, 3γ2] [ε, ε]
[3γ, 4γ] [2, 6] [2γ3, 3γ]




B =


[e, e] [ε, ε]

[ε, ε] [e, e]
[ε, ε] [ε, ε]




C =
(
[ε, ε] [ε, ε] [e, e]

)
.

(11)

and thanks to theorem 3, the transfer function H belongs to
the interval matrix H given below. It characterizes the whole
transfer functions coming from (11):

H = CA∗B =
(
[3γ(2γ2)∗, 4γ(5γ)∗] [2(3γ3)∗, 6(3γ)∗]

)
.

(12)

V. ROBUST FEEDBACK CONTROLLER SYNTHESIS

We consider the behavior of a p-input q-output TEG by
a state representation such as (9) and (10), we focus here
on output feedback controller synthesis denoted F , added
between the output Y and the input U of the system (see
Figure 2). Therefore the process input verifies U = V ⊕ FY ,
and the output is described by Y = H(V ⊕ FY ). According
to Theorem 1, the closed-loop transfer relation (depending on
F ) is then equal to

Y = (HF )∗HV. (13)

where H ∈ H is the uncertain system transfer.
The objective of the robust feedback synthesis is to compute

a controller F which imposes a desired behavior (a specifi-
cation) to the uncertain system. The problem addressed here
consists in computing the greatest interval (in the sense of
the order relation �I(Zmax[[γ]])), denoted F̂, which guarantees
that the behavior of the closed loop system is lower than
Gref ∈ I

(
Zmax[[γ]]

)q×p
(a specification defined as an interval)

for all H ∈ H. Formally the problem consists in computing
the upper bound of the following set

{F ∈ I
(
Zmax[[γ]]

)p×q | (HF)∗H � Gref} (14)

Proposition 2 shows that this problem admits a solution for
some reference models.



Proposition 2: Let MH : I
(
Zmax[[γ]]

)p×q →
I
(
Zmax[[γ]]

)q×p
,F �→ (HF)∗H be a mapping. Let us

consider the following sets :

G1 =
{
G ∈ I

(
Zmax[[γ]]

)q×p | ∃D ∈ I
(
Zmax[[γ]]

)q×q
s.t. G = D∗H

}
,

G2 =
{
G ∈ I

(
Zmax[[γ]]

)q×p | ∃D ∈ I
(
Zmax[[γ]]

)p×p
s.t. G = HD∗

}
.

If Gref ∈ G1 ∪ G2, there exists a greatest F such that
MH(F) � Gref , given by

F̂ =
⊕

{F∈ I(Zmax[[γ]])p×q | (HF)∗H�Gref}
F = H◦\Gref ◦/H

(15)
Proof: First Gref ∈ G1 ⇔ ∃D s.t. Gref = D∗H, then
we seek the greatest solution to (HF)∗H � D∗H which

may be written as (e
−⊕ HF

−⊕ HFHF
−⊕ ...)H � D∗H, then

the greatest inequality must satisfy the set of the following
inequalities :

H � D∗H (16)

HFH � D∗H (17)

HFHFH � D∗H (18)

. . . etc

Kleene star definition gives D∗ � e (see remark (2)), thus
inequality (16) is obviously satisfied. Thanks to proposition 1,
the greatest solution to inequality (17) is F̂ = H◦\D∗H◦/H.
Furthermore, F̂ is also a solution of inequality (18), indeed
by recalling that D∗D∗ = D∗ and since HF̂H � D∗H we
obtain

HF̂HF̂H � D∗HF̂H � D∗D∗H = D∗H

The same holds true recursively for the next inequalities, then
F̂ is the greatest solution. We would show that F̂ is also the
greatest solution if Gref ∈ G2 with analog steps. �

Corollary 2: If Gref ∈ ImMH, then F̂ = H◦\Gref ◦/H is
the greatest solution to the equation (HF)∗H = Gref .
Proof: First ImMH ⊆ (G1 ∩ G2), thus F̂ is the greatest
F such that MH(F) � Gref . Furthermore, ∀y ∈ ImMH,
MH(x) = y admits a solution then F̂ is the greatest (see
Property 1). �

Below, we consider the robust controllers set, denoted F ,
such that the transfer of the closed loop system is in Gref for
all H ∈ H

F = {F ∈ Zmax[[γ]]p×q | (HF )∗H ⊂ Gref}
Corollary 3: If Gref ∈ ImMH, then F̂ ⊂ F .

Proof: If Gref ∈ ImMH, then MH(F̂) = Gref thanks
to Corollary 2, thus (HF̂)∗H ⊂ Gref . Obviously, this is
equivalent to ∀F ∈ F̂, (HF )∗H ⊂ Gref , which leads to the
result. �
Corollary 3 shows that if Gref ∈ ImMH each feedback
controller F ∈ F̂ is also in F . From a practical point of view
this means that for all number of tokens and holding time
belonging to the given interval the closed loop system will
be in the specification interval.

Remark 4: From a computational point of view, we have

F̂ = H◦\Gref ◦/H = [H,H]◦\[Gref , Gref ]◦/[H,H] = [H◦\Gref ∧ H◦\Gref ,H

= [(H◦\Gref ∧ H◦\Gref )◦/H ∧ H◦\Gref ◦/H,H◦\Gref ◦/H]
= [H◦\Gref ◦/H ∧ H◦\Gref ◦/H ∧ H◦\Gref ◦/H,H◦\Gref ◦/H] thanks

The last equation may be simplified, indeed (H◦\Gref )◦/H �
(H◦\Gref )◦/H thanks to the antitony of mapping a◦/x (i.e.,
x1 � x2 ⇒ a◦/x1 � a◦/x2), then H◦\Gref ◦/H ∧ H◦\Gref ◦/H =
H◦\Gref ◦/H . Therefore

F̂ = H◦\Gref ◦/H = [H◦\Gref ◦/H ∧ H◦\Gref ◦/H,H◦\Gref ◦/H].
(19)

VI. EXAMPLE : OUTPUT FEEDBACK SYNTHESIS

We describe a complete synthesis of a controller for the
uncertain TEG depicted with solid black lines in Fig. 1. The
reference model chosen is

Gref =

(
H

(
γ2

γ2

)) ∗
H

=
(
[3γ ⊕ 5γ3(1γ)∗, 4γ(5γ)∗] [2 ⊕ (4γ2)(1γ)∗, 6 ⊕ 9γ ⊕ 12γ2 ⊕ 15γ3 ⊕ 18γ4 ⊕ 21

This specification means that not more than two tokens can
input in the TEG at the same moment. We refer the reader to
[6] for a discussion about reference model choice. We aim to
compute the greatest interval of robust controllers which keep
the same objective.
According to Proposition 2 and solution (15), the controller is
obtained by computing H◦\Gref ◦/H. Therefore we obtain

F̂ =
(

[−3γ−1 ⊕−1γ(1γ)∗,−15γ−1(5γ)∗]
[−2 ⊕ γ2(1γ)∗,−6 ⊕−3γ ⊕ γ2 ⊕ 3γ3 ⊕ 6γ4 ⊕ 9γ5 ⊕ 13γ6(5γ)∗]

)

For the realization of that controller it is necessary to choose
one feedback in the set F̂. Here we choose the lower bound
of this set, i.e.,

F̂ =
(−3γ−1 ⊕−1γ(1γ)∗ − 2 ⊕ γ2(1γ)∗

)t

This feedback is not causal because there are negative coeffi-
cients in matrix entries meaning negative date for the transition
firings (see [2] for a strict definition of causality in dioid).
The canonical injection from the set of causal elements of
Zmax[[γ]] (denoted Z

+

max[[γ]]) in Zmax[[γ]] is also residuated
(see [6] for details). Its residual is denoted Pr+, therefore the
greatest causal feedback is

F̂+ = Pr+(F̂ ) =
(

γ2(1γ)∗

γ2(1γ)∗

)
. (20)

Figure 1 shows one realization of the controller (bold dotted
lines). Figure 3 shows the interval of transfer in which the
real transfer is assumed evolving, and the interval of the
specification in which the closed loop system will evolve in a
guaranteed way.

Remark 5: The reader can find software tools in order to
handle periodic series and solve the illustration (see [12]).



Fig. 3. The interval of transfer relation of the uncertain system (two
entries [H11, H11] and [H12, H12]), and the interval of the specification
([Gref11

, Gref11 ] and [Gref12
, Gref12 ]) equal to the interval in which the

closed loop system will evolve.

VII. CONCLUSION

In this paper we have assumed that the TEG includes some
parametric uncertainties in a bounded context. We have given
a robust feedback controller synthesis which ensures that the
closed-loop system transfer is in a given interval for all feasible
values for the parameters. The next step is to extend this
work to other control structure such as the one given in [11].
The traditional interval theory is very effective for parameter
estimation, it would be interesting to apply the results of this
paper to the TEG parameter estimation such as intended in
[7].
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