

1



Abstract—Despite the high-level of automation offered by

model-checking techniques for proving that a system satisfies its

specification, if one property is violated the designer is left with a

counterexample trace to understand. In this paper, we overview

ten families of techniques used to diagnose a system behavior

relying on traces. However, whereas these techniques are highly

effective and are largely used, they are either not yet available in

the context of model-checking or they are not adapted to the

particularities of this verification technique. To address this, we

have identified three very challenging problems hindering the

concurrent systems diagnosis process. This helped us to define a

roadmap for future research directions in our team.

Index Terms — execution trace, model-checking, diagnosis,

verification.

I. INTRODUCTION

As its name suggests, model-checking combines modeling

and checking. A system-under-study (SUS) is represented

through a formal model, for instance concurrent state-

machines, and this model is used to exhaustively explore the

SUS possible configurations. Then properties to be satisfied

by the SUS have to be specified, and weaved with the SUS

model. The weaving results in a Labeled Transition System

(LTS) whose exploration permits to assert if a property is

satisfied or not. If the property is violated the model-checker

produces a counter-example trace.

The main advantage of this method is that it is completely

automated. However, once the existence of a problem is

proved, the designer is left with a counterexample trace that

only exhibits the problem. From this point, the designer needs

to find and apply the right corrective measures. Conceptually

the path from the counterexample to the correction is

straightforward: understand what caused the behavior

exhibited by the counterexample and fix it. However, in reality

a large number of factors render this “simple” task very

challenging. Two of the most challenging, and easy to

understand, factors amongst these are: a) the size of the

counterexample (from a few execution steps to millions or

even more) that quickly can exceed the human capacity of

analysis; and b) the semantic gap between the formalisms used

to express the system and the low-level counterexample trace.

Manuscript received December 8, 2014.

Vincent Ribaud is with Lab-STICC at Université de Bretagne Occidentale

(corresponding author ; e-mail: ribaud@ univ-brest.fr).

Ciprian Teodorov, Zoé Drey, Luka Le Roux and Philippe Dhaussy are with

Lab-STICC at ENSTA Bretagne (e-mail: firstname.lastname@ensta-

bretagne.fr).

The field of trace-based diagnosis (Section II), provides a

rich state-of-the art integrating a wide variety of concepts from

many domains ranging from data processing, software

engineering and verification to distributed systems and

visualization.

In this study, we review ten families of techniques (Section

III), which have been grouped in three clusters. The first one is

focused on techniques striving to reach an explanation – find

the cause. The second cluster regroups knowledge-based

techniques aiming to ease the system understanding. And

lastly, the third cluster overview hands-on techniques used for

observing and manipulating the SUS. Whereas not exhaustive,

the set of techniques presented here are covering techniques

highly effective and largely used in industrial projects.

In the model-checking context, however, these techniques

are either not available due to engineering constraints, or they

do not adapt well to the constraints of this verification

technique. Moreover, in some cases even the techniques that

are currently integrated in model-checking toolkits do not

always provide enough information (at the right abstraction

level) to enable the developer to easily identify and understand

the causes of failures.

In Section IV, we have overviewed three major challenges

hindering the diagnostic process, which pose the basis for

future research directions in this field. These challenges are:

1. The semantic gap, refers to the discrepancy

between the formalisms used during the model-

checking verification process.

2. Multi-level trace interpretation refers to the level

of detail at which the traces are built and the

perspective from which they are analyzed. In this

case we note mainly the lack of tools adapted at

crossing the boundaries.

3. Inconsistency robustness refers to the scalability of

trace diagnosis in the context of present and future

massively parallel computing systems, which

might need radically new diagnosis approaches.

II. DIAGNOSIS FOR TRANSITION SYSTEM

Generally, the diagnosis encompasses any activity that

provides information about the SUS, including analysis,

observation, proofs, testing, etc. We agree with the Merriam-

Webster on-line dictionary that defines diagnosis as an

“investigation or analysis of the cause or nature of a condition,

situation, or problem.” (http://www.merriam-webster.com).

For the purpose of this study, we use a narrower vision of

Techniques and Challenges for Trace Processing

from a Model-Checking Perspective

Vincent Ribaud, Ciprian Teodorov, Zoé Drey, Luka Le Roux and Philippe Dhaussy

2

diagnosis, in which symptoms are materialized by traces and

processing traces leads to causes. Nevertheless, the techniques

presented often transcend this narrow view addressing the

diagnosis problem generally.

In this context we consider that the existence of the trace set

is the starting point of the diagnosis, and we do not focus our

attention on the techniques employed to produce such a set.

Suffice to say that the set of traces can be either implicitly

(executable system) or explicitly (counterexample) defined

and that we have the possibility to add/remove elements

to/from the set iteratively. However, the illustrative traces

presented are mostly issued from reachability analysis and

model-checking.

A. The Problem Space: Traces and Errors

Transition systems are used as models to describe the

behavior of systems. They are basically directed graphs where

nodes represent states, and edges model transitions, i.e., state

changes. They are the basis of many program analysis

techniques, and in particular of model checking: "Model

checking is an automated technique that, given a finite-state

model of a system and a formal property, systematically

checks whether this property holds for (a given state in) that

model [1]." A property is formal if it is described in a precise

and unambiguous manner, using a property specification

language.

When a property is falsified, it can be due to different

causes. There may be a modeling error, meaning that the

model does not reflect the system. If diagnosis reveals no

inconsistencies between the system and its model, there may

be a design error or a property error. In the case of a design

error, an execution trace will be presented as a

counterexample showing that the property is falsified and the

model has to be improved. It may be the case that upon

studying the trace, the formal property does not reflect the

informal requirement from which it stems and the property has

to be improved. In all cases, all properties have to be re-

checked for the model.

Several approaches exist to address the problem above and

this paper is a non-exhaustive attempt to present popular

techniques and their application for diagnosis using model-

checking traces.

B. The Solution Space: Trace-Based Diagnosis Techniques

The solution space consists of any technique that addresses the

diagnosis problem. We have identified a broad range of

techniques that we have classified in 10 families as follows:

a) Counterexample Processing: groups the techniques

that attempt SUS diagnosis through the use of

negative witness traces (traces exhibiting some

unwanted behavior).

b) Trace Analysis: groups the techniques that rely on the

analysis of a set of traces, including specialized query

languages.

c) Data-mining: focuses on trace analysis techniques

that attempt to automatically uncover and classify

hidden structures (patterns) present in large execution

traces.

d) Pattern Analysis: groups the techniques focusing on

the identification of previously specified conditions

(patterns).

e) Model-based Trace Diagnosis: focuses on high-level

trace reification and their interpretation through the

use of model-based engineering tools and formalisms

(e.g. UML).

f) Ontology-driven Diagnosis: groups research

activities related to knowledge classification and

retrieval in the context of system diagnosis.

g) Model Transformation: groups the techniques using

rule-based transformations (e.g. rewriting) in the

diagnosis process. Whereas not directly related to the

diagnostic problem, these techniques play a central

role in many diagnosis activities.

h) Testing: groups the techniques that rely on the

supervised, scenario-directed system-execution for

unraveling unwanted behaviors.

i) Debugging: groups the family of techniques that

focus on an interactive diagnosis process, offering the

diagnostician the tools to observe, control and modify

the behavior of the system.

j) Visualization: groups all techniques enabling the

visual representation of the artifacts the diagnostician

encounters, from traces to highly specific diagnosis

reports.

These techniques arose as answers to problems and if

obviously some techniques address related problems, we did

not succeed to organize techniques within a classification.

However, rather than presenting the list techniques in

alphabetic order, they are clustered accordingly a proximity of

usages. The first cluster groups techniques that aim to reach

an explanation, relying on the principle that, in order to

explain something (like an error), one has to identify its cause.

This cluster includes counterexamples processing, and trace

analysis. But we might look for explanations that help to better

understand the SUS and this will be a second cluster, which

contains knowledge-based techniques, such as data-mining,

pattern analysis, model-based diagnosis, and ontology-driven

diagnosis. Finally, the third cluster contains techniques related

to the observation and manipulation of the SUS and it

includes: model transformation, testing, debugging, and

visualization.

Besides these clusters and families of techniques, we

acknowledge the existence of many more other techniques that

were deliberately left out of this study. Such techniques

include: automated diagnosis, an important topic in the

artificial intelligence field, and fault diagnosis, a major

concern in modern control theory and practice.

 The following section briefly overviews a number of

research results related to techniques considered.

III. A HIGGLEDY-PIGGLEDY SET OF TECHNIQUES

A. Counterexamples

A major advantage of model-checking is the production of

3

counterexamples as a proof that the system violates the

specification. Counterexamples are represented as witness

traces that describe the system behavior "responsible" for the

property violation.

A counterexample trace provides a bunch of low-level

information and indicates the symptom of an error in the SUS

(or a problem with the specification of the SUS). Different

approaches exist for relating the symptom to a possible cause

and most approaches share the idea of finding variations of the

counterexample either with the symptom reproduced or

without the problem.

Groce and Wisser [2] use an automated method for finding

multiple versions of an error (negatives) and similar

executions that do not produce an error (positives). The

negatives and positives are analyzed together to produce a

succinct description of the error elements, including portions

of source-code that distinguish failing and successful

executions.

Ball, Naik and Rajamani [3] use the model checker as a

subroutine to localize the error cause in an error-trace,

stemming from correct traces; and generate multiple error

traces having independent causes; and implemented this error

analysis technique in the SLAM tool.

Sharygina and Peled [4] propose the notion of the

neighborhood of a counterexample, consisting of a tree of

execution paths, where the original error-trace is one of them;

and suggest that an exploration of this region may be useful in

understanding an error. In this case, while a testing tool aids

the exploration, it does not offer automatic analysis.

Jin, Ravi and Somenzi [5] produce an enhanced error trace

as an alternation of fated (forced) and free segments. The fated

segments show unavoidable progress toward the error while

the free segments show choices that, if avoided, may have

prevented the error. Segmentation raises the questions of

whether the fated segment should indeed be inevitable and

whether the free segments are critical in causing the error.

B. Trace Analysis

Trace-based analysis is the analysis of programs based on

their trace, that is, their execution history. History is the

sequence of states (e.g., the value of the program's memory) in

which a program is at each step of its execution, until it stops

(hence the trace may be infinite). The idea of trace-based

analysis originates from Cousot and Cousot who defined its

theoretical foundations [6]. Later, Colby and Lee defined a

framework named "trace-based analysis" as an alternative to

the traditional "state-based" analysis [7]. Contributions of their

approach are to provide a direct way to prove program

equivalences and to enable compositional analysis of

programs. Trace-based analysis is at the core of the model-

checkers that use trace equivalence to verify properties [1].

Groce et al. also exploit traces of log information (variable

values, strings denoting a program point) to increase the

scalability of program analysis [8].

Whereas counterexample-processing works on a single or a

few traces, trace analysis aims to gather, compare and analyze

a large set of traces.

Querying traces can be applied in any domain where

execution traces can be recorded. There are two types of

query-based debugging, those that operates a posteriori on

traces and those where the query is weaved with the source

program and parameterize the trace recording.

Martin, Livshits, and Lam [9] propose PQL (Program

Query Language), a language intended to query sequences of

events associated with a set of related objects. They developed

both static and dynamic techniques to find solutions to PQL

queries. The static analyzer finds all potential matches

conservatively using a context-sensitive, flow-insensitive,

inclusion-based pointer alias analysis. Static results are also

used to reduce the scope of dynamic analysis. The dynamic

analyzer instruments the source program to catch all violations

precisely as the program runs and to optionally perform user-

specified actions.

Goldsmith, O'Callahan, and Aiken [10] propose Program

Trace Query Language (PTQL), a language based on

relational queries over program traces. Produced traces result

from an automatically instrumentation by a tool PARTIQLE

that monitor particular properties. Given a PTQL query and a

Java program, PARTIQLE instruments the program to execute

the query on-line.

Classical property specification languages, such as PSL[11],

can also be considered in this family. In this case the

verification tools using these languages can be seen as the

query execution runtime, and the witnesses produced would be

considered the query result.

C. Data-mining

Data mining strives to uncover recurring patterns or hidden

structures through automated analysis of data samples. In the

context of model-checking industrial problems, often the

diagnostician is confronted with sheer amount of data (long

counter-examples, huge LTS graphs), which by far exceeds

the human capacity of analysis. In these cases, efficient data-

mining can improves the analysis limits, as well as the

accuracy of the results.

Approaches such as statistical debugging heavily rely on

data mining mainly for fault localization. In such approaches

the model in instrumented to produce statistical execution

profiles, these are mined to pinpoint the location of suspicious

code [12]. Parsa, Naree and Koopaei [13] present an approach

that combines multiple execution traces into an execution

graph, similar to the LTS, which is analyzed for detecting bug-

relevant sub-graphs. The novelty of the approach resides in the

use of weighted execution graphs integrating failing and

passing executions, which enable finer analysis.

Many such approaches are present in the literature, relying

on a wide variety of data mining techniques, like formal

concept analysis, association rules, n-gram analysis, etc.

These techniques are largely used for software debugging

and test and they can be coupled with model-checking

verification approaches. However, in such a coupling the

potential complementarity of the approaches is ignored,

mainly the data-mining tools won’t benefit from the huge

amount of information produced during a model-checking run.

4

Ge, Mantel and Crégut address this gap [14] for Time Petri net

model-checking through a ranking algorithm inspired by a

divergence metric from information theory and a numerical

statistics algorithm computing an importance factor for the

model transitions.

Moreover, while model-checking provides an automated

solution for model verification its biggest limitations is known

as state-space explosion [15] due to the exponential increase in

number of states with respect to the number of interacting

components. Whereas the focus of this paper is not on this

problem, it is important to understand that due to this

exponential increase in complexity any diagnosis tool used in

the context of model-checking has to scale to huge amounts of

data and ideally offer the user “big-data”-like functionalities,

as introduces by Fan and Bifet [16].

D. Pattern Analysis

Pattern analysis groups a broad fan of pattern-based

approaches. In the model-checking community, property

pattern refers immediately to the work pioneered by Dwyer,

Avrunin and Corbett [17] who proposed a pattern repository
1

and a pattern-based approach to the presentation, codification

and reuse of property specifications for finite-state

verification. Many researchers deepened this work. For

instance, Smith, Avrunin, Clarke and Osterweil [18]

developed PROPEL, intended to make the job of writing and

understanding properties easier by providing templates that are

represented using both "disciplined" natural language and

finite state automata. Konrad and Cheng [19] extended Dwyer

and al. work to real-time specification patterns expressed in

terms of three commonly used real-time temporal logics, and a

structured English grammar that includes support for real-time

properties.

Another family of patterns stem from the work of Gamma,

Helm, Johnson and Vlissides [20] (software design-patterns).

In the distributed and real-time research community, analysis

patterns, architectural patterns, design patterns have been

extensively proposed. Pattern usage is shifted at a higher use

during the analysis and design phases to guide developers in

creating conceptual models of embedded systems, e.g., by

providing structural and behavioral templates. Konrad, Cheng

and Campbell [21] research explores how object-oriented

modeling notations can be used to represent structural and

behavioral information as part of commonly occurring object

analysis patterns. This research also investigates how UML-

based conceptual models of embedded systems can be

automatically analyzed using the Spin model checker for

adherence to properties specified in linear temporal logic. It

has been stated that research on design patterns, domain-

specific languages, and product-line architectures are

particularly relevant to, and complementary with the Model-

Driven Engineering field [22].

Model-checking of programs is a hot-topic in formal

methods community. Static program analysis [23] is an entire

discipline, but an alternative is runtime analysis, which is

1 http://patterns.projects.cis.ksu.edu/

based on the idea of concluding properties of a program from

program traces.

 Examples are Java PathFinder 1 (JPF1) [24], an attempt to

bridge the gap between Java and the PROMELA language of

SPIN [25] or Java PathFinder (JPF2) [26] which model checks

the java bytecode directly. Havelund [27] explains that

runtime analysis is based on the idea of executing the program

once, and observing the generated run to extract various kinds

of information. This information can then be used to predict

whether other different runs may violate some properties of

interest, in addition to demonstrating whether the generated

run violates such properties. Dynamic analysis algorithms

detect the violated property based on the idea of recognizing

the pattern related to the type of problem, e.g. a locking

pattern for a deadlock detection property or a race pattern for a

data race detection (a data race is the simultaneous access to

an unprotected variable by several threads).

E. Model-based Diagnosis

Model-based traces are defined as trace behavioral models

of a system during its execution. According to [28], "an

important feature of model-based traces is that they provide

enough information to reason about the executions of the

system and to reconstruct and replay an execution

(symbolically or concretely), exactly at the abstraction level

defined by its models." Hence, model-based trace analysis

offers dynamic analysis features related to the investigation of

the relationships between the execution traces of a system and

its models, measuring how various model features materialize

in a system run, and finding the differences between two or

more system runs. Major challenges are the complexity and

length of the models and execution traces and visualization

attempt to address these challenges by creating a scalable and

visually appealing solution [29]. This latter point is

overviewed in section Visualization.

Maoz and Harel [29] propose an approach based on two

inputs: a scenario-based behavioral model, described using

live sequence charts [30] - an extension of classical message

sequence charts (MSC), and an execution trace of the system.

The approach implemented in a prototype called Tracer allows

one to visualize, zoom in/out, and explore, the progress of the

scenarios during execution. Advanced visualization features

are provided, including multiple instances of the same

diagram, time-based and event-normalized tracing, various

synchronous statistics.

Mellor and Balcer [31] designed Executable UML to

produce a comprehensive model of a system independent of its

implementation. They define three fundamental projections on

the specification. The first model uses a UML class diagram.

The second model represents how the objects may have

lifecycles (behaviors over time) that are abstracted as state

machines, using a UML statechart diagrams. Each state

machine has a set of procedures, and the third model expresses

the fact that the behavior of the system is driven by objects

responding to events with the execution of a procedure, thus

establishing the new state. These executable UML models can

be executed to ensure that they produce the desired behavior.

Although static verification can be applied, dynamic

5

verification is performed through the process of running actual

test cases against the models, just as we would write and run

software tests.

Mayerhofer, Langer and Kappel [32] introduce extensions

of the standardized fUML virtual machine in terms of a

dedicated trace-model, an event-model, and a command API.

fUml is an OMG standard defining the operational semantics

of a subset of UML and the conforming virtual machine.

Extensions enable runtime analysis and runtime adaptations of

executable models.

F. Ontology-driven Diagnosis

To be useful, the information used for diagnosis must be

divided into classes of data. Each data object within a class

shares a set of properties chosen to enhance human ability to

relate one piece of data with another. Unfortunately, the terms

property and class are used in computer science with very

different meaning, and we need to precise what do they mean

from an ontological point of view. Guarino and Welty [33]

point out that we shall consider ontological properties as the

meanings (or intensions) of expressions, which corresponds to

unary predicates in first-order logic. "Given a possible world,

we can associate with each property a class (its extension),

which is the set of entities that exhibit that property in that

particular world. The members of this class will be called

instances of the property. Classes are therefore sets of entities

that share a property in common; they are the extensional

counterpart of properties. [33]" Hence, ontologists do not

focus on building single or multiple inheritance hierarchies: a

property can apply to more than one class and may apply to

classes that are not directly related by an inheritance path.

Once these differences stated, how do ontologies assist

trace-based diagnosis? Failing or successful traces are

witnesses of a system execution and are analogous to

symptoms in medical diagnosis. The classification of diseases

and the tests used for its diagnosis are central to medical

practice and medical science pioneered the use of ontologies

in general and especially for diagnosis purposes. The

Systematized Nomenclature of Medicine – Clinical Terms

(SNOMED CT) is a terminological resource designed to

support electronic applications in health and medicine

(http://www.ihtsdo.org/snomed-ct). Campbell [34] provided

the basic evolutionary design principles upon which

SNOMED development is still based. Spackman and Renoso

[35] state that, as SNOMED development has continued, these

broad principles have been operationalized using three

fundamental criteria, abbreviated as URU for

understandability, reproducibility, and usefulness.

Understandability makes reference to whether a concept or

feature can be fully and unambiguously comprehended by

users of the terminology. Understandability is tested by

checking to see whether users find that the concept is relevant

or not relevant to a given patient or situation. This leads to the

need for Reproducibility that indicates whether multiple users

apply the concept to the same situations. Usefulness refers to

the level of helpfulness and appropriateness conveyed in a

concept or feature.

Applying these criteria will help to avoid the major pitfall

of ontology-based diagnosis: each group of researchers defines

its own set of diagnosis concepts and properties, arguing the

specificities of its method and tool. Hence an effort has to be

made to join ontological design efforts and to promote

international adoption and use of diagnosis ontologies for

model execution.

A major technical difficulty of ontological diagnosis is that

we want diagnose software models with multiple levels of

abstraction. Moreover, depending on the point of view, we

may reason about classes or individuals (e.g. an assumption

about all processes or a particular process). According to [36],

ontological metamodeling is used to model a complex domain

model where the distinction between classes and individuals is

not clear-cut. Jekjantuk, Pan and Qu [36] have applied three

different ontology metamodeling approaches to addressing

requirements that demand modeling of a complex domain

model at multiple levels of abstraction and concluded for an

extended class-based approach that provide more configurable

support for ontological metamodeling.

G. Model Transformation

 Model transformation is the mechanical manipulation of a

model, which by changing the model shape is expected to

enable achieving a prescribed goal (be it analysis, reduction,

compilation). Model transformation encompasses a broad

spectrum of techniques based on the idea of using simple

guard/action rules, with the understanding that the action-

block of a rule is executed when the guard-block evaluates to

true on a model segment. For a deeper understanding of model

transformation, which is out of scope in our context, the reader

is directed to a survey of rule-based transformations [37] and a

feature-based presentation [38] of the domain.

 Model transformation should be seen as a transversal tool

that is used ubiquitously in the context of diagnosis. Model

transformation can be used for model formulation, trace

simplification, reformulation and ultimately understanding.

There is a large body of literature addressing the problem of

transforming high-level formalisms toward specialized

verification and analysis frameworks; for instance, Jouault and

al. [39] introduce such an approach for transforming a subset

of UML to the Fiacre formal language to enable model-

checking.

 For trace simplification, Kengne et al. [40] use a rewriting

based approach to reduce the traces obtained from the

execution of multimedia application. In this context trace

reduction is essential due to the large amount of data produced

by such application.

 In Lieverse, Wolf and Deprettere [41], the authors consider

the problem of mapping high-level application to computing

architecture resources using trace transformation. Their

approach consist of an expansion step during which an

application trace is refined to a lower abstraction level

matching the architectural primitives and a linearization step

during which an execution path is selected among the ones

available. Whereas this approach is not directly linked to

diagnosis, it is interesting to note that during the expansion

step the authors actually perform an embedding of the

application semantics into the lower level (more detailed)

6

architecture semantics. This embedding step (sometimes

referred as compilation) possesses a large number of issues in

terms of diagnosis due to the potential semantic gap between

the application and architecture. This problem can be

formulated as: “how can we preserve the link between the

application-level and the architecture-level traces so that, if a

problem is detected at runtime, a witness trace can be

produced and presented using the application semantics”.

Simply put, a C application designer wants to reason about his

model using the C semantics and not the processor semantics

provided by the execution platform.

 The use of model transformation, more specifically

rewriting, for runtime system verification is another important

use case. Rosu and Havelund [42] present a rewriting-based

approach for evaluating temporal logic formulae on finite

execution traces online at runtime.

H. Testing

 Testing is probably the most known technique for detecting

problems during system execution. The underlying principle is

simple: “check the validity of a property during the execution

of the system in a predefined scenario”. However, testing in

general is a highly challenging task, mainly due to the

complexity of scenario specification. To address this problem,

a family of techniques, named “directed model-checking”

[43], try to exploit model-checking algorithms, not in the

traditional exhaustive fashion, but in a goal directed way

relying of different directed search strategies.

 Another popular technique is bounded-model checking [44],

which rely on traditional model-checking algorithms but

again, much like for directed-model checking, the state-space

search is not exhaustive but bounded by a predefined

exploration depth.

 Context-aware Verification [45] is another technique that

tries to close the system under test with a formally defined

environment covering all environmental possibilities. Whereas

this technique is geared towards exhaustive state-space

exploration, the use of a dedicated formalism for environment

specification makes it well adapted for testing if either the

environment cannot be completely captured or if the

exhaustive exploration fails due to the state-space explosion

problem [15].

Lindstrom, Petterson and Offutt [46] introduce a criteria-

driven test-set generation. This approach enables the

generation of an exhaustive test harness through the use of a

criterion-guided reachability strategy.

Whereas the previous testing techniques rely on the implicit

traces induced by the model semantics for analysis,

approaches, such as Counterexample-Guided Abstraction

Refinement [47], use testing as an internal routine for

verifying the accuracy of the abstraction used during the

analysis. In the case of the counterexample-guided abstraction

refinement the system undergoes a series of abstraction,

model-checking, test cycles through which safety and liveness

properties can be verified.

I. Debugging

Debugging is the process of finding and resolving the

program defects that cause unwanted behaviors (crashes,

erroneous results). Debugging techniques can be classified

into two broad classes, interactive (the "standard" ones as

found in IDEs like Eclipse) and automated [48, 49].

Rather than providing means for exhaustive analysis,

interactive debugging provides the tools for observing,

controlling, understanding and altering the system execution.

Due to the wide variety of programming paradigms

addressed, and the way execution traces are handled

debugging techniques vary enormously. Stack-based

debuggers are probably the best known and are well adapted

for sequential stack-based computation. In concurrent and

distributed contexts the debuggers rely mostly on logical time

abstractions [50] and make a heavy use of checkpoints (also

known as distributed snapshots [51]) for building a view of the

system. By storing the execution traces some debugging

techniques enable back-in-time navigation features, post-

mortem query processing, trace-analysis and reduction

facilities, and execution replay [52, 53].

 Goldszmidt, Yemini, and Katz [54] introduce an integrated

system for distributed programs. This approach relies on the

database recording of global (system-wide) and local (process-

only) events, which can then be queried using a temporal

assertion mechanism.

To address the language gap between the system and the query

language, Lencevicius, Hölzle, and Singh [55] propose a

query-based debugger where query expressions are

expressions in the underlying programming language, this way

the diagnostician can focus its attention on the problem at

hand, and not loose focus by using two different formalisms.

Moreover, in the context of this study, it is interesting to note

that most interactive debuggers keep traceability links (e.g.

source-code line embedded in the DWARF debugging format

[56]) between the system formalism concepts and the

execution platform counter-parts. These links help to bridge

the semantic gap between the different paradigms.

J. Trace Visualization

The analysis of large model execution is almost impossible

without tool support; visualization tools exploit the human

ability to quickly understand complex visual patterns. A large

number of visualization tools exist for studying execution

traces, they exploit a wide range of diagram structures ranging

from waveforms (Figure 1) to large graph visualizations

(Figure 6). Most of these visualization tools are focused at the

visualization of single execution traces, and are tightly

integrated in the development environment [57].

Fig. 1. Waveform visualization emphasizing a cyclic execution

A

B

C

7

 The Figure 1, Figure 2 and Figure 3 show three different

interpretation of a cyclic trace (a typical counter-example trace

for a liveness property), Figure 1 uses a traditional waveform

diagram to represent the evolution of 3 Boolean variables (A,

B, C). Figure 2 represents the trace as a graph (drawn with a

classical hierarchical layout algorithm), while Figure 3 revisits

the waveform representation explicitly showing the cyclic part

between square brackets. Figure 4 places the previous trace in

context, emphasizing its corresponding transitions in a graph

visualization of the LTS representing the set of possible

executions.

 A very interesting visualization strategy was recently

proposed by Issacs et al. [58], which suggest using a logical

time abstraction for visualizing the causality relations in

parallel application. Their approach equally promise scalable

visualization, through the time discretization resulting from an

event-based time interpretation, which induces a clustering of

the local behaviors.

 However, in the context of model-checking most of the

tools focus on counter-example visualization through

sequence diagram-like interpretations (Figure 5), and rely on

generic graph frameworks such as graphviz for the

visualization of small state-spaces. However, for industrial

systems, producing execution traces and LTSs with millions or

billions of nodes most of these tools do not scale, or produce

diagrams that are impossible to understand. Figure 6 shows,

for example, the visualization of a small part of the state-space

of a large system from the avionics domain. When

corroborating this visualization with the model details the

designer can identify the two clusters of states as being two

execution modes of the system. In such cases it will be

interesting to have a state-space exploration toolkit enabling:

the navigation through such a graph, the inspection each state

individually, the superposition of one of more execution or

counter-example traces (like in Figure 5), the clustering of

such a state-space according to user defined criteria, etc.

IV. OPEN ISSUES IN TRACE-BASED DIAGNOSIS

The techniques presented in the last section provide the

diagnostician with a broad set of powerful tools for

understanding the behavior of the SUS. However, in some

cases, such as model-checking, these techniques are either not

available due to engineering constraints, or they do not adapt

well to the constraints of this verification technique.

Moreover, in some cases even the techniques that are currently

integrated in model-checking toolkits do not always provide

enough flexibility to enable the developer to easily identify

and understand the causes of failures.

The remaining part of this section overview three important

challenges that, from our perspective, should be addressed in

order to ease the diagnosis process of concurrent systems.

A. Problem 1: The Semantic Gap

 One of the main problems in the context of trace-based

diagnosis is the semantic gap between the formalisms used to

specify the model, the properties, the environment and the

underlying transition system used for reasoning together with

its conforming traces. While sometimes the model and its

environment are expressed in a similar or an identical

formalism, the properties are most of the time specified using

temporal logics. There are some approaches trying to bridge

the gap between the model and the properties by using

automaton-based property specification languages (e.g.

observers [45], temporal logic of action [59]) – at least for

safety properties – or higher-level property pattern languages

[17]. However, most of the time these approaches consider

models expressed in model-checkers languages (such as

Fiacre, TLA, Promela) well adapted for reasoning, but

cumbersome and difficult to use in an industrial context. The

emergence of Domain-Specific Languages (DSL) and Model-

driven approaches gave rise to a plethora of literature on

model-transformations targeting the generation of formal

models from diverse modeling formalisms. Most of these

work focus on the model-verification problem and, fail to

offer the model designer the diagnostic toolbox really needed.

Fig. 2. Graph interpretation of a cyclic trace.

Fig. 3. Waveform visualization emphasizing a cyclic execution.

A

B

C

Fig. 4. State-space visualization emphasizing an execution cycle.

Fig. 5. State-space visualization emphasizing an execution cycle.

Fig. 6. Large state-space visualization, emphazing 2 operating modes.

8

To better understand this problem, let us consider the case of a

system specified with the statecharts formalism [60] using a

tool like OBP
2
 (any other tool like Tina or Spin will provide

comparable features). Suppose for now that the system is

modeled in the OBP modeling language (Fiacre). The OBP

tool provides the user with features able to simulate,

exhaustively execute the model, and verify a number of

properties expressed either as predicates or observer automata.

We could assume that in such an environment that she would

be able to perform a number of diagnosis. However, there are

still some important issues with the diagnosis environment:

 The system is specified with the statecharts

formalism, and converted automatically to Fiacre.

The designer should understand the details of this

transformation in order to effectively use the tools

and understand the result provided;

 Either the properties are described in a formalism

very close to the specification (statecharts-like), in

which case there is another transformation toward the

predicates, and observers used by the toolkit; or the

properties are described directly using predicates and

observers in which case they are expressed with

respect to the Fiacre code automatically generated.

 If a given property fails, the counter-example

presented to the used is a path in the LTS, which

however refers to the Fiacre model and not the

expected statecharts model.

Therefore we can see that the heart of the problem is not the

availability of diagnosis tools but the semantic gap between

the modeling languages used by these tools, which are highly

constrained (to ensure decidability – in the context of model-

checking for example) and the domain-specific modeling

languages used to specify the system.

Looking back to the techniques presented above, the semantic

gap issue is addressed by several techniques as stated by

research work surveyed in this paper: pattern analysis [18],

[19], [21], [24], [26], model-based diagnosis [29], [31], [32],

model-transformation [41], [42].

B. Problem 2: Multiple-level Trace Interpretation

 The technological shift towards highly parallel computing

architectures (multi-core, GPU, etc.) poses a large number of

challenges to software development. Amongst these,

traditional mature software diagnostic techniques focused on

sequential stack-based execution cannot be applied in the

context of highly concurrent applications, which exhibit

emergent behavior due to the non-deterministic interleaving of

execution threads. Whereas this issue is not new, being studied

in the context of distributed system, it is important to note the

paradigm shift needed when studying such systems. In this

context the diagnostician steers its attention from the analysis

of the execution stack to the analysis of execution traces. The

execution traces record the history of the computation through

a checkpoint mechanism, storing the state of each thread at

given points during the execution. Amongst the tools focusing

on the study of concurrent models, model-checking offers the

possibility to analyze all the possible execution paths of the

2 Available on http://www.obpcdl.org

system to verify that a given system satisfy a predefined

property.

In the context of highly concurrent applications, the use of

execution traces for analysis solves the problem of capturing a

global view of the emergent behavior system. While powerful,

and well studied, this approach changes the sequential view of

model execution towards the more natural view of

concurrently-evolving computational objects, in which case

the local-state evolution is abstracted away through atomic

execution steps. While these atomic execution steps

conceptually can be arbitrarily small, in the context of

analyzing large systems the atomic steps tend to be as large as

possible to remove the fine-grained interleavings (between

functional components) to gain focus on the concurrent access

to shared resources. Whereas such approaches render the

analysis of large systems manageable, they also hide atomic

sequential execution steps. These abstraction practices are

largely employed especially in the case of asynchronously

interacting components (which exhibit a large amount of

interleavings). The diagnosis, in these cases, is limited at

analyzing the trace configurations, without having a fine grain

view of the functional steps. In terms of tool support, in some

cases, such as SPIN [25], it is possible to use software

debuggers to gain observability during the atomic execution

steps. However, in this case, the debugger (gdb in occurrence)

operates at an even lower level of abstraction (C language)

than the verification language (Promela). In this case the

diagnosis becomes almost impracticable, especially if a

generational approach was used (as discussed in the previous

section) to create the Promela verification model (there is a

double semantic gap: DSL-Promela-C). It is worth mentioning

however, that in this case part of the problem comes from the

engineering complexity needed for developing an execution

environment and debugging infrastructure, effort that was not

invested in a research tools such as SPIN [25]. Nevertheless,

debugging in the context of concurrent, parallel and/or

distributed models is recognized as a very challenging

problem, posing problems not only in terms of observation

and witness generation (large traces) but also in terms of

control during a supervised execution (what happens to the

system while one process is stopped during debug?).

Obviously, the multiple-level trace interpretation issue is

addressed by several techniques as shown by research work

presented in this paper: counterexamples [3], trace analysis

[7], [8], debugging [50], [51], [54], visualization [57], [58].

C. Problem 3: Inconsistency Robustness

 The technological advances during the last decades made

the parallel computing architectures ubiquitous today. This

progress pushes for highly parallel computing paradigms

composing millions if not billions of concurrently interacting

components (ex. Asynchronous actors – Erlang) – mixing

physical and computational entities (named cyber-physical

systems). The diagnosis in this context becomes a highly

challenging problem. As briefly stated in the last section, the

problems of execution observation and of distributed control

are even more exacerbated in such an environment.

 However, the main problem, in this context, resides in the

huge amount of data that should be gathered and processed

during the analysis of such a system. Most of the traditional

9

automated techniques, such as model-checking, are expected

to fail in these contexts principally due to the problem of state-

space explosion [15]. To tame the diagnosis of such systems

the community will need to focus on fundamentally different

approaches, that are more appropriate than execution traces for

the study of highly asynchronous systems. From our

perspective, the main limitation of execution traces is that they

impose a global view of the computation. The execution of the

concurrent entities is check-pointed regularly (either

periodically – in the case of back-in-time debugging – or

systematically – in the case of model-checking) to build a

coherent view of the system evolution.

Instead of focusing on this synchronous view of computation,

a group of researchers, led by Carl Hewitt, started focusing on

a fundamentally different view, which, under the name of

“Inconsistency Robustness”, strive to embrace the

inconsistencies introduced by the emergent behavior of

millions of components interacting in an unsupervised way

[61]. As humans we are aware of the presence of massive

inconsistencies in our understanding of the everyday life,

however most of the computing systems we design operate

under a coherence assumption. The challenges posed while

diagnosing systems in the presence of inconsistencies dwarf

the progress made by years of research in diagnosing systems

based solely on execution traces.

 We are not aware of research work about trace-based

diagnosis that directly addresses the inconsistency robustness

issue, but this issue appears in several research work presented

in this paper: counterexamples [3], [4], trace analysis [7], data-

mining [13], ontology-driven diagnosis [35], model-

transformation [43], [44], [45]. Nevertheless, the diagnosis of

complex inconsistent systems is at the core of other

disciplines, such as medicine, biology, management, which

can provide us, computer scientists, with valuable elements for

managing the diagnosis of future cyber-physical systems.

V. CONCLUSION

A major advantage of model-checking is the production of a

counterexample, a trace that provides a detailed witness of

how the model violates the property. In this paper, we

presented 10 families of techniques that may help the analysis

of the counterexample and the refinement of the model.

However, we identify at least three issues that should be

addressed by an ideal diagnosis process.

The first issue, named “Semantic Gap”, emphasizes the fact

that traces are low-level in nature whereas the developer is

reasoning at a much higher abstract level.

The second issue, named “Multi-level trace Interpretation”,

stems from the multiple viewpoints needed during the

diagnosis process. The multiple viewpoints reflect the time

and space distribution amongst the interacting components:

each system component is evolving along different time scales

and is topologically linked with a few other components.

The last issue, named “Inconsistency Robustness”, is related

to the tremendous progress toward massively parallel

computing architectures, which calls for new diagnosis

approaches.

It is interesting to note that the clustering of techniques

presented in Section II, that is based on a proximity of usages,

differs significantly from the grouping of techniques related to

each issue presented in this section. It may indicate that each

issue requires a transdisciplinarity of techniques and that

requirements for each technique should be established in order

to drive the research effort. Accordingly, further research on

these issues will be our roadmap for the future.

REFERENCES

[1] C. Baier and J.-P. Katoen, Principles of Model Checking

(Representation and Mind Series). The MIT Press, 2008.

[2] A. Groce and W. Visser, “What went wrong: Explaining

counterexamples,” in Proceedings of the 10th

International Conference on Model Checking Software,

ser. SPIN’03. Berlin, Heidelberg: Springer-Verlag, 2003,

pp. 121–136.

[3] T. Ball, M. Naik, and S. K. Rajamani, “From symptom to

cause: Localizing errors in counterexample traces,” in

Proceedings of the 30th ACM SIGPLAN-SIGACT

Symposium on Principles of Programming Languages,

ser. POPL ’03. New York, NY, USA: ACM, 2003, pp.

97–105.

[4] N. Sharygina and D. Peled, “A combined testing and

verification approach for software reliability,” in FME

2001: Formal Methods for Increasing Software

Productivity, ser. Lecture Notes in Computer Science, J.

Oliveira and P. Zave, Eds. Springer Berlin Heidelberg,

2001, vol. 2021, pp. 611–628

[5] H. Jin, K. Ravi, and F. Somenzi, “Fate and free will in

error traces,” in Proceedings of the 8th International

Conference on Tools and Algorithms for the Construction

and Analysis of Systems, ser. TACAS ’02. London, UK,

UK: Springer-Verlag, 2002, pp. 445–459.

[6] P. Cousot and R. Cousot, “Abstract interpretation: A

unified lattice model for static analysis of programs by

construction or approximation of fixpoints,” in

Conference Record of the Fourth ACM Symposium on

Principles of Programming Languages, Los Angeles,

California, USA, January 1977, 1977, pp. 238–252.

[7] C. Colby and P. Lee, “Trace-based program analysis,” in

Conference Record of POPL’96: The 23rd ACM

SIGPLANSIGACT Symposium on Principles of

Programming Languages, St. Petersburg Beach, Florida,

USA, January 21-24, 1996, 1996, pp. 195–207.

[8] A. Groce and R. Joshi, “Exploiting traces in static

program analysis: better model checking through printfs,”

STTT, vol. 10, no. 2, pp. 131–144, 2008.

[9] M. Martin, B. Livshits, and M. S. Lam, “Finding

application errors and security flaws using pql: A program

query language,” in Proceedings of the 20th Annual ACM

SIGPLAN Conference on Object-oriented Programming,

Systems, Languages, and Applications, ser. OOPSLA ’05.

New York, NY, USA: ACM, 2005, pp. 365–383.

[10] S. F. Goldsmith, R. O’Callahan, and A. Aiken,

“Relational queries over program traces,” in Proceedings

of the 20th Annual ACM SIGPLAN Conference on

Object-oriented Programming, Systems, Languages, and

Applications, ser. OOPSLA ’05. New York, NY, USA:

ACM, 2005, pp. 385–402.

10

[11] I. Standards, “IEEE standard for property specification

language (psl),” IEEE Std 1850-2005, pp. 0 1–143, 2005.

[12] L. Jiang and Z. Su, “Context-aware statistical debugging:

From bug predictors to faulty control flow paths,” in

Proceedings of the Twenty-second IEEE/ACM

International Conference on Automated Software

Engineering, ser. ASE ’07. New York, NY, USA: ACM,

2007, pp. 184–193.

[13] S. Parsa, S. Naree, and N. Koopaei, “Software fault

localization via mining execution graphs,” in

Computational Science and Its Applications - ICCSA

2011, ser. Lecture Notes in Computer Science, B.

Murgante, O. Gervasi, A. Iglesias, D. Taniar, and B.

Apduhan, Eds. Springer Berlin Heidelberg, 2011, vol.

6783, pp. 610–623.

[14] N. Ge, M. Pantel, and X. Crégut, “Automated failure

analysis in model checking based on data mining,” in

Model and Data Engineering, ser. Lecture Notes in

Computer Science, Y. Ait Ameur, L. Bellatreche, and G.

Papadopoulos, Eds. Springer International Publishing,

2014, vol. 8748, pp. 13–28.

[15] A. Valmari, “The state explosion problem,” in Lectures

on Petri Nets I: Basic Models, ser. Lecture Notes in

Computer Science, W. Reisig and G. Rozenberg, Eds.

Springer Berlin Heidelberg, 1998, vol. 1491, pp. 429–

528.

[16] W. Fan and A. Bifet, “Mining big data: Current status,

and forecast to the future,” SIGKDD Explor. Newsl., vol.

14, no. 2, pp. 1–5, Apr. 2013.

[17] M. B. Dwyer, G. S. Avrunin, and J. C. Corbett, “Patterns

in property specifications for finite-state verification,” in

Proceedings of the 21st International Conference on

Software Engineering, ser. ICSE ’99. New York, NY,

USA: ACM, 1999, pp. 411–420.

[18] R. L. Smith, G. S. Avrunin, L. A. Clarke, and L. J.

Osterweil, “Propel: An approach supporting property

elucidation,” in Proceedings of the 24th International

Conference on Software Engineering, ser. ICSE ’02. New

York, NY, USA: ACM, 2002, pp. 11–21.

[19] S. Konrad and B. Cheng, “Facilitating the construction of

specification pattern-based properties,” in Requirements

Engineering, 2005. Proceedings. 13th IEEE International

Conference on, Aug 2005, pp. 329–338.

[20] E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design

Patterns: Elements of Reusable Object-oriented Software.

Boston, MA, USA: Addison-Wesley Longman Publishing

Co., Inc., 1995.

[21] S. Konrad, B. Cheng, and L. Campbell, “Object analysis

patterns for embedded systems,” Software Engineering,

IEEE Transactions on, vol. 30, no. 12, pp. 970–992, Dec

2004.

[22] R. France and B. Rumpe, “Model-driven development of

complex software: A research roadmap,” in 2007 Future

of Software Engineering, ser. FOSE ’07. Washington,

DC, USA: IEEE Computer Society, 2007, pp. 37–54.

[23] P. Cousot and R. Cousot, “Abstract interpretation and

application to logic programs,” The Journal of Logic

Programming, vol. 13, no. 2ˆa3, pp. 103 – 179, 1992.

[24] K. Havelund and T. Pressburger, “Model checking java

programs using java pathfinder,” International Journal on

Software Tools for Technology Transfer, vol. 2, no. 4, pp.

366–381, 2000.

[25] G. Holzmann, “The model checker SPIN,” Software

Engineering, vol. 23, no. 5, pp. 279–295, 1997.

[26] W. Visser and P. Mehlitz, “Model checking programs

with java pathfinder,” in Proceedings of the 12th

International Conference on Model Checking Software,

ser. SPIN’05. Berlin, Heidelberg: Springer-Verlag, 2005,

pp. 27–27.

[27] K. Havelund, “Using runtime analysis to guide model

checking of java programs,” in Proceedings of the 7th

International SPIN Workshop on SPIN Model Checking

and Software Verification. London, UK, UK: Springer-

Verlag, 2000, pp. 245–264.

[28] S. Maoz, “Model-based traces,” in Models in Software

Engineering, ser. Lecture Notes in Computer Science, M.

Chaudron, Ed. Springer Berlin Heidelberg, 2009, vol.

5421, pp. 109–119.

[29] S. Maoz and D. Harel, “On tracing reactive systems,”

Software & Systems Modeling, vol. 10, no. 4, pp. 447–

468, 2011

[30] W. Damm and D. Harel, “LSCs: Breathing life into

message sequence charts,” Formal Methods in System

Design, vol. 19, no. 1, pp. 45–80, 2001.

[31] S. J. Mellor and M. Balcer, Executable UML: A

Foundation for Model-Driven Architectures. Boston, MA,

USA: Addison-Wesley Longman Publishing Co., Inc.,

2002.

[32] T. Mayerhofer, P. Langer, and G. Kappel, “A runtime

model for fuml,” in Proceedings of the 7th Workshop on

ModelsRun.Time, ser. MRT ’12. New York, NY, USA:

ACM, 2012, pp. 53–58.

[33] N. Guarino and C. Welty, “An overview of ontoclean,” in

Handbook on Ontologies, ser. International Handbooks on

Information Systems, S. Staab and R. Studer, Eds.

Springer Berlin Heidelberg, 2009, pp. 201–220.

[34] K. E. Campbell, “Distributed development of a logic-

based controlled medical terminology,” Ph.D.

dissertation, Stanford University, Stanford, CA, USA,

1997.

[35] K. A. Spackman and G. Reynoso, “Examining snomed

from the perspective of formal ontological principles:

Some preliminary analysis and observations,” Proc of the

1st Int Workshop on Formal Biomedical Knowledge

Representation (KRMED 2004), pp. 72–80, 2004.

[36] N. Jekjantuk, J. Z. Pan, and Y. Qu, “Diagnosis of

software models with multiple levels of abstraction using

ontological metamodeling.” in COMPSAC, 2011, pp.

239–244.

[37] E. Visser, “A survey of strategies in rule-based program

transformationsystems,” J. Symb. Comput., vol. 40, no. 1,

pp. 831–873, Jul. 2005.

[38] K. Czarnecki and S. Helsen, “Feature-based survey of

model transformation approaches,” IBM Syst. J., vol. 45,

no. 3, pp. 621–645, Jul. 2006.

[39] F. Jouault, C. Teodorov, J. Delatour, L. Le Roux, and P.

Dhaussy, “Transformation de modèles UML vers Fiacre,

via les langages intermédiaires tUML et ABCD,” Génie

logiciel, vol. 109, Jun. 2014.

11

[40] C. Kamdem Kengne, L. C. Fopa, A. Termier, N. Ibrahim,

M.-C. Rousset, T. Washio, and M. Santana, “Efficiently

rewriting large multimedia application execution traces

with few event sequences,” in Proceedings of the 19th

ACM SIGKDD International Conference on Knowledge

Discovery and Data Mining, ser. KDD ’13. New York,

NY, USA: ACM, 2013, pp. 1348–1356.

[41] P. Lieverse, P. v. d. Wolf, and E. Deprettere, “A trace

transformation technique for communication refinement,”

in Proceedings of the Ninth International Symposium on

Hardware/Software Codesign, ser. CODES’01. New

York, NY, USA: ACM, 2001, pp. 134–139.

[42] G. Ros¸u and K. Havelund, “Rewriting-based techniques

for runtime verification,” Automated Software Engg., vol.

12, no. 2, pp. 151–197, Apr. 2005.

[43] S. Edelkamp, V. Schuppan, D. Bosnacki, A. Wijs, A.

Fehnker, andH. Aljazzar, “Survey on directed model

checking,” in Model Checking and Artificial Intelligence,

ser. Lecture Notes in Computer Science, D. Peled and M.

Wooldridge, Eds. Springer Berlin Heidelberg, 2009, vol.

5348, pp. 65–89.

[44] A. Biere, A. Cimatti, E. M. Clarke, O. Strichman, and Y.

Zhu, “Bounded model checking,” Advances in

Computers, vol. 58, pp. 117–148, 2003.

[45] P. Dhaussy, F. Boniol, J.-C. Roger, and L. Leroux,

“Improving model checking with context modelling,”

Adv. Soft. Eng., vol. 2012, pp. 9:9–9:9, Jan. 2012.

[46] B. Lindström, P. Pettersson, and J. Offutt, “Generating

tracesets for model-based testing,” in ISSRE 2007, The

18th IEEE International Symposium on Software

Reliability, Trollhättan, Sweden, 5-9 November 2007,

2007, pp. 171–180.

[47] E. Clarke, O. Grumberg, S. Jha, Y. Lu, and H. Veith,

“Counterexample-guided abstraction refinement,” in

Computer Aided Verification, ser. Lecture Notes in

Computer Science, E. Emerson and A. Sistla, Eds.

Springer Berlin Heidelberg, 2000, vol. 1855, pp. 154–

169.

[48] M. Ducassé, “Coca: An automated debugger for C,” in

Proceedings of the 1999 International Conference on

Software Engineering, ICSE’ 99, Los Angeles, CA, USA,

May 16-22, 1999., 1999, pp. 504–513.

[49] H. Cleve and A. Zeller, “Locating causes of program

failures,” in 27th International Conference on Software

Engineering (ICSE 2005), 15-21 May 2005, St. Louis,

Missouri, USA, 2005, pp. 342–351.

[50] L. Lamport, “Time, clocks, and the ordering of events in

a distributed system,” Commun. ACM, vol. 21, no. 7, pp.

558–565, Jul. 1978.

[51] K. M. Chandy and L. Lamport, “Distributed snapshots:

Determining global states of distributed systems,” ACM

Trans. Comput. Syst., vol. 3, no. 1, pp. 63–75, Feb. 1985.

[52] C. E. McDowell and D. P. Helmbold, “Debugging

concurrent programs,” ACM Comput. Surv., vol. 21, no.

4, pp. 593–622, Dec. 1989.

[53] G. Pothier, E. Tanter, and J. M. Piquer, “Scalable

omniscient debugging,” in Proceedings of the 22nd

Annual ACM SIGPLAN Conference on Object-Oriented

Programming, Systems, Languages, and Applications,

OOPSLA 2007, October 21-25, 2007, Montreal, Quebec,

Canada, 2007, pp. 535–552.

[54] G. S. Goldszmidt, S. Yemini, and S. Katz, “High-level

language debugging for concurrent programs,” ACM

Trans. Comput. Syst., vol. 8, no. 4, pp. 311–336, Nov.

1990.

[55] R. Lencevicius, U. Hölzle, and A. K. Singh, “Query-

based debugging of object-oriented programs,” in

Proceedings of the 12th ACM SIGPLAN Conference on

Object-oriented Programming, Systems, Languages, and

Applications, ser. OOPSLA ’97. New York, NY, USA:

ACM, 1997, pp. 304–317.

[56] “Dwarf debugging information format version 4,”

DWARF Debugging Information Format Committee,

2010.

[57] J. C. de Kergommeaux, B. Stein, and P. Bernard, “Paj´e,

an interactive visualization tool for tuning multi-threaded

parallel applications,” Parallel Computing, vol. 26, no. 10,

pp. 1253 – 1274, 2000.

[58] K. E. Isaacs, P.-T. Bremer, I. Jusufi, T. Gamblin, A.

Bhatele, M. Schulz, and B. Hamann, “Combing the

Communication Hairball: Visualizing Parallel Execution

Traces using Logical Time,” in IEEE Symposium on

Information Visualization (INFOVIS’14), Paris, France,

November 9-14 2014, lLNL-JRNL-657418.

[59] L. Lamport, “The temporal logic of actions,” ACM Trans.

Program.Lang. Syst., vol. 16, no. 3, pp. 872–923, May

1994. [Online].

[60] D. Harel, “Statecharts: A visual formalism for complex

systems,” Sci. Comput. Program., vol. 8, no. 3, pp. 231–

274, Jun. 1987.

[61] C. Hewitt, “Inconsistency robustness in logic programs,”

Inconsistency Robustness, 2014.

[62] A. Hamou-Lhadj and T. C. Lethbridge, “A survey of trace

exploration tools and techniques,” in Proceedings of the

2004 Conference of the Centre for Advanced Studies on

Collaborative Research, ser. CASCON ’04. IBM Press,

2004, pp. 42–55.

