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 

Abstract—Despite the high-level of automation offered by 

model-checking techniques for proving that a system satisfies its 

specification, if one property is violated the designer is left with a 

counterexample trace to understand. In this paper, we overview 

ten families of techniques used to diagnose a system behavior 

relying on traces. However, whereas these techniques are highly 

effective and are largely used, they are either not yet available in 

the context of model-checking or they are not adapted to the 

particularities of this verification technique. To address this, we 

have identified three very challenging problems hindering the 

concurrent systems diagnosis process. This helped us to define a 

roadmap for future research directions in our team. 

 

Index Terms — execution trace, model-checking, diagnosis, 

verification. 

I. INTRODUCTION 

As its name suggests, model-checking combines modeling 

and checking. A system-under-study (SUS) is represented 

through a formal model, for instance concurrent state-

machines, and this model is used to exhaustively explore the 

SUS possible configurations. Then properties to be satisfied 

by the SUS have to be specified, and weaved with the SUS 

model. The weaving results in a Labeled Transition System 

(LTS) whose exploration permits to assert if a property is 

satisfied or not. If the property is violated the model-checker 

produces a counter-example trace. 

The main advantage of this method is that it is completely 

automated. However, once the existence of a problem is 

proved, the designer is left with a counterexample trace that 

only exhibits the problem. From this point, the designer needs 

to find and apply the right corrective measures. Conceptually 

the path from the counterexample to the correction is 

straightforward: understand what caused the behavior 

exhibited by the counterexample and fix it. However, in reality 

a large number of factors render this “simple” task very 

challenging. Two of the most challenging, and easy to 

understand, factors amongst these are: a) the size of the 

counterexample (from a few execution steps to millions or 

even more) that quickly can exceed the human capacity of 

analysis; and b) the semantic gap between the formalisms used 

to express the system and the low-level counterexample trace. 
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The field of trace-based diagnosis (Section II), provides a 

rich state-of-the art integrating a wide variety of concepts from 

many domains ranging from data processing, software 

engineering and verification to distributed systems and 

visualization. 

In this study, we review ten families of techniques (Section 

III), which have been grouped in three clusters. The first one is 

focused on techniques striving to reach an explanation – find 

the cause. The second cluster regroups knowledge-based 

techniques aiming to ease the system understanding. And 

lastly, the third cluster overview hands-on techniques used for 

observing and manipulating the SUS. Whereas not exhaustive, 

the set of techniques presented here are covering techniques 

highly effective and largely used in industrial projects. 

In the model-checking context, however, these techniques 

are either not available due to engineering constraints, or they 

do not adapt well to the constraints of this verification 

technique. Moreover, in some cases even the techniques that 

are currently integrated in model-checking toolkits do not 

always provide enough information (at the right abstraction 

level) to enable the developer to easily identify and understand 

the causes of failures. 

In Section IV, we have overviewed three major challenges 

hindering the diagnostic process, which pose the basis for 

future research directions in this field. These challenges are: 

1. The semantic gap, refers to the discrepancy 

between the formalisms used during the model-

checking verification process. 

2. Multi-level trace interpretation refers to the level 

of detail at which the traces are built and the 

perspective from which they are analyzed. In this 

case we note mainly the lack of tools adapted at 

crossing the boundaries. 

3. Inconsistency robustness refers to the scalability of 

trace diagnosis in the context of present and future 

massively parallel computing systems, which 

might need radically new diagnosis approaches. 

II. DIAGNOSIS FOR TRANSITION SYSTEM 

Generally, the diagnosis encompasses any activity that 

provides information about the SUS, including analysis, 

observation, proofs, testing, etc.   We agree with the Merriam-

Webster on-line dictionary that defines diagnosis as an 

“investigation or analysis of the cause or nature of a condition, 

situation, or problem.” (http://www.merriam-webster.com). 

For the purpose of this study, we use a narrower vision of 
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diagnosis, in which symptoms are materialized by traces and 

processing traces leads to causes. Nevertheless, the techniques 

presented often transcend this narrow view addressing the 

diagnosis problem generally. 

In this context we consider that the existence of the trace set 

is the starting point of the diagnosis, and we do not focus our 

attention on the techniques employed to produce such a set. 

Suffice to say that the set of traces can be either implicitly 

(executable system) or explicitly (counterexample) defined 

and that we have the possibility to add/remove elements 

to/from the set iteratively. However, the illustrative traces 

presented are mostly issued from reachability analysis and 

model-checking. 

A. The Problem Space: Traces and Errors 

Transition systems are used as models to describe the 

behavior of systems. They are basically directed graphs where 

nodes represent states, and edges model transitions, i.e., state 

changes. They are the basis of many program analysis 

techniques, and in particular of model checking: "Model 

checking is an automated technique that, given a finite-state 

model of a system and a formal property, systematically 

checks whether this property holds for (a given state in) that 

model [1]." A property is formal if it is described in a precise 

and unambiguous manner, using a property specification 

language. 

When a property is falsified, it can be due to different 

causes. There may be a modeling error, meaning that the 

model does not reflect the system. If diagnosis reveals no 

inconsistencies between the system and its model, there may 

be a design error or a property error. In the case of a design 

error, an execution trace will be presented as a 

counterexample showing that the property is falsified and the 

model has to be improved. It may be the case that upon 

studying the trace, the formal property does not reflect the 

informal requirement from which it stems and the property has 

to be improved. In all cases, all properties have to be re-

checked for the model. 

Several approaches exist to address the problem above and 

this paper is a non-exhaustive attempt to present popular 

techniques and their application for diagnosis using model-

checking traces.  

B. The Solution Space: Trace-Based Diagnosis Techniques 

The solution space consists of any technique that addresses the 

diagnosis problem. We have identified a broad range of 

techniques that we have classified in 10 families as follows: 

a) Counterexample Processing: groups the techniques 

that attempt SUS diagnosis through the use of 

negative witness traces (traces exhibiting some 

unwanted behavior). 

b) Trace Analysis: groups the techniques that rely on the 

analysis of a set of traces, including specialized query 

languages. 

c) Data-mining: focuses on trace analysis techniques 

that attempt to automatically uncover and classify 

hidden structures (patterns) present in large execution 

traces. 

d) Pattern Analysis: groups the techniques focusing on 

the identification of previously specified conditions 

(patterns). 

e) Model-based Trace Diagnosis: focuses on high-level 

trace reification and their interpretation through the 

use of model-based engineering tools and formalisms 

(e.g. UML). 

f) Ontology-driven Diagnosis: groups research 

activities related to knowledge classification and 

retrieval in the context of system diagnosis. 

g) Model Transformation: groups the techniques using 

rule-based transformations (e.g. rewriting) in the 

diagnosis process. Whereas not directly related to the 

diagnostic problem, these techniques play a central 

role in many diagnosis activities. 

h) Testing: groups the techniques that rely on the 

supervised, scenario-directed system-execution for 

unraveling unwanted behaviors. 

i) Debugging: groups the family of techniques that 

focus on an interactive diagnosis process, offering the 

diagnostician the tools to observe, control and modify 

the behavior of the system. 

j) Visualization: groups all techniques enabling the 

visual representation of the artifacts the diagnostician 

encounters, from traces to highly specific diagnosis 

reports. 

These techniques arose as answers to problems and if 

obviously some techniques address related problems, we did 

not succeed to organize techniques within a classification. 

However, rather than presenting the list techniques in 

alphabetic order, they are clustered accordingly a proximity of 

usages. The first cluster groups techniques that aim to reach 

an explanation, relying on the principle that, in order to 

explain something (like an error), one has to identify its cause. 

This cluster includes counterexamples processing, and trace 

analysis. But we might look for explanations that help to better 

understand the SUS and this will be a second cluster, which 

contains knowledge-based techniques, such as data-mining, 

pattern analysis, model-based diagnosis, and ontology-driven 

diagnosis. Finally, the third cluster contains techniques related 

to the observation and manipulation of the SUS and it 

includes: model transformation, testing, debugging, and 

visualization. 

Besides these clusters and families of techniques, we 

acknowledge the existence of many more other techniques that 

were deliberately left out of this study. Such techniques 

include: automated diagnosis, an important topic in the 

artificial intelligence field, and fault diagnosis, a major 

concern in modern control theory and practice. 

 The following section briefly overviews a number of 

research results related to techniques considered. 

III. A HIGGLEDY-PIGGLEDY SET OF TECHNIQUES 

A. Counterexamples 

A major advantage of model-checking is the production of 
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counterexamples as a proof that the system violates the 

specification. Counterexamples are represented as witness 

traces that describe the system behavior "responsible" for the 

property violation. 

A counterexample trace provides a bunch of low-level 

information and indicates the symptom of an error in the SUS 

(or a problem with the specification of the SUS). Different 

approaches exist for relating the symptom to a possible cause 

and most approaches share the idea of finding variations of the 

counterexample either with the symptom reproduced or 

without the problem. 

Groce and Wisser [2] use an automated method for finding 

multiple versions of an error (negatives) and similar 

executions that do not produce an error (positives). The 

negatives and positives are analyzed together to produce a 

succinct description of the error elements, including portions 

of source-code that distinguish failing and successful 

executions. 

Ball, Naik and Rajamani [3] use the model checker as a 

subroutine to localize the error cause in an error-trace, 

stemming from correct traces; and generate multiple error 

traces having independent causes; and implemented this error 

analysis technique in the SLAM tool. 

Sharygina and Peled [4] propose the notion of the 

neighborhood of a counterexample, consisting of a tree of 

execution paths, where the original error-trace is one of them; 

and suggest that an exploration of this region may be useful in 

understanding an error. In this case, while a testing tool aids 

the exploration, it does not offer automatic analysis. 

Jin, Ravi and Somenzi [5] produce an enhanced error trace 

as an alternation of fated (forced) and free segments. The fated 

segments show unavoidable progress toward the error while 

the free segments show choices that, if avoided, may have 

prevented the error. Segmentation raises the questions of 

whether the fated segment should indeed be inevitable and 

whether the free segments are critical in causing the error. 

B. Trace Analysis 

Trace-based analysis is the analysis of programs based on 

their trace, that is, their execution history. History is the 

sequence of states (e.g., the value of the program's memory) in 

which a program is at each step of its execution, until it stops 

(hence the trace may be infinite). The idea of trace-based 

analysis originates from Cousot and Cousot who defined its 

theoretical foundations [6]. Later, Colby and Lee defined a 

framework named "trace-based analysis" as an alternative to 

the traditional "state-based" analysis [7]. Contributions of their 

approach are to provide a direct way to prove program 

equivalences and to enable compositional analysis of 

programs. Trace-based analysis is at the core of the model-

checkers that use trace equivalence to verify properties [1]. 

Groce et al. also exploit traces of log information (variable 

values, strings denoting a program point) to increase the 

scalability of program analysis [8]. 

Whereas counterexample-processing works on a single or a 

few traces, trace analysis aims to gather, compare and analyze 

a large set of traces.  

Querying traces can be applied in any domain where 

execution traces can be recorded. There are two types of 

query-based debugging, those that operates a posteriori on 

traces and those where the query is weaved with the source 

program and parameterize the trace recording. 

Martin, Livshits, and Lam [9] propose PQL (Program 

Query Language), a language intended to query sequences of 

events associated with a set of related objects. They developed 

both static and dynamic techniques to find solutions to PQL 

queries. The static analyzer finds all potential matches 

conservatively using a context-sensitive, flow-insensitive, 

inclusion-based pointer alias analysis. Static results are also 

used to reduce the scope of dynamic analysis. The dynamic 

analyzer instruments the source program to catch all violations 

precisely as the program runs and to optionally perform user-

specified actions. 

Goldsmith, O'Callahan, and Aiken [10] propose Program 

Trace Query Language (PTQL), a language based on 

relational queries over program traces. Produced traces result 

from an automatically instrumentation by a tool PARTIQLE 

that monitor particular properties. Given a PTQL query and a 

Java program, PARTIQLE instruments the program to execute 

the query on-line. 

Classical property specification languages, such as PSL[11], 

can also be considered in this family. In this case the 

verification tools using these languages can be seen as the 

query execution runtime, and the witnesses produced would be 

considered the query result. 

C. Data-mining 

Data mining strives to uncover recurring patterns or hidden 

structures through automated analysis of data samples. In the 

context of model-checking industrial problems, often the 

diagnostician is confronted with sheer amount of data (long 

counter-examples, huge LTS graphs), which by far exceeds 

the human capacity of analysis. In these cases, efficient data-

mining can improves the analysis limits, as well as the 

accuracy of the results. 

Approaches such as statistical debugging heavily rely on 

data mining mainly for fault localization. In such approaches 

the model in instrumented to produce statistical execution 

profiles, these are mined to pinpoint the location of suspicious 

code [12]. Parsa, Naree and Koopaei [13] present an approach 

that combines multiple execution traces into an execution 

graph, similar to the LTS, which is analyzed for detecting bug-

relevant sub-graphs. The novelty of the approach resides in the 

use of weighted execution graphs integrating failing and 

passing executions, which enable finer analysis. 

Many such approaches are present in the literature, relying 

on a wide variety of data mining techniques, like formal 

concept analysis, association rules, n-gram analysis, etc. 

These techniques are largely used for software debugging 

and test and they can be coupled with model-checking 

verification approaches. However, in such a coupling the 

potential complementarity of the approaches is ignored, 

mainly the data-mining tools won’t benefit from the huge 

amount of information produced during a model-checking run. 
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Ge, Mantel and Crégut address this gap [14] for Time Petri net 

model-checking through a ranking algorithm inspired by a 

divergence metric from information theory and a numerical 

statistics algorithm computing an importance factor for the 

model transitions. 

Moreover, while model-checking provides an automated 

solution for model verification its biggest limitations is known 

as state-space explosion [15] due to the exponential increase in 

number of states with respect to the number of interacting 

components. Whereas the focus of this paper is not on this 

problem, it is important to understand that due to this 

exponential increase in complexity any diagnosis tool used in 

the context of model-checking has to scale to huge amounts of 

data and ideally offer the user “big-data”-like functionalities, 

as introduces by Fan and Bifet [16]. 

D. Pattern Analysis 

Pattern analysis groups a broad fan of pattern-based 

approaches. In the model-checking community, property 

pattern refers immediately to the work pioneered by Dwyer, 

Avrunin and Corbett [17] who proposed a pattern repository
1
 

and a pattern-based approach to the presentation, codification 

and reuse of property specifications for finite-state 

verification. Many researchers deepened this work. For 

instance, Smith, Avrunin, Clarke and Osterweil [18] 

developed PROPEL, intended to make the job of writing and 

understanding properties easier by providing templates that are 

represented using both "disciplined" natural language and 

finite state automata. Konrad and Cheng [19] extended Dwyer 

and al. work to real-time specification patterns expressed in 

terms of three commonly used real-time temporal logics, and a 

structured English grammar that includes support for real-time 

properties. 

Another family of patterns stem from the work of Gamma, 

Helm, Johnson and Vlissides [20] (software design-patterns). 

In the distributed and real-time research community, analysis 

patterns, architectural patterns, design patterns have been 

extensively proposed. Pattern usage is shifted at a higher use 

during the analysis and design phases to guide developers in 

creating conceptual models of embedded systems, e.g., by 

providing structural and behavioral templates. Konrad, Cheng 

and Campbell [21] research explores how object-oriented 

modeling notations can be used to represent structural and 

behavioral information as part of commonly occurring object 

analysis patterns. This research also investigates how UML-

based conceptual models of embedded systems can be 

automatically analyzed using the Spin model checker for 

adherence to properties specified in linear temporal logic. It 

has been stated that research on design patterns, domain-

specific languages, and product-line architectures are 

particularly relevant to, and complementary with the Model-

Driven Engineering field [22]. 

Model-checking of programs is a hot-topic in formal 

methods community. Static program analysis [23] is an entire 

discipline, but an alternative is runtime analysis, which is 

 
1 http://patterns.projects.cis.ksu.edu/ 

based on the idea of concluding properties of a program from 

program traces.  

 Examples are Java PathFinder 1 (JPF1) [24], an attempt to 

bridge the gap between Java and the PROMELA language of 

SPIN [25] or Java PathFinder (JPF2) [26] which model checks 

the java bytecode directly. Havelund [27] explains that 

runtime analysis is based on the idea of executing the program 

once, and observing the generated run to extract various kinds 

of information. This information can then be used to predict 

whether other different runs may violate some properties of 

interest, in addition to demonstrating whether the generated 

run violates such properties. Dynamic analysis algorithms 

detect the violated property based on the idea of recognizing 

the pattern related to the type of problem, e.g. a locking 

pattern for a deadlock detection property or a race pattern for a 

data race detection (a data race is the simultaneous access to 

an unprotected variable by several threads). 

E. Model-based Diagnosis 

Model-based traces are defined as trace behavioral models 

of a system during its execution. According to [28], "an 

important feature of model-based traces is that they provide 

enough information to reason about the executions of the 

system and to reconstruct and replay an execution 

(symbolically or concretely), exactly at the abstraction level 

defined by its models." Hence, model-based trace analysis 

offers dynamic analysis features related to the investigation of 

the relationships between the execution traces of a system and 

its models, measuring how various model features materialize 

in a system run, and finding the differences between two or 

more system runs. Major challenges are the complexity and 

length of the models and execution traces and visualization 

attempt to address these challenges by creating a scalable and 

visually appealing solution [29]. This latter point is 

overviewed in section Visualization. 

Maoz and Harel [29] propose an approach based on two 

inputs: a scenario-based behavioral model, described using 

live sequence charts [30] - an extension of classical message 

sequence charts (MSC), and an execution trace of the system. 

The approach implemented in a prototype called Tracer allows 

one to visualize, zoom in/out, and explore, the progress of the 

scenarios during execution. Advanced visualization features 

are provided, including multiple instances of the same 

diagram, time-based and event-normalized tracing, various 

synchronous statistics.  

Mellor and Balcer [31] designed Executable UML to 

produce a comprehensive model of a system independent of its 

implementation. They define three fundamental projections on 

the specification. The first model uses a UML class diagram. 

The second model represents how the objects may have 

lifecycles (behaviors over time) that are abstracted as state 

machines, using a UML statechart diagrams. Each state 

machine has a set of procedures, and the third model expresses 

the fact that the behavior of the system is driven by objects 

responding to events with the execution of a procedure, thus 

establishing the new state. These executable UML models can 

be executed to ensure that they produce the desired behavior. 

Although static verification can be applied, dynamic 
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verification is performed through the process of running actual 

test cases against the models, just as we would write and run 

software tests.  

Mayerhofer, Langer and Kappel [32] introduce extensions 

of the standardized fUML virtual machine in terms of a 

dedicated trace-model, an event-model, and a command API. 

fUml is an OMG standard defining the operational semantics 

of a subset of UML and the conforming virtual machine. 

Extensions enable runtime analysis and runtime adaptations of 

executable models. 

F.  Ontology-driven Diagnosis 

To be useful, the information used for diagnosis must be 

divided into classes of data. Each data object within a class 

shares a set of properties chosen to enhance human ability to 

relate one piece of data with another. Unfortunately, the terms 

property and class are used in computer science with very 

different meaning, and we need to precise what do they mean 

from an ontological point of view. Guarino and Welty [33] 

point out that we shall consider ontological properties as the 

meanings (or intensions) of expressions, which corresponds to 

unary predicates in first-order logic. "Given a possible world, 

we can associate with each property a class (its extension), 

which is the set of entities that exhibit that property in that 

particular world. The members of this class will be called 

instances of the property. Classes are therefore sets of entities 

that share a property in common; they are the extensional 

counterpart of properties. [33]" Hence, ontologists do not 

focus on building single or multiple inheritance hierarchies: a 

property can apply to more than one class and may apply to 

classes that are not directly related by an inheritance path.  

Once these differences stated, how do ontologies assist 

trace-based diagnosis? Failing or successful traces are 

witnesses of a system execution and are analogous to 

symptoms in medical diagnosis. The classification of diseases 

and the tests used for its diagnosis are central to medical 

practice and medical science pioneered the use of ontologies 

in general and especially for diagnosis purposes. The 

Systematized Nomenclature of Medicine – Clinical Terms 

(SNOMED CT) is a terminological resource designed to 

support electronic applications in health and medicine 

(http://www.ihtsdo.org/snomed-ct). Campbell [34] provided 

the basic evolutionary design principles upon which 

SNOMED development is still based. Spackman and Renoso 

[35] state that, as SNOMED development has continued, these 

broad principles have been operationalized using three 

fundamental criteria, abbreviated as URU for 

understandability, reproducibility, and usefulness. 

Understandability makes reference to whether a concept or 

feature can be fully and unambiguously comprehended by 

users of the terminology. Understandability is tested by 

checking to see whether users find that the concept is relevant 

or not relevant to a given patient or situation. This leads to the 

need for Reproducibility that indicates whether multiple users 

apply the concept to the same situations. Usefulness refers to 

the level of helpfulness and appropriateness conveyed in a 

concept or feature. 

Applying these criteria will help to avoid the major pitfall 

of ontology-based diagnosis: each group of researchers defines 

its own set of diagnosis concepts and properties, arguing the 

specificities of its method and tool. Hence an effort has to be 

made to join ontological design efforts and to promote 

international adoption and use of diagnosis ontologies for 

model execution. 

A major technical difficulty of ontological diagnosis is that 

we want diagnose software models with multiple levels of 

abstraction. Moreover, depending on the point of view, we 

may reason about classes or individuals (e.g. an assumption 

about all processes or a particular process). According to [36], 

ontological metamodeling is used to model a complex domain 

model where the distinction between classes and individuals is 

not clear-cut. Jekjantuk, Pan and Qu [36] have applied three 

different ontology metamodeling approaches to addressing 

requirements that demand modeling of a complex domain 

model at multiple levels of abstraction and concluded for an 

extended class-based approach that provide more configurable 

support for ontological metamodeling. 

G. Model Transformation 

 Model transformation is the mechanical manipulation of a 

model, which by changing the model shape is expected to 

enable achieving a prescribed goal (be it analysis, reduction, 

compilation). Model transformation encompasses a broad 

spectrum of techniques based on the idea of using simple 

guard/action rules, with the understanding that the action-

block of a rule is executed when the guard-block evaluates to 

true on a model segment. For a deeper understanding of model 

transformation, which is out of scope in our context, the reader 

is directed to a survey of rule-based transformations [37] and a 

feature-based presentation [38] of the domain. 

 Model transformation should be seen as a transversal tool 

that is used ubiquitously in the context of diagnosis. Model 

transformation can be used for model formulation, trace 

simplification, reformulation and ultimately understanding. 

There is a large body of literature addressing the problem of 

transforming high-level formalisms toward specialized 

verification and analysis frameworks; for instance, Jouault and 

al. [39] introduce such an approach for transforming a subset 

of UML to the Fiacre formal language to enable model-

checking. 

 For trace simplification, Kengne et al. [40] use a rewriting 

based approach to reduce the traces obtained from the 

execution of multimedia application. In this context trace 

reduction is essential due to the large amount of data produced 

by such application. 

 In Lieverse, Wolf and Deprettere [41], the authors consider 

the problem of mapping high-level application to computing 

architecture resources using trace transformation. Their 

approach consist of an expansion step during which an 

application trace is refined to a lower abstraction level 

matching the architectural primitives and a linearization step 

during which an execution path is selected among the ones 

available. Whereas this approach is not directly linked to 

diagnosis, it is interesting to note that during the expansion 

step the authors actually perform an embedding of the 

application semantics into the lower level (more detailed) 
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architecture semantics. This embedding step (sometimes 

referred as compilation) possesses a large number of issues in 

terms of diagnosis due to the potential semantic gap between 

the application and architecture. This problem can be 

formulated as: “how can we preserve the link between the 

application-level and the architecture-level traces so that, if a 

problem is detected at runtime, a witness trace can be 

produced and presented using the application semantics”. 

Simply put, a C application designer wants to reason about his 

model using the C semantics and not the processor semantics 

provided by the execution platform. 

 The use of model transformation, more specifically 

rewriting, for runtime system verification is another important 

use case. Rosu and Havelund [42] present a rewriting-based 

approach for evaluating temporal logic formulae on finite 

execution traces online at runtime. 

H. Testing 

 Testing is probably the most known technique for detecting 

problems during system execution. The underlying principle is 

simple: “check the validity of a property during the execution 

of the system in a predefined scenario”. However, testing in 

general is a highly challenging task, mainly due to the 

complexity of scenario specification. To address this problem, 

a family of techniques, named “directed model-checking” 

[43], try to exploit model-checking algorithms, not in the 

traditional exhaustive fashion, but in a goal directed way 

relying of different directed search strategies.  

 Another popular technique is bounded-model checking [44], 

which rely on traditional model-checking algorithms but 

again, much like for directed-model checking, the state-space 

search is not exhaustive but bounded by a predefined 

exploration depth. 

 Context-aware Verification [45] is another technique that 

tries to close the system under test with a formally defined 

environment covering all environmental possibilities. Whereas 

this technique is geared towards exhaustive state-space 

exploration, the use of a dedicated formalism for environment 

specification makes it well adapted for testing if either the 

environment cannot be completely captured or if the 

exhaustive exploration fails due to the state-space explosion 

problem [15]. 

Lindstrom, Petterson and Offutt [46] introduce a criteria-

driven test-set generation. This approach enables the 

generation of an exhaustive test harness through the use of a 

criterion-guided reachability strategy. 

Whereas the previous testing techniques rely on the implicit 

traces induced by the model semantics for analysis, 

approaches, such as Counterexample-Guided Abstraction 

Refinement [47], use testing as an internal routine for 

verifying the accuracy of the abstraction used during the 

analysis. In the case of the counterexample-guided abstraction 

refinement the system undergoes a series of abstraction, 

model-checking, test cycles through which safety and liveness 

properties can be verified. 

I. Debugging 

Debugging is the process of finding and resolving the 

program defects that cause unwanted behaviors (crashes, 

erroneous results). Debugging techniques can be classified 

into two broad classes, interactive (the "standard" ones as 

found in IDEs like Eclipse) and automated [48, 49]. 

Rather than providing means for exhaustive analysis, 

interactive debugging provides the tools for observing, 

controlling, understanding and altering the system execution. 

Due to the wide variety of programming paradigms 

addressed, and the way execution traces are handled 

debugging techniques vary enormously. Stack-based 

debuggers are probably the best known and are well adapted 

for sequential stack-based computation. In concurrent and 

distributed contexts the debuggers rely mostly on logical time 

abstractions [50] and make a heavy use of checkpoints (also 

known as distributed snapshots [51]) for building a view of the 

system. By storing the execution traces some debugging 

techniques enable back-in-time navigation features, post-

mortem query processing, trace-analysis and reduction 

facilities, and execution replay [52, 53]. 

 Goldszmidt, Yemini, and Katz [54] introduce an integrated 

system for distributed programs. This approach relies on the 

database recording of global (system-wide) and local (process-

only) events, which can then be queried using a temporal 

assertion mechanism. 

To address the language gap between the system and the query 

language, Lencevicius, Hölzle, and Singh [55] propose a 

query-based debugger where query expressions are 

expressions in the underlying programming language, this way 

the diagnostician can focus its attention on the problem at 

hand, and not loose focus by using two different formalisms. 

Moreover, in the context of this study, it is interesting to note 

that most interactive debuggers keep traceability links (e.g. 

source-code line embedded in the DWARF debugging format 

[56]) between the system formalism concepts and the 

execution platform counter-parts. These links help to bridge 

the semantic gap between the different paradigms.  

J. Trace Visualization 

The analysis of large model execution is almost impossible 

without tool support; visualization tools exploit the human 

ability to quickly understand complex visual patterns. A large 

number of visualization tools exist for studying execution 

traces, they exploit a wide range of diagram structures ranging 

from waveforms (Figure 1) to large graph visualizations 

(Figure 6). Most of these visualization tools are focused at the 

visualization of single execution traces, and are tightly 

integrated in the development environment [57]. 

 
Fig. 1.  Waveform visualization emphasizing a cyclic execution  

A

B

C
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 The Figure 1, Figure 2 and Figure 3 show three different 

interpretation of a cyclic trace (a typical counter-example trace 

for a liveness property), Figure 1 uses a traditional waveform 

diagram to represent the evolution of 3 Boolean variables (A, 

B, C). Figure 2 represents the trace as a graph (drawn with a 

classical hierarchical layout algorithm), while Figure 3 revisits 

the waveform representation explicitly showing the cyclic part 

between square brackets. Figure 4 places the previous trace in 

context, emphasizing its corresponding transitions in a graph 

visualization of the LTS representing the set of possible 

executions. 

 A very interesting visualization strategy was recently 

proposed by Issacs et al. [58], which suggest using a logical 

time abstraction for visualizing the causality relations in 

parallel application. Their approach equally promise scalable 

visualization, through the time discretization resulting from an 

event-based time interpretation, which induces a clustering of 

the local behaviors. 

 However, in the context of model-checking most of the 

tools focus on counter-example visualization through 

sequence diagram-like interpretations (Figure 5), and rely on 

generic graph frameworks such as graphviz for the 

visualization of small state-spaces. However, for industrial 

systems, producing execution traces and LTSs with millions or 

billions of nodes most of these tools do not scale, or produce 

diagrams that are impossible to understand. Figure 6 shows, 

for example, the visualization of a small part of the state-space 

of a large system from the avionics domain. When 

corroborating this visualization with the model details the 

designer can identify the two clusters of states as being two 

execution modes of the system. In such cases it will be 

interesting to have a state-space exploration toolkit enabling: 

the navigation through such a graph, the inspection each state 

individually, the superposition of one of more execution or 

counter-example traces (like in Figure 5), the clustering of 

such a state-space according to user defined criteria, etc. 

IV. OPEN ISSUES IN TRACE-BASED DIAGNOSIS 

The techniques presented in the last section provide the 

diagnostician with a broad set of powerful tools for 

understanding the behavior of the SUS. However, in some 

cases, such as model-checking, these techniques are either not 

available due to engineering constraints, or they do not adapt 

well to the constraints of this verification technique. 

Moreover, in some cases even the techniques that are currently 

integrated in model-checking toolkits do not always provide 

enough flexibility to enable the developer to easily identify 

and understand the causes of failures. 

The remaining part of this section overview three important 

challenges that, from our perspective, should be addressed in 

order to ease the diagnosis process of concurrent systems. 

A. Problem 1: The Semantic Gap 

 One of the main problems in the context of trace-based 

diagnosis is the semantic gap between the formalisms used to 

specify the model, the properties, the environment and the 

underlying transition system used for reasoning together with 

its conforming traces. While sometimes the model and its 

environment are expressed in a similar or an identical 

formalism, the properties are most of the time specified using 

temporal logics. There are some approaches trying to bridge 

the gap between the model and the properties by using 

automaton-based property specification languages (e.g. 

observers [45], temporal logic of action [59]) – at least for 

safety properties – or higher-level property pattern languages 

[17]. However, most of the time these approaches consider 

models expressed in model-checkers languages (such as 

Fiacre, TLA, Promela) well adapted for reasoning, but 

cumbersome and difficult to use in an industrial context. The 

emergence of Domain-Specific Languages (DSL) and Model-

driven approaches gave rise to a plethora of literature on 

model-transformations targeting the generation of formal 

models from diverse modeling formalisms. Most of these 

work focus on the model-verification problem and, fail to 

offer the model designer the diagnostic toolbox really needed. 

 
Fig. 2.  Graph interpretation of a cyclic trace.  

 
Fig. 3.  Waveform visualization emphasizing a cyclic execution. 
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Fig. 4.  State-space visualization emphasizing an execution cycle. 

  

 
Fig. 5.  State-space visualization emphasizing an execution cycle. 

 
Fig. 6. Large state-space visualization, emphazing 2 operating modes. 

  



 

 

8 

To better understand this problem, let us consider the case of a 

system specified with the statecharts formalism [60] using a 

tool like OBP
2
 (any other tool like Tina or Spin will provide 

comparable features). Suppose for now that the system is 

modeled in the OBP modeling language (Fiacre). The OBP 

tool provides the user with features able to simulate, 

exhaustively execute the model, and verify a number of 

properties expressed either as predicates or observer automata. 

We could assume that in such an environment that she would 

be able to perform a number of diagnosis. However, there are 

still some important issues with the diagnosis environment: 

 The system is specified with the statecharts 

formalism, and converted automatically to Fiacre. 

The designer should understand the details of this 

transformation in order to effectively use the tools 

and understand the result provided; 

 Either the properties are described in a formalism 

very close to the specification (statecharts-like), in 

which case there is another transformation toward the 

predicates, and observers used by the toolkit; or the 

properties are described directly using predicates and 

observers in which case they are expressed with 

respect to the Fiacre code automatically generated. 

 If a given property fails, the counter-example 

presented to the used is a path in the LTS, which 

however refers to the Fiacre model and not the 

expected statecharts model. 

Therefore we can see that the heart of the problem is not the 

availability of diagnosis tools but the semantic gap between 

the modeling languages used by these tools, which are highly 

constrained (to ensure decidability – in the context of model-

checking for example) and the domain-specific modeling 

languages used to specify the system. 

Looking back to the techniques presented above, the semantic 

gap issue is addressed by several techniques as stated by 

research work surveyed in this paper: pattern analysis [18], 

[19], [21], [24], [26], model-based diagnosis [29], [31], [32], 

model-transformation [41], [42].    

B. Problem 2: Multiple-level Trace Interpretation 

 The technological shift towards highly parallel computing 

architectures (multi-core, GPU, etc.) poses a large number of 

challenges to software development. Amongst these, 

traditional mature software diagnostic techniques focused on 

sequential stack-based execution cannot be applied in the 

context of highly concurrent applications, which exhibit 

emergent behavior due to the non-deterministic interleaving of 

execution threads. Whereas this issue is not new, being studied 

in the context of distributed system, it is important to note the 

paradigm shift needed when studying such systems. In this 

context the diagnostician steers its attention from the analysis 

of the execution stack to the analysis of execution traces. The 

execution traces record the history of the computation through 

a checkpoint mechanism, storing the state of each thread at 

given points during the execution. Amongst the tools focusing 

on the study of concurrent models, model-checking offers the 

possibility to analyze all the possible execution paths of the 

 
2 Available on http://www.obpcdl.org 

system to verify that a given system satisfy a predefined 

property. 

In the context of highly concurrent applications, the use of 

execution traces for analysis solves the problem of capturing a 

global view of the emergent behavior system. While powerful, 

and well studied, this approach changes the sequential view of 

model execution towards the more natural view of 

concurrently-evolving computational objects, in which case 

the local-state evolution is abstracted away through atomic 

execution steps. While these atomic execution steps 

conceptually can be arbitrarily small, in the context of 

analyzing large systems the atomic steps tend to be as large as 

possible to remove the fine-grained interleavings (between 

functional components) to gain focus on the concurrent access 

to shared resources. Whereas such approaches render the 

analysis of large systems manageable, they also hide atomic 

sequential execution steps. These abstraction practices are 

largely employed especially in the case of asynchronously 

interacting components (which exhibit a large amount of 

interleavings). The diagnosis, in these cases, is limited at 

analyzing the trace configurations, without having a fine grain 

view of the functional steps. In terms of tool support, in some 

cases, such as SPIN [25], it is possible to use software 

debuggers to gain observability during the atomic execution 

steps. However, in this case, the debugger (gdb in occurrence) 

operates at an even lower level of abstraction (C language) 

than the verification language (Promela). In this case the 

diagnosis becomes almost impracticable, especially if a 

generational approach was used (as discussed in the previous 

section) to create the Promela verification model (there is a 

double semantic gap: DSL-Promela-C). It is worth mentioning 

however, that in this case part of the problem comes from the 

engineering complexity needed for developing an execution 

environment and debugging infrastructure, effort that was not 

invested in a research tools such as SPIN [25]. Nevertheless, 

debugging in the context of concurrent, parallel and/or 

distributed models is recognized as a very challenging 

problem, posing problems not only in terms of observation 

and witness generation (large traces) but also in terms of 

control during a supervised execution (what happens to the 

system while one process is stopped during debug?). 

Obviously, the multiple-level trace interpretation issue is 

addressed by several techniques as shown by research work 

presented in this paper: counterexamples [3], trace analysis 

[7], [8], debugging [50], [51], [54], visualization [57], [58]. 

C. Problem 3: Inconsistency Robustness 

 The technological advances during the last decades made 

the parallel computing architectures ubiquitous today. This 

progress pushes for highly parallel computing paradigms 

composing millions if not billions of concurrently interacting 

components (ex. Asynchronous actors – Erlang) – mixing 

physical and computational entities (named cyber-physical 

systems). The diagnosis in this context becomes a highly 

challenging problem. As briefly stated in the last section, the 

problems of execution observation and of distributed control 

are even more exacerbated in such an environment.  

 However, the main problem, in this context, resides in the 

huge amount of data that should be gathered and processed 

during the analysis of such a system. Most of the traditional 
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automated techniques, such as model-checking, are expected 

to fail in these contexts principally due to the problem of state-

space explosion [15]. To tame the diagnosis of such systems 

the community will need to focus on fundamentally different 

approaches, that are more appropriate than execution traces for 

the study of highly asynchronous systems. From our 

perspective, the main limitation of execution traces is that they 

impose a global view of the computation. The execution of the 

concurrent entities is check-pointed regularly (either 

periodically – in the case of back-in-time debugging – or 

systematically – in the case of model-checking) to build a 

coherent view of the system evolution.  

Instead of focusing on this synchronous view of computation, 

a group of researchers, led by Carl Hewitt, started focusing on 

a fundamentally different view, which, under the name of 

“Inconsistency Robustness”, strive to embrace the 

inconsistencies introduced by the emergent behavior of 

millions of components interacting in an unsupervised way 

[61]. As humans we are aware of the presence of massive 

inconsistencies in our understanding of the everyday life, 

however most of the computing systems we design operate 

under a coherence assumption. The challenges posed while 

diagnosing systems in the presence of inconsistencies dwarf 

the progress made by years of research in diagnosing systems 

based solely on execution traces. 

  We are not aware of research work about trace-based 

diagnosis that directly addresses the inconsistency robustness 

issue, but this issue appears in several research work presented 

in this paper: counterexamples [3], [4], trace analysis [7], data-

mining [13], ontology-driven diagnosis [35], model-

transformation [43], [44], [45]. Nevertheless, the diagnosis of 

complex inconsistent systems is at the core of other 

disciplines, such as medicine, biology, management, which 

can provide us, computer scientists, with valuable elements for 

managing the diagnosis of future cyber-physical systems.  

V. CONCLUSION 

A major advantage of model-checking is the production of a 

counterexample, a trace that provides a detailed witness of 

how the model violates the property. In this paper, we 

presented 10 families of techniques that may help the analysis 

of the counterexample and the refinement of the model. 

However, we identify at least three issues that should be 

addressed by an ideal diagnosis process.  

The first issue, named “Semantic Gap”, emphasizes the fact 

that traces are low-level in nature whereas the developer is 

reasoning at a much higher abstract level.  

The second issue, named “Multi-level trace Interpretation”, 

stems from the multiple viewpoints needed during the 

diagnosis process. The multiple viewpoints reflect the time 

and space distribution amongst the interacting components: 

each system component is evolving along different time scales 

and is topologically linked with a few other components. 

The last issue, named “Inconsistency Robustness”, is related 

to the tremendous progress toward massively parallel 

computing architectures, which calls for new diagnosis 

approaches. 

It is interesting to note that the clustering of techniques 

presented in Section II, that is based on a proximity of usages, 

differs significantly from the grouping of techniques related to 

each issue presented in this section. It may indicate that each 

issue requires a transdisciplinarity of techniques and that 

requirements for each technique should be established in order 

to drive the research effort. Accordingly, further research on 

these issues will be our roadmap for the future.  
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