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Abstract. A well known challenge in the formal methods damiaito improve
their integration with practical engineering methodn the context of
embedded systems, model checking requires firshddel the system to be
validated, then to formalize the properties to &tisfied, and finally to describe
the behavior of the environment. This last poiniokhwe name as the proof
context is often neglected. It could, however, bgreat importance in order to
reduce the complexity of the proof. The questiothen how to formalize such
a proof context. We experiment a language, named (Idintext Description
Language), for describing a system environmentgusictors and sequence
diagrams, together with the properties to be clackéhe properties are
specified with textual patterns and attached taifiperegions in the context.
Our contribution is a report on several industeimbedded system applications.

Keywords: Formal methods, context description, propertygoag, observers,
timed automata, model checking.

1 Introduction

In the field of embedded systems, software archites must be designed to ensure
increasingly critical functions subjected to straegjability and real time constraints.
Due to these constraints, embedded software acthigs often have to go through
certification which requires a rigorous design g based on tight rules. However,
due to the increasing complexity of systems, tliemo guarantee that such a design
process leads to error free systems. Formal metbffds rigorous and powerful
solutions for helping embedded system designerdyzmavalidate, or transform
systems in a provable sound way. For that purposeavior checking methods have
been explored for several years by many reseaamsd?2, 8], but also by major
companies.



Nevertheless, integration of formal methods in émgineering process is still too
weak comparatively to the huge need for reliability critical systems. This
contradiction partly finds its causes in the actdéficulty to handle theoretical
concepts within an industrial framework. Besidesinfal verification techniques
suffer from the combinatorial explosion induced thg internal complexity of the
software to be verified. This is particularly re@mnt when dealing with real-time
embedded systems, interacting with a large numbectors. Additionally, formally
checking properties on system models requires xpeession of these properties in
the form of temporal logic formula such as LTL [18] CTL [16]. While these
languages have a high expressiveness they areasity eeadable and easy to handle
by the engineers in industrial projects. To overedins problem, some approaches
[5, 12, 10] propose to formulate temporal propsrtising textual definition patterns.
One way to circumvent the problem of combinator@tplosion consists of
specifying/restricting the system environment bédraer the context in which the
system will be used. The system is then tightlyckyanized with its environment.
This context corresponds to well-defined operatig@teses, such as, for example,
initialization, reconfiguration, degraded modes;. dfloreover, properties are often
related to specific use cases of the system. $® hidbt necessary to verify them over
all the environment scenarios. To the best of movkedge, no approach currently
provides such feature dedicated to an industrial Us the case of an environment
composed of several parallel actors, describingefindronmental context can be a
difficult task. To address these problems, we psego[21, 22] the Context
Description Language (CDL). This DSL allows speitifythe context with scenarios
and temporal properties using property patternscelgheer, CDL provides the ability
to link each expressed property to a limited sanftbe system behavior.

In this paper, we provide a two years experieneglfack on applying our formal
verification approach on several aeronautic andtamyl case studies. This paper
presents the approach and discusses the resudts @xercise in bringing engineers to
use a formal method. First, we show that specifyimye precisely the context in
which the system will be used can reduce the pmldéstate explosion. Second, we
show how to formalize, with CDL, specifications af execution context, how to
formalize properties and how to attach these pt@seto specific regions in this
context.

For better understanding, this approach is illtettanith one industrial case study:
the software part of an anti-aircraft system (S)CBhown Fig.1. It controls the
internal modes of the system, its physical devicadars, sensors, actuators...) and
their actions in response to incoming signals fritva environment. Due to page
limitation, only one requirement (Listing 1) andeosequence diagram are considered
to illustrate our approach along the paper.

The paper is organized as follows: Section 2 de#sstope of our work in current
formal verification practices and presents relataik. Section 3 describes our DSL
for contexts and properties specification. Sectidn presents the proposed
methodology used for the experiments, as well asfthmework supporting it. In
section 5 we give selected results on several indusase studies. Finally, section 6
discusses our approach and future work and conglude

1 For confidential reasons, company and system naneesot mentioned in this paper.
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Fig. 1. S_CP system: partial use case and sequence diafgaenbing the behavior of the
system during the initialization phase

Requirement: “During initialization procedure, the S_CP shalkasiate a generic devic
identifier to one or several roles in the systene\ibe), before dMax_dev time units. ||
shall also associate an identifier to each conddll), before dMax_cons time units. Th
S_CP shall send a notifyRole message for each ctethegeneric device, to ead
connected console. Initialization procedure shatl successfully, when the S_CP has|set

all the generic device identifiers and all considlentifiers and all notifyRole messages
have been sent.”

End Requirement
Listing 1: Initialization requirement for the S_CP system
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2 Context and related work

These days, embedded software systems integrat andr more advanced features,
such as complex data structures, recursion, mudttting. These features pose
challenging theoretical and practical problemsdwedopers of automatic analysis and
verification methods. Despite the increased le¥eduwdomation, users of finite-state
verification tools are still constrained to spectfye system requirements in their
specification language, which is most of the tinmfoimal. This fact is more
challenging than it appears because of the diffictd write logic formula correctly
without some expertise in the idioms of the speation languages. While temporal
logic based languages allow a great expressivitytife properties, these languages
are not adapted to practically describe most of thguirements expressed in
industrial analysis documents. First, a requirencant refer to many events related to
the execution of the model or environment (cf. ibigtl). Then, it depends on an
execution history that has to be taken into accedm@n checking it. As a result, the
logical formulas are of great complexity and becatifficult to read and to handle by
engineers. It is thus necessary to facilitate gguirement expression with adequate
languages: abstracting some details in the promlr$gription, at a price of reducing
the expressivity. This conclusion has been donmagy authors a long time ago and
some [5, 12, 10] proposed to formulate the propsriising definition patterns.
Patterns are textual templates that capture comeroporal properties and that can
be instantiated in a specific context to expregsiegtion-specific properties.



Specification patterns [5, 10] have been proposedskist engineers in expressing
system requirements directly in a formal specifwatanguage, such as linear-time
temporal logic (LTL). These patterns represent comisn occurring types of real-
time properties found in several requirement doaumefor appliances and
automotive embedded systems applications.

In addition to the ease of writing real time prdjesy, the patterns proposed by Dwyer
[5] and Cheng [10] have been defined to deal witbhtevel specifications.
Providing high-quality requirements is importanhcg they serve as a baseline
between multiple teams working on the model untietys(MUS). Besides, Hassine
et al. [17] suggest an abstract high level pattersed approach to the description of
property specifications based on Use Case Maps (JJOMey propose to build
property pattern systems that consider architecaspects. Smith et al. developed
Propel [12], in which they extended the specificationtpats of Dwyer et al. [5] to
address important aspects about properties. Thep@xhe patterns with options that
can be used explicitly on these patterns.

In this paper, we reuse the categories of Dwyeaepns and extend them to deal
with more specific temporal properties which appe&aen high-level specifications
are refined. Furthermore, in several industrialjguts, intended requirements are not
associated to the entire lifecycle of software, dnly to specific steps in its lifecycle.
In the system specification documents, requiremargsoften expressed in a context
of the system execution. For that reason, in aatito the use of property patterns,
we propose to link formalized properties to a sfie@xecution context and thus to
limit the scope of the property. Hassine et al.[t@hsider applying patterns to
architectural aspects; we focus on applying themsgecific functional contexts,
which refer to system use cases. The benefit isxficitly specify the conditions
under which is its meaningful to check the validifya given property. So, according
to this feature, properties will be checked only a@nspecific execution context.
Consequently, the number of states over which tbeesty is checked considerably
decreases. In this paper, we address the probleapplf/ing property patterns in
industrial practices and provide concrete statiftiesults.

3 Context Description Language

In our approach, CDL aims at formalizing the cohteith scenarios and temporal
properties using property patterns. This DSN®_based on UML 2. A CDL model
describes, on the one hand, the context usingitgcéind sequence diagrams and, on
the other hand, the properties to be checked ywmimgerty patterns. The originality of
CDL is its ability to link each expressed propdudya context diagram, i.e. a limited
scope of the system behavior. For formal validati@DL associates a formal
semantics to UML models, described as a set oésrdi€é, 13, 22]. The language is
designed and tooled to offer a simple and usabiéegbd description framework.

2 In this paper, MUS denotes the component modetifspe by the industrial in languages
such as UML 2, AADL [19], SDL [4], etc.
3 Domain Specific Modeling Language



The syntax of the CDL language is specified in mpldtand complementary ways.
One is the metamodel (e.g. the domain ontologyarodd with OCL constraints. The
metamodel is an ECore model (EMF). It is annotat@d OCL invariants to enforce
its semantics. A diagrammatical concrete syntaoresited for the context description
and a textual syntax for the property expressidre fbllowing paragraphs outline: (i)
the proof context formalization, (ii) the propegypressions.
In [11], we proposed a context description languagiag UML 2 diagrams (cf. Fig.2
for case study illustration). It is inspired by USase Charts of [13]. We extend this
language to allow several entities (as Device aktl id Fig.1 and Fig.2) to compose
the proof context. Those entities are running imaji@. CDL is hierarchically
constructed in three levels: Level-1 is a set af nase diagrams which describes
hierarchical activity diagrams. Either alternatidigetween several executions
(alternative/merge) or a parallelization of sevexadcutions (fork/join) is available.
Level-2 is a set of scenario diagrams organizedltgrnatives. Each scenario is fully
described at Level-3 by UML 2 sequence diagrames@&ldiagrams are composed of
two lifelines, one for the proof context and anottier the MUS. Delayable
interaction event occurrences are specified onethHdslines. Counters limit the
iterations of diagram executions. It ensures theeggtion of finite context automata,
as described in [11]. Transitions at Level-1 anddle are enabled according to the
values of some un-timed guards or timed guardsmAationed in the introduction,
the approach links the context description (Levelrlevel-2) to the specification of
the properties (as P1 and P2 in Fig.2) to be cliechg stereotyped links
property/scope. A property can have several scapdsseveral properties can refer a
single diagram. Semantics of Level-1 and Level-2léscribed in terms of traces,
inspired by [7]. Level-1 and Level-2 are based e $emantics of the scenarios and
expressed by construction rules of sets of traa#s using seq, alt andpar operators
(par only for Level-1). At Level-3, the semantics oé@enario is expressed by a set of
traces as described in [7] and in accordance \mighsemantics of UML 2 sequence
diagrams. A scenario trace is an ordered eventseseg which describes a history of
the interactions between the context and the modelscenario with several
interactions is described by a set of traces.

Level 1 Level 2 Level 2
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Fig. 2. S_CP case study: partial representation of tméeg Initial Use cases and Sequence

diagrams (cf. Fig.1) are transformed and complétedreate the context model. All context
scenarios are represented, combined with paraltebiternative operators, in terms of CDL.

For the property specification, we use a patteiseldapproach and integrate property
patterns description in the CDL language (we réffier reader to [22] for details).
Patterns [5] are classified in basic families, higke into account the timed aspects



of the properties to be specified. The patternsatifled allow properties of answer
(Response), the necessity onePfecedence), of absence Absence), of existence
(Existence) to be expressed. The properties refer to detkctavents like
transmissions or receptions of signals, actiond, model state changes. These basic
forms are enriched by optionBrg-arity, Post-arity, Immediacy, Precedence, Nullity,
Repeatability) using annotations [10]. The property must be nidkéo account during
all the model execution, before, after or betweetuaences of events. Patterns have
the possibility of expressing guards on the ocewes of events expressed in the
properties [22]. Guards refer to variables declanedthe context model. This
mechanism adds precision to the property/scopeemte introduced in the previous
section. Another extension of the patterns is thasibility of handling sets of events,
ordered or not ordered similar to the proposal 3if The operatordAN and ALL
respectively specify if an event or all the eventsdered Qrdered) or not
(Comhined), of an event set are concerned with the prop#ltygtrating with our case
study, Fig.3 depicts one bounded liveness propéetl)y obtained from theR1l
requirement decomposition as explained in section 4

R1: During initialization procedure, the S CP shall associate an identifier to NC

console (HMI), before dMax_cons time units.
R1 is linked to the communication sequence betweenSthCP and consoles (HMI).
According to the sequence diagram of Fig.1, the@aton to other devices has no
effect onRL1.

Property P1;
exactly one occurence of S_CP_hasReach8tite
eventually leads-to [0..dMax_cons]
ALL Ordered
exactly one occurence of sendSeiGleidToHMI1
exactly one occurence of sendSeiGleidToHMI2
end
S_CP_hasReachState_Init may never occurs
one of sendSetConsoleldToHMI1 cannot occtorbeS_CP_hasReachState_Init
one of sendSetConsoleldToHMI2 cannot occtorbeS_CP_hasReachState_Init
repeatibility : true

Fig. 3. S_CP case study: A response pattern from R1 mmgeint.

In the illustrated case study, the number of caséIMI) considered is twoNC=2).

R1 specifies an observation of event occurren8eSP_hasReachSate Init refers a
state change in a MUS process.sendSetConsoleldToHMI1  and
sendSetConsoleldToHMI2 refer to the ones described in the CDL model @igAs
mentioned in section 4, our OBP toolset transfoeash property into an observer
automaton [6], including agject node. With observers, the properties we can handle
are of safety and bounded liveness type. The abdégsanalysis consists of
checking if there is agject state reached by a property observer. Téiect node is
reached after detecting eventS CP_hasReachSate Init” if the sequence
“sendSetConsoleldToHMI1" and “sendSetConsoleldToOHMI2” is not produced in that
order beforedMax_cons time units. Conversely, theject node is not reached either
if event ‘S CP_hasReachSate Init” is never received, or if the sequence of the two
events above is correctly produced (in the righdeorand with the right delay).



Consequently, such a property can be verified binguseachability analysis
implemented in a formal model checker.

4 Methodology and OBP toolset

Our proposed specification and analysis procesbased on checking a set of
requirements on the system interacting with itsiremment. To perform such
checking, we suppose that the set of propertiesbeaformalized into a logic form,
that the environment interactions are also formaltydeled as well as the possibility
to simulate the MUS in order to use a formal vesfion tool. With this hypothesis,
the process is decomposed into the following steps:

- Context Description (Fig.4.a): the environment interactions are folynahodeled
with CDL activities diagrams (as illustrated Fig.Zhis activity produces a set of
CDL context diagrams.

- Property Specification (Fig.4.b): the set of properties are formalizedhwproperty
patterns (as illustrated Listing 1). This activiiyoduces a set of CDL pattern-based
properties.

a) Context Description b) Property Specification c) Proof Unit Construction d) Model under study
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Fig. 4. Activity diagram overviewing our specificationganalysis process.

- Proof Unit Construction (Fig.4.c): we proposed in [20] th&oof Unit (PU) concept,
which gathers all required data to perform prodivétes, i.e. a reference to the
model to be checked (MUS), the context models aedptroperties (CDL model) to
be verified. The set of constructed PUs represtdmsset of requirements to be
checked on the MUS to prove it is correct (cf. 5jg.

- Moddl Under Sudy (Fig.4.d): it has to be simulated in order to wsdormal
verification tool. For this, OBP produces set ofoerobservers. The observers
perform dynamic diagnosis and play the role of peoto locate the cause of an error.
When a fault is located, it is necessary to modify model and create or modify
requirement



The prerequisite of the methodology is the orgdiomaof the industrial
specifications into two sets: (i) the design modtiat represent the MUS
structure and behavior; (i) the requirements thedign models have to fulfill.
This organization is necessary to extract useffdrmation about the context
execution for a given requirement (conditions ungbich a requirement has to
be fulfilled). Indeed, in industrial requirement admnents, this contextual
information is very often implicit or disseminatedseveral documents and long
discussions with engineers are usually needed #xigaly understand the
different contexts for the system and capture tiem model. Considering our
case study, the given requirement (Listing 1) cardbcomposed and reordered
into four sub-requirements, stated as follow:

R1: During initialization procedure, the S_CP shall associate an identifier to NC console
(IHM), before dMax_cons time units.

R2: After, the S CP shall associate a generic device identifier to NE roles in the system
(Device), before dMax_dev time units.

R3: Each devicereturns a statusRole message to S_CP before dMax_ack time units.

R4: The S_CP shall send an notifyRole message for each connected generic device, to each
connected console. Initialization procedure shall end successfully, when the S CP has

set all the generic device identifiers and all console identifiers and all notifyRole
messages have been sent.

After this decomposition, the user can specify measily these requirements with
definition property patterns.
We use the CDL language to represent the contesihguactors and sequence
diagrams, and all the requirements. The construced models reference elements
of the MUS (events, variables). Elements of CDL melecand MUS are at the same
abstraction level. Moreover, we extract a formacfication describing the MUS’s
behavior. This description is generally represented timed automaton so that it can
be executed by a simulator after model transfonati Property patterns capture,
with a textual format, types of properties trarediafrom the requirement documents.
It is obvious that providing all these verificatiproof units is not a trivial activity.
It takes a great part of time and effort witldrproject. Besides, verification efforts
made to check whether an implementation meets #wgiinements have to be
capitalized. This capitalization captures the besinlogic to be used to redo the proof
if the requirements and thus the implementationhevmver the development
lifecycle. The definition of a general formal frawark for the proof unit concept is
out of the scope of this paper and left for futwak.
To carry out our experiments, we implemented @server Based Prover (OBPY)
tool onto the Eclipse platform through plug-ins. ®RBRakes as input the MUS
behavior model and CDL models. OBP is an implentemaof a CDL language
translation in terms of formal languages, i.e. JERor FIACRE [15] language. IF2 is
based on timed automata [1] extended to the asgnolis communicating process
context. Work is in progress to finalize the traisin into FIACRE language and
thus take benefits from the TINA [14] model checkBne essence of a translational
approach to semantics is to move to a technologate that has a precise semantics
[3] and tools. As depicted in Fig.BBP leverages existing academic simulators and
model checkers, as TINA, IFx [2] or CADP [8].

4 OBP is available (version 2.0) under EPL licensehdtp://gforge.enseeiht.fr/projects/obp



To handle the gap between CDL meta-model and thal DSLs (e.g. IF2 or
FIACRE) the translation has several stages. Wendéfan ad-hoc domain-specified
transformation language in terms of ECore metamadédl define a Model to Model
transformation chain. From CDL context diagrams,FOBol generates a set context
path automata which represent the set of the emviemt runs. OBP generates all the
possible paths. Each path represents one possitdeagtion between model and
context. The OBP tool generates, with a similar edidchnsformation technique, the
observer automata from the properties. Each gestbradntext path is transformed
into an IF2 automaton which is composed with the3vhd the generated observer
automata by the IFx simulator. To validate the comgnt model, it is necessary to
compose each path with the model and the obserZzach property must be verified
for all paths. The accessibility analysis is catroait on the result of the composition
between a path, a set of observers and the MUBelé is aeject state reached of a
property observer for one of paths, then the ptypsrconsidered as false.
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Fig. 5. Proof Units transformation with OBP

At present time, the input MUS of OBP (Fig.5) amported currently with IF2
format. To import models with standard format aslUR] AADL [19] or SDL [4], it

is necessary to implement adequate translatorstadied in projects such as
TopCasetl or Omeg& The model driven developed tool OBP set out iis th
paragraph was used in several case studies whickusnmed up in the experiment
following section.

5 Experimentsand results

Our approach was applied to several embedded sysémlications in avionic or
electronic industrial domain. These experiments @agied out with our french
industrial partners. This section reports on sigecatudies (CSo CSg). Four of the

5 http://www.topcased.org
6 http://mwww-omega.imag.fr



software components come from an industrial A avwfrom a B. For each industrial
component, the industrial partner provided requeemdocuments (use cases,
requirements in natural language) and the compomestutable model. Component
executable models are described with UML, complégdDA or JAVA programs,
or with SDL language. The number of requirementsTable 1 evaluates the
complexity of the component. To validate these ngdee follow the methodology
described in section 4. So, we describe the foligwihases: property specification,
context description and proof unit construction.

Table 1. Industrial case study classification.

cs, CS, CS, CS, CS/ CS,

Modeling language  SDL SDL SDL SDL UML2 UML2
Number of code lines 4000 15000 30000 15000 3860025 000
Number of requirements 49 94 136 85 188 151

5.1 Property specification

Requirements are inputs of our approach. Herewthik consists in transforming
natural language requirements into temporal prageerifo create the CDL models
with patterns-based properties, we analyzed thevaoé engineering documents of
the proposed case studies. We transformed texagplirements. We focused on
requirements which can be translated into obseawtomata. Firstly, we note that
most of requirements had to be rewritten into ao$eeveral properties (as shown in
the S_CP case study along the paper). Secondlyelntedquirements of different

abstraction levels are mixed. We extracted requergnsets corresponding to the
model abstraction level. Finally, we observe thastrof the textual requirements are
ambiguous. We had to rewrite them consequently iszudsion with industrial

partners.

Table 2 shows the number of properties which aastated from requirements.
We consider three categories of requiremeRtsvable requirements correspond to
requirements which can be captured with our appraae can be translated into
observers. The proof technique can be applied owgiven context without
combinatorial explosionNon computable requirements are requirements which can
be interpreted by a pattern but cannot be trartslat® an observer. For example,
liveness properties cannot be translated becausg d@he unbounded. Observers
capture only bounded liveness properties. Fromirttegpretation, we could generate
another temporal logic formula, which could feednadel checker as TINANon
provable requirements are requirements which cannot bepirgted at all with our
patterns. It is the case when a property refexmtietectable events for the observer,
such as the absence of a signal.

7 CSs corresponds to the S_CP case study describealpairti section 2.
8 The UML model is implemented by 38 000 lines ADd&gram.
9 The UML model is implemented by 25 000 lines JAp¥dgram.



Table 2. Table highlighting the number of expressible préps in 6 industrial case studies.

CS CS CS CS CS CS Average
Provable 38/49 73/94 72/136 49/85 155/188 41/151  428/703
properties (78%) (78%) (53%) (58%) (82%)  (27%)  (61%)
Non-computable 049  2/94 24/136 2/85 18/188 48/151  94/703
properties (0%) (2%) (18%) (2%)  (10%)  (32%)  (13%)
Non-provable 11/49 19/94 40/136 34/85 15/188 62/151 181/703
properties (22%) (20%) (29%) (40%)  (8%)  (41%)  (26%)

For theCs; we note that the percenta@2%)of provable properties is very high. One
reason is that the most of 188 requirements wasenrivith a good property pattern
matching. For theCS;, we note that the percenta(gr%) is very low. It was very
difficult to re-write the requirements from specétion documentation. We should
have spent much time to interpret requirements vath industrial partner to
formalize them with our patterns.

5.2 Context description

After property definition, we had to link each pesty to environment scenarios.
Here, the work consisted in transforming use cdr&s context with our CDL
language. One or several CDL contexts have beeaterteaccording to the
complexity of behavior contexts and to the envirentractor number. Table 3 shows
the number of paths obtained for different CDL misder the case study GSThis
number depends on alternative and parallel opesadators, interactions used in the
CDL model. We linked a set of properties relatec tepecific phase or scenarios at
each CDL model. We note that the verification tioem be long (for example, 20
minutes for CDl, and CS)) because the compilation time for state graphs IFx
generation for each context path. In the futurekwere focus on path reduction and
evaluating how paths can be equivalent with resgpeatparticular property.

Table 3. Table highlighting the number of CDL and paths gatesl for CS.

CDL, CDL, CDL; CDL, CDLs

Number of actors 1 3 3 5 3
Number of path 3 128 82 612 96
Time of verification (sec) 6 256 164 1224 192

5.3 Proof unit exploitation

In the case studies, for each CDL model, one proif is created. A proof unit
enables to organize a set of observers and onextomtor each path generated by
OBP, one accessibility graph is generated and septs the set of all possible model
executions. A property is not verified by the tifad “reject” observer automata state
exists. For this, OBP produces set of error obserM@uring simulation execution,



combinatorial explosion may appear. We do not kesahis point, but we propose
this partial solution. It is necessary to createcHfic contexts in order to restrict the
behaviors of the model. The solution is to initieli the system in specific
configurations and to create specific CDL modelscvhiestrict scenario spaces with
counters, actors, message parameters. So, pagtification is made on restricted
scenario spaces.

6 Discussion and conclusion

CDL is a prototype language to formalize contextd properties. But CDL concepts
can be implemented in another language. For examplgext diagrams are easily
described using UML 2. CDL permits us to check mathodology. In future work,
CDL can be viewed as an intermediate language. yi,dda results obtained using the
currently implemented CDL language and OBP are esgouraging. For each case
study, it was possible to build proof units whiatké CDL models as input and which
generate sets of paths.

6.1 Approach benefits

CDL contributes to overcome the combinatorial exjun by allowing partial
verification on restricted scenarios specified g tontext automata. CDL permits to
formalize contexts and non ambiguous propertiespéity can be linked to whole or
specific contexts. During experiments, we noted #wmme requirements were often
described in the available documentation in an rmgete way. The collaboration
with engineers responsible for developing this doentation has motivated them to
consider a more formal approach to express thguirements, which is certainly a
positive improvement. In some case studyp textual requirements can be rewritten
more easily with pattern property. So, CDL pernatsbetter formal verification
appropriation by industrial partners.

Contexts and properties are verification data. $ékeof proof units gather all these
data to perform proof activities and validate maedeThese data have to be
“capitalized” if the implementation evolves overetlilevelopment lifecycle. Proof
units formalize proof contexts. It thus appearseesal to study a framework to
describe and formalize proof contexts as MDA congmi® jointly describing the
requirements to be checked and environment belsaviarhich the model is plunged
at the time of simulations and the formal analysis.

6.2 Using the CDL language

In case studies, context diagrams were built, om édhe hand, from scenarios
described in the design documents and, on the dthaed, from the sentences of
requirement documents. Two major difficulties aaesed. The first one is the lack of
complete and coherent description of the envirorttrebehavior. Use cases
describing interactions between the MUS (S_CPrfstaince) and its environment are



often incomplete. For instance, data concerningraation modes may be implicit.
CDL diagrams development thus required discussiaith experts who have
designed the models under study in order to exglttontext assumptions.

The problem comes from the difficulty to formaliggstem requirements into formal
properties. These requirements are expressed iaraedocuments of different
(possibly low) levels. Furthermore, they are writi@ a textual form and many of
them can have several interpretations. Others aitlylirefer to an applicable
configuration, operational phase or history withalgfining it. Such information,
necessary for verification, can only be deducedvanually analyzing design and
requirements documents and by interviewing expegireers.

The use of CDL as a framework for formal and explaontext and requirement
definition can overcome these two difficultiesugtes a specification style very close
to UML and thus readable by engineers. In all csielies, the feedback from
industrial collaborators indicates that CDL modefance communication between
developers with different levels of experience &adkgrounds. Additionally, CDL
models enable developers, guided by behavior CDdgrdims, to structure and
formalize the environment description of their sys$s and their requirements.
Furthermore, constraints from CDL can guide deweispto construct formal
properties to check against their models. As altiedevelopers can formalize system
requirements. Using CDL, they have a means to oiggly check whether
requirements are captured appropriately in the msodsing simulation and model
checking techniques. Nevertheless, property pattaifi continue to evolve as we
receive feedback from academia and industry abosgiple improvements.

6.3 Property proofs

In the case studies, about forty significant regmients have been formally verified.
These requirements were written by using the ptgganguage presented section 3,
and then was translated automatically into IF2 pleseautomata. About 13% (non-
computable) of the requirements (cf Table 2) rezpimanual translation. They did
not match the safety and bounded response timesldateon pattern,. The 61%
(provable) are translated and afterwards verifistbmatically. For the others 26%,
the requirements have to be discussed with thestndl partners to improve their
use. Following that approach, we found, in two catedies €S, and CS), an
execution that didn't meet the requirements. Eaabecstudy corresponds to an
operational embedded system. The classical siroual&tichniques could not permit to
find these errors.

6.4 Futurework

One element highlight, working on embedded softwaase studies with industrial
partners, is the need of formal verification exigertcapitalization. Given our
experience in formal checking for validation adtas, it seems important to structure
the approach and the data handled during the pFawfthat purpose, we identified
MDA components, callegroof units, referencing all the data, models, meta-models,



etc. necessary to the verification. The definitafrsuch MDA components can take
part in a better methodological framework, and rafseds a better integration of
validation techniques in model development procedseleedproof units themselves
are handled as models, and are managed like a giragsulting from the
specification activities. As a conceptual framewdtey allow the activity and the
knowledge to be capitalized by gathering the nemgsdata to the proof.
Consequently, the development process must incladstep of environmental
specification making it possible to generate sétsomnded behaviors in a complete
way. This assumption is not formally justified ihig article but is based on the
essential idea that the designer can correctly Idpve software system only if he
knows the constraints of use. This must be provideaially by the process analysis
of the designed software architecture, using a émmonk of development process.
Although the CDL approach has been shown scalahleseveral industrial case
studies, the approach suffer from a lack of methaglo The handling of contexts,
and then the formalization of CDL diagrams, mustibae carefully in order to avoid
the combinatorial explosion when generating lireaxtext path to be composed with
the observer automata. The definition of such ahoddlogy will be addressed by the
next step of this work.

One essential point, dealing with model transforome, is the feedback obtained in
the formal target technical space into the sourm ®Ve take advantages of model
driven techniques and transformation traces inigdb have validation feedbacks on
source models. Current and future works are deality) increasing diagnosis
feedbacks to different users, including requirenraahagers and component model
designers.

In addition, work is still in progress at CDL levédt focuses on path reduction,
evaluating how paths can be equivalent with respe@ particular property. This
optimization aims at reducing the combinatorial lesfon, allowing treating larger
and larger applications. Otherwise, experimentsvshthat part of the requirements
found in industrial specification documents weret i@nslatable into property
patterns proposed by the approach. Several directare followed to face the
problem, one is to extend actual patterns, andhands to create other patterns.
Implementation of experimental extended patterms gogress.

Acknowledgments. This work results from collaboration between thghars and
other members of the Ensieta team. We thank Léidéor his contribution in the
OBP development and Aizier B. for his experimemis eesults.

References

1. Alur R, Dill D.: A Theory of Timed Automata. InhEoretical computer Science, 126(2), pp.
183-235 (2004)

2. Bozga M., Graf S., Mounier L.: IF2: A validati@nvironment for component-based real-
time systems. In Proceedings of Conference on Compiteed Verification, CAV’'02,
Copenhagen, LNCS. Springer Verlag (2002)

3. Clarke T., Evans A., Sammut P., Willians J.: Aepl Meamodeling: A foundation for
Language Driven Development. Technical report,iverf.1, Xactium (2004)



. ITU-T. Recommendations Z-100. Specification Bedcription Language (SDL) (1994)

. Dwyer M.B., Avrunin G.S., Corbett J.C.: Patterngrioperty specifications for finite-state
verification. In Proc. of the 21st Int. Conf. on ®eadre Engineering, pp. 411-420. |IEEE
Computer Society Press (1999)

6. Halbwachs N., Lagnier F., Raymond P.: Synchronoloservers and the verification of
reactive systems. In 3rd int. Conf. on Algebraic etology and Software Technology
(AMAST'93) (993)

7. Haugen O., Husa K.E., Runde R.K., Stolen K.: Stdiowards formal design with sequence
diagrams. In journal of Software and System Modg(2005)

8. Fernandez J-C et al.. « CADP: A Protocol Vdlataand Verification Toolbox », in Alur
R. and Henzinger T.A, editors, Proceedings of CA(l88~ Brunswick, USA), Vol. 1102
LNCS, August (1996)

9. Janssen W., Mateescu R., Mauw S., Fennema PppestaP.: Model Checking for
Managers. Conference Spin'99, pp. 92-107 (1999)

10.Konrad S., Cheng B.: Real-Time Specification Pasteln Proc. Of the 27th Int. Conf. on
Software Engineering (ICSEO05), St Louis, MO, USAQ2D

11.Roger J.C. Exploitation de contextes et d'obdewnva pour la vérification formelle de
modeles, Phd report, Univ. of Rennes | (2006)

12.Smith R., Avrunin G.S., Clarke L. and Osterweil Propel: An Approach Supporting
Property Elucidation. In Proc. of the 24st Int. Camii Software Engineering, ACM Press,
pp- 11-21 (2002)

13.Whittle J.: Specifying precise use cases wihk gase charts. In MoDELS'06, Satellite
Events, pp. 290-301 (2005)

14.Berthomieu B., Vernadat F.: Time Petri nets aislyith TINA. 3rd Int. Conf. on the
Quantitative Evaluation of Systems (QEST'06), RiidggUSA), pp. 123-124 (2006)

15.Berthomieu B, Bodeveix JP., Filali M., Garavel Bang F., Peres F., Saad R, Stoecker J.,
Vernadat F.: The Syntax and Semantics of FIACRE, iger4.0 alpha. Technical report
projet ANROSRNTL03101 OpenEmbeDD (2007)

16.Clarke, E.M., Emerson, E.A., Sistla, A.P.: Autdim&erification of finite-state concurrent
systems using temporal logic specifications. ACMniBtaProgram. Lang. Syst. 2, pp. 244—
263 (1986)

17.Hassine, J.; Rilling, J., Dssouli, R. Use Case dMap a property specification language,
Software System Model, 8, pp. 205-220 (2009)

18.Manna, Z., Pnueli, A.: The temporal logic ofatdze and concurrent systems. Springer,
New York (1992)

19.Feiler, P., Gluch D.P., Hudak J.J.: The Architex Analysis and Design Language
(AADL):An introduction.Technical report, Society 8utomotive Engineers (SAE) (2006)

20.Dhaussy P., Boniol F.: Mise en ceuvre de compeddbBA pour la validation formelle de
modeles de systémes d'information embarqués. [@-157 RSTI (2007)

21.Dhaussy P., Auvray J., De Belloy S., Boniol Eandel E.: Using context descriptions and
property definition patterns for software formatifieation, Workshop Modevva’08 (hosted
by ICST 2008), Lillehammer, Norway (2008)

22.Dhaussy P., Creff S., Pillain P.Y., Leilde V.: ICDanguage specification (Context

Description Language). Technical report versiorDNN/2009/8, ENSIETA (2009)

(208



