
A Transformation Approach

for Multiform Time Requirements

Nadia Menad1 and Philippe Dhaussy2

1 University of Science and Technology
of Oran Mohamed Boudiaf, Algeria

2 UEB, LabSticc Laboratory UMR CNRS 6285
ENSTA Bretagne, France

firstname.name@ensta-bretagne.fr

Abstract. Many of the timing constraints expressed in physical pre-
scriptions of distributed systems and multi-clock electronic systems can
be expressed in logical concepts. A logical time model has been devel-
oped as a part of the official OMG UML profile MARTE, in order to
enrich the formalism of this profile and also to facilitate the description
and analysis of temporal constraints.

This time model is associated with CCSL (Clock Constraint Speci-
fication Language). Once the software is modeled, the difficulty lies in
both expressing the relevant properties and in verifying them formally.
We present an automatic transformation technique related to a method
for verifying properties by model checking, thus exploiting both the CDL
language (Context Description Language) and the OBP tool (Observer-
based Prover). The technique is based on a translation of MARTE models
and the CCSL constraints into Fiacre code. CDL can express predicates
and observers. These are verified during the exhaustive exploration of the
complete model by OBP. We illustrate our contribution by an illustrative
case.

Keywords: Formal verification, model-checking, CCSL time constraints,
observer automata.

1 Introduction

In the field of modeling software architectures of distributed systems, control-
command systems or multi-clock electronic systems, the specification of func-
tional parts of systems is often associated with temporal constraint specifications.
These systems are often critical and the requirements to be respected during the
modeling step, concern not only the determinism but also temporal constraints
at a functional level. In the system development process, the designers look for
methods and languages that allow them to describe their architectures, through-
out the cycle and at various levels of abstraction. At each level, the modeling of
such systems should allow the expression and the manipulation of time require-
ments, and the evaluation of the accuracy and efficiency of applications in terms
of temporal and measurable requirements.

R.M. Hierons, M.G. Merayo, and M. Bravetti (Eds.): SEFM 2013, LNCS 8137, pp. 16–30, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

A Transformation Approach for Multiform Time Requirements 17

For this purpose, the concept of abstract modeling of logical clocks has been
introduced with the CCSL language (Clock Constraint Specification Language)
[And09] within MARTE [MAS08] and adopted by the OMG [OMG10]. CCSL
is a language to define causal, chronological and temporal relationships. It aims
to complement the existing formalisms and to provide models which can be
analysed so as to assess their accuracy with regard to requirements expressed by
the designer. It is therefore essential to adopt temporal analysis approaches by
integrating verification and validation processes based on robust formal notions,
in order to meet current quality requirements of these systems.

To address this issue, several studies have proposed an engineering approach
founded on models, and the use of semi-formal notations such as UML, enriched
with formal notations. For example, UML-MARTE profile aims to express tem-
poral constraints on UML models. The models that are built must not only be
simulated but also interpreted during formal analysis so as to check the temporal
requirements defined by the designer. In this study, we use model-checking verifi-
cation techniques [QS82, CES86]. These techniques have become highly popular
due to their ability to confirm software model properties automatically.

This paper describes exploratory work which studies the association of CCSL
constraint specification and a formal property verification tool named OBP
(Observer-Based Prover)1 [DBRL12]. The verifications carried out by OBP are
based on the exploration of Fiacre programs [FGP+08] as well as the exploita-
tion of observers (Fig. 1). The OBP imports Fiacre models corresponding to
a translation of UML-MARTE models including CCSL specifications. In addi-
tion, it imports CDL programs which describe the properties and context sce-
narios if required. OBP explores the model and evaluates, at each step of the
running model, the value of predicates and the status of all involved observers.
Through this approach, we endeavor to verify both functional and temporal prop-
erties of programs by combining CCSL constraints with the modeled software
architecture.

Our contributions are as follow: (1) we generate Fiacre programs from UML-
MARTE; (2) we exploit the CCSL specifications and enrich these programs by
the addition of Fiacre constraint processes implementing CCSL, taking inspi-
ration from the approach described in [YM11]. We describe, in this paper, the
principles of the Fiacre code generation from CCSL constraints; (3) we show how
to specify observer automata exploiting CDL and to use the OBP tool to verify
them based on generated Fiacre code; (4) we illustrate our contribution with an
example and describe the results of the proofs of the requirements conducted.

This paper is organized as follows: Section 2 presents related work in formal
analysis and verification of CCSL constraints. We present the CCSL language
in Sect. 3. An illustrative case study is presented in Sect. 4 and the principles
of transformation of CCSL constraints into Fiacre are introduced in Sect. 5.
Section 6 describes the verification technique based on observers and, in Sect.
7, we introduce and discuss some results of property proofs. We conclude in
Sect. 8.

1 http://www.obpcdl.org

http://www.obpcdl.org

18 N. Menad and P. Dhaussy

Fig. 1. OBP tool for verification

2 Related Work

Many studies have been conducted to formally verify CCSL constraints. For
instance, the approach [YTB+11] presents an extension in response to CCSL
specifications. The paper suggests a framework for translating CCSL specifica-
tions in dynamical systems, which are handled using the Sigali model-checker to
apply the satisfaction of specified constraint relations. However, this approach
is too restrictive because it only focuses on the implementation of CCSL con-
straints with Signal. [And10] proposed an approach for implementing observers
[HLR93] for the formal verification of CCSL specifications. Observers, encoding
CCSL constraints are translated into Esterel code. [Mal12] describes a technique
to generate VHDL code from a CCSL specification. In these approach, a reach-
ability analysis allows to determine whether an observer has reached an error
state. The Times Square Environment [DMA08], dedicated to solving CCSL
constraints and computing solutions, implements a code generator in Esterel. In
contrast to these works, we propose a more general translation approach that
verifies not only CCSL constraints implementation, but also properties on the
complete model including all the functional components. Furthermore, in our
approach these properties are separated from application model thanks to our
CDL language, thus separating concerns.

[YM11] proposes a translation of CCSL specifications into a Promela model to
formally verify the CCSL constraints by the SPIN model checker. We have been
inspired by this work to design the automatic translation of CCSL constraints
into Fiacre automata. Also, in this approach the properties to be checked are
expressed in LTL logic. We propose to express properties with the CDL language
with observer automata which allow a better expressiveness. For example, in our
paper, we show a property (illustrated in Fig. 7) that would be tedious to express
in LTL.

A Transformation Approach for Multiform Time Requirements 19

3 The CCSL Modeling

CCSL, introduced as an annex of MARTE, is a declarative language used to spe-
cify binary relations between events based on logical clock concepts. In a MARTE
model, any event (for example a communication, transmission or reception ac-
tion, as computing start) may be used to define a time base, considered to be
a logical clock. A clock represents a set of occurrences of discrete events, called
instants. These instants are strictly ordered and provide a temporal reference.
We briefly recall below some examples of CCSL constraints.

3.1 Examples of CCSL Constraints

We present here some of the relations described in [And10, YM11], which are
necessary for the model implementation of the illustrative case study described
in this article, namely the relation of alternative, strict precedence and filtering.

An alternative relation (denoted alternatesWith) is a relation between
two asynchronous clocks C1 and C2. It specifies that for any natural number k,
the kth instant of C1 occurs before the kth instant of C2, and the kth instant
of C2 occurs before the k + 1th instant of C1. For our case study, we illustrate
the relation writei alternatesWith readi by the chronogram in Fig. 2.a and the
automaton in Fig. 2.b. Note that for the non-strict alternation in the expression
(1) above, the symbol ≺ must be replaced by �.

Fig. 2. Illustration of the alternation constraint : writei alternatesWith readi

A precedence relation (denoted strictPrec) is an asynchronous relation
between two clocks C1 and C2. C1 is said to be strictly faster than C2, where
”C1 strictly precedes C2”, noted C1 strictPrec C2, specifies that for any natural
number k, the kth instant of C1 occurs before the kth instant of C2, i.e ∀k ∈
N∗, C1[k] ≺ C2[k].

A filter relation (denoted filteredBy) is a relation which defines a sub-clock
from a given discrete clock. The mapping between the two clocks is characterized
by a filtering pattern (or simply filter) encoded by a finite or infinite binary word
w ∈ {0, 1}∗ ∪ {0, 1}w. C1 filteredBy w, defines the sub-clock C2 of C1 such as
∀k ∈ N∗, C2[k] ≡ C1[w ↑ k], where w ↑ k is the index of the kth 1 in the pattern
w. The binary words are used to represent sequences of activations. When the
latter are periodic, they can be represented by periodic binary words denoted

20 N. Menad and P. Dhaussy

by w = u(v)w. u and v are finite binary words, called respectively prefix and
period.

4 Illustration through a Simple Case Study

We consider a data acquisition circuit (C), with two channels, consisting of
acquisition components (Sensori and Acqi) (i ∈ {1, 2}), an acquired data pro-
cessing component (Comput) and a filter (Filter) sampling the calculated val-
ues. Each acquisition channel i is associated with a pair of components Sensori
and Acqi. We assume that, for each channel i, the component Sensori receives
data from the environment (from a device Devi outside the circuit) and trans-
mits the value to Acqi through a shared memory Mi. Each Devi sends N data
dataik, k ∈ [0 . . .N−1]. Acqi provides Comput with each datum dataik via a syn-
chronous communication port portAcqi. Comput applies the addition of data1k
and data2k respectively received from Dev1 and Dev2 and provides the Filter
with the sum via a fifo. Filter provides the sampled data (one in every three
values) to Devout, external to the circuit.

Fig. 3. Circuit architecture C

The temporal constraints associated with this circuit are:

– Req1: Each acquired datum datai is written in the memory Mi before being
read by Acqi (with i ∈ {1, 2}).

– Req2: Comput starts the calculation of a sum after two receptions of dataik
from each Acqi (with i ∈ {1, 2}).

– Req3: Filter provides the environment with a sampled value from a sequence
of one in every three values calculated by Comput.

In summary, all the timing requirements for our case study, are specified with
CCSL language as follows :

write1 alternatesWith read1 (Req1)
write2 alternatesWith read2 (Req1)
read1 strictPrec comput (Req2)
read2 strictPrec comput (Req2)
filterOut = comput filteredBy (001)w (Req3)

A Transformation Approach for Multiform Time Requirements 21

In addition to the above time constraints, we express the requirements that
are specifically associated with the expected behavior of the circuit. For example,
we can express the following requirement:

– Req4 : the data resultj, j ∈ [0 . . . (N − 1)/3] provided to the environment
after the sampling operation (one value in 3) must have the values data1k +
data2k with k = (3 ∗ j) + 2.

5 Translation Principles of the CCSL Constraints
into Fiacre Programs

This section presents the concepts of Fiacre programs and the translation prin-
ciples of CCSL constraints into Fiacre programs. These principles have been
implemented in our code generator.

5.1 The Fiacre Language

The Fiacre language (Intermediate Format for the Architectures of Distributed
Embedded Components) has been developed within the TOPCASED project2

as a key language linking high-level formalisms such as UML, AADL and SDL
with formal analysis tools. Using an intermediary formal language has the ad-
vantage of reducing the semantic gap between the high-level formalisms and the
descriptions internally manipulated by verification tools such as Petri nets, pro-
cess algebras or timed automata. Fiacre is a language with a formal semantic
that serves as input language for different checking tools. Fiacre allows the be-
havioral and timed aspects of real-time systems to be described. It integrates
the notions of process and components as follows:

– the processes (process) describe automatawith a set of states and a list of tran-
sitions between these states.These later reference classical operations (variable
allocations, if-elsif-else, while, sequence compositions), non-deterministic con-
structions and communications done via ports and via shared variables;

– the components (component) describe compositions of processes. A system
is built as a parallel composition (clause par with the || operator) of compo-
nents and/or processes that can communicate via ports. The Fiacre processes
can be synchronized with or without value passage via the ports. They can
also exchange data via asynchronous communication queues using shared
variables.

5.2 Translation Principles

The general idea of the translation is based on (1) the generation of a Fiacre
Scheduler process, (2) the generation of Fiacre processes corresponding to the

2 http://www.topcased.org

http://www.topcased.org

22 N. Menad and P. Dhaussy

CCSL constraints and (3) the generation of Fiacre component. The principles
of translating CCSL constraints into Fiacre programs and the generation of
Scheduler code are inspired by the work described in [YM11]. We suppose here
that the active objects of the UML model are generated into Fiacre processes
with a translation which is not detailed in this paper.

The role of the Scheduler process is to determine the order of execution of
functional processes based on the constraint process state. Scheduler is in charge
of activating each functional process. To do so, Scheduler, the constraint pro-
cesses and the functional processes are all synchronized through (synchronous)
communication ports. Figure 4 illustrates partially the generation of code for
Sensor1, Acq1 and the alternatesWith constraint. In this figure, we illustrate
the synchronization links with dash lines. For example, Sensor1 is synchro-
nized with Scheduler via the port sync pw1 to execute a writing operation of a
given datum data in memory M1 shared between Sensor1 and Acq1 processes.
AlternatesWith process is synchronized with Scheduler via the ports startA1,
updateA1 and endA1.

Acq1 and Comput communicate through port portAcq1 with a integer value.
Comput and Filter communicate through a shared variable fifoFromComput
of fifo type. Filter is synchronized with Scheduler via sync filter for filtering
operation. sync filter carries a boolean value needed by the Filter behavior. The
Scheduler process and constraint processes share logical clocks (table tab Clocks)
that correspond to events occurring in the circuit computation (write1, write2,
read1, read2, comput, filterOut). The same translation process is applied to other
functional processesSensor2,Acq2,Comput,Filter and the other constraint pro-
cesses StricPrec and FilteredBy.

For this case study, we implement the objectsDev1,Dev2 andDevout with the
CDL language, because we consider that these objects run in the environment
of the circuit3.

Generation of a Fiacre Component: The Fiacre program includes a compo-
nent called C (cf Listing 1) that contains the instances of the processes running
at the same time (operator ||). As result of generation algorithm execution, the
codes of functional processes, constraint processes and Scheduler are generated.
The functional processes are generated from active objects of the UML model
and correspond to the functional parts of the model.

For automatic code generation is possible, we must declare clock numbers
and links between clocks and synchronization triggers generated by Scheduler.
For example, the clock read1 is associated with sync pr1 synchronization port
to synchronize the first instance (Acq:1) of Acq process. The clock filter is
associated with sync filter synchronization port which carries a boolean value.
For this last constraint, in our implementation, we need two indices in the table
tab Clocks. These attributes are specified as follows:

3 The description of CDL language can be found at http://www.obpcdl.org

http://www.obpcdl.org

A Transformation Approach for Multiform Time Requirements 23

Fig. 4. Illustration of the Fiacre architecture partially generated

Synchronization

write1: clockNo: 0, synchro: sync_pw1 none to: Sensor:1;

read1: clockNo: 1, synchro: sync_pr1 none to: Acq:1;

write2: clockNo: 2, synchro: sync_pw2 none to: Sensor:2;

read2: clockNo: 3, synchro: sync_pr2 none to: Acq:2;

comput: clockNo: 4, synchro: sync_comput none to: Comput:1;

filterOut: clockNo: 5, synchro: sync_filter bool:true,

clockNo: 6, synchro: sync_filter bool:false to: Filter:1;

In our case study, the code generator produces 12 processes: Scheduler, 5
constraint processes (2 for alternatesWith, 2 for strictPrec, 1 for filterBy)
and 6 functional processes (Sensor1, Sensor2, Acq1, Acq2, Comput and Filter).
The Fiacre code of the partial component part is generated as follows4:

component C is

var write1, read1, ..., M1 : int, tab_Clocks : T_ARRAY_CLOCK,

fifoToSensor1, fifoFromComput : fifo, ...

port startA1, sync_pr1, sync_pw1, ... : none, portAcq1: int, ...

init write1 := 0; read1 := 1; ... // clock numbers

par

//-------- Scheduler process ---------

Scheduler [startA1, ... sync_pr1, sync_pw1, ...] (&tab_Clocks)

//-------- constraint processes ---------

|| AlternatesWith [startA1, ...](&write1, &read1, &tab_Clocks)

|| ...

//-------- functional processes ---------

|| Sensor1 [sync_pw1] (&fifoToSensor1, &M1)

|| Acq1 [sync_pr1, portAcq1] (&M1)

|| ...

end C

Listing 1. Partial generated component program

4 The complete code of the case study can be found on site http://www.obpcdl.org

http://www.obpcdl.org

24 N. Menad and P. Dhaussy

Generation of Scheduler: The principle of the Scheduler process execution
is as follows: for each iteration, It executes a number of steps as shown (Fig.
5.a): (1) the Start step for the declared clocks initialization and the activation
of constraint processes. (2) the End step for the synchronization at the end
of the constraint processes. (3) An active phase during which the Scheduler
synchronizes with each functional process so that each process runs. A execu-
tion period corresponds to the time between two start steps. (4) An intermediate
phase Update is interposed between the start steps and end steps to synchronize
some constraints if required. The algorithm executed by Scheduler is repeated to
simulate the coincident moment sequence (an instant). Interleaving or simulta-
neous execution of functional processes is simulated by synchronization between
Scheduler and the functional processes involved, at every temporally bounded
instants. For example, Fig. 5.b shows two clocks ck1 and ck2 that are activated
in each case at the same time. ck3 alternates with ck1 or ck2.

Fig. 5. Scheduler process automaton

From the point of view of the Fiacre implementation, and taking into ac-
count the Promela program implementation principle described in [YM11], each
event in the model gives rise to a clock which is located by a Fiacre structure
tab Clocks. This structure is declared as follows:

type T_CLOCK is record clock_state:nat, enable_tick, dead: bool end

type T_ARRAY_CLOCK is array 7 of T_CLOCK

tab_Clocks: T_ARRAY_CLOCK

In each iteration of the Scheduler, each constraint process updates value
clock state which takes integer values 0, 1 or 2, in accordance with the execution
of the automaton it encodes. Once the process has executed a loop constraint,
Scheduler evaluates these values to set the value enable tic to true or false. If
enable tic is evaluated as true, the functional process associated with the event is
synchronized with Scheduler, which triggers an execution step in the functional
process (for example with sync pw1 for triggering Sensor1 as shown Fig. 4).

A Transformation Approach for Multiform Time Requirements 25

The assessment of the value enable tic is set to true only if the clock state value
is equal to 2. In other cases, enable tic are set to false. The value dead is set at
true when the associated clock should not be active in the rest of the execution.

The generation automatically produces the Scheduler code including this part
executed during the Active step:

... if (tab_Clocks [0].enable_tick) then sync_pw1

elsif (tab_Clocks [1].enable_tick) then sync_pr1

elsif (tab_Clocks [2].enable_tick) then sync_pw2

elsif (tab_Clocks [3].enable_tick) then sync_pr2

elsif (tab_Clocks [4].enable_tick) then sync_comput

elsif (tab_Clocks [5].enable_tick) then sync_filter (true)

elsif (tab_Clocks [6].enable_tick) then sync_filter (false)

end ...

Translation of Constraints: We implement each CCSL constraint by a Fi-
acre process that implements the automaton (cf Section 3.1) corresponding to
the constraint (we called those processes constraints processes). These process
are synchronized with Scheduler via the port start, update and end for the
activation of automaton transitions. For example, we show the code for the
alternatesWith constraint corresponding to the automaton shown in Fig. 2.b.
The transitions of this automaton are triggered by signal ports startA, updateA
and endA and update the value of clock state. The encoding principle for the
other two constraints, strict precedence and filtering is similar.

process AlternatesWith [startA, updateA, endA: in none] // ports

(&c1: nat, &c2 : nat, &tab_Clocks: T_ARRAY_CLOCK) // shared variables

is states s1, s2, s3, s4, s5

init to s0

from s0 startA;

tab_Clocks [c1].clock_state := 2; tab_Clocks [c2].clock_state := 1; to s1

from s1 updateA; to s2

from s2 endA; to s3

from s3 startA;

tab_Clocks [c1].clock_state := 1; tab_Clocks [c2].clock_state := 2; to s4

from s4 updateA; to s5

from s5 endA; to s0

6 Formal Verification of Properties

6.1 Verification Principles

To verify a set of requirements on a model, we must explore it exhaustively
and have a formal expression of properties to be checked, for example in the
form of logical formulas or observer automata. In our approach, we express the
properties with CDL language.

Once the observers have been specified, the model is then explored and the
exploration generates a labeled transition system (LTS). It represents all the
behaviors of the model in its environment as a graph of configurations and
transitions. On this LTS, the verification of the properties is carried out by
applying a reachability analysis of observer error states.

26 N. Menad and P. Dhaussy

6.2 Expressing Properties Using CDL

The CDL language allows the user to specify properties which are expressed
as predicates or observer automata. Predicates in CDL reference variables val-
ues: for example, predicate pred1 is {{Proc}1 : v = value} means pred1 is
true if the variable v of the first instance of the Proc process is equal to
the value value. A predicate can also reference a process state: for example,
predicate pred2 is {{Proc}1@stateX} means that pred2 is true if the first in-
stance of the Proc process is in the state stateX . A predicate can also reference
the amount of data contained in a fifo or a boolean expression combining the
previous types of predicates.

This syntax provides a rich mode of expression that together with the ob-
server, enables the expression of properties which would be difficult to express
in linear logic (see the P2 observer Fig. 7). The predicates allow insights into
the behavior of a model while providing expression which is easy to use and un-
derstand for the designer. In our work, we express properties in CDL following
two complementary objectives: one to verify that the implementation of CCSL
constraints is correct, the other to ensure that the functional parts of the circuit
(Sensor1, Sensor2, Acq1, Acq2, Comput, Filter) are properly implemented.

Properties Associated with CCSL Constraints: Here we illustrate the
specifications of some properties associated with CCSL constraints included in
our system model. The goal is to prove the correct Fiacre implementation of
Scheduler and constraint automata. To check a property P1 associated with the
alternation requirement Req1, for example write1 alternatesWith read1, we
declare the CDL events evt write1 and evt read1 (Fig. 6.a). With these events,
we specify the observer, illustrated in Fig. 6.b), encoding the property P1 which
satisfies the alternating synchronization write1 and read1. The initial state of
the observer is the Start state and has an error state (Reject). Each transition of
the observer is triggered by the occurrence of an event (evt write1 or evt read1).

In a similar way, we can specify observers to verify properties of the require-
ment Req2 by declaring the events evt read2 and evt comput:

event evt_read2 is {sync sync_pr1 from {Scheduler}1 to {Sensor}2}

event evt_comput is {sync sync_comput from {Scheduler}1 to {Comput}1}

Fig. 6. Observer automaton corresponding to P1 property

A Transformation Approach for Multiform Time Requirements 27

The CDL language also allows to specify predicates that can be verified during
the exploration of the model. For example, if we want to check that, in an instant,
clocks write1 and read1 do not ”tick” at the same instant, we can declare the
following predicates:

predicate enable_tick_pw1_true is {{C}1:tab_Clocks [0].enable_tick = true}

predicate enable_tick_pr1_true is {{C}1:tab_Clocks [1].enable_tick = true}

predicate enable_tick_rw1_together is

{enable_tick_pw1_true and enable_tick_pr1_true}

We can now declare, with the operator assert5, the following invariant:
not act tick rw1 together. During the exploration of the model, the OBP tool
checks that the invariant is not violated.

The CDL predicates can also facilitate the writing of more complex observers
when they refer to a large number of events. For example, the requirement Req3
associated with the generation of data by Comput and the filtering constraint is
expressed by the CCSL term: filterOut = comput filteredBy (001)w. During
the exploration, we need to verify that the sequence of data generated from
Filter is the sequence generated by Comput with a sampling of one value in 3.
In the current version of the model, the filter word (001) is stored in an array
variable tabF ilter of the constraint process FilteredBy. The (i modulo 3)th

datum of the sequence generated by Comput will be copied in the sequence
derived from Filter if the value tabF ilter[i modulo 3] is equal to 1. Otherwise,
it is not copied into the sequence of data supplied to the environment. To verify
this constraint, we therefore declare the following predicates (for x ∈ {0, 1, 2}):

predicate bitx_true is {{FilteredBy}1:tabFilter[x] = 1}

predicate bitx_false is {{FilteredBy}1:tabFilter[x] = 0}

Transitions of an observer can be decorated with one of the predicates together
with the events evt comput, evt filterT rue and evt filterFalse which trigger
the transitions of the observer and they are declared as follows:

Fig. 7. Observer automaton corresponding to the P2 property

5 See detailed syntax of the CDL language available at http://www.obpcdl.org

http://www.obpcdl.org

28 N. Menad and P. Dhaussy

event evt_filterTrue is {sync filter (true) from {Scheduler}1 to {Filter}1}

event evt_filterFalse is {sync filter (false) from {Scheduler}1 to {Filter}1}

Figure 7 illustrates the observer encoding property P2 and referencing the
above predicates and events.

If we want to verify other properties on the functional parts of our model,
we specify these properties which characterize the behavior of the model. For
example, the Req4 requirement, expressed in Section 4, can be expressed by an
observer automaton using predicates and appropriate events.

7 Experimentation on the Case Study and Discussion

To conduct the experiments, we implemented the OBP tool (Fig. 1). OBP
is structured in three modules. The front end OBP imports Fiacre models
corresponding to a translation of UML-MARTE models including CCSL spec-
ifications. In addition, it imports CDL programs which describe the properties
and context scenarios if required. OBP Explorer explores the model, and after
each transition model run, it hands over to the Observation Engine. It captures
the occurrences of events and evaluates, at each step of the running model, the
value of predicates and the status of all involved observers. A verification of all
invariants and reachability analysis of error state observers is thus conducted.

At the end of exploration, a report is generated by OBP, revealing the list of
property evaluated to true or false. Also, OBP provides either counter examples
on request on the reject or success observer state accessibility or invariant vio-
lations. These indications may refer the user to the scenario having the defeated
properties. We are currently working to facilitate the interpretation of data pro-
vided by OBP and to display understandable data in the user’s models, allowing
ease of diagnosis.

With CDL, we specified observers to verify different properties concerning
requirements (Req1 to Req4) expressed in Section 4. For this proposed case
study, the complexity of exploration6 is reasonable size. As an example, if we
assume that the size of fifo is equal to 1, the number of explored configurations is
then 45 040 and the number of transitions is 167 496. If the size is equal to 3, the
number of explored configurations is then 359 104 and the number of transitions
is 1 702 704.

The use of the Fiacre language in our translation approach serves to reduce
the semantic gap between high-level models expressed in UML MARTE de-
scription, by making it possible to precisely specify the semantics of the input
language for system modeling. This intermediate language enables to share these
specifications through different verification tool-chains. Our CDL language can
be compared with the Property Specification Language (PSL) [IEE05]. In future
work, we investigate to compare CDL expressiveness with PSL and the discussion
in [Mal12] is very interesting for this topic.

6 The tests are run on a machine such as Windows 7, 64-bit - 4 GB RAM with OBP
v.1.3.4.

A Transformation Approach for Multiform Time Requirements 29

8 Conclusion

In this work, we have presented an implementation of CCSL constraints in
the Fiacre language and we expressed properties in the CDL language. The
manipulation of CCSL expressions within the framework of modeling with UML-
MARTE formalism can extend the expressiveness by integrating temporal con-
straints into the model. The logical time model proposed by the OMG to enrich
the UML MARTE allows the description and analysis of temporal constraints.
We have defined a automatic translation approach to generate Fiacre programs
from UML-MARTE models enriched with CCSL constraints. This approach al-
lows to verify formally the implementation of CCSL constraints and functional
requirements.

We carried out a verification technique of properties by model-checking using
the CDL language and the OBP tool. CDL can easily express predicates and
observers which are checked during the exhaustive model exploration by OBP.
We have shown that this language facilitates the expression of properties. They
can be expressed with a very fine granularity, referencing variables and process
states.

We can take benefits of the CCSL automata encoding. These automata are
as reusable inputs to apply the verification. Our translation approach can be an
important step toward the formal verification process of both MARTE models
and CCSL specifications. Once the translation of CCSL constraints into Fiacre
is complete, the operation requires only a single verification as it does not de-
pend on the modeled application. Even though the model may change, the Fiacre
code is reusable as this translation principle is independent of the application. We
think that our approach contributes to clarify its role when addressing this do-
main by expressing temporal properties dedicated to CCSL relation constraints.

Acknowledgment. We wish to thank Dr Zoé Drey for her valuable and con-
structive suggestions related to this paper.

References

[And09] André, C.: Syntax and semantics of the clock constraint specification lan-
guage ccsl. Technical Report 6925, INRIA (2009)

[And10] André, C.: Verification of clock constraints: Ccsl observers in esterel. Tech-
nical Report 7211, INRIA (2010)

[CES86] Clarke, E.M., Emerson, E.A., Sistla, A.P.: Automatic verification of finite-
state concurrent systems using temporal logic specifications. ACM Trans.
Program. Lang. Syst. 8(2), 244–263 (1986)

[DBRL12] Dhaussy, P., Boniol, F., Roger, J.-C., Leroux, L.: Improving model check-
ing with context modelling. In: Advances in Software Engineering, ID
547157, 13 pages (2012)

[DMA08] DeAntoni, J., Mallet, F., André, C.: Timesquare: on the formal execution
of uml and dsl models. In: Tool Session of the 4th Model Driven Develop-
ment for Distributed Real Time Systems (2008)

30 N. Menad and P. Dhaussy

[FGP+08] Farail, P., Gaufillet, P., Peres, F., Bodeveix, J.-P., Filali, M., Berthomieu,
B., Rodrigo, S., Vernadat, F., Garavel, H., Lang, F.: FIACRE: an interme-
diate language for model verification in the TOPCASED environment. In:
European Congress on Embedded Real-Time Software (ERTS), Toulouse.
SEE (January 2008)

[HLR93] Halbwachs, N., Lagnier, F., Raymond, P.: Synchronous observers and
the verification of reactive systems. In: Nivat, M., Rattray, C., Rus, T.,
Scollo, G. (eds.) Third Int. Conf. on Algebraic Methodology and Software
Technology, AMAST 1993, Twente. Workshops in Computing, pp. 83–96.
Springer Verlag (June 1993)

[IEE05] IEEE. IEEE standard for property specification language (psl). Technical
Report 1850 (2005)

[Mal12] Mallet, F.: Automatic Generation of Observers from MARTE/CCSL. In:
RSP 2012 - International Symposium on Rapid System Prototyping, Tam-
pere, Finlande, pp. 86–92. IEEE (October 2012)

[MAS08] Mallet, F., André, C., De Simone, R.: Ccsl: Specifying clock constraints
with uml/marte. ISSE 4, 309–314 (2008)

[OMG10] OMG. Uml profile for marte, v1.1. Object Managment Group, Document
number: PTC/10-08-32 (August 2010)

[QS82] Queille, J.-P., Sifakis, J.: Specification and verification of concurrent sys-
tems in CESAR. In: Dezani-Ciancaglini, M., Montanari, U. (eds.) Pro-
gramming 1982. LNCS, vol. 137, pp. 337–351. Springer, Heidelberg (1982)

[YM11] Yin, L., Mallet, F.: Correct transformation from ccsl to promela for veri-
fication. Technical Report 7491, INRIA (2011)

[YTB+11] Yu, H., Talpin, J.-P., Besnard, L., Gautier, T., Marchand, H., Le Guernic,
P.: Polychronous controller synthesis from marte ccsl timing specifications.
In: Memocode (2011)

	A Transformation Approach for Multiform Time Requirements
	Introduction
	Related Work
	The CCSL Modeling
	Examples of CCSL Constraints

	Illustration through a Simple Case Study
	Translation Principles of the CCSL Constraints into Fiacre Programs
	The Fiacre Language
	Translation Principles
	Generation of a Fiacre Component:
	Generation of Scheduler:
	Translation of Constraints:

	Formal Verification of Properties
	Verification Principles
	Expressing Properties Using CDL
	Properties Associated with CCSL Constraints:

	Experimentation on the Case Study and Discussion
	Conclusion
	Acknowledgment.

