
Examen Kalman, 2A Rob
Luc Jaulin, ENSTA-Bretagne, Mardi 13 décembre 2022, 10h20-11h50.

Appareils électroniques interdits. Polycopié interdit. Notes manuscrites autorisées

Exercice 1. Resampling

On considère le nuage de particules de la figure représentant une densité de probabilité πx pour la position x = (x1, x2)

d’un robot. A chaque particule j est associé un poids wj .

1) Donner une formule en fonction des x1(j), x2(j) et des wj pour approximer l’espérance mathématique E(x) et la

matrice de covariance Γx de x.

2) On voudrait rééchantillonner le nuage de façon à approximer la même densité de probabilité, mais cette fois, tous les

poids doivent être égaux.

Donner et dessiner le nouveau nuage de particules. Justifier vos calculs.

Exercice 2. Localisation d’un robot dans une piscine

Consider an underwater robot moving at a constant depth within a rectangular pool of length 2Ry and width 2Rx. A

sonar rotates with a constant angular speed δ̇. We want to estimate the coordinates (x, y) of the robot. The origin of the

coordinate system is in middle of the pool. We assume that the angle δ of the sonar and the heading angle θ are known.

The sonar illuminates the environment inside an emission cone with an angle ±π
4 , as illustrated by the figure.
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The tangential acceleration a is measured with an accelerometer. Every dt = 0.1s, the sonar returns the distance ℓ to

the wall in front of it. As illustrated by the figure below the number w of the wall involved in the distance measurement

(called the hit wall) only depends on the angle θ + δ and not on the position of the robot. In the configuration (a), the

sonar in on the right of the robot and since θ + δ ≃ π
2 , Wall 1 is hit. In configuration (b), the sonar is on the left of the

robot and since θ + δ ≃ π, Wall 2 is hit.

We want the build a Kalman filter to estimate the position (x, y) of the robot from the measurements ak, ℓk, θk, δk at

time tk = dt · k.

The Kalman filter will be built on the following kinematic model
ẋ = v · cos θ
ẏ = v · sin θ
v̇ = a

The state vector is z = (x, y, v) and the input is a. The Kalman filter assumes the following linear state equations

zk+1 = Ak · zk +Bk · ak +αk

rk = Ck · zk + βk

where αk and βk are white Gaussian noises.

1) Give the expressions for Ak,Bk and Ck we should take to have the estimations x̂, ŷ, v̂ of the variables x, y, v.

2) Explain how the quantity r(k) should be chosen from the measurements.
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Correction, Examen Kalman, 2A Rob

Mardi 13 décembre 2022, 10h20-11h50

Correction of Exercise 1. (resampling)

1) On a

x̄ =

( ∑
j wjx1(j)∑
j wjx2(j)

)
et

Γx =

( ∑
j wj(x1(j)− x̄1)

2
∑

j wj(x1(j)− x̄1) · (x2(j)− x̄2)∑
j wj(x1(j)− x̄1) · (x2(j)− x̄2)

∑
j wj(x2(j)− x̄2)

2

)

2) The principle is to consider particles as a container containing a liquid corresponding to the wℓ’s. The new particles

are initially empty and all the fluid has to be poured from the old particles to the new one. We bring the new particles

one by one and we fill them with the fluid until the new particle contains 1/N . As soon as an old particle is empty, we

delete it. When a new particle contains 1
N we drop it at the place where the last old particle was. This is illustrated by

the figure where 10 green particles (green) are resampled into the 10 blues particles. Each blue particle is associated to

one green particle. When two blue particles overlap, the blue disk is darker. The 3 blue particles 5,6,7 which overlap are

associated to a unique green particle. The result of the process is an index J which tells that the ith new particle has

the position of the J(i)′s old particle. To compute the index J(i) we synchronize the cumulative sum γ =
∑

ℓ≤j wℓ for

W and the cumulative sum
∑

ℓ≤i w
′
ℓ =

i
N for W ′.

Resampling: generation of 10 particles (blue) from 10 particles (green). Several blue particles may overlap. The

probability for a particle with a low weight to survive after a resampling is small.

This can be computed by the following algorithm
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Function Resample (W)
1 i = 1; j = 1;
2 γ = w1

3 while i ≤ N
4 if i

N < γ then J(i) = j; i = i+ 1
5 else j = j + 1; γ = γ + wj

6 Return J

Correction of Exercise 2 (robot localization in a pool)

We take

zk+1 =

 1 0 cos θk · dt
0 1 sin θk · dt
0 0 1

 · zk +

 0

0

dt

 ak

rk = Ck · zk
To build Ck, we need to know which is the hit wall. Its number is

w = modulo(round(
2

π
(θ + δ)), 4)

Depending on w, the output rk and the matrix Ck are given by the following table

rk Ck

w = 0 Rx − ℓ
(
1 0 0

)
w = 1 Ry − ℓ

(
0 1 0

)
w = 2 ℓ−Rx

(
1 0 0

)
w = 3 ℓ−Ry

(
0 1 0

)
For instance if w = 0, we have

rk︸︷︷︸
=Rx−ℓ

=
(
1 0 0

)
· zk︸ ︷︷ ︸

=xk

+ βk

i.e. xk ≃ Rx − ℓ. This is consistent with the fact that when the sonar hit Wall 0 or Wall 2, we measure indirectly xk and

when the sonar hit Wall 1 or Wall 3, we measure indirectly yk.

For initialization of the Kalman filter, we took

ẑ0 =

 0

0

0

 and Γz =

 100 0 0

0 100 0

0 0 100


We got the results illustrated by the figure below. We have taken the covariance matrices for the noises α,β as

Γα =

 0.01 0 0

0 0.01 0

0 0 0.01

 and Γβ = 0.04

and generated the noises accordingly. Subfigure (a) corresponds to the initialization. In Subfigure (b) Wall 1 is hit. The

confidence ellipse for (z1, z2) (or equivalently for (x, y) becomes flat in y. In Subfigure (c) Wall 2 is hit. The confidence

ellipse becomes flat in x. The added uncertainty in x is due to the fact that the speed v is still uncertain. In Subfigure

(d) Wall 3 is hit. The ellipse becomes is a small both x, y. We can also check that the confidence interval for z3 (which

corresponds to v) is small also.
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