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Abstract. The number and complexity of embedded systems is rising.
Consequently, their development requires increased productivity as well
as means to ensure quality. Model-based techniques can help achieve
both. With classical model-driven development techniques, developers
start by building design models before producing actual code. Although
various approaches can be used to validate models and code separately,
models and code are however separated by a semantic gap. This gap typ-
ically makes it hard to link runtime measures (e.g., execution traces) to
design models. The approach presented in this paper avoids this seman-
tic gap by making it possible to execute UML design models directly on
embedded microcontrollers. Therefore, any runtime measure is directly
expressed in terms of the design model. The paper introduces our UML
bare-metal (i.e., not requiring an operating system) interpreter. Its use
is illustrated on a motivating example, which can be simulated, or de-
bugged, and for which message sequence charts can be generated.
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1 Introduction

Embedded systems become more and more complex due to the emergence of new
needs and applications (e.g., Internet of Things, autonomous cars, smart cities).
This increasing complexity renders software programs more difficult to design,
maintain, and evolve. One of the main consequence is that bugs and design faults
are more difficult to detect and fix. To validate the system behavior, it becomes
necessary to execute the system during early design phases, and to link design
and runtime concepts together to ease the system analysis.

With model-driven engineering, a classical approach consists in simulating
a model of the system under study on a desktop computer. Then, the appli-
cation code is produced using code generation and executed on an embedded
target. However, code generation creates a semantic gap between design models
and executable code that makes it more complicated to link design models to
execution concepts. Therefore, diagnosis activities (e.g., simulation, debugging)



and runtime measures analysis (e.g., execution traces) can become complex. It
is even more challenging to visualize the execution of a system running on an
embedded target and to interact with its design model at runtime.

To partially address these issues, we introduce a model interpreter that can
be used to execute UML models. This tool has been presented in 2| but in this
paper, we will focus on interactions between design and runtime, which have not
been presented yet. In our approach, the design model is directly loaded in our
model interpreter for being executed. This technique avoids the semantic gap
created by code generation and ensures that the same concepts (here UML con-
cepts) are used between design and runtime. Indeed, the model execution can be
directly visualized in terms of UML concepts through two kinds of interactions.
Online interactions used during simulation and debugging can be employed to
interact with the model during its execution. Offline interactions are also avail-
able to visualize the model execution through the generation of message sequence
charts (MSC) from execution traces. These MSC are directly expressed in terms
of the design model elements. This approach is a first step towards the goal of
executing design models for complex embedded systems. This work shows that
it is possible to do it on bare-metal for small embedded devices (e.g., Internet of
Things) but this approach can be generalized to use operating systems for more
complex embedded systems applications.

Our UML model interpreter shows encouraging results towards feasibility. It
can be used to execute UML models on desktop computers and embedded mi-
crocontrollers using model interpretation. This interpreter can be connected to a
simulator for simulating and visualizing the system execution using a dedicated
communication protocol. It is also possible to print execution traces into a for-
malism for generating MSC diagrams from these traces. Experiments have been
made on a level crossing system to illustrate these features. These improvements
contribute to reinforce the link between design and runtime as well as reducing
time-to-market and increasing both productivity and quality.

The remainder of this paper is structured as follows. introduces
our model interpreter and the technique used to interpret a UML model on a
bare-metal target. Then, we describe multiple interactions modes between design
and runtime in [Section 3| In [Section 4] we discuss advantages of this approach
before reviewing some related work in Finally, we conclude this paper
in [Section 6l

2 Interpretation of Executable UML Design Models

To link design and runtime concepts, our approach is based on a model in-
terpreter that can execute the model of the system produced during the design
phase. In this section, we will present the process used to serialize a design model
into source code before being loaded in and executed with our prototype.

The first step consists in designing a model of the system under study in
UML. This activity can be performed with either graphical editors (e.g., Pa-
pyrus [11]) or textual editors (e.g., tUML tool [9,/10]). Using these tools, the
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Fig. 1. Overview of the model generation process.

design model can then be exported into the XML metadata interchange (XMI)
format. To be executable, this model must specify explicitly the system behav-
ior. In our case, the behavior of active classes is specified using state machines
composed of states and transitions. Each transition can have a guard and an
effect encoded respectively in an opaque expression and an opaque behavior. To
write these guards and effects, we use an action language based on the C pro-
gramming language but with specific syntactic extensions to simplify access to
UML instances (i.e., instances of UML classes). These extensions can be used to
send events, get and set values of attributes, and access content of event pools
in a relatively simple way. With this syntactic sugar, users do not need to know
the internal structure of the interpreter to use the action language.

Once the executable model has been saved into XMI, it can be serialized into
C source code using a transliteration, as shown in This serialization
can be seen as the way to load the model into our interpreter. In fact, it only
adapts the syntax of the model to C programming language without performing
any semantics change. The serializer is used to generate a C struct initializer for
each UML element needed for model interpretation. With struct initializers the
C compiler constructs the binary representation of the model in the initialized
data section of the memory. This can be seen as compile-time model loading.
Hence, this technique differs from classical code generation that generates both
data and program required to execute the system. We only generate data that
represents the static part of the model. The only exception concerns transition
guards and effects that are serialized as C functions to which the C representa-
tion of transitions point (using function pointers). In fact, in UML with opaque
expression guards and opaque behavior effects, the code of guards and effects is
represented as strings stored into a body property. These C functions provide
executable behaviors for these bodies without requiring to parse these strings
or to perform expensive operations directly on the target. Apart from transition
effects and guards, no code is generated from the UML model, only data. More-
over, this data is no more than an in-memory representation of a loaded UML
model, similar to the result of EMF XMI loading.

Then, a C compiler is used to compile both the UML model in C language
and the source code of the interpreter, which are then linked together into ex-



ecutable code. This executable code includes the runtime model composed of
both the static and the dynamic part of the model. At this point, the reference
model is the runtime model because this is the model really executed on the
target. The design model is only a view of it. The resulting executable may be
executed either on a desktop computer or on a microcontroller-based embed-
ded system. The execution results in interpretation of the model using both the
UML model of design (data) and the operational semantics implemented into
the model interpreter (program). The implemented semantics tends towards the
precise semantics for UML state machines (PSSM [13]) based on fUML [14].

3 Interactions with Design Tools

To reinforce the link between design and runtime, our approach is able to deal
with two kinds of interactions between the runtime model and design tools. On
the one hand, online interactions enable to interact with model execution for
simulation or debugging purposes. On the other hand, our model interpreter is
also able to generate traces at runtime that can be analyzed after execution.
These interactions are supported by a choice of three possible interaction modes
that are typical of embedded systems development process: simulation, debug-
ging, and execution. The interpreter may be compiled with any of these features
except the debugging loop which has not been implemented yet. In order to be
deployed on the actual embedded system, the interpreter is compiled only with
the execution loop. Therefore, interactions for simulation or debugging loops are
not provided in the final product in order to avoid leaving a potential attack
vector open.

3.1 Simulation

To interact with the model at design time, it is possible to use a simulator. The
simulation mode enables making online interactions to explore the model and
visualize its execution. Using our approach, model execution can be controlled
through the interpreter running locally on a desktop computer or remotely on
an embedded microcontroller. This second possibility can be employed to make
hardware in the loop simulation directly on the board that will be used on
the actual embedded system. To control model execution, our model interpreter
provides the following application layer protocol:

Get configuration collects the current memory state of the interpreter.

Set configuration loads a configuration as the memory state of the interpreter.
Get fireable transitions collects transitions that can be fired on the next step.
Fire transition fires a transition of an active object’s state machine.

Reset interpreter restarts the interpreter from the initial state of the model.

In this communication protocol, the memory state of the interpreter is called
configuration and represents the dynamic part of the executed model. The con-
figuration is composed of current states of state machines, contents of event
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Fig. 2. User interface of the simulator.

pools (i.e., all events received by UML instances of active classes), and values
of attributes. To get and set the configuration, we prefer the use of two global
commands rather than multiple small and complex commands. This simplifies
the protocol and gives the possibility to have an overview of the whole config-
uration at each simulation step. To improve performance, it is possible to use
a diff mode that enables exchanging only bytes that are different between the
current configuration and the previous one. For instance, if one wants to change
the value of only one attribute, only the value of this attribute and its position
into the configuration will be transmitted rather than the whole configuration.
Virtual peripherals communicate with the model by directly reading or writing
into event pools, which can also be performed in diff mode. With this simula-
tion loop, execution flow is entirely controlled by the simulator. Therefore, it
is possible to implement an execution loop in this tool to run model execution.
[Figure 2] presents the user interface of our simulator applied to a level-crossing
model IIZ . This interface shows the list of fireable transitions available in the se-
lected configuration, the content of this configuration, and the part of the model
state-space discovered since the beginning of the simulation.

3.2 Debugging

Debugging is another kind of online interactions. It can be used to control model
execution in the same way than previously introduced simulation purpose, or to
automatically execute the model with the actual embedded system. For this rea-
son, it is a mix between both simulation and execution modes. The debugging
loop can be used to control model execution using the communication protocol
and to observe the configuration of the model. This protocol enables injecting
an event, changing the value of an attribute, or changing the value of the cur-
rent state of a state machine using the Set configuration request. The diff mode
can be used to reduce the cost and optimize communication performance. This
communication protocol can also be used to make omniscient debugging
to go back-in-time. Indeed, received configurations can be stored and reloaded



at any time as the current memory state of the interpreter. In debugging mode,
it is also possible to execute the system using the execution loop implemented in
the interpreter. The only difference with the execution mode is that it will check
if there is a command (sent by the debugger) to process, so the runtime cost is
small. In our prototype of model interpreter, these debugging interactions have
some limitations. The first one is that execution of opaque behaviors and evalu-
ation of opaque expressions cannot be debugged because they are implemented
as C functions. It would become possible if we used UML activities to specify
their behaviors, which we might explore in the future. The second limitation is
that we do not support breakpoints for the moment. Hence, it is not possible to
stop the execution automatically when reaching a given state of a state machine.
This is the main feature that lacks in our interpreter for supporting this mode.

3.3 Execution

The execution mode is the main loop actually used on the deployed system. For
offline interactions, we add the possibility to generate execution traces and to
display them using messages sequence charts (MSC). MSC are a kind of diagram
that captures interactions between active objects of the system. It is similar to
a sequence diagram but enhanced with states of state machines, such that it is
possible to know the current state of each active object at any time. MSC give
an overview of a scenario and enable to visualize interactions between active
objects (i.e., exchange of events) and their state machine progression. In our
model interpreter, we have also added an optional feature to display attribute
values changes.

In practice, we instrumented the code of our interpreter with C macros that
are called each time an event is sent, a state machine updates its current state,
or an attribute has its value updated. At compile time, the user can choose the
MSC formalism to use for displaying the trace. This will replace C macros by
calls to appropriate functions in charge of displaying the trace. If no trace is
required, (e.g., on the deployed embedded system), these macros are replaced
by no instruction to have no impact on execution performance of the actual
system. At runtime, the trace will be printed either on the standard output
stream (e.g., a serial port of the embedded target) or directly in a text file when
running on a desktop computer. Afterwards, the trace can be loaded into a tool
in order to generate a graphical diagram that gives a better visualization of it.
In the current version of our model interpreter, we have chosen to display traces
using the PlantUMIE| formalism. Traces are then converted into diagrams using
the PlantUML tool. However, additional transformations towards different MSC
formalisms can be easily added to our tool. shows an example of MSC
diagrams obtained with our model interpreter. This example represents a trace
of a level crossing model example introduced in [2].

3 http://plantuml.com/
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Fig. 3. Message sequence chart of a level crossing model.

4 Discussion

Our approach based on a model interpreter tackles issues to link design and run-
time concepts. It thus should contribute to reduce time-to-market and increase
both quality and productivity.

The first advantage of our approach is that our model interpreter can be
deployed either on desktop computers or on embedded targets. Indeed, our pro-



totype is adapted to be deployed on bare-metal microcontrollers without inter-
mediate software layers like an operating system. This means that this model
interpreter can run on embedded microcontrollers with relatively small memory
size and relatively slow CPU. This possibility can be used to make simulation
or debugging at the model level directly on embedded targets. For instance, this
can be useful to detect some bugs linked to the hardware by making hardware
in the loop simulation. In most of the classical approaches, the design model
is specified and validated on desktop computers before being transformed into
executable code through code generation, and executed on microcontrollers. In
this case, the link between design and runtime is difficult to set up. With our
approach, this link is easier to establish thanks to the possible interactions be-
tween design and runtime that it offers, and because we use the same model
all along the development process. Indeed, our approach provides a continuum
from design to runtime by applying simulation, debugging, and trace generation
either on desktop computers or embedded microcontrollers.

The second point is that a single semantics implementation is used for exe-
cution and simulation. Indeed, the execution semantics used to interpret UML
models is implemented in our model interpreter. In most of the classical ap-
proaches, the code generation step is a transformation that creates a semantic
gap between design and runtime that may not ensure that simulation results
are still valid at runtime. With our model interpreter, there is no problem of
equivalence between the design model and the model used at runtime because
all activities (execution, simulation, and debugging) are made through the inter-
preter. Hence, only one implementation of the semantics is used. This contributes
to increase the development quality of the system.

The last key point deals with traces analysis as well as simulation and de-
bugging results. In our approach, the design model is directly used for execu-
tion through a model serialization into C programming language. Therefore, the
mapping between design and runtime concepts is straightforward. Simulation
and debugging techniques can be used to simulate the model directly in terms of
design concepts. This also facilitates execution traces analysis to inject feedbacks
in the design model and fix design faults. As a result, we expect that this will
increase productivity and reduce time-to-market.

5 Related Work

Others works have shown abilities to execute models and establish links between
design tools and runtime measures through various kinds of interactions.
Multiple implementations of f{UML [14] or PSSM [13] have been realized to
execute models conforming to these executable UML standards. Moka [1] and
Moliz [12] are two of these implementations that are able to support execution,
simulation, and debugging of UML models. GEMOC Studio [4,7] is another
tool that contains a modeling workbench to design models conforming to any
domain-specific languages. This tool has four different execution engines and sev-
eral add-ons can be used to perform simulation, debugging, and trace generation.



All these tools are well-integrated into modeling development environments. For
instance, Moka has an Eclipse-based user interface and can be used with the
Papyrus [11] editor to simulate UML models with graphical feedbacks over di-
agrams. The main drawback of all these tools is that they are not adapted to
execute models on embedded targets. Indeed, these tools use too much mem-
ory for being executed on a small microcontroller. The generic approach used to
build these tools also induces a lack of performance because they are not adapted
for embedded systems execution.

In comparison to these works, some approaches aim at executing models
on embedded targets with small memory footprints and good execution per-
formance. UML virtual machine (UVM) [15] defines a runtime environment to
execute bytecode in the binary UVM format generated from models and includes
extensions for fine grained concurrency and precise timing. In the same way, a
front-end, called GUML [6], has been defined for GCC to compile directly UML
models into optimized binary code. Both tools have similarities to our model
interpreter but they cannot be remotely controlled by diagnosis tools to analyze
model execution in terms of design concepts.

6 Conclusion

To bridge the gap between design and runtime, this paper has presented our
approach based on a UML model interpreter. This interpreter uses the same
model for design and runtime to offer a direct link between design and runtime
concepts. To take advantage of this link, we have put in place online and offline
interactions between design and runtime. Simulation and debugging activities
can be applied directly in terms of UML concepts. This eases the integration of
simulation feedbacks and the correction of bugs into the design model. To facil-
itate the visualization of model execution, our approach also relies on execution
traces generated at runtime to produce MSC diagrams with PlantUML. We ex-
pect that these improvements should help engineers to analyze model execution
and fix design faults in the design model. In fact, this should reduce time-to-
market and increase productivity because the model analysis will be easier.

Another significant key point of our approach is that this technique remains
valid for embedded systems. Indeed, the same model interpreter can be used
to execute models on bare-metal targets equipped with small embedded micro-
controllers. For simulation, the interpreter can be remotely controlled through a
communication protocol that is sufficient to get/set dynamic data of the runtime
model, and control model execution by firing state machine transitions. Hence,
the boundary between design and runtime virtually disappears and the transi-
tion from one to the other can be realized in a continuous way using multiple
activities (e.g., simulation, debugging, execution).

To reinforce the link between design and runtime, we are currently inves-
tigating other possibilities offered by our approach. Indeed, the protocol used
for simulation can also be reused to connect other diagnosis tools, such as a



model-checker. This should offer a new kind of online interactions to make the
verification of formal properties on models.

Acknowledgments This work is partially funded by Davidson Consulting. The
authors especially thank David Olivier for his advice and industrial feedback.

References

1.

2.

10.

11.

12.

13.

14.

15.

Papyrus: Moka overview, https://wiki.eclipse.org/Papyrus/UserGuide/
ModelExecution

Besnard, V., Brun, M., Dhaussy, P., Jouault, F., Olivier, D., Teodorov, C.: Towards
one Model Interpreter for Both Design and Deployment. In: Proceedings of EXE
2017. Austin, United States (Sep 2017)

Bousse, E., Corley, J., Combemale, B., Gray, J., Baudry, B.: Supporting Efficient
and Advanced Omniscient Debugging for xDSMLs. In: Proceedings of SLE 2015.
pp. 137-148. ACM, New York, NY, USA (2015)

Bousse, E., Degueule, T., Vojtisek, D., Mayerhofer, T., Deantoni, J., Combemale,
B.: Execution Framework of the GEMOC Studio (Tool Demo). In: Proceedings of
SLE 2016. pp. 84-89. ACM, New York, NY, USA (2016)

Bousse, E., Leroy, D., Combemale, B., Wimmer, M., Baudry, B.: Omniscient de-
bugging for executable DSLs. Journal of Systems and Software 137 (2017)

Charfi Smaoui, A., Mraidha, C., Boulet, P.: An Optimized Compilation of UML
State Machines. In: Proceedings of ISORC 2012. Shenzhen, China (Apr 2012)
Combemale, B., Deantoni, J., Barais, O., Blouin, A., Bousse, E., Brun, C.,
Degueule, T., Vojtisek, D.: A Solution to the TTC’15 Model Execution Case Using
the GEMOC Studio. In: 8th Transformation Tool Contest. CEUR, Italy (2015)
Corley, J., Eddy, B.P., Gray, J.: Towards Efficient and Scalabale Omniscient De-
bugging for Model Transformations. In: Proceedings of the 14th Workshop on
Domain-Specific Modeling. pp. 13-18. DSM ’14, ACM, New York, NY, USA (2014)
Jouault, F., Delatour, J.: Towards Fixing Sketchy UML Models by Leveraging Tex-
tual Notations: Application to Real-Time Embedded Systems. In: Brucker, A.D.,
Dania, C., Georg, G., Gogolla, M. (eds.) OCL 2014. OCL and Textual Modeling;:
Applications and Case Studies, vol. 1285, pp. 73-82. Valencia, Spain (2014)
Jouault, F., Teodorov, C., Delatour, J., Le Roux, L., Dhaussy, P.: Transformation
de modéles UML vers Fiacre, via les langages intermédiaires tUML et ABCD.
Génie logiciel 109 (Jun 2014)

Lanusse, A., Tanguy, Y., Espinoza, H., Mraidha, C., Gerard, S., Tessier, P.,
Schnekenburger, R., Dubois, H., Terrier, F.: Papyrus UML: an open source toolset
for MDA. In: Proceedings of ECMDA-FA 2009. pp. 1-4 (2009)

Mayerhofer, T., Langer, P.: Moliz: A Model Execution Framework for UML Models.
In: Proceedings of the 2nd International Master Class on Model-Driven Engineer-
ing: Modeling Wizards. MW ’12, ACM, New York, NY, USA (2012)

OMG: Precise Semantics of UML State Machines (Feb 2017), https://www.omg.
org/spec/PSSM/1.0/Betal/PDF

OMG: Semantics of a Foundational Subset for Executable UML Models (Oct 2017),
https://www.omg.org/spec/FUML/1.3/PDF

Schattkowsky, T., Engels, G., Forster, A.: A Model-Based Approach for Platform-
Independent Binary Components with Precise Timing and Fine-Grained Concur-
rency. In: Proceedings of HICSS 2007. IEEE Computer Society, USA (2007)


https://wiki.eclipse.org/Papyrus/UserGuide/ModelExecution
https://wiki.eclipse.org/Papyrus/UserGuide/ModelExecution
https://www.omg.org/spec/PSSM/1.0/Beta1/PDF
https://www.omg.org/spec/PSSM/1.0/Beta1/PDF
https://www.omg.org/spec/FUML/1.3/PDF

	

