Context-aware Verification of a Landing Gear
System

Philippe Dhaussy, Ciprian Teodorov

UEB, Lab-STICC Laboratory UMR CNRS 6285
ENSTA Bretagne, France

firstname.name@ensta-bretagne.fr

Abstract. Despite the high level of automation, the practicability of
formal verification through model-checking of large models is hindered
by the combinatorial explosion problem. In this paper we apply a novel
context-aware verification technique to the Landing Gear System Case
Study (LGS) [2]. The idea is to express and verify requirements rela-
tive to certain environmental situations. The system environment is de-
composed into several independent scenarios (contexts), which are suc-
cessively composed with the system during reachability analysis. These
contexts are specified using a language called CDL (Context Description
Language), based on activity and message sequence diagrams. The prop-
erties to be verified are specified with observer automata and attached
to specific regions in the context. This approach enables an automated
context-guided decomposition of the verification into smaller problems,
hence effectively reducing the state-space explosion problem. In the case
of the LGS this technique enabled the fully-automated decomposition of
the verification into 885 smaller model-checking problems.

Keywords: formal verification;context-aware model-checking; OBP;
observer-automata...

1 Introduction

Software verification is an integral part of the software development lifecycle, the
goal of which is to ensure that software fully satisfies all the expected require-
ments. Reactive systems are becoming extremely complex with the huge increase
in high technologies. Among reactive systems, the asynchronous systems com-
municating by exchanging messages via buffer queues are often characterized by
a vast number of possible behaviors. To cope with this complexity, manufac-
turers of industrial systems make significant efforts in testing and simulation to
successfully pass the certification process. Nevertheless revealing errors and bugs
in this huge number of behaviors remains a very difficult activity. An alterna-
tive method is to adopt formal methods, and to use exhaustive and automatic
verification tools such as model-checkers.

Model-checking algorithms can be used to verify requirements of a model
formally and automatically. However, because of the internal complexity of the

developed systems, model-checking can lead to an unmanageable large state-
space, a problem known as the state-space explosion problem [6, 16]. Numerous
techniques, such as symbolic model-checking [4], and partial-order reduction [20],
have been proposed to reduce the impact of this problem effectively pushing the
limits of model-checking further and further.

In this paper, we use a novel technique, dubbed context-aware verification
[10], to model and analyze the Landing Gear System Case Study LGS [2]. This
technique proposes to reduce the set of possible behaviors (and thus the state-
space) by closing the system-under-study (SUS) with a well defined environment
(context). In the context of embedded reactive systems, the environment of each
system is finite and well known. Hence, we claim that the explicit and formal
specification of this context enables at least three different state-space reduction
axes: a) the environment can be decomposed in contexts, thus isolating different
operating modes; b) each individual context can automatically be subdivided
in independent verification problems; ¢) the requirements, specified as observer
automata, are focused on specific environmental conditions.

For the LGS , we have modeled one top-level context which was automati-
cally decomposed into 885 isolated smaller scenarios, enabling us to iteratively
perform reachability analysis on each of them. Even though, some of these scenar-
ios fail due to the state-space explosion problem we show that our context-aware
verification approach pushes the limits of reachability analysis, enabling an auto-
matic divide-and-conquer approach to model-checking. Because the limited size
of this paper, we briefly present the SUS modeling and requirement specifica-
tion, we deliberately focus the presentation on our context-guided state-space
reduction technique.

Paper organization. Section 2 presents the related techniques addressing the
state-space explosion problem. Section 3 overviews the principles of our approach
for context-aware formal verification. The LGS model is presented, in Section
4, along with the results obtained with OBP Observation Engine. Section 5
concludes this study giving some future research directions.

2 Related work

Model checking is a technique that relies on building a finite model of a system of
interest, and checking that a desired property, typically specified as a temporal
logic formula, holds for that model. Since the introduction of this technology in
the early 1980s [18], several model-checker tools have been developed to help the
verification of concurrent systems [15, 1].

However, while model-checking provides an automated rigorous framework
for formal system validation and verification, and has successfully been applied
on industrial systems it suffers from the state-space explosion problem. This is
due to the exponential growth of the number of states the system can reach
with respect to the number of interacting components. Since its introduction,
model checking has progressed significantly, with numerous research efforts fo-
cused on reducing the impact of this problem, thus enabling the verification of

ever larger systems. Some of these approaches focus on the use of efficient data-
structures such as BDD [4] for achieving compact state-space representation,
others rely on algorithmic advancements and the maximal use of the available
resources such as external memories [11]. To prune the state-space, techniques
such as partial-order reduction [14,17,20,14] and symmetry reduction [7] ex-
ploit fine-grain transition interleaving symmetries and global system symmetries
respectively. Yet other approaches, like bounded model-checking [5] exploit the
observation that in many practical settings the property verification can be done
with only a partial (bounded) reachability analysis.

The successful application of these methods to several case studies (see for
instance [3] for acrospace examples) demonstrates their maturity in the case of
synchronous embedded systems. However, even though these techniques push the
limits of model-checking ever further, the state-space explosion problem remains
especially in the case of large and complex asynchronous systems.

Besides the previously cited techniques that approach the property verifica-
tion problem monolithically, compositional verification [13] focus on the analysis
of individual components of the system using assume/guarantee reasoning (or
design-by-contract) to extract (sometimes automatically) the interactions that
a component has with its environment and to reduce the model-checking prob-
lem to these interactions. Once each individual component is proved correct the
composition is performed using operators that preserve the correctness.

Our approach can be seen as a coarse-grain compositional verification, where
instead of analyzing the interactions of individual components with their neigh-
boring environment we focus on the interactions of the whole system with its
surrounding environment (context). Conversely to ”traditional” techniques in
which the surrounding environment is often implicitly modeled in the system
(to obtain a closed system), we explicitly describe it separately from the model.
By explicitly modeling the environment as one (or more) formally defined con-
text(s) and composing it with the system-under-study we can conduct the full
system verification. Using the ” context” knowledge the verification problem is de-
composed, following a fully automatic divide-and-conquer algorithm, in smaller
problems (with smaller state-space) which are analyzed independently.

3 Context-aware Model-checking

In this section, we present a formal verification approach that aims primarily
at reducing the state-space explosion problem in the context of exhaustive ver-
ification through model-checking. This approach, dubbed context-aware model-
checking, focuses on the explicit modeling of the environment as one or more con-
texts, which then are iteratively composed with the system-under-study (SUS).
The requirements are associated and verified in the contexts that correspond to
the environmental conditions in which they should be satisfied, and automated
context-guided state-space reduction techniques can be used to further push the

limits of reachability analysis. All these developments are implemented in the
OBP Observation Engine [9] and are publicly available!.

When verifying properties, through explicit-state model checking, the system
explores all the behaviors possible in the SUS and checks whether the verified
properties are true or not. Due to the exponential growth of system states rel-
ative to the number of interacting components, most of the time the number
of reachable configurations is too large to be contained in memory. Besides us-
ing techniques like the ones described in Sec. 2, to alleviate this problem the
system designers manually tune the SUS to restrict its behaviors to the ones
pertinent relative to the specified requirements. This process is tedious, error
prone and poses a number of methodological challenges since different versions
of the SUS should be kept sound, in sync and maintained. To address these is-
sues, we propose to restrict model behavior by composing it with an explicitly
defined environment that interacts with the SUS. The environment enables a
subset of the behavior of the model. This technique reduces the complexity of
the exploration by limiting its scope to a reduced set of behaviors related to
specific environmental conditions. Moreover, this approach solves the method-
ological issues, since it decouples the SUS from its environment, thus allowing
their refinement in isolation.

NN
Properties: — D g
i - ontext, ransition
invariants, . L, explorer 1 system
observers Properties, —> Partial result,

Syskemj—’ y
DL model Labeled
Context, OBP transition
oL system

Syst i lorer >

ystem Fiacre) eplore

model Labeled Properties, |——>Partial result,
<«—>| transition i H :

OBP i I

system >
explorer Labeled
Context, OBP transition

coL system

explorer
Context CDL , ——>Results

——>Partial result,,

(a) Global view (b) Context decomposition

Fig. 1: Context-aware model-checking

Fig. 1a shows a global overview of the OBP Observation Engine . The System
model representing the SUS is described using the formal language Fiacre [12],
which enables the specification of interacting behaviors and timing constraints
through a timed-automata based approach. The surrounding environment and
the requirements are specified with the Context Description Language (CDL).
The CDL formalizes the environment through a number of contexts that interact
asynchronously with the SUS. Moreover, the CDL enables the specification of
requirements through properties that are verified by OBP Observation Engine
. These properties expressed through property-pattern definitions[10] are based
on events (eg. variable x changed) and predicates which are composed to express
either invariants or observers. It should be noted that most of the safety proper-
ties that we are studying can be expressed using observer automata, moreover in

! OBP Observation Engine website: http://www.obpcdl .org

[19] the authors present an automated approach for reducing liveness checking
to safety verification by observer-based model instrumentation.

The OBP Observation Engine verifies the given set of properties with a
reachability strategy using a breath-first-search algorithm on the implicit graph
induced by the parallel composition of the SUS with the context. During the
exploration the Observation Engine captures the occurrences of events and eval-
uates the predicates after the atomic execution of each transition. It then updates
the invariants and the status of all observers involved in the run, thus effectively
performing an exhaustive state-space analysis. A report is generated, at the end
of the exploration, showing the truth values of all invariants and the status
of the attached observers. Moreover, the resulting Labelled Transition System
(LTS) can be queried to find either the system states invalidating a given in-
variant or to generate a counter-example based on the success/reject state of
a given observer, hence effectively guiding the user through the process of the
SUS evaluation against the given requirements.

Environment Modeling with CDL formalism

In the context of reactive embedded systems, the environment of each component
of the system is often well known. It is therefore more effective to identify and
better express this environment than trying reduce the state-space of the SUS.
However, it should be noted that the proof relevance is based on the following
hypothesis: It is possible to specify the sets of bounded behaviors in a complete
way. Even though this can be seen as a strong hypothesis we argue that it
expresses no more than the following well accepted idea: A software system can
be correctly developed only if we know the constraints of its use. So, we suppose
that the designer is able to identify the perimeter (constraints, conditions) of
the SUS and all possible interactions between it and its environment. Another
important observation is that the properties are often related to specific use
cases (such as initialization, reconfiguration, degraded modes). Therefore, it is
not necessary for a given property to take into account all possible behaviors of
the environment, but only the ones concerned by the verification.

To formalize the context specification in [8] we introduced the CDL formal
language to capture the interactions with the environment. A CDL? model de-
scribes the surrounding environment of a SUS and the properties to be checked
in this environment. The interleaving of context actors described by a CDL spec-
ification generates a graph representing all executions of the environment actors,
which can be fed as input to traditional model-checkers, see [8] for more details.

Moreover, if all the identified contexts are finite and acyclic (there are no
infinite loops in the interaction between the system and its environment) then
the interleaved context graph is also finite and acyclic. This is the case with many
command systems or communication protocols. Based on this observation we
have developed a powerful context-guided state-space reduction technique which
relies on the automated recursive partitioning (splitting) of a given context in

2 For the detailed syntax, see www.obpcdl.org.

System Model (S) || Context, (C)

Context, & b
unfold Global —»Spht ,%D ©
mterleave Context, >
el ’
S||C
cittey ||cste || et ||ediie ok fail 1<,
I I T T S ” CiZZ s “ Ci31
CIEIEE e sie, Sie,
(a) Acyclic context splitting (b) Decomposition of reachability

analysis for S||C;
Fig. 2: Context-guided state-space reduction and verification.

independent sub-contexts. This technique, schematically presented in Fig. 2a, is
systematically applied by OBP Observation Engine when a given reachability
analysis (S||C; in Fig. 2b) fails due to lack of memory resources to store the
state-space. After splitting context;, the sub-contexts are iteratively composed
with the model for exploration, and the properties associated with context;
are checked for all sub-contexts. Therefore, the global verification problem for
context; is effectively decomposed into K; smaller verification problems. Hence,
verifying the properties on all these K; problems is equivalent to verifying them
on the initial system.

Context-aware reduction of system behavior is particularly interesting in the
case of complex embedded system, such as avionics, since they exhibit clearly
identified operating modes with specific properties associated with these modes.
Unfortunately, only few existing approaches propose practical ways to precisely
capture these contexts in order to reduce formal verification complexity and thus
improve the scalability of existing model checking approaches. Moreover, a clear
methodology that formalizes the context coverage with respect to the full system
behavior and assist the user on initial context specification is required for these
techniques to be used on industrial-scale critical systems.

4 Case-study: the Landing Gear System

In this section we apply our context-aware verification approach to the LGS case-
study [2] of the ABZ 2014 conference. Before presenting our results, we overview
the LGS modeling using the fiacre language, the environment specification using
CDL, and we introduce two properties which should be verified on the system.

4.1 Modeling the SUS

The FIACRE LGS model, presented in Fig. 3a, is composed of two parts: a
model of the software part, and a model of the physical part, communicating

through urgent signals. The environment of the LGS is composed of two agents:
the pilot sending handle events to change the handle position (from down to
up or vice-versa), and a a virtual agent called Perturbator injecting failures in
the physical components (Fig. 3b). The interactions from the environment (i.e.,
handle and failures) are managed by a specific component called Dispatcher.
Inputs are received through a FIFO channel and are dispatched immediately to
the software part (handle) and to each physical component (failures). Outputs
(i.e., the lights status) are modeled through global variables set by the software
part.

Pilot LGS Perturbator
—— ———
e meeemememaenaaae R par handle : :
: o —_—
Handle:IID Dispatcher | handle | 1
H H | I I
Pilot é : Handle lFaiIures : —handle _,, I
& Orders] ! asbof. |
s “Sensors Physical Part | ' L gebor !
Pertukbator ESoftvsiare Part sensors Physical Part E : . e o .
L Honts FiacrelGSi e —
(a) Global view (b) LGS Context Interactions

Fig. 3: Landing gear system model

The physical part is the parallel composition of 12 instances of the following
FTACRE processes: a) Analog Switch, implementing the behavior of the analog
switch; b) General EV, implementing the behavior of the general electro-valve;
¢) a generic process Generic_E'V, implementing the behavior of one electro-valve;
d) a generic process Gear, implementing the behavior of one gear; e) a generic
process Door, implementing the behavior of one door. Table 1 shows the number

Table 1: Fiacre processes for the Physical Part
‘Analog Switch General EV Generic_. EV Gear Door
of states 18 34 24 23 20
of instances 1 1 4 3 3

of states of each of these processes along with the number of times each one is
instantiated in the model.

Each process is a FIACRE automaton. As illustration, Fig. 4 shows the au-
tomaton of the process AnalogSwitch composed of 18 states. This process im-
plements a loop from open to closed and from closed to open through numerous
intermediate states including timers as required in the general description of the
case study. The two final states at the right of the automaton implements the
failure state blockedOpen to blockedClosed. These states are reached from any-
where in the automaton whenever a failure event is received from the Perturbator
through the Dispatcher.

blockedOpen

closed] >bClosed

blockedClosed

Fig. 4: Automaton of the Analog Switch process

Similarly, the software part is the parallel composition of 8 instances of the
following FIACRE processes: a) a generic process Door sensor synthesis, which
computes the door state (closed, open, or intermediate) from the values returned
by the sensors; b) a generic process Gear sensor synthesis, which computes the
gear state (retracted, extended, or intermediate) from the values returned by the
sensors; ¢) EV Manager, which executes the extension and retraction sequences
according to the handle position and the values returned by the sensors; d) Status
Manager, which computes the status (on or off) of the three lights in the cockpit.
Table 2 shows the number of states of each of these processes along with the
number of times each one is instantiated in the model.

Table 2: Fiacre processes for the Software Part
‘Door sensor synth. Gear sensor synth. EV Manager Status Manager
of states 8 8 52 10
of instances 3 3 1 1

The FTACRE model of the LGS described in the previous paragraphs has
more than 3,000 lines of code, and it is available at http://www.obpcdl.org
along with the OBP Observation Engine toolset.

Assumptions and restrictions. With respect to the general description of the
case study, two more restrictions have been introduced:

1. Firstly, we consider only one software module (and not two as required in
the general description), which is assumed failure-free.

2. Secondly, we consider only one failure-free wire for each sensor (and not
three as required in the general description). Put differently, we suppose that
sensors are safe, i.e., without any failure mode. Nevertheless, we assume that
all the physical equipment can fail at anytime. However, failures are assumed
to be permanent, such that if a equipment (a gear for instance) becomes
blocked, then it remains blocked forever.

Except these restrictions, all the other specification have been taken into
account. Particularly the timing constraints: the automata of the gears, doors,
electro-valves, and analog-switch implement the timed behavior as required in

the general description. Similarly, the EV-manager allows the pilot to change
the sequence (from retraction to extension or vice-versa) at anytime during the
sequence. Finally, EV-manager monitors the physical equipment through the
electrical values returned by the sensors. Whenever one of these values is not
equal to the one expected by the software part (for instance the right door is
still seen closed 7 seconds after activation of the opening electro-valve), then an
anomaly state is reached and the red light is turned on.

4.2 Modeling the Context

As mentioned in the previous section the environment of the LGS is composed
of the interleaved actions of two context actors, namely the pilot sending up/-
down commands through its handle, and a virtual actor (named Perturbator)
introducing failures into the system. Using the CDL formalism the pilot behavior
is represented through an activity composed of a sequence of handle events sent
to the Dispatcher process (see first two lines of Listing. 1).

Table 3: Overview of the considered failures along with the affected components
door electro-valves gear electro-valves
extension retraction extension retraction
Opened|Closed ||Opened |Closed||Opened|Closed| Opened |Closed || Opened | Closed Opened‘Closed
asboF |asbcF' || gboF | gbcF || deboF |debcF' | drboF' |drbcF || geboF | gebcF' | grboF grbcF
exclusive exclusive exclusive exclusive exclusive exclusive

analog switch general EV

door gear
Front|Left|Right || Front |Left| Right
fdF |ldF'| rdF || fgF |lgF| rgF

The Perturbator actor encodes all considered failure configurations com-
posed of sequences of 1 up to 3 failures taken from the total 18 failures that have
been identified, see Table 3 for the complete list of the failures classified according
to the affected component. It should be noted that between the first 12 failures
there are groups of 2 exclusive failures (ex. the analog-switch cannot be blocked
in the opened and closed state at the same time). Taking these exclusion rules
into account it follow that there are 885 possible failure configurations as follows:
a) 18 possible configurations with 1 failures. b) 147 possible configurations with
2 failures (and 6 excluded failures). ¢) 720 possible configurations with 3 failures
(and 96 excluded failures). Each of these failure scenarios as encoded as a CDL
activity (Listing 1 lines 5-6), named FailureContext}, where x € [1...3]is the
number of failures and k is the id of a given configuration from the set of the
ones possible with z failures (ex. k € [1...147], for « = 2). The Perturbator
actor is then represented as a CDL activity that non-deterministically chooses
one of these failure configuration to play, see lines 8-11 in Listing 1.

The CDL specification of the global environment, Listing 1 lines 13-16, con-
sists of the initialization of the SUS (line 15) followed by the asynchronous
interleaving of the Pilot events with the Perturbator failure sequences. Note
also the association of the properties to be verified (described in the following
paragraphs) with the context (lines 14).

AW N R

© ® N O w A W N e

-
o

Listing 1: Overview of the CDL environment description

event Handle is {send HANDLE to {Dispatcher}1}
activity PILOT is { event Handle; event Handle; event Handle}

event asboF is {send ASBOFAILURE to {Dispatcher}1}
activity FailureContext; is { event k'"failure }
activity FailureContext?3 is {

o // all permutations of the k™ 2(or 3) failures }
activity Perturbator is {

FailureContext] [] --- [] FailureContextis
[] FailureContext? [] --- [] FailureContext,;
[] FailureContext; [] --- [] FailureContextdy,, }

cdl scenario_885_failure_configurations is {
properties oRi, oR2 // reference to the observers for Ri, and R
init is { act-init } // initialization sequence
main is { PILOT || Perturbator } //scenario }

4.3 Specifying the Properties

To illustrate the property specification aspects of the CDL language, let us con-
sider the following two requirements:

— Requirement R;: The red light should always be off.
— Requirement Ry: At the end of each Pilot interaction the green light
should be on.

Listing 2: CDL-based property specification

predicate pRed is { {SYS}l:red_light=true }
event evt._red is { pRed becomes true }

property oR; is { start — / / evt_.red / —> reject }

property oRs is {
clock ck;
start — / / evt_orange / ck := 0 —> maneuvering;
maneuvering — / / evt_green / ck := —1 —> success;
start — ck >= 15000 / / / ck := —1 —> reject;

}

In CDL, R; is an observer that reaches the reject state when the red_light
turns on, line 4 in Listing 2. The {SY S}1 prefix indicates the fiacre compo-
nent where the red_light variable is defined. The second requirement, Rs, is
represented using an observer automaton that follows the system execution and
produces a success event whenever the green light is turned on before the ck
deadline. The observer declaration (line 5) is introduced with the property key-
word and defines a transition from the start state to the maneuvering state
initializing the timer ck when the evt_orange is present, a transition from the

maneuvering state to the success state (disabling the timer), and a transition
from the start state to the reject state if the timer expired. These observers are
references in the context in which they should be checked and composed with
the system during reachability analysis.

4.4 Experimental Results

This section presents some experimental results obtained using our context-
aware verification approach [9] on the LGS . All results where obtained using
OBP v.1.4.5 on a 64-bit Linux machine that has 64GB of memory.

12800

3200 B # states = # transitions M failure 1 gear
800
200
50 | - l -— || || —
12800 2 gears
3200
800 I
200
wal SN S0 N1 OF BTNE ST
12800

o o
o

3 gears
3200
800
2|I LEELL] 1l
0

asboF asbcF gboF gbcF deboF debcF drboF drbcF geboF gebcF grboF grbcF fdF fgF

(%]

Fig. 5: Reachability analysis results for one/two/three-gear(s) LGS with 1 failure
injected interleaved with 3-handle interactions (results in thousands). The black
bars indicate the state-space explosion cases, showing the number of states/tran-
sitions explored before failure.

While the environment model presented in Sec. 4.2 considers only a single
top-level context, our explicit-context modeling approach also enables the anal-
ysis of partial system behavior, for instance, by simply running the automatic
context split on the Perturbator actor we obtain the set of simpler environments
that does not take into account the possible model failures. Considering such a
context in which the Pilot actor sends 3-handle interactions followed by the in-
jection of 2 failures (drboF, fdF) by the Perturbator in a 3 gear system we get
a state-space of 1,451,144 states and 4,969,518 transitions in 2,598 sec. However,
just by adding one more failure (geboF'), at the end of the preceding sequence
of interactions, the exploration fails (due to lack of memory) after analyzing
1,908,556 states and 6,484,681 transitions.

Even though we could not analyze the whole LGS system using the current
version of OBP Observation Engine, we have been able to analyze a large number
of reachable states of the system. In Fig. 5 we show the results obtained on a
simplification of the model using all 1 failure configurations introduced in Table
3 (the IdF, lgF, rdF, rgF are not included in the Fig. since the l-gear case

does not include them, however the results are comparable with fdF and fgF).
Compared to the 1-gear case in the second case the size of the obtained LTS is
in average 4.63X(6.44X) bigger in terms of states(transitions), with the deboF'
giving a 10X(15.5X) bigger LTS. It is interesting to note that if in the case of the
2-gear case we reduce the number of Pilot interactions to one (1-handle) the size
of the resulting LTS drops in average (over the 16-failure cases) by 86.5X(98.4X)
states(transitions), with a peak in the case of the gboF failure which gives a
146X (174X) smaller system. In the second and third case it should be noted
that the 64GB memory space on our machine did not suffice for exploring the
context injecting some failures, like gebcF and grocF failures. ? Table 4 shows the

Table 4: Number of sub-context and state-space approximation with respect to
the number of gears after two context splitting step.

1 gear 2 gears 3 gears
split 1 391 606 885
split 2 1936 3100 4632
state-space aprox.[1.13 x 10%[5.55 x 10° 6.72 x 107
Cumulated result for 1 failure with 3 pilot interactions (3-handle)
of sub-contexts 14 16 18
states 2 328 63514 156 119 26 585 225
transitions 5 766 682 (53 104 972 98 135 315
time (sec.) 2 387 16 942 46 216

number of elementary sub-contexts after one and respectively 2 automatic split
levels. The state-space approximation line provides a rough optimistic prediction
of the number of reachable states by multiplying the lowest number of states
presented in Fig. 5 by the number of sub-context after the second split. The
lowest half of Table 4 shows the cumulated results, in terms of LTS size and size,
of the exploration of the 1-failure 3-handle contexts shown in Fig. 5.

In Fig. 6 we show a visual representation of the LTS obtained for 3-gear/2
Pilot interactions without failures*. Two distinct operating modes of the LGS
system are shown: at the left we can identify the initialization sequence of the
LGS comprising of 7,348 states and 30,605 transitions, while at the right the
behavior of the system during a down/up gear sequence is exposed.

Our splitting technique did not suffice for completing the reachability analysis
of a 3-gear/3- Pilot interactions with failures. However, we argue that despite this
setback, the context-aware verification approach introduces a new state-space re-
duction axis complementary with more holistic approaches such as partial-order
reduction [20], and symmetry-reduction [7]. Moreover, the possibility to partially
analyze the system gives valuable insights on particular context-dependent be-
haviors enabling the designer to better focus its verification efforts.

3 Tt should be noted that the instantiation of the model with 1, 2 or 3 gears is can be
seen also as a partitioning of the verification on the model-side as opposed to the
context-side.

4 The layout is obtained using Grapviz sfdp layout using a simple linear color scheme
where the shorter transitions are red while the longer ones are blue.

Fig. 6: LGS behaviors during a gear down/up sequence (no failures)

5 Conclusion and Perspectives

In this paper, we apply a novel context-aware verification technique to the Land-
ing Gear System. This approach based on Fiacre and CDL languages and in the
OBP Observation Engine to OBP proposes to reduce the set of possible be-
haviors (and thus the state-space) by closing the system-under-study with a
well defined environment (context). For LGS we have modeled one top-level
context which was automatically decomposed into 885 isolated smaller scenar-
ios, enabling us to iteratively perform reachability analysis on each of them.
Even though, some of these scenarios fail due to the state-space explosion prob-
lem, we show that our context-aware verification approach pushes the limits
of reachability analysis, enabling an automatic divide-and-conquer approach to
model-checking. We are currently working on improving our context-aware veri-
fication approach by providing a clear methodological framework that formalizes
the context coverage with respect to the full system.

Acknowledgments

We wish to thank Dr Frederic Boniol for his valuable and constructive sugges-
tions related to this paper

References

1. Bengtsson, J., Larsen, K.G., Larsson, F., Pettersson, P., Yi, W.: UpPAAL — a Tool
Suite for Automatic Verification of Real-Time Systems. In: Proc. of Workshop on
Verification and Control of Hybrid Systems III. pp. 232-243. No. 1066 in Lecture
Notes in Computer Science, Springer—Verlag (Oct 1995)

2. Boniol, F., Wiels, V.: The Landing Gear System Case Study. In: ABZ Case Study.
Communications in Computer Information Science, vol. 433. Springer (2014)

3. Boniol, F., Wiels, V., Ledinot, E.: Experiences using model checking to verify real
time properties of a landing gear control system. In: Embedded Real-Time Systems
(ERTS). Toulouse, France (2006)

10.

11.

12.

13.
14.
15.

16.

17.

18.

19.

20.

Burch, J.R., Clarke, E.M., McMillan, K.L., Dill, D.L., Hwang, L.J.: Symbolic model
checking: 10%° states and beyond. In: 5th IEEE Symposium on Logic in Computer
Science. pp. 428-439 (1990)

Clarke, E., Biere, A., Raimi, R., Zhu, Y.: Bounded model checking using satisfia-
bility solving. Formal Methods in System Design 19(1), 7-34 (2001)

Clarke, E., Emerson, E., Sistla, A.: Automatic verification of finite-state concurrent
systems using temporal logic specifications. ACM Trans. Program. Lang. Syst. 8(2),
244-263 (1986)

Clarke, E., Enders, R., Filkorn, T., Jha, S.: Exploiting symmetry in temporal logic
model checking. Formal Methods in System Design 9(1-2), 77-104 (1996)
Dhaussy, P., Boniol, F., Roger, J.C.: Reducing state explosion with context mod-
eling for model-checking. In: 13th IEEE International High Assurance Systems
Engineering Symposium (Hase’11). Boca Raton, USA (2011)

Dhaussy, P., Boniol, F., Roger, J.C., Leroux, L.: Improving model checking with
context modelling. Advances in Software Engineering ID 547157, 13 pages (2012)
Dhaussy, P., Pillain, P.Y., Creff, S., Raji, A., Traon, Y.L., Baudry, B.: Evaluating
context descriptions and property definition patterns for software formal valida-
tion. In: Andy Schuerr, B.S. (ed.) 12th IEEE/ACM conf. Model Driven Engineer-
ing Languages and Systems (Models’09). vol. 5795, pp. 438-452. Springer-Verlag,
LNCS (2009)

Edelkamp, S., Sanders, P., Simecek, P.: Semi-external LTL model checking. In:
Gupta, A., Malik, S. (eds.) Computer Aided Verification, Lecture Notes in Com-
puter Science, vol. 5123, pp. 530-542. Springer Berlin Heidelberg (2008)

Farail, P., Gaufillet, P., Peres, F., Bodeveix, J.P., Filali, M., Berthomieu, B., Ro-
drigo, S., Vernadat, F., Garavel, H., Lang, F.: FIACRE: an intermediate language
for model verification in the TOPCASED environment. In: European Congress on
Embedded Real-Time Software (ERTS). SEE, Toulouse (january 2008)

Flanagan, C., Qadeer, S.: Thread-modular model checking. In: SPIN’03 (2003)
Godefroid, P.: The Ulg partial-order package for SPIN. SPIN Workshop (1995)
Holzmann, G.: The model checker SPIN. Software Engineering 23(5), 279-295
(1997)

Park, S., Kwon, G.: Avoidance of state explosion using dependency analysis in
model checking control flow model. In: Proceedings of the 5th International Con-
ference on Computational Science and Its Applications (ICCSA ’06). vol. 3984, pp.
905-911. Springer-Verlag, LNCS (2006)

Peled, D.: Combining Partial-Order Reductions with On-the-fly Model-Checking.
In: CAV ’94: Proceedings of the 6th International Conference on Computer Aided
Verification. pp. 377-390. Springer-Verlag, London, UK (1994)

Queille, J.P., Sifakis, J.: Specification and verification of concurrent systems in
cesar. In: Proceedings of the 5th Colloquium on International Symposium on Pro-
gramming. pp. 337-351. Springer-Verlag, London, UK (1982)

Schuppan, V., Biere, A.: Liveness checking as safety checking for infinite state
spaces. Electronic Notes in Theoretical Computer Science 149(1), 79 — 96 (2006)
Valmari, A.: Stubborn sets for reduced state space generation. In: Proceedings of
the 10th International Conference on Applications and Theory of Petri Nets. pp.
491-515. Springer-Verlag, London, UK (1991)

