Examen sur la commande non-linéaire des robots mobiles ENSTA-Bretagne, UV 4.7.

Jeudi 16 mai 2019, 9:30 \rightarrow 11:00, durée 1:30, La calculatrice est interdite. Le polycopié et les notes manuscrites sont autorisés.

Exercise 1. Consider the pendulum, represented below, and described by

$$\left(\begin{array}{c} \dot{x}_1 \\ \dot{x}_2 \end{array}\right) = \left(\begin{array}{c} x_2 \\ -\sin x_1 + u \end{array}\right)$$

where u is the input, x_1 its position and x_2 its angular velocity.

We would like the position $x_1(t)$ of the pendulum converges to the setpoint $w(t) = 0, \forall t$.

- 1) Taking $y = x_1$ as an output, propose a feedback linearization method to control the pendulum so that the error e = w y converges toward 0 as $\exp(-t)$.
- 2) Answer to the previous question with a sliding mode approach.

Exercise 2. Consider a robot moving on a plane and described by the following state equations:

$$\begin{cases} \dot{x}_1 &= \cos x_3 \\ \dot{x}_2 &= \sin x_3 \\ \dot{x}_3 &= u \end{cases}$$

where x_3 is the heading of the robot and (x_1, x_2) are the coordinates of its center.

1) The expression of a vector field converging counterclockwise to a circle of radius 1 is given by

$$\left(\begin{array}{c} \dot{p}_1 \\ \dot{p}_2 \end{array} \right) = \mathbf{\Phi}_0(\mathbf{p}) = \left(\begin{array}{c} -p_1^3 - p_1 p_2^2 + p_1 - p_2 \\ -p_2^3 - p_1^2 p_2 + p_1 + p_2 \end{array} \right)$$

Find the expression of a vector field Φ attracted by a circle of radius $\rho = 2$ and center $\mathbf{c} = (2,0)$, where the attraction is counterclockwise.

2) Propose a controller so that the robot follows Φ . The wanted behavior of the controller is illustrated below.

Correction de l'examen sur la commande non-linéaire des robots mobiles ENSTA-Bretagne, UV 4.7.

Jeudi 16 mai 2019, $9:30\rightarrow11:00$, durée 1:30,

Correction of Exercise 1.

1) We have:

$$y = x_1$$

$$\dot{y} = x_2$$

$$\ddot{y} = -\sin x_1 + u.$$

If we take

$$u = \sin x_1 + (w - y + 2(\dot{w} - \dot{y}) + \ddot{w}),$$

we obtain

$$e + 2\dot{e} + \ddot{e} = 0$$

where e = w - y is the error. Since $w(t) = 0, \forall t$, the controlled system is described by the following state equation

$$\left(\begin{array}{c} \dot{x}_1 \\ \dot{x}_2 \end{array}\right) = \left(\begin{array}{c} x_2 \\ -x_1 - 2x_2 \end{array}\right).$$

2) If we are able to stay on the surface

$$s(\mathbf{x}, t) = (\dot{w} - \dot{y}) + (w - y) = 0,$$

then the error e = w - y converges to zero.

To converge to the surface, we take

$$\ddot{y} = K \cdot \text{sign}(s(\mathbf{x}, t)),$$

The sliding mode controller is thus

$$u = \sin x_1 + K \cdot \operatorname{sign} ((\dot{w} - \dot{y}) + (w - y))$$

=
$$\sin x_1 - K \cdot \operatorname{sign} (\dot{y} + y)$$

=
$$\sin x_1 - K \cdot \operatorname{sign} (x_1 + x_2)$$

where K is large, e.g., K = 100.

Correction of Exercise 2.

1) We consider have

$$\mathbf{\Phi} = \rho \cdot \mathbf{\Phi}_0 \left(\rho^{-1} \cdot (\mathbf{p} - \mathbf{c}) \right)$$

2) To follow the field Φ , when the robot is at position $\mathbf{p} = (x_1, x_2)$, we choose for the error

$$y = x_3 - \operatorname{atan2}(\underbrace{\Phi_2(\mathbf{p})}_b, \underbrace{\Phi_1(\mathbf{p})}_a).$$

We have

$$\dot{y} = \dot{x}_3 - \left(\underbrace{-\frac{b}{a^2 + b^2}}_{\frac{\partial \tan 2(b,a)}{\partial a}} \cdot \dot{a} + \underbrace{\frac{a}{a^2 + b^2}}_{\frac{\partial \tan 2(b,a)}{\partial b}} \cdot \dot{b}\right)$$

$$= u + \frac{b \cdot \dot{a} - a \cdot \dot{b}}{a^2 + b^2}$$

where

$$\begin{pmatrix} \dot{a} \\ \dot{b} \end{pmatrix} = \frac{d}{dt} \mathbf{\Phi}(\mathbf{p})$$

$$= \frac{d}{dt} \left(\rho \cdot \mathbf{\Phi}_0 \left(\rho^{-1} \cdot (\mathbf{p} - \mathbf{c}) \right) \right)$$

$$= \left(\frac{d\mathbf{\Phi}_0}{d\mathbf{p}} \left(\rho^{-1} \cdot (\mathbf{p} - \mathbf{c}) \right) \right) \cdot \frac{d}{dt} \left((\mathbf{p} - \mathbf{c}) \right)$$

$$= \left(\frac{d\mathbf{\Phi}_0}{d\mathbf{p}} \left(\frac{1}{2} \cdot \left(\begin{pmatrix} x_1 \\ x_2 \end{pmatrix} - \mathbf{c} \right) \right) \right) \cdot \begin{pmatrix} \cos x_3 \\ \sin x_3 \end{pmatrix}$$

and

$$\frac{d\mathbf{\Phi}_0}{d\mathbf{p}} = \frac{d}{d\mathbf{p}} \left(\begin{array}{c} -p_1^3 - p_1 p_2^2 + p_1 - p_2 \\ -p_2^3 - p_1^2 p_2 + p_1 + p_2 \end{array} \right) = \left(\begin{array}{cc} -3p_1^2 - p_2^2 + 1 & -2p_1 p_2 - 1 \\ -2p_1 p_2 + 1 & -3p_2^2 - p_1^2 + 1 \end{array} \right).$$

If we want for the dynamic of the error, $\dot{y} = -y$, we take

$$u = -y - \frac{\left(b \cdot \dot{a} - a \cdot \dot{b}\right)}{a^2 + b^2} \cdot$$

The controller is thus

$$u$$
 (**x**) = -sawtooth $(x_3 - \operatorname{atan2}(b, a)) - \frac{(b \cdot \dot{a} - a \cdot \dot{b})}{a^2 + b^2}$

with

$$\begin{pmatrix} \dot{a} \\ \dot{b} \end{pmatrix} = \begin{pmatrix} -3\left(\frac{x_1-2}{2}\right)^2 - (z_2)^2 + 1 & -\frac{x_2(x_1-2)}{2} - 1 \\ -\frac{x_2(x_1-2)}{2} + 1 & -3\left(\frac{x_2}{2}\right)^2 - \left(\frac{x_1-2}{2}\right)^2 + 1 \end{pmatrix} \cdot \begin{pmatrix} \cos x_3 \\ \sin x_3 \end{pmatrix}$$