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Abstract. In this paper, we consider independence property between
a random process and its first derivative. Then, for linear mixtures, we
show that cross-correlations between mixtures and their derivatives pro-
vide a sufficient number of equations for analytically computing the un-
known mixing matrix. In addition to its simplicity, the method is able
to separate Gaussian sources, since it only requires second order statis-
tics. For two mixtures of two sources, the analytical solution is given,
and a few experiments show the efficiency of the method for the blind
separation of two Gaussian sources.

1 Introduction

Blind source separation (BSS) consists in finding unknown sources si(t), i =
1, ..., n supposed statistically independent, knowing a mixture of these sources,
called observed signals xj(t), j = 1, ..., p. In the literature, various mixtures have
been studied : linear instantaneous [1–3] or convolutive mixtures [4–6], nonlinear
and especially post-nonlinear mixtures [7, 8]. In this paper, we assume (i) the
number of sources and observations are equal, n = p, (ii) the observed signals
are linear instantaneous mixtures of the sources, i.e,

xj(t) =
n∑

i=1

aijsi(t), j = 1, . . . n. (1)

In vector form, denoting the source vector s(t) = [s1(t), ..., sn(t)]T ∈ Rn, and
the observation vector x(t) = [x1(t), ..., xn(t)]T ∈ Rn, the observed signal is

x(t) = As(t), (2)

where A = [aij ] is the n× n mixing matrix, assumed regular.
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Without prior knowledge, the BSS problem can be solved by using indepen-
dent component analysis (ICA) [9], which involves higher (than 2) order statis-
tics, and requires that at most one source is Gaussian. With weak priors, like
source coloration [10–12] or non-stationarity [13, 14], it is well known that BSS
can be solved by jointly diagonalizing variance-covariance matrices, i.e. using
only second order statistics, and thus allowing separation of Gaussian sources.

For square (n × n) mixtures, the unknown sources can be indirectly esti-
mated by estimating a separating matrix denoted B, which provides a signal
y(t) = Bx(t) with independent components. However, it is well known that
independence of the components of y(t) is not sufficient for estimating exactly
B = A−1, but only BA = DP, pointing out a scale (diagonal matrix D) and
permutation (permutation matrix DP) indeterminacies [9]. It means that source
power cannot be estimated. Thus, in the following, we will assumed unit power
sources.

In this paper, we propose a new method based on second order statistics
between the signals and their first derivatives. In Section 2, a few properties
concerning statistical independence are derived. The main result is presented in
Section 3, with the proof in Section 4, and a few experiments in Section 5, before
the conclusion.

2 Statistical independence

In this section, we will introduce the main properties used below. For p random
variables x1, . . . xp, a simple definition of independence is based on the factori-
sation of the joint density as the product of the marginal densities:

px1,...,xp(u1, . . . , up) =
p∏

i=1

px1(ui). (3)

We can also define the independence of random processes.

Definition 1. Two random processes x1(t) and x2(t) are independent if and
only if any random vectors, x1(t1), ..., x1(t1 + k1) and x2(t2), ..., x2(t2 + k2), ∀ti,
and kj, (i, j = 1, 2), extracted from them, are independent.

Consequently, if two random signals (processes) x1(t) and x2(t) are statis-
tically independent, then ∀t1, t2, x1(t1) and x2(t2) are statistically independent
random variables, too [16].

Notation 1 In the following, the independence between two random signals
x1(t) and x2(t) will be denoted x1(t) I x2(t).

Proposition 1. Let x1(t), x2(t), ..., xn(t) and u(t) be random signals. We have

x1(t)Iu(t) =⇒ u(t)Ix1(t)
x1(t)Iu(t),...,xn(t)Iu(t) =⇒ (x1(t) + ... + xn(t)) Iu(t)

∀α∈R, x1(t)Iu(t) =⇒ αx1(t)Iu(t)
. (4)
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We now consider independence properties involving signals and their deriva-
tives.

Lemma 1. Let x1(t) and x2(t) be differentiable (with respect to t) signals. Then,

x1(t)Ix2(t) =⇒

x1(t) I ẋ2(t)
ẋ1(t) I x2(t)
ẋ1(t) I ẋ2(t)

. (5)

As a direct consequence, if x1(t) and x2(t) are sufficiently differentiable, for
all m,n ∈ N,

x1(t)Ix2(t) =⇒ x
(n)
1 (t)Ix(m)

2 (t). (6)

Proof. If x1(t) and x2(t) are statistically independent then

x1(t)Ix2(t) =⇒ ∀t1,∀t2, x1(t1)Ix2(t2). (7)

According to (4), ∀t1,∀t2,

x1(t1)Ix2(t2)
x1(t1)Ix2(t2 + τ)

}
=⇒ x1(t1)I

x2(t2)− x2(t2 + τ)
τ

. (8)

Hence, since x2 is differentiable with respect to t

lim
τ→0

x2(t2)− x2(t2 + τ)
τ

< ∞, (9)

and we have ∀t1, t2, x1(t1)Iẋ2(t2) where ẋ(t) denotes the derivative of x(t) with
respect to t. Similar proof can be done for showing ∀t1, t2, ẋ1(t1)Ix2(t2), and
more generally ∀t1 ∈ R, t2 ∈ R, x

(n)
1 (t1)Ix(m)

2 (t2).

Lemma 2. Let x(t) be a differentiable signal with the auto-correlation function
γxx(τ) = E(x(t)x(t− τ)), then E(xẋ) = 0.

Proof. Since x(t) is derivable, its autocorrelation function is derivable in zero:

γ̇xx(0) = lim
τ→0

γxx(0)− γxx(τ)
−τ

(10)

= lim
τ→0

E(x(t)x(t))− E(x(t)x(t− τ))
−τ

(11)

= lim
τ→0

E(x(t)(
x(t)− x(t− τ)

−τ
)) (12)

= E(x(t). lim
τ→0

(
x(t)− x(t− τ)

−τ
)) = −E(xẋ). (13)

Finally, since γxx is even, γ̇xx(0) = 0, and consequently E(xẋ) = 0.

Lemma 3. If x = As, where component si of s are mutually independent, then
E(xẋT ) = 0.

Proof. Since x = As, we have E(xẋT ) = AE(sṡT )AT

Using Lemmas 2 and 1, one has E(siṡi) = 0 and E(siṡj) = 0, respectively.
Consequently, E(xẋT ) = 0.
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3 Theorem

In this section, we present the main result of the paper. The proof will be shown
in the next section (4).

First, let us define the set T of trivial linear mixings, i.e. linear mappings
which preserve independence for any distributions. One can show that T is
set of square regular matrices which are the product of one diagonal regular
matrix and one permutation matrix. In other words, B is a separating matrix if
BA = DP ∈ T .

Theorem 1. Let x(t) = As(t), be an unknown regular mixture of sources s(t),
whose components si(t) are ergodic, stationary, derivable and mutually indepen-
dent signals, the separating matrices B, such that y(t) = Bx(t) has mutually
independent components, are the solutions of the equation set:

BE(xxT )BT = E(yyT )
BE(ẋẋT )BT = E(ẏẏT )

where E(yyT ) and E(ẏẏT ) are diagonal matrices.

4 Proof of theorem

The proof is given for 2 mixtures of 2 sources. It will be admitted in the general
case.

The estimated sources are y = Bx where B is a separating matrix of A.
After derivation, one has a second equation: ẏ = Bẋ.

The independence assumption of the estimated sources y implies that the
following matrix is diagonal:

E
(
yyT

)
= E

(
BxxT BT

)
= BE

(
xxT

)
BT . (14)

Moreover, using Lemma 1 and 2, the following matrix is diagonal, too:

E
(
ẏẏT

)
= E

(
BẋẋT BT

)
= BE

(
ẋẋT

)
BT . (15)

By developing the vectorial equations (14) and (15), one gets four scalar
equations:

b2
11E

(
x2

1

)
+2b11b12E (x1x2) +b2

12E
(
x2

2

)
= E

(
y2
1

)
b2
21E

(
x2

1

)
+2b21b22E (x1x2) +b2

22E
(
x2

2

)
= E

(
y2
2

)
b11b21E

(
x2

1

)
+b11b22E (x1x2) +b12b21E (x1x2) +b12b22E

(
x2

2

)
= 0

b11b21E
(
ẋ2

1

)
+b11b22E (ẋ1ẋ2) +b12b21E (ẋ1ẋ2) +b12b22E

(
ẋ2

2

)
= 0.

(16)

This system is a set of polynomials with respect to the bij . It has six unknowns
for only four equations. In fact, the two unknowns, E(y2

1) and E(y2
2) are not

relevant, due to the scale indeterminacies of source separation. Since the source
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power cannot be estimated, we can then consider this unknows as parameters,
or even constraint these parameter to be equal to a constant (e.g. 1). Here,
we parameterize the set of solutions (two dimensional manifold) by two real
parameters λ1 and λ2 such that |λ1|=E

(
y2
1

)
and |λ2|=E

(
y2
2

)
in Eq. (16) .

Groëbner Basis decomposition [15] give the solutions

B =
(

λ1 0
0 λ2

) (
φ1 φ1η1

φ2 φ2η2

)
or B =

(
0 λ1

λ2 0

) (
φ1 φ1η1

φ2 φ2η2

)
, (17)

where

φ1 =
(
E(x2

1) + 2η1E(x1x2) + η2
1E(x2

2)
)− 1

2 , (18)

φ2 =
(
E(x2

1) + 2η2E(x1x2) + η2
2E(x2

2)
)− 1

2 , (19)

η1 = −β

(
1 +

√
1− α

β2

)
, (20)

η2 = −β

(
1−

√
1− α

β2

)
, (21)

α =
E(x2

1)E(ẋ1ẋ2)− E(x1x2)E(ẋ2
1)

E(x1x2)E(ẋ2
2)− E(x2

2)E(ẋ1ẋ2)
, (22)

β =
1
2

E(x2
1)E(ẋ2

2)− E(x2
2)E(ẋ2

1)
E(x1x2)E(ẋ2

2)− E(x2
2)E(ẋ1ẋ2).

(23)

Then, let

B̃=
(

φ1 φ1η1

φ2 φ2η2

)
, (24)

any matrix TB̃ where T ∈ T , is still a solution of (16). Especially, it exists a
particular matrix T̃ ∈T with λ1 = E(y2

1) and λ2 = E(y2
2) such that:

A−1 = T̃B̃. (25)

Thus, all the possible separating matrices are solutions of (16), and the Theorem
1 is proved.

5 Experiments

Consider two independent Gaussian sources obtained by Gaussian white noises
filtered by low-pass second-order filters. Filtering ensures to obtain differentiable
sources by preserving the Gaussian distribution of the sources.

The two sources are depicted on Figures 1 and 2 (90, 000 samples, sampling
period Te = 0.1). The corresponding joint distribution is represented on Figure
3.

The derivative joint distribution (Fig. 4) shows the two signals ṡ1(t) and ṡ2(t)
are independent (as predicted by Lemma 2).
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The mixing matrix

A =
(

1.5 0.8
0.6 1.2

)
, (26)

provides the observation signals (mixtures) x1(t) and x2(t). The joint distribu-
tion of the mixtures (Fig. 4) and of their derivatives (Fig. 5) points out the
statistical dependence of x1(t) and x2(t) as well as ẋ1(t) and ẋ2(t).

From the Theorem 1, the separation matrix B̃ is analytically computed:

B̃ =
(

0.456 −.606
−0.454 1.136

)
. (27)

The estimated sources B̃x(t) are independent and unit power. We also can
check that there exists T̃ ∈ T such as T̃B̃x(t) = s(t), i.e. T̃B̃ = A−1. In this
example, let

T̃ =
(

2 0
0 2

)
∈ T , (λ1 = λ2 = 2), (28)

we have

T̃B̃ =
(

0.912 −.613
−0.453 1.135

)
, (29)

and

A−1 =
(

0.909 −.606
−0.454 1.136

)
. (30)

In order to study the robustness of the solution for Gaussian mixtures, Fig.
7 shows the separation performance (using the index: E(norm(s − ŝ))) versus
the sample number. Over 2600 samples, the analytical solution provides good
performance, with an error less than −20 dB.

6 Conclusion

In this article, we proposed a new source separation criterion based on variance-
covariance matrices of observations and of their derivatives. Since the method
only uses second-order statistics, source separation of Gaussians remains pos-
sible. The main (and weak) assumption is the differentiability of the unknown
sources.

We derived the analytical solution for two mixtures of two sources. In the
general case (n mixtures of n sources), the analytical solution seems tricky to
compute. Moreover, for an ill-conditioned set of equations (16), the analyti-
cal solution can be very sensitive to the statistical moment estimations. For
overcoming this problem, we could estimate the solution, by using approxi-
mate joint diagonalization algorithm of E(xxT ) and E(ẋẋT ). Moreover, other
variance-covariance matrices, based on higher-order derivatives or using different
delays (assuming sources are colored) or on different temporal windows (assum-
ing sources are non stationary), could be used for estimating the solution by
joint diagonalization.

Further investigations include implementation of joint diagonalization, and
extension to more complex signals mixtures, e.g. based on state variable models.
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Fig. 1. Source s1(t) Fig. 2. Source s2(t)

Fig. 3. Distribution of the sources
(s1(t), s2(t))

Fig. 4. Distribution of the signals (ṡ2(t), ṡ1(t))

Fig. 5. Joint distribution of the mixtures
(x1(t), x2(t))

Fig. 6. Joint distribution of the mixture
derivatives (ẋ1(t), ẋ2(t))

Fig. 7. The error estimation of the sources according to the number of samples


