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Abstract. Despite the high-level of automation, the practicability of
model-checking large asynchronous models is hindered by the state-space
explosion problem. To address this challenge the Context-aware Verifi-
cation technique relies on the identification and explicit specification of
the environment (context) in which the system-under-study operates.
In this paper we apply this technique for the verification of a Cruise-
Control System (CCS). The asynchrony of this system renders traditional
model-checking approaches almost impossible. Using the Context-aware
Verification technique this task becomes manageable by relying on two
powerful optimisation strategies enabled by the structural properties of
the contexts: automatic context-splitting, a recursive state-space decom-
position strategy; context-directed semi-external reachability analysis, an
exhaustive analysis technique that reduces the memory pressure during
verification through the use of external memory.
In the case of the CCS system, this approach enabled the analysis of up
to 5 times larger state-spaces than traditional approaches.

Keywords: formal verification;context-aware model-checking; OBP;
observer-automata...

1 Introduction

Since their introduction in the early 1980s, model-checking [17, 5] provides an
automated formal approach for the verification of complex requirements of hard-
ware and software systems. This technique relies on the exhaustive analysis of all
states in the system to check if it correctly implements the specifications, usu-
ally expressed using temporal logics. However, because of the internal complexity
of the systems studied, model-checking is often challenged with unmanageable
large state-space, a problem known as the state-space explosion problem[6, 15].
Numerous techniques, such as symbolic model-checking[3] and partial-order re-
duction[19], have been proposed to reduce the impact of this problem effectively
pushing the inherent limits of model-checking further and further.

The Context-aware Verification has been recently introduced [9] as a new
technique of state-space decomposition that enables compositional verification
of requirements. This technique reduces the set of possible behaviors (and thus



the state-space) by closing the SUS with a well defined finite and acyclic environ-
ment. The explicit and formal specification of this environment enables at least
three different decomposition axes: a) the environment can be decomposed in
contexts, thus isolating different operating modes; b) these contexts enable the
automatic partitioning of the state-space into independent verification problems;
c) the requirements are focused on specific environmental conditions.

In this study we apply the Context-aware Verification technique for modelling
and requirement validation of a automotive Cruise-Control System, a system
that automatically controls the speed of cars. Using this approach we verified
three important requirements of the CCS, identifying one subtle concurrency
bug that could lead to very dangerous situations. Furthermore, the importance
of the Context-aware Verification approach is emphasised through the success-
ful analysis of up to 4.78 larger state-space than traditional approaches. Result
which was made possible by relying on the complementarity of two powerful
optimisation strategies enabled by the explicit environment specification: a re-
cursive state-space decomposition strategy and an exhaustive analysis technique
that reduces the memory pressure during verification through the use of external
memory.

This study starts by introducing the Context-aware Verification approach
in Section 2 along with the CDL language (Section 2.1) and two innovative
analysis techniques addressing the state-space explosion problem (Section 2.2).
The CCS specifications are introduced in Section 3 and the CDL encoding of
the requirements and environment are overviewed in Section 3.2 and Section 3.3.
The verification results are presented in Section 3.4. Section 4 overviews related
research emphasising the complementarity with the Context-aware Verification.
Section 5 concludes this study presenting future research directions.

2 Context-aware Verification

Context-aware Verification, focuses on the explicit modeling of the environment
as one or more contexts, which then are iteratively composed with the system-
under-study (SUS). The requirements are associated and verified in the contexts
that correspond to the environmental conditions in which they should be sat-
isfied, and automated context-guided state-space reduction techniques can be
used to further push the limits of reachability analysis. All these developments
are implemented in the OBP Observation Engine [9] and are freely available1.

When verifying properties, through explicit-state model checking, the system
explores all the behaviors possible in the SUS and checks whether the verified
properties are true or not. Due to the exponential growth of system states rela-
tive to the number of interacting components, most of the time the number of
reachable configurations is too large to be contained in memory. Besides using
techniques like the ones described in Section 4, to alleviate this problem the
system designers manually tune the SUS to restrict its behaviors to the ones

1 OBP Observation Engine website: http://www.obpcdl.org



pertinent relative to the specified requirements. This process is tedious, error
prone and poses a number of methodological challenges since different versions
of the SUS should be kept sound, in sync and maintained.

To address these issues, Context-aware Verification technique proposes to
restrict the model behaviors by composing it with an explicitly defined envi-
ronment that interacts with the SUS. The environment enables a subset of the
behaviors of the model. This technique reduces the complexity of the exploration
by limiting its scope to a reduced set of behaviors related to specific environmen-
tal conditions. Moreover, this approach solves the methodological issues, since
it decouples the SUS from its environment, thus allowing their refinement in
isolation.

Context-aware reduction of system behaviors is particularly interesting in
the case of complex embedded system, such as automotive and avionics, since
they exhibit clearly identified operating modes with specific properties associ-
ated with these modes. Unfortunately, only few existing approaches propose
practical ways to precisely capture these contexts in order to reduce formal ver-
ification complexity and thus improve the scalability of existing model checking
approaches.

2.1 Environment Modeling with CDL formalism

The Context Description Language2(CDL) was introduced to formalize the envi-
ronment specification [8]. The core of the CDL language is based on the concept
of context, which has an acyclic behavior communicating asynchronously with
the system. The environment is specified through a number of such contexts. The
interleaving of these contexts generates a labelled-transition system representing
all behaviors of the environment, which can be fed as input to traditional model-
checkers. Moreover, the CDL enables the specification of requirements through
properties that are verified by the OBP Observation Engine.
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Fig. 1: OBP Observation Engine overview

Fig. 1 shows a global overview of the OBP Observation Engine. The SUS
is described using the formal language Fiacre [11], which enables the specifica-
tion of interacting behaviors and timing constraints through timed-automata.

2 For detailed CDL syntax and semantics, see www.obpcdl.org.



The surrounding environment and the requirements are specified using the CDL
formalism.

2.2 Context-guided State-space Decomposition and Reachability

Automatic Context Splitting: OBP Observation Engine integrates a powerful
context-guided state-space reduction technique which relies on the automated
recursive partitioning (splitting) of a given context in independent sub-contexts
[8]. This technique is systematically applied by OBP Observation Engine when
a given reachability analysis fails due to lack of memory resources to store the
state-space.

After splitting contexti, the sub-contexts are iteratively composed with the
model for exploration, and the properties associated with contexti are checked
for all sub-contexts. Therefore, the global verification problem for contexti is
effectively decomposed into Ki smaller verification problems.

Context-directed semi-external reachability analysis: OBP Observation Engine
also implements a new exhaustive analysis algorithm that reduces the memory
consumption by using the external storage to store the ”past-states” of the SUS
[18]. This algorithm, named PastFree[ze], relies on the isolation of the acyclic
components of the SUS, which are used to drive the reachability analysis. The
nodes of the graph induced by the context identifies ”clusters of states” that can
be freed from memory and saved to disk.

3 Case Study: Cruise-Control System

This section provides a description and some of the requirements of an auto-
motive Cruise-Control System (CCS), which is the case study studied in this
paper.

3.1 SUS Model

Functional Overview. The CCS main function is to adjust the speed of a vehicle.
After powering the system on, the driver first has to capture a target speed,
then it is possible to engage the system. This target speed can be increased or
decreased by 5km/h with the tap of a button.

There are also several important safety features. The system shall disengage
as soon as the driver hits the brake/clutch pedal or if the current vehicle speed
(s) is off bounds (40 < s < 180km/h). In such case, it shall not engage again
until the driver hits a ”resume” button. If the driver presses the accelerator, the
system shall pause itself until the pedal gets released.



Physical architecture. The CCS is composed of four parts (cf. Fig. 2). A control
panel providing the controls needed to operate the system. An actuation that is
able to capture the current speed and, once enabled, to adjust the vehicle speed
toward the defined target. A health monitoring component that detects critical
events and relays them to the other components. A system-center component
that acts as a controller.

Fig. 2: CCS Physical Architecture.

The control panel provides the buttons needed by the driver to operate the
system:

– PowerOn: Turns the system on;
– PowerOff: Turns the system off;
– Set: Capture the current speed of the vehicle as the target speed;
– Resume: Engage the control speed function of the system;
– Disengage: Disengage the control speed function of the system;
– Inc: Increments the current target speed by 5kmh;
– Dec: Decrements the current target speed by 5kmh.

The control panel is not responsible for handling those operations. However
it should relay them to the system-center.

The actuation provides the tools for the system to interact with the vehicle. It
can capture the current speed of the vehicle and set it as the new target speed.
One the CCS enabled, the actuation is responsible for controlling the vehicle
speed accordingly.

The health monitoring is responsible for monitoring the system and the ve-
hicle for events that can potentially impact the behavior of the CCS:

– The driver hits the brake pedal (induces disengagement);
– The driver hits the clutch pedal (induces disengagement);
– The speed of the vehicle goes out of bounds (induces disengagement);
– The driver presses the accelerator pedal (pauses the speed control function);
– The driver releases the accelerator pedal (resumes the speed control func-

tion);

As for the control panel, this component is not responsible of handling the con-
sequences of such events. However, it should relay them to the system center
which shall handle them.

The system center is the ”core” of the CCS. It is responsible for handling
events detected by both the control panel and the health monitoring components.
To do so, it shall be able to impact the behaviors of all other components.



3.2 Requirements

This section lists three requirements of the CCS system and shows how to model
them using the CDL formalism.

Req1: When an event inducing a disengagement is detected, the actuation
component should not be allowed to control the vehicle speed until the sys-
tem is explicitly resumed.

Req2: The target speed should never be lower than 40km/h nor higher than
180km/h.

Req3: When the system is powered off (PowerOff button), the target speed
should be reset and be considered unset when the system is turned on again.

Req1 can be encoded using the observer automaton presented in Fig. 3. To
encode this observer using the CDL formalism we first need to introduce the
events triggering the transitions.

Fig. 3: Observer automaton for Req1.

Listing 1: Event declaration in CDL language

1 predicate di sengageI sRequested i s {
2 HealthMonitoring@DisengageRequested }
3

4 event c r i t i c a l E v e n t D e t e c t e d i s {
5 di sengageI sRequested becomes t rue }
6

7 event systemAdjustingSpeed i s {
8 send any from Actuation to Car }
9

10 event systemEngaged i s {
11 SystemCenter@Engaged becomes t rue }

In Listing 1, disengageIsRequested is a predicate on the HealthMonitoring
process returning true if the process is in DisengageRequested state.
disengageIsRequested becomes true expresses a rising edge of the predicate,
which is an observable event in OBP Observation Engine. Thus, the event
criticalEventDetected expresses that the HealthMonitoring process just en-
tered in DisengageRequested state from a different state. systemAdjustingSpeed
(lines 7-8) expresses an observable event that triggers when the Actuation pro-
cess sends any message to the Car process. Since, in our model, the only messages
going through this channel are speed adjusting requests it matches an attempt
from the actuation to control the speed. Using these events the observer automa-
ton in Fig. 3 is specified in Listing 2.



Listing 2: The observer automaton for Req1 in CDL language

1 property Req1 i s {
2 s t a r t −− c r i t i c a l E v e n t D e t e c t e d −> wait ;
3 wait −− systemAdjustingSpeed −> r e j e c t ;
4 wait −− systemEngaged −> s t a r t }

Req2 can be encoded by declaring a predicate matching this property, see
Listing 3 (lines 4-7). Since the requirements need to account for the SUS model,
the allowed range for the target speed is extended to [40..180] ∪ {Unset}.

Listing 3: Specifying Req2 as a predicate and Req3 as an observer automaton
using CDL

1 predicate targetSpeedIsUnSet i s {
2 Actuation@UnSet or Actuation@UnsetSett ing }
3

4 predicate Req2 i s {
5 ( Actuation : targetSpeed >= 40
6 and Actuation : targetSpeed <= 180)
7 or targetSpeedIsUnSet }
8

9 property Req3 i s {
10 s t a r t −− (not targetSpeedIsUnSet )
11 ∧ systemTurnsOn −> r e j e c t
12 }

The Req3 encoding is presented in Listing 3 (lines 9-12), and it can be
interpreted as: ”If the target speed is already set (not targetSpeedIsUnset) when
the system turns-on (systemTurnsOn) the verification fails (− > reject)”.

3.3 Environment Modeling

In the case of Context-aware Verification, the environment modeling should be
seen as a methodological phase that needs to balance two important constraints
while building the context. First the context has to cover enough behaviors to
be considered valid for a given property. But at the same time it has to be small
enough to be possible to exhaustively explore the product of its composition with
the SUS. In the case of the CCS the environment, presented in Listing 4, is built
from three distinct actors modeling: a) a nominal scenario, b) a pertubator
c) and ”ticks”. The basic scenario can be seen as a linear use case of the CCS
that covers all the functionality involved by the properties we aim to verify. The
pertubator is a wide alternative including changes of the vehicle speed within
the allowed range or not, pressions on the pedals and the panel buttons. The
pertubator stresses the SUS against a number of possible unexpected behaviors
of the environment. Once these two actors are composed, we get a wide range
of variations of the basic scenario using the capabilities of the pertubator at all
stages. A ”tick” is an event sent to the car to trigger a broadcast of its speed to
the involved components in the CCS. In other words, each tick allows the system
to ”read” the current speed once. The basic scenario we use involves 2 changes



of speed, the pertubator can add another, so for the system to be able to react
we need at least 3 ”ticks”. Adding a ”tick” allows to see how the system reacts
if there is no change of the current speed so it covers more possibilities. While 4
”ticks” is enough, the more ”ticks” we add, while still being able to explore the
behaviors of the system, the higher the coverage of the possible behaviors. We
also use this variable (the number of ”ticks”) as a way to make the exploration
bigger to stress our tools.

Listing 4: Context description and the corresponding LTS representation.

1 cdl myContext i s {
2 properties req1 , req3
3 assert req2
4 in i t i s {
5 evtBtnStart
6 }
7 main i s {
8 b a s i c s c e n a r i o
9 | | pertubator

10 | | loop 4 evtTick } }

3.4 Verification Results

This section presents the results obtained for the verification of the three require-
ments previously presented, emphasizing the importance of the Context-aware
Verification approach, which through the use of the PastFree[ze] algorithm en-
abled the analysis of a 2.4 times larger state-space and through the joint use
of PastFree[ze] and automatic split technique 4.78 times larger state-space com-
pared to traditional breadth-first search (BFS) reachability algorithms.

The results presented in this study were obtained on a 64 bit Linux computer,
with a 3.60GHz Intel Xeon processor, and 64GB RAM memory. We used OBP
Observation Engine distribution version 1.4.6, which includes an implementation
of the PastFree[ze] algorithm3.

During the exploration, the observer encoding Req1 reaches its reject state
meaning the property is not verified. This happens because of a flaw in the
model. Upon receiving a ”tick” event, the car broadcasts its current speed to
both Actuation and Health Monitoring. Both components will react, the former
by sending back an adjusting request, the later by detecting this critical event
and by requesting a disengagement. The model should be adjusted so that the
Actuation doesn’t not attempt to adjust the speed if out of bounds, for example
by filtering it first via the Health Monitoring.

3 The raw results presented in this study along with the source files and an OBP
Observation Engine distribution are available for download on the OBP Observation
Engine website at http://www.obpcdl.org
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Fig. 4: Exploration results for contexts sending from 4 to 11 ticks

Exploration with BFS search. Fig. 4 presents the results in terms of states,
transitions and exploration time obtained for the CCS model by varying the
number of ”ticks” sent by the context presented in Listing 4 from 4 to 11. The
traditional BFS reachability analysis algorithm failed to explore all the state-
space in the case of 10 and 11 ticks.

Exploration with PastFree[ze]. The PastFree[ze] analysis successfully ex-
plored the 10 ticks case obtaining state-space 2.2 times larger than the 9 tick
case. However with the 64GB memory limit this technique failed to finish the
exploration for 11 ticks. The results shown in Fig. 4 for the 11 ticks case were
obtained on a computer with 128GB memory and were included just as a refer-
ence for better understanding the advantages of the automatic-split state-space
decomposition presented in the following paragraph.

Exploration with splitting. To verify the three requirements for the 11 tick
context we used the automatic-split technique which produced 9 sub-contexts
which have been independently analysed by the OBP Observation Engine with
the PastFree[ze] algorithm. The results of these explorations are presented in Fig.
5. It should be noted that in this case the traditional BFS algorithm would have
failed to explore at least 3 of the obtained sub-contexts (the 1st, 2nd and 9th
one) hence needing another split step for these cases, which was not needed for
the PastFree[ze] technique. Another important observation is that while with the
automatic-split technique the state-space was decomposed in 9 partitions these
partitions are not disjoint. Hence their exploration analysed 779 739 813 states
and 2 611 647 510 transitions which represents the analysis of 1.92 times more
states and 1.93 more transitions than the exact state-space presented in Fig. 4
(the 11 ticks bars). Nevertheless, we believe that this is a small price to pay for
the possibility of analysing a 4.78 times larger state-space without the need of
doubling the physical memory of the machine.

4 Related Work

Model checking is a technique that relies on building a finite model of a system of
interest, and checking that a desired property, typically specified as a temporal
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Fig. 5: Results for the analysis of the 9 partitions of the 11 tick context

logic formula, holds for that model. Since the introduction of this technology in
the early 1980s [17], several model-checker tools have been developed to help the
verification of concurrent systems [14, 1].

However, while model-checking provides an automated rigorous framework
for formal system validation and verification, and has successfully been applied
on industrial systems it suffers from the state-space explosion problem. This is
due to the exponential growth of the number of states the system can reach
with respect to the number of interacting components. Since its introduction,
model checking has progressed significantly, with numerous research efforts fo-
cused on reducing the impact of this problem, thus enabling the verification of
ever larger systems. Some of these approaches focus on the use of efficient data-
structures such as BDD [3] for achieving compact state-space representation,
others rely on algorithmic advancements and the maximal use of the available
resources such as external memories [10]. To prune the state-space, techniques
such as partial-order reduction [13, 16, 19, 13] and symmetry reduction [7] ex-
ploit fine-grain transition interleaving symmetries and global system symmetries
respectively. Yet other approaches, like bounded model-checking [4] exploit the
observation that in many practical settings the property verification can be done
with only a partial (bounded) reachability analysis.

The successful application of these methods to several case studies (see for
instance [2] for aerospace examples) demonstrates their maturity in the case of
synchronous embedded systems. However, even though these techniques push the
limits of model-checking ever further, the state-space explosion problem remains
especially in the case of large and complex asynchronous systems.

Besides the previously cited techniques that approach the property verifica-
tion problem monolithically, compositional verification [12] focus on the analysis
of individual components of the system using assume/guarantee reasoning (or
design-by-contract) to extract (sometimes automatically) the interactions that
a component has with its environment and to reduce the model-checking prob-
lem to these interactions. Once each individual component is proved correct the
composition is performed using operators that preserve the correctness.

Our approach can be seen as a coarse-grain compositional verification, where
instead of analyzing the interactions of individual components with their neigh-
boring environment we focus on the interactions of the whole system with its
surrounding environment (context). Conversely to ”traditional” techniques in



which the surrounding environment is often implicitly modeled in the system
(to obtain a closed system), we explicitly describe it separately from the model.
By explicitly modeling the environment as one (or more) formally defined con-
text(s) and composing it with the system-under-study we can conduct the full
system verification.

5 Conclusion and Perspectives

In this paper we have used the Context-aware Verification technique for the
analysis of three requirements of a Cruise-Control System. The asynchrony of
this system renders traditional model-checking approaches almost impossible.
Using the environment reification through the CDL formalism this task becomes
manageable by relying on two powerful optimisation strategies. These strategies
rely on the structural properties of the CDL contexts and enable the reachability
analysis of orders of magnitude larger models.

While the approach presented in this paper offers promising results, for this
technique to be used on industrial-scale critical systems, we are currently work-
ing on a sound methodological framework that formalizes the context coverage
with respect to the full-system behavior and assist the user on initial context
specification.
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