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Abstract With an ever increasing complexity, the verifi-
cation of critical embedded systems is a challenging and
expensive task. Among the available formal methods, model
checking offers a high level of automation and would thus
lower the cost of this process. But, the scalability of this
technique is hindered by the state-space explosion problem,
which fuelled the research community since its inception.
To address this challenge, in the case of real size systems,
the theoretical, the methodological and the algorithmic axes
have to be integrated. The context-aware verification (CaV)
strives to do this by focusing on the identification, the isola-
tion and the reification of the environment surrounding the
studied system. It enables the use of specific algorithms with
a major, positive, impact on the scalability of model check-
ing. In this paper, we apply this technique to study a Landing
Gear System (LGS) in the presence of failures. The prob-
lem has been decomposed in 885 independent verification
units (called contexts). The analysis of 163 of these contexts
on a 64 GB computer unraveled a 20 TB state space with
more than 2.2 billion states. Moreover, using this approach
arbitrarily long scenarios have been analysed using less than
10 GB of memory.
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1 Introduction

Nowadays, the verification phase of aerospace control sys-
tems is one of the most expensive phases of the development
process, due to the complexity and the safety requirements.
Manufacturers of industrial systems make significant efforts
in testing and simulation to successfully pass the certifica-
tion processes. The industry moves towards the integration
of more and more autonomous components, such as auto-
mated mission planning, multivehicle cooperative control,
automatic collision avoidance. These tendencies will further
increase the cost of the verification phase exponentially.

Formal methods provide an alternative to traditional test-
drivenverification [27]; however, their scalability to an indus-
trial process poses numerous challenges. For instance, model
checking is an exhaustive-search technique that enables to
automatically prove if a system satisfies the requirements.
Moreover, for each requirement that is not satisfied a counter-
example is produced. But, for large systems, due to the
internal complexity and the high-degree of concurrency,
this technique can lead to an unmanageable large number
of possible behaviors. This problem, known as the state-
space explosion problem [11,31,39], has fuelled numerous
research efforts. The invention of numerous techniques,
ranging from algorithm optimizations [9,25,34], to model
simplifications [12,24,32,38] and decomposition methods
[23], has pushed the limits of model checking ever fur-
ther. Nevertheless, for successful verification, in the case
of large and complex systems, the designers still have to
manually tune the “verification model” to restrict its behav-
iors. This process is tedious, error prone and poses a number
of methodological challenges since different versions of the
model should be kept consistent, in sync and maintained.
The Context-aware Verification (CaV) [17], overviewed in
Sect. 2, provides a structured approach for addressing some

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10009-015-0401-2&domain=pdf


C. Teodorov et al.

of these problems. With CaV, a number of independent veri-
fication contexts are used to represent the restricted model
behaviors along with the associated requirements. These
contexts, specified using the CDL language (introduced in
Sect. 2.1), are exploited by the verification tools giving
rise to new algorithms for fighting the state-space explosion
problem. Two such algorithms, a context-driven reachability
algorithm (named PastFree[ze]), and an automated context
partitioning method, are presented in Sect. 2.2.

Fully supported by the OBP Observation Engine1, the
CaV approach is complementary to the state-of-art research
in themodel-checking field (discussed in Sect. 5) and enables
at least three different state-space reduction axes:

– the environment can be decomposed in contexts, thus iso-
lating different operating modes of the system;

– each context can be exploited by the analysis tools, for
instance by automated partitioning in independent verifi-
cation problems;

– the requirements, which are associated with each context,
are focused on specific environmental conditions.

In this study, we present a detailed account of applying the
CaV method to an aircraft landing gear system (LGS). Ini-
tially studied byBoniol et al. [8], this case studywas proposed
by Boniol and Wiels as a challenge for a dedicated track at
the 4th International ABZ Conference (ABZ’14) [7].

The LGS is modeled using the Fiacre language [22]
(Sect. 3.1). The environment is composed of pilot interac-
tions (requesting the extension or retraction of the landing
gear) interleaved with failure injections. One top-level inter-
action scenario captures the full environment, but bounds the
number of pilot interactions to an arbitrary value. Section 3.2
overviews the CDL specification of the environment. Since
this study is focused more on the reachability analysis of the
LGS using the CaV approach, only two safety properties are
considered (Sect. 3.3). Both these properties are associated
with the top-level environment to create the global verifica-
tion context.

The global verification context is decomposed into 885
smaller contexts, each one representing a different failure
sequence setup. The verification iteratively performs reach-
ability analysis on each of them. The results presented in
Sect. 4 overview the reachability of 163 of the 885 contexts
considering only the full LGS configuration with three gears
and doors. The results previously presented by the authors
at ABZ’14 [19] are updated and the differences are briefly
discussed in Sect. 4.2.

The 163 contexts correspond to the 18 one failure con-
texts, 64 of the two failure contexts, and 81 of the three
failure contexts. The successful exploration of all the one

1 OBP Observation Engine website: http://www.obpcdl.org.

failure contexts is presented in Sect. 4.3. The results for the
two and three failure contexts are overviewed in Sect. 4.4
and emphasize the importance of the context reification2 dur-
ing the reachability analysis. The impact of using infinitely
many or a bounded number of pilot interactions is discussed
in Sect. 4.5 mainly showing the importance of having a rei-
fied environment model. One of the most important result
presented is the possibility to analyse arbitrarily many pilot
interactions with constant memory requirements.

Overall, 2.2 billion states of the LGS were analysed in
around 18%of the total number of contexts. By extrapolating
the results obtained for the 163 context to the total number
scenarios, we could say that, for the LGS case study, the CaV
context-aware partitioning enables the verification of a state
space of around 20TB on a 64 GB computer (a 300× gain).

The first experiences on environment reification [17], the
formalisation of the CDL language [15] and the introduc-
tion of the context-aware partitioning technique [16,18] led
to realistic case studies from different application domains,
such as healthcare (pacemaker [6]), aeronautics (LGS [19]),
and automotive (cruise-control [36]). Building on these
developments, the main contributions of this study are:

– A new reachability algorithm, named PastFree[ze],
which enables the analysis of arbitrarily large interaction
scenarios with low-memory requirements.

– A synthetical presentation of the context-aware verifi-
cation approach, which emphasizes the importance of
independent verification units.

– The reachability analysis of a realistic case study from the
aeronautic industry, which shows good results regarding
the scalability of our approach.

These results are very promising, and trading off memory
usage for an increased number of contexts has two advan-
tages. Firstly, large verifications succeed where previously
they could not. Secondly, the tremendous advancements of
the cloud-computing industry offer the opportunity to exploit
large numbers of computational resources having relatively
low amounts of available memory [3].

2 Context-aware verification

Model checking is a technique that relies on building a finite
model of a system of interest, and checking that a desired
property, typically specified as a temporal logic formula,
holds for that model. Since the introduction of this technol-
ogy in the early 1980s [33], several model-checker tools have

2 By “reification”, we mean the process of explicitly identifying
something, which then is formulated and rendered accessible to con-
ceptual/computational manipulation.
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been developed to help the verification of concurrent systems
[4,26].

However, while model checking provides a rigorous and
automated framework for formal system verification and has
successfully been applied on industrial systems, it suffers
from the state-space explosion problem [39]. This is due
to the exponential growth of the number of states the sys-
tem can reach with respect to the number of interacting
components. Since its introduction, model checking has pro-
gressed significantly, with numerous research efforts focused
on reducing the impact of this problem [9,12,24,38], thus
enabling the verification of ever larger systems. Besides these
techniques, in the case of large and complex system, the
system designers manually tune the “verification model” to
restrict its behaviors to the ones pertinent relative to the spec-
ified requirements. This process is tedious, error prone and
poses a number of methodological challenges since different
versions of the model should be kept sound, synchronized
and maintained.

The context-aware verification (CaV) provides a struc-
tured approach for capturing the verification problem through
a number of independent verification contexts (referred sim-
ply as contexts in the following), which explicitly represent
the restrictedmodel behaviors alongwith the requirements to
be verified. Themodel is decomposed in two components: the
system-under-study (SUS) and the environment. While the
SUSspecification is viewed as a black-box that never changes
during the verification, the environment model is decom-
posed in multiple interaction scenarios, captured through the
CDL formalism (Sect. 2.1). The verification contexts are cre-
ated by associatingwith each interaction scenario the relevant
properties that should be verified in each case. The verifica-
tion process iteratively composes these contextswith theSUS
to check the validity of the associated properties.

This user-defined environment decomposition is mainly
intended to capture the operating modes of the SUS, and
the different verification objectives for each operating mode.
Moreover, such a user-guided environment decomposition
is very important in the presence of properties requiring the
storage of the execution history besides the configuration
of the system (ex. observer automata). In such cases, a large
number of properties can significantly increase the size of the
state space leading to the state-space explosion. The verifi-
cation engineer can in such cases create multiple verification
units with identical interaction scenarios associated with dif-
ferent verification targets.

The CaV approach imposes a formal, methodical decom-
position and classification of large requirements sets, a first
step in overcoming the state-space explosion problem. The
uniqueness of this method lies in the way it exploits the
contexts during the analysis to push the limits of the veri-
fications even further. In the following, we briefly overview
a context-directed reachability algorithm (Sect. 2.2.1), and

a partitioning algorithm that enables the automated decom-
position of contexts (Sect. 2.2.2). The effectiveness of these
techniques, for the LGS case study, is discussed in the results
section (Sect. 4). From a system-engineering point of view,
this approach solves themethodological issues by decoupling
the SUS from its environment, thus allowing their refine-
ment in isolation. Furthermore, the possibility to analyse
the SUS with a partial environment model gives valuable
insights on particular context-dependent behaviors, enabling
the designers to better focus their verification efforts. The
reader should note the difference between the used-defined
verification units (primarily intended to capture the verifi-
cation of groups of system-level behaviors, eg. operating
modes) and the creation of sub-contexts through the auto-
mated context decomposition (used to improve the scalability
of model checking in the case of state-space explosion).
While a full CaVmethodology is very important for the effec-
tive industrialisation of the approach, an in-depth discussion
on this subject is beyond the scope of this study, which is
focused on the impact of explicit context isolation on the
reachability problem.

The context-aware verification approach is implemented
in the OBP Observation Engine[16] (overviewed in
Sect. 2.3), which is publicly available.3

2.1 Verification contexts with CDL formalism

In the context of reactive embedded systems, the environment
of each component of the system is often well known. It is,
therefore, better and more effective to identify and express
this environment than trying to reduce the state space of the
SUS (by ad-hoc modifications). However, it should be noted
that the formal relevance of this approach is based on the
following hypothesis: It is possible to specify the sets of
bounded behaviors in a complete way. Even though this can
be seen as a limiting hypothesis, it expresses no more than
the following well accepted idea: A software system can be
correctly developed only if we know the constraints of its use.
Thus, we take for granted that the designer is able to iden-
tify the perimeter (constraints, conditions) of the SUS and all
possible interactions between it and its environment. Another
important observation is that the properties are often related
to specific use cases (such as initialization, reconfiguration,
degraded modes). Therefore, it is not necessary for a given
property to take into account all possible behaviors of the
environment, but only the ones concerned by its verification.

To formalize the context specification in [15], we intro-
duced the CDL formal language to capture the interactions
with the environment. The following sections overview
the CDL specification of these interaction-based scenar-
ios (Sect. 2.1.1), the property language for capturing the

3 OBP Observation Engine website: http://www.obpcdl.org.
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requirements (Sect. 2.1.2), and the top-level structure of a
verification context (2.1.3). The reader should refer to [15]
for an in-depth presentation of the CDL language semantics.

2.1.1 Environment modelling through interaction scenarios

For expressing the environment interactions with the SUS,
the CDL language provides a textual syntax based on the
Use-Case Charts [40] using activity and sequence diagrams,
which have been extended to permit the description of several
entities (actors). The result is a finite generalized Message
Sequence Chart (MSC) C expressed using the following for-
mal grammar:

C ::= M | C1;C2 | C1[]C2 | C1‖C2

M ::= 0 | a!; M | a?; M

In other words, the environment interactions with the SUS
are captured through either: (1) a sequence of emissions
a! and receptions a?, or (2) a sequential composition (seq
denoted ;) of two MSCs (C1;C2), or (3) a non-deterministic
alternative (alt denoted []4) between two MSCs (C1[]C2),
or (4) a parallel composition (par denoted ‖) between two
MSCs (C1‖C2).

An emission is an asynchronous communication from the
environment to the SUS. Similarly, a reception is an asyn-
chronous communication from the SUS to the environment.
These interactions are expressed using the following gram-
mar:

a! ::= send Value to {p}n
a? ::= receive (Value|any) f rom {p}n

TheValue non-terminal represents a value expressed in the
SUS modelling language (Fiacre in this study). The special
value “any” defines a reception that ignores the actual value
sent from the SUS. {p}n refers to the nth instance of the
process named p.

For example, in the case of the LGS, we define a manip-
ulation of the handle by the pilot as an emission:
event Handle is { send HANDLE to {Dispatcher}1}.

The hierarchical composition of M is introduced by the
activi t y keyword. For instance, the interleaving of 2 Handle
occurrences with one failure can be expressed through the
following activities:
activity 2handles is { loop 2 Handle }

activity handleAndFailure is { 2handles || injectFailure },
where injectFailure is an emission interaction. Note that
loop n construct is only syntactic sugar for expressing chains
of sequential interactions using iteration (bounded loops).

4 The alt operator was denoted + in the original syntax, in this study
we have used [] to match the actual CDL grammar.

2.1.2 Property specification

The CDL formalism provides 3 distinct constructs for
expressing safety and bounded-liveness properties: (a) pred-
icates, for expressing invariants over states; (b) observers, for
expressing invariants over execution traces; (c) property pat-
terns, for simplifying the expression of complex properties.

The predicates, defined by the predicate keyword, are
nothing more than propositional logic formulas, which could
be either asserted in a context, or be used in the definition of
observers or property patterns. The predicates are expressed
using the following formal grammar:

P ::= Atom | not P | P and P

For example, predicate pRed is { {proc}1:red_light=true }

expresses that the variable red_light of {proc}1 is true. In
this case, the expression {proc}1:red_light=true is an atomic
side-effect free expression (Atom non-terminal) expressed in
terms of the structure of the configuration of the system. The
other propositional logic operators can be trivially obtained
using the DeMorgan’s laws.

The observers are timed automata-based constructs used
to express invariants over execution traces. Besides being
deterministic and complete, their particularity is that they
are composed synchronously with the system, and advance
by observing the occurrence of events, like the changes in
the valuation of a predicate.

In the CDL formalism, the observers are expressed using
the following formal syntax:

O ::= (clk+)?(ids CP? E? P? (Rclk+)? (idt |reject))+

where the clk+ part introduces a number of clock variables.
A transition between the states ids and idt is fireable if the
clock invariantsCP are true, the events E are present and the
predicates P are true, in which case the transition is executed
potentially resetting the clocks Rclk . The notion of clock
present in the observers implements standard timed automata
semantics [1]. The notion of “event” (E) is used to capture the
changes in predicate valuation (rising/falling edges). Their
syntax is

E ::= (P becomes (true | false)) | (P changes)

A property encoded by an observer is violated if, during
the execution of the system, the observer reaches a prede-
fined rejection state (reject). The syntactic ordering of the
transition ensures the determinism of the observers. Their
completeness is mechanically guaranteed by the exploration
engine by implicit transitions looping in each state (comple-
menting the explicitly defined transitions). In the concrete
syntax, the clock invariants, the predicates and the clock
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reset blocks are syntactically expressed between “–” and “-
>” transitionmarkers, and are separated amongst themselves
by the “/” character.

For example a deadline property, such as: “after p1, p2
should occur before 10 time units”, translates to the three-
state CDL observer presented in Listing 1. Initially in the
start state, this observermoves to s1 if the predicate p1 is true
(initializing the clock ck). If the p2 predicate is or becomes
true before 10 time units it returns to the start state, if not it
reaches the reject state (also disabling its clock). If the reject
is reached, then p2 did not occur before 10 time units.

Listing 1 CDL-based property specification

1 property oR2 is {
2 clock ck;
3 s tar t −− p1 / ck := 0 −> s1;
4 s1 −− p2 / ck := −1 −> star t ;
5 s1 −− ck >= 10 / ck := −1 −> reject}

The predicates and observers are simple yet powerful
mechanisms for property specification. However, for com-
plex properties they tend to become hard to understand
and manipulate, mainly due to the large number of sub-
tle interdependencies between the events manipulated, their
occurrences and scope. To address this issue, the CDL
language offers support for property-pattern specification,
inspired by the pattern language introduced by Dwyer [20].
The interested reader should refer to [18] for more details on
this aspect, which is beyond the scope of this study.

2.1.3 The anatomy of a verification context

The interaction scenarios, the properties and their associa-
tions are explicitly defined by the system designer, which is
responsible for their pertinence and their completeness with
respect to the SUS requirements. In the CDL language, the
association of interaction-based scenarios with the relevant
properties form well-defined verification units, named CDL
contexts (or simply contexts). The formal structure of a con-
text conforms with the following syntax:

CDL ::= P ∗ O ∗ Cinit? Cmain?

A context, introduced through the cdl keyword, is struc-
tured into two distinct sections: the property assertion part,
and the scenario specification part. The property assertion
part contains the (potentially empty) list of predicates (P∗)
that should be globally satisfied (should be true in all states of
the state space), and the list of observers (O∗) that should be
composed with the system. The scenario specification part
defines the interactions of the environment with the SUS and
is itself decomposed into an initialisation sequence (intro-
duced by the ini t keyword) and the core scenario (introduced
by the main keyword).

Listing 2 The structure of a CDL verification context

1 cdl context1 is {
2 assert predicate1 , predicate2
3 properties observer1 , observer2
4 init is { ini t ia l izat ion sequence }
5 main is { interaction scenario }
6 }

Listing 2 shows the structure of a typical context. It should
be noted that both the ini t and themain blocks can be empty.
Leaving both the initialisation and core scenario empty, and
specifying the environment within the same formalism as the
SUS, leads to the traditional model-checking setup.

2.2 Exploiting the verification contexts

As already mentioned, the uniqueness of the CaV approach
lies in the way the contexts are used during the veri-
fication run. In this section, we overview a reachability
algorithm (Sect. 2.2.1), and a context partitioning algorithm
(Sect. 2.2.2), which exploit the acyclicity of the context to
enable the successful analysis of large verification problems.

2.2.1 PastFree[ze]: context-directed reachability

One of the most important properties enforced by the CDL
context is that the interaction scenario is acyclic. The reach-
ability algorithms can then use this particularity to drive the
analysis. The PastFree[ze] algorithm builds on this and on
the observation that acyclic graphs can be ordered such that
when considering a given vertex in this ordering all its pre-
decessors were considered before. This ordering is known as
the topological ordering of a DAG [13], and can be formally
defined as a linear order between the vertices of a DAG (the
states of the context scenario in our case) such that if there
exists a transition u → v between two states u, v then u
is present before v in the ordering, expressed as u < v (u
precedes v, or u is an ancestor of v). Figure 1b shows one
topological order of the DAG in Fig. 1a. Such an ordering
can be constructed in linear time with respect to the size of
the DAG.

Relying on the topological ordering, the reachability algo-
rithm can “forget the past to focus on the future”. Practically,
this means that if the LTS states are indexed according to
the context ordering, the reachability routine can then con-
sider all states at a particular position i before considering
any future states. Moreover, when passing to the next state
i + 1, all past “states” (including i) can be freed from mem-
ory, since they are all already processed and the analysis
never goes back (there are no cycles). Thus, this technique
effectively reduces the memory requirements during reach-
ability analysis enabling the exhaustive exploration of larger
systems.
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(a)

(b)

(c)

(d)

(e)

(f)

(g)

(h)

(i)

Fig. 1 Illustration of thePastFree[ze] reachability algorithm.aAcyclic
interaction scenario Ta ; b topological ordering of Ta ; c–i reachabil-
ity analysis of Tc||Ta . The K1–K7 rectangles represent clusters of
configurations (Ki ), their height being proportional to the number of
configuration stored. The white nodes represent either past configura-

tion clusters (freed from memory) or future configuration clusters not
reached yet (not present in memory). Blue nodes between the shaded
areas represent the cluster being analysed, while the green nodes with
black circles around are live clusters present in memory (either reached
in the past, or reachable from the current cluster)

The context induces a clustering of the space of configu-
rations. Each cluster i is identified by the state of the context
and contains the set of configurations 〈−, i〉, where−denotes
any state of the SUS. From this perspective, the PastFree[ze]
algorithm relies on this clustering to easily identify, at the
beginning of the analysis of any cluster i , all sets of configu-
rations 〈−, k〉, with k < i , which can be freed from memory.

To show the intuition behind our approach, lets take for
example the context-induced DAG (Ta) in Fig. 1a composed
with an arbitrary SUS (Tc)—Tc can be cyclic. One topologi-
cal ordering of Ta is shown in Fig. 1b. Using this ordering, the
reachability analysis (Fig. 1c) starts by processing all con-
figurations reachable from the initial state 〈s0, A〉. When a
transition from Tc is fired, the resulting configurations will
be elements of the cluster 〈−, A〉. When a transition from Ta
is fired, the resulting configuration will be in 〈−,C〉, 〈−, B〉,
or 〈−, D〉. Once all states in 〈−, A〉 are processed, the analy-
sis moves to the next cluster(〈−,C〉 in our case), and the
previous cluster 〈−, A〉 is freed from memory (see Fig. 1d).
This process repeats until the last configuration from clus-
ter 〈−, E〉 is analysed, at which point the analysis ends (see
Fig. 1i).

Freeing the past-state clusters from memory, effectively
decreases the memory pressure during reachability. How-
ever, if the verification run fails, it is impossible to build
a counter-example exposing a path from the initial config-
uration to the failure point. In these cases, rerunning the

reachability analysis using traditional algorithms can be used
for counter-example construction. But in doing so, all advan-
tages of the PastFree[ze] algorithm are lost if the traditional
verification run fails. To address this problem, an implemen-
tation of the PastFree[ze] algorithm could rely on secondary
storage (disk) to dump the states to disk (along with links
to their parents) before freeing them from memory. In this
case, a “fast” run of the PastFree[ze] can be used to identify
the failing scenarios followed by a slower execution which
relies on the disk-dump for building the counter-example.
The advantage of this strategy is twofold: (a), numerous
large verification runs can be executed without paying the
overhead of secondary storage, (b) in the case of failure, a
counter-example can be constructed by simply replaying the
failing analysis in the “slow”-mode.

2.2.2 Automated context partitioning

The use of the CDL contexts not only enables the devel-
opment of new reachability algorithms, but also helps to
automatically partition the state space if a given analysis fails
due to insufficient memory. Relying on the acyclic nature of
the context scenarios, a powerful state-space decomposition
technique was introduced by Dhaussy et al. in [18]. This
section briefly presents this technique, emphasizing on its
complementarity with the PastFree[ze] algorithm.
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(a) (b)

(c)

Fig. 2 Illustration of the context splitting algorithm. a Verification
unit composed of the acyclic interaction scenario Ta and the associated
predicate and observers; b Automatic split at depth 1 results in 3 sub-
contexts; cAutomatic split at depth 2 results in 4 sub-contexts; the gray

rectangles (assert/properties) show the predicates and the observers that
are associated with the top-level verification context (a). After the split
step, these samepredicates andpropertieswill be verified for each result-
ing sub-context

S || Ci21

ok

S || Ci22

ok

S || Ci311

ok
S || Ci312

ok
S || Ci313

ok

System Model (S) || Contexti (Ci)

S || Ci1

ok
S || Ci2

fail
S || Ci3

fail

S || Ci31

fail
S || Ci32

ok

Fig. 3 Split-tree representation of the recursive context partitioning of
reachability analysis for S||Ci

This state-space decomposition strategy relies on the auto-
mated recursive partitioning (splitting) of a given context
in independent sub-contexts. A “depth” factor controls the
execution of the split in terms of the depth of the interac-
tion scenario. A depth factor of 1 corresponds to the first
DAG layer with an alternative (non-deterministic choice).
This “depth” factor increases by one for each DAG layer
after the first layer with an alternative node. The results of the
split algorithm with different depth factors are schematically
presented in Fig. 2. This technique is systematically applied
when a given reachability analysis (S||Ci in Fig. 3) fails due
to the state-space explosion problem. At the beginning of
the exploration, the verification engineer can use the “depth”
factor to tune the splitting algorithm (by default a depth of
one is assumed). After splitting contexti , the sub-contexts

are iteratively composed with the model for exploration, and
the properties associated with contexti are checked for all
sub-contexts. Therefore, the global verification problem for
contexti is effectively decomposed into Ki smaller verifica-
tion problems. Hence, verifying the properties on all these Ki

problems is equivalent to verifying themon the initial system.
In the worst case scenario, the recursive application of the
splitting algorithms renders a full split-tree with the leaves
being sequential (not branching) interaction scenarios that
cannot be decomposed anymore.However, a sequential inter-
action scenario has the ideal topology for the PastFree[ze]
algorithm (maximum two adjacent clusters are present in
memory at any time).

As opposed to the PastFree[ze] algorithm that by exploit-
ing the context acyclicity reduces the stress on memory
during reachability, the use of the context partitioning tech-
nique reduces the memory requirements for a verification
unit at the expense of having to run multiple explorations.
It should be noted that, in the case of scenarios with a high
degree of interleaving, the latter leads to multiple analysis
of the same states which can slow the verification process.
However, in practice this tradeoff is worthwhile since this
automated partitioning technique enables the analysis of
large problems without the need to buy exponentially more
memory. Moreover, due to the independent nature of the
automatically generated sub-contexts, this problem can be
partially addressed by distributing the verification over a net-
work of computers.
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2.3 OBP: a context-aware verification toolkit

The practical use of the CaV approach is enabled through
the OBP toolkit, which provides built-in support for the CDL
language and its composition with the SUS models. At the
core of the toolkit lies the OBP Observation Engine, which
implements the PastFree[ze] and the context partitioning
algorithms, besides the traditional reachability algorithms
(based on breadth/depth first search). Moreover, to foster
the generality of CaV and its complementarity with exist-
ing model checkers the toolkit provides a bridge [15] to the
time petri net analyzer (Tina) [5]. This shows the possibility
of benefiting from themethodological advantages of the CaV
approach in conjunction with off-the-shelf verification tools.
In this case, the recursive splitting algorithm can be used to
decompose the interaction scenario before its mapping to the
input language of the external tool (Fiacre, in the case of
Tina). The use of the PastFree[ze] algorithm is more difficult
mainly due to the loss of the context reification in the exter-
nal tool. Nevertheless, the integration of the PastFree[ze] is
possible at the algorithmic level, and can be configured to
use automatically detected acyclic components, such as the
CDL contexts or other acyclic behaviors of the system.

Figure 4 shows a global overview of the OBP Obser-
vation Engine. The System model representing the SUS
is described using the formal language Fiacre [22], which
enables the specification of interacting behaviors and timing
constraints through a timed-automata-based approach. The
environment is decomposed by the designer in one or more
verificationunits expressedwith theCDL language.TheOBP
Observation Engineverifies the given set of properties with
a reachability strategy on the implicit graph induced by the
parallel composition of the SUS with the interaction sce-
nario specified in the context. During the exploration, the
Observation Engine captures the occurrences of events and
evaluates the predicates after the atomic-execution of each
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Fig. 4 Context-aware model checking

transition. It then updates the invariants and the status of all
observers involved in the run, thus effectively performing an
exhaustive state-space analysis. A report is generated, at the
end of the exploration, showing the valuation of all invari-
ants and the status of the attached observers. Moreover, the
resulting Labelled Transition System (LTS) can be queried to
find either the system states invalidating a given invariant or
to generate a counter-example based on the reject state of a
given observer, hence effectively guiding the user through the
process of the SUSevaluation against the given requirements.

Besides Fiacre, the OBP toolkit enables the analysis of
SUS models expressed in a restricted, well-formed subset of
theUML language [28,29]. Furthermore, the built-in integra-
tion of the CCSL [2,30] and MoCCML [14,35] logical-time
formalisms paves the way to the integration of formal analy-
sis tools in industrial-scale real-time system engineering
methodologies.

3 Case study: the landing gear system

In this section, we apply our context-aware verification
approach to the LGS case study, we overview the LGS
modelling using the Fiacre language, the environment spec-
ification using CDL, and we introduce two properties which
should be verified by the system.

3.1 Modelling the SUS

The Fiacre LGS model, presented in Fig. 5, is composed of
two parts: a model of the software part, and a model of the
physical part, communicating through urgent signals. The
environment of the LGS is composed of two agents: the
pilot sending handle events to change the handle position
(from down to up and vice-versa), and a virtual agent called
Perturbator injecting failures in the physical components
(Fig. 6). The interactions from the environment (i.e. handle
and failures) are managed by a specific component called
Dispatcher. Inputs are received through an FIFO channel
and are dispatched immediately to the software part (handle)
and to each physical component (failures). Outputs (i.e. the
lights status) are modeled through global variables set by the
software part.

Pilot

Perturbatorrurrb

Fiacre LGS

Dispatcher

Software Part Physical Part
Orders

Sensors

Lights

Fa
ilu

re
s

Handle

FailuresHandle

Fig. 5 Overview of the LGS components and the SUS perimeter
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Fig. 6 SUS/environment interaction scenario (note that the Pilot and
the Perturbator events are interleaved)

The physical part is the parallel composition of 12
instances of the following Fiacre processes: (a) Analog
Switch, implementing the behavior of the analog switch;
(b) General_EV, implementing the behavior of the general
electro-valve; (c) a generic processGeneric_EV, implement-
ing the behavior of one electro-valve; (d) a generic process
Gear, implementing the behavior of one gear; (e) a generic
process Door, implementing the behavior of one door.

Table 1 (top) shows the number of states of each of these
processes along with the number of times each one is instan-
tiated in the model.

Similarly, the software part is the parallel composition of
8 instances of the following Fiacre processes: (a) a generic
process Door sensor synthesis, which computes the door
state (closed, open, or intermediate) from the values returned
by the sensors; (b) a generic process Gear sensor synthe-
sis, which computes the gear state (retracted, extended, or
intermediate) from the values returned by the sensors; (c)
EV Manager, which executes the extension and retraction
sequences according to the handle position and the values
returned by the sensors; (d) Status Manager, which com-
putes the status (on or off) of the three lights in the cockpit.
Table 1 (bottom) shows the number of states of each of these
processes along with the number of times each one is instan-
tiated in the model.

The Fiacre model of the LGS described in the previous
paragraphs has around 3000 lines of code, and it is available
at http://www.obpcdl.org along with the OBP Observation
Enginetoolset.

Assumptions and restrictions With respect to the general
description of the case study, twomore restrictions have been
introduced:

1. Firstly, we consider only one software module (and not
two as required in the general description), which is
assumed failure free.

2. Secondly, we consider only one failure-free wire for each
sensor (and not three as required in the general descrip-
tion). Put differently, we suppose that sensors are safe,
i.e. without any failure mode. Nevertheless, we assume
that all the physical equipment can fail at anytime. How-
ever, failures are assumed to be permanent, such that if a
equipment (a gear for instance) becomes blocked, then it
remains blocked forever.

Except for these restrictions, all the requirements have
been taken into account. Particularly, the timing constraints:
the automata of the gears, doors, electro-valves, and analog-
switch implement the continuous-time behavior as required
in the general description. Similarly, the EV-manager allows
the pilot to change the sequence (from retraction to exten-
sion or vice-versa) at anytime during the sequence. Finally,
EV-manager monitors the physical equipment through the
electrical values returned by the sensors. Whenever one of
these values is not equal to the one expected by the software
part (for instance the right door is still seen closed 7 sec-
onds after activation of the opening electro-valve), then an
anomaly state is reached and the red light is turned on.

3.2 Modelling the context

Asmentioned in the previous section, the environment of the
LGS is composed of the interleaved actions of two context
actors, namely the pilot sending up/down commands through
its handle, and a virtual actor (named Perturbator) introduc-
ing failures into the system. Using the CDL formalism, the
pilot behavior is represented through an activity composed
of a sequence of N handle events sent to the Dispatcher
process (see first three lines of Listing 3).

The Perturbator actor encodes all considered failure
configurations composed of sequences of 1 up to 3 failures

Table 1 Fiacre processes for
the physical part (top) and
software part (bottom)

Analog switch General_EV Generic_EV Gear Door

# of states 18 34 24 23 20

# of instances 1 1 4 3 3

Door sensor synth. Gear sensor synth. EV manager Status manager

# of states 8 8 52 10

# of instances 3 3 1 1
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Table 2 Overview of the considered failures along with the affected components

Analog switch General EV Door electro-valves Gear electro-valves

Extension Retraction Extension Retraction

Opened Closed Opened Closed Opened Closed Opened Closed Opened Closed Opened Closed

asboF asbcF gboF gbcF deboF debcF drboF drbcF geboF gebcF grboF grbcF

Exclusive Exclusive Exclusive Exclusive Exclusive Exclusive

Door Gear

Front Left Right Front Left Right

f dF ldF rdF f gF lgF rgF

taken from the total 18 failures that have been identified,
see Table 2 for the complete list of the failures classified
according to the affected component. It should be noted that
between the first 12 failures there are groups of 2 exclu-
sive failures (ex. the analog-switch cannot be blocked in the
opened and closed state at the same time). Taking these exclu-
sion rules into account, it follows that there are 885 possible
failure configurations: (a) 18 possible configurations with 1
failure (the kth failure, in Listing 3, identifies each failure
in Table 2 in the left-to-right order—asboF = 1st failure,
asbcF = 2nd failure, etc.). (b) 147 possible configurations
with 2 failures (and 6 excluded failures). (c) 720 possible con-
figurations with 3 failures (and 96 excluded failures). Each of
these failure scenarios is encoded as aCDL activity (Listing 3
lines 7–14), named FailureContext x

k , where x ∈ [1 . . . 3]
is the number of failures and k is the id of a given con-
figuration from the set of the ones possible with x failures
(ex. k ∈ [1 . . . 147], f or x = 2). The Perturbator actor is
then represented as a CDL activity that non-deterministically
chooses one of these failure configurations to play, see lines
11–14 in Listing 3.

The CDL specification of the global environment, List-
ing 3 lines 20–21, consists of the initialization of the SUS
(line 20) followed by the asynchronous interleaving of the
Pilot events with the Perturbator failure sequences. Note
also the association of the properties to be verified (described
in the following paragraphs) with the context (line 18). This
verification unit, capturing the complete environment of the
LGS, serves as starting point of the verification. However,
due to the complexity of the system (leading to state-space
explosion) the results, in Sect. 4, are presented with respect
to different sub-contexts of this CDL.

Listing 3 Overview of the CDL environment description

1 event Handle is {
2 send HANDLE to {Dispatcher}1}
3 activity PILOT is { loop N event Handle }
4

5 event asboF is {
6 send ASBO_FAILURE to {Dispatcher}1}
7 activity FailureContext1k is {

8 event kth failure }
9 activity FailureContext2..3k is {

10 · · · / / all permutations of kth 2(or 3) failures}
11 activity Perturbator is {
12 FailureContext11 [] · · · [] FailureContext118
13 [] FailureContext21 [] · · · [] FailureContext2147
14 [] FailureContext31 [] · · · [] FailureContext3720}
15

16 cdl scenario_885_failure_configurations is {
17 / / reference to the observers for R1 , and R2
18 properties oR1 , oR2
19 / / environment model
20 init is { act_init }
21 main is { PILOT | | Perturbator }
22 }

3.3 Specifying the properties

To illustrate the property specification aspects of the CDL
language, let us consider the following two requirements:

– Requirement R1 The red light should always be off.
– Requirement R2 At the end of each Pilot interaction, the
green light should be on.

Listing 4 CDL-based property specification

1 predicate pRed is { {SYS}1:red_light=true }
2 event evt_red is { pRed becomes true }
3 · · ·
4 property oR1 is {
5 s tar t − evt_red −> reject }
6 property oR2 is {
7 clock ck;
8 s tar t −− evt_orange / ck := 0
9 −> maneuvering;

10 maneuvering−− evt_green / ck := −1
11 −> star t ;
12 maneuvering−− ck>=15000 / ck := −1
13 −> reject ;
14 }

In CDL, R1 is an observer that reaches the reject state
when the red_light turns on, line 4 in Listing 4. The {SY S}1
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prefix indicates the Fiacre component where the red_light
variable is defined. The event evt_red expresses the rising
edge of the predicate pRed, which refers to the red_light
variable defined in the SUS. Similarly, evt_orange and
evt_green capture, respectively, the rising edge of the
orange_light and green_light variables (defined in the
LGS specification [7]). The second requirement, R2, is repre-
sented using an observer automaton that follows the system
execution and reaches the reject state whenever the green
light is not turned on before the ck deadline. The observer
declaration (line 6) is introduced with the property keyword
and defines a transition from the start state to the maneu-
vering state initializing the timer ck when the evt_orange
is present, a transition from the maneuvering state back to
the start state (disabling the timer), and a transition from the
maneuvering state to the reject state if the timer expired.
These observers are referenced in the contexts in which they
should be checked and composed with the system during
reachability analysis.

4 Landing-gear system: reachability results

This section presents some experimental results obtained
using our context-aware verification approach [16] on the
LGS. We show the reachability results obtained, emphasiz-
ing the importance of the explicit-environment modelling
and its use for the methodical decomposition and analysis of
large state spaces.

Section 4.1 overviews some specific, practical aspects of
the experiments. After introducing the differences with the
preliminary results (Sect. 4.2), presented in [19], in Sect. 4.3
we discuss the analysis of the LGS in the presence of one
failure. Section 4.4 details the reachability results obtained
for two and threeLGS failures, overviews some of the advan-
tages of thePastFree[ze] reachability algorithmanddiscusses
some of the limitations of our approach. At last, Sect. 4.5
shows the importance of clearly identified environment mod-
els through the analysis of some of the possible alternatives,
such as infinite and arbitrary number of pilot interactions
with and without failures.

4.1 Practical remarks

The results were obtained using OBP v.1.4.8, which ran on
two 64-bit Linux configurations, referred to as L64 andL128,
with, respectively, 64 and 128 GB of available memory.

While the environment model presented in Sect. 3.2
considers only a single top-level environment, our explicit-
environment modelling approach also enables the analysis
of partial system behavior. For instance, by decomposing the
Perturbator actor in multiple partitions, we obtain the set

of simpler interaction scenarios featuring sub-sets of all the
possible failures.

To ease the analysis and the presentation of the results,
the first two levels of decomposition were done manually.
Firstly, decomposing the CDL (in Listing 3) in three sub-
contexts relative to the number of failures injected (1-failure,
2-failures, 3-failures). Secondly, each one of these contexts
was again decomposed according to the types of failures. In
this case, the use of the automated splitting algorithm, pre-
sented in Sect. 2.2.2, would have provided similar results but
with sub-contexts more difficult to present succintly (mainly
due to the split-points generated by the interleaving with the
Pilot actor).

4.2 Preliminary results

In the preliminary study [19], published at theABZ2014 con-
ference, the context-aware verification approach was used to
study the LGS. While different from the numerical results in
[19], the results presented here do not contradict those initial
results, but rather reinforce them. The reasons behind these
differences are mainly rooted in the algorithmic improve-
ments integrated in the newer versions of the OBP tools,
which now enable the analysis of larger timed systems. Two
of the most important improvements are:

– The implementation of an highly optimized time rep-
resentation, which reduces the memory size of each
configuration in the state space;

– The integration of the PastFree[ze] context-driven
reachability algorithm, which relying on the
explicit-environment representation enables the analysis
of larger state spaces;

Besides these core algorithmic improvements, the LGS
model itself was simplified, without changing its behavior,
by eliminating someof the intermediate states through the use
of broadcast channels (supported by Fiacre language) instead
of multiple 2-point channels. Moreover, we have eliminated
a modelling artefact in the Dispatcher process, which was
introducing redundant configuration states in the coupling
between the CDL environment and Fiacre system.

Due to these improvements, in this study we will exclu-
sively focus our attention on the results obtained for a 3 gear
system, without having to resort to the 1-gear/2-gears parti-
tioning of the Fiacre model used in the previous study [19].

Before diving into a detailed analysis of the reachability
results obtained, it is important to note the quality of the LGS
case study that captures the complexity and asymmetries of
realistic timed systems. The results presented in this section
will emphasize the practical advantages of an environment-
driven approach to formal verification. The uniqueness of
this approach resides on the use of the environment-model
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Fig. 7 Reachability results by failure type for 3 Pilot interactions. The
left (right) door (gear) exploration contexts are not shown since the
results are similar to the front door (gear) cases (fdF, fgF). The cases
that extend beyond the explosion limit line failed on L64. The bars with
the diagonal pattern show the results obtained on L128

to guide the verification algorithms in situations otherwise
impossible to analyse due to the state-space explosion prob-
lem.Moreover, through the isolation and the reification of the
environment, our approach offers the basis for themethodical
study of its impact on the studied model.

4.3 The impact of the context-aware partitioning: one
failure case

In this section, we consider the verification of the full LGS
system in the case of one failure. The environment model,
presented in Sect. 3.2, was partitioned so that we obtain
18 verification contexts each one with the perturbator actor
injecting one failure. The number of pilot interactions was
set to three to permit the verification of a full down/up/down
sequence.

Compared to the previous results that failed to analyse 6
of the 18 contexts [19], the improvements integrated in the
OBP Observation Engineand the LGS model enabled the
direct verification of all 18 contexts. Figure 7 shows the size
of the state space for these verification contexts. On L64
the analysis finished successfully for 16 of the 18 context
analysed, failing when the gear extension/retraction electro-
valves are blocked in the closed position (gebcF, and grbcF).
In these cases, the exploration on L128 finished success-
fully, and these results are presented in the figure (the bars
with the black-diagonal pattern). The “explosion limit” line
in the figure shows the maximum number of states that were
successfully analysed on L64 using the traditional reachabil-
ity algorithm (35 701 272 states). In the gebcF (grbcF) case,
the exploration on L64 unravelled only 79 % (58 %) of the
total state space.5

Using our environment-driven state-space decomposition
technique (introduced in Sect. 2.2.2), we have obtained 4
smaller exploration contexts for both the gebcF and grbcF
cases, which have been independently analysed. Through

5 It should be noted that due to the use of a “log”-axis in Fig. 7 it is
difficult to see that the state spaces for these two cases exceed the L64
threshold by 21 and 41 %, respectively.

Fig. 8 Reachability results on L64 for the 4 partitions obtained for the
gebcF and grbcF failures

this decomposition, the complete analysis of these two cases
was possible. The results are presented in Fig. 8 showing the
same “explosion limit” as in Fig. 7. In this case, one important
observation is that the partitions obtained by context-splitting
are not disjoint. Hence their analysis unravelled 54,462,931
states for gebcF and 68,332,260 states for grbcF that rep-
resent the analysis of a state space 1.06, respectively 1.15,
times larger than the exact results presented in Fig. 7 for these
cases. Another observation is that the analysis of these par-
titions on L64 was 1.30, respectively 1.44, times longer (in
terms of exploration time) than the unpartitioned exploration
on L128. Nevertheless, we believe that this is a small price to
pay for the opportunity of analysing systems (almost) twice
larger without the need of doubling the physical memory of
the machine.

4.4 Pushing the limits: multiple LGS failures

In the presence of two failures, the analysis of most
contexts finishes successfully; however, some failure com-
binations unravel very large state spaces. For instance,
the analysis of three pilot interactions interleaved with the
occurrence of a general electro-valve blocked in the open
position failure (gboF) followed by a gear extension electro-
valve blocked in a closed position (gebcF) failed on L128
after unravelling 162,780,101 states (for brevity reasons, the
results after partitioning are not presented in these cases).
Figure 9 (top) shows the reachability results for 64 of the
two-failure contexts (asboF, asbcF, gboF, gbcF followed by
all other failures). The total number of states explored for
these contexts exceeds 2 billion. In this case,we have used the
PastFree[ze] reachability algorithm. This algorithm enabled
the exploration of a larger state space. The explosion limit
line on L64 was pushed from 35,701,272 states (in Fig. 7) to
69,553,139 states (in Fig. 9), representing the exploration of
a state space almost twice larger (1.94 times larger).

As stated in Sect. 2.2.1, the PastFree[ze] algorithm relies
on the acyclic environment specifications to prune the state
space of clusters with past configurations (with respect to
the environment). To grasp the importance of this approach,
Fig. 9 (bottom) shows the percentage of the state space that
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Fig. 9 Top reachability results for 3 Pilot interactions interleaved with
some of the 2 failure combinations. The cases that extend over the
explosion limit failed on L64. The black bars show the cases where the

analysis failed on L128. Bottom the percentage of the state-space freed
from memory using the PastFree[ze] reachability

was freed from memory during the analysis of each con-
text. This ratio varies between 20 and 80 %, with an average
around 49 %. Almost 1 billion (981,437,225) of the 2 billion
states analysed were freed from memory during the analysis
of the 64 contexts presented in Fig. 9.

In the presence of three failures, the complexity of the
LGS model emphasizes the space/time trade-off of our
approach. Partitioning the state space in independent verifica-
tion runs renders the exhaustive verification of each partition
manageable (in terms of space). However, the larger the state
space, the larger is the number of partitions to verify. In the
case of the LGS, there are 720 3-failure contexts that have to
be explored. Supposing that these verification runs are per-
formed on 16 independent computers, and that each run takes
1 h to finish that means the whole verification will take 45 h.
To copewith this difficulty, we have used the alternative oper-
ator in the CDL (non-deterministic choice) to group multiple
3-failure contexts together. The types of failures considered
in these composite contexts excluded the ones that gener-
ated more than one million states in the one-failure case.
This choice rendered the verification contexts manageable in
terms of the size of the state space. Figure 10 shows the results
for three such composite contexts. The perturbator actor in
the first case (s1) injects: (asboF [] asbcF[] gbcF) ; (drboF []
drbcF [] geboF) ; (fdF [] fgF [] debcF), where the [] and ; are
the non-deterministic choice, and the sequential operators in
the CDL language. The perturbator in the s2 and s3 cases is
the two permutations of the s1 on the sequence operator (;).
In this way, 81 of the 720 contexts were explored in three
verification runs that took 5 h to finish successfully. The “#
states freed” part of the bars in Fig. 10 shows the number of

Fig. 10 Reachability results for 3 composite contexts integrating 81
primitive 3-failure contexts

states that were freed when using the PastFree[ze] algorithm
for the exploration, which amounts to 45.5 % on average.

For the purpose of this study, it is important to note that,
while the number of primitive partitions increases exponen-
tially in the case of “three failures”, the CDL language offers
the possibility to merge the primitive partitions. By merging
these partitions, with the CDL parallel composition operator,
larger verification contexts are created, and the advantages
of reified environment specifications are maintained.

4.5 Cyclic and arbitrarily long contexts

In the last sections, we have presented the reachability results
of the LGS in the presence of failures restricting to three
the number of Pilot interactions in the environment model.
This section investigates the impact of infinite and arbitrary
number of pilot interactions on theLGS reachability analysis
in the nominal mode and one-failure mode.

Infinite pilot interactions To facilitate the implementa-
tion of context-driven verification techniques (such as the
automatic-split and the PastFree[ze] reachability), for now

123



C. Teodorov et al.

Fig. 11 Reachability results for Infinite Handle interactions for the
one-failure contexts. The bars with the diagonal pattern failed on L64
and show the results on L128. The black bars failed on both L64 and
L128

the CDL language does not permit the expression of cyclic
environment models. To model an infinite number of pilot
interactions, the pilot actor was removed from the CDL spec-
ification and was included in the Fiacre model as a one-state
process with a single transition that sends the Handle com-
mand to the Dispatcher process (without timing restrictions
between the occurrence of two Handle commands). In the
nominal mode (no failures present), the reachability analysis
finishes successfully on L64 unravelling 352,379 states and
1,477,197 transitions in 226.9 s. However, when consider-
ing the injection of one failure in the model the impact on
the feasibility of the verification is very important. Figure 11
overviews the results for 14 of the 18 failure cases.6 In most
cases, the reachability analysis finishes successfully on L64
in the presence of one failure (the gray bars in the figure) but it
fails on L64 for the gboF, gebcF andgrbcF.More importantly,
if the gear electro-valves block in the closed position (gebcF
and grbcF) the exploration also fails on the L128 (the black
bars in the figure). In these two cases, due to the introduction
of the Pilot actor in the Fiacre model, neither our state-space
decomposition nor the PastFree[ze] algorithmhelps and typi-
cally the number of pilot interactions and/or the occurrences
of the failure are restricted in an model-dependent ad-hoc
manner.

Arbitrary number of pilot interactions To cope with the
state-space explosion in the previous case, we could restrict
the number of pilot interactions, aswe did in the previous sec-
tions. Hence the Pilot actor becomes acyclic (sends a given
number of handles then stops), and can be integrated in the
CDL context specifications. However, in this case a mini-
mum bound on the number of interactions should be found.
Moreover, once such a bound is defined, the scalability of
reachability analysis becomes an issue (mainly due to the
magnitude of such a numeric bound). In the context of the
LGS, the CaV approach offers the tools to address these
challenges by focusing on the environment model. To find
a minimum bound on the number of pilot interactions, we

6 the left/right door/gear failure cases are not include since they produce
the same results as the front door/gear—ldF, lgF.

have arbitrarily fixed it to 1000 and while running the reach-
ability analysis in the nominal mode we have observed that
after 7 Handle commands the size of the clusters induced by
the state of the environment becomes cyclic. Table 3 shows
the cardinality of the state space at each environment step;
it should be noted that a pattern emerges (H2n = H2n+2

and that H2n+1 = H2n+3, where n ∈ [3 . . . 498] ), which
holds for the next 994 handles. This pattern provides a strong
indication of the cyclicality of the system modulo the envi-
ronment model, which can be proved by bisimulation on the
two state spaces induced by the environment.

To show the scalability of our approach, Fig. 12 shows the
percentage of the state space that can be freed from memory
for a varying number of pilot interactions (1 Handle, up to
1000 Handles) when using the PastFree[ze] context-driven
reachability algorithm. For a low number handles (less than
7), the large number of states in the last context steps (see
Table 3) lower the ratio of freed states over total states. How-
ever, starting from 8 handles the ratio exceeds 80 % of the
state space during each run, increasing up to 99.9 % for 1000
handles. In the case of an arbitrary number of handles, at
any given time during the analysis, the PastFree[ze] algo-
rithm keeps in memory only the state-space cluster induced
by the current environment state and the one corresponding
to the next one. Hence the scalability is only bounded by
the size of the two clusters and an eventual time-limit (the
larger the number of Handles commands sent the longer it
takes to explore all the state space), and not by the size of the
complete state space (as is the case with other state-of-the-
art reachability algorithms). For instance, using traditional
reachability analysis all cases with more than 400 handles
fail on L64 due to the lack of memory. Figure 13 presents
the size of the state space for 1 to 1000 handle interactions
and the L64 explosion limit. For 1000 handles, the size of
the state space approaches 80 GB (87,540,904 states). Using
our context-driven reachability algorithm, the analysis of all
1000 cases was successful using less than 10 GB of RAM,
which represents only 15 % of the total amount of memory
available on L64.

To conclude, we have to acknowledge the complexity
of the LGS model, which challenged our methodology and
tools, and emphasized once more the exponential growth in
complexity that fuelled decades of research in formal verifi-
cation. The context-aware verification approach introduces a
new axis for taming the state-space explosion problem [39],
which is complementary with more holistic approaches such
as partial-order reduction [38], and symmetry reduction [12].

5 Related work

Since the introduction of model checking in the early 1980s
[33], several model-checker tools have been developed to
help the verification of concurrent systems [4,26,42].
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Table 3 Cardinality of the clusters at each context step (progress of the environment)

Context step Before init After init H1 H2 H3 H4 H5 H6 H7 H8 H9

Cluster size 1326 1 448 12,904 44,331 72,650 85,042 87,780 87,746 87,780 87,746

Fig. 12 Percentage of the state-space freed due to PastFree[ze]—1 to
1000 handle occurrences

Fig. 13 Reachability results for 1 to 1000 pilot interactions in the nom-
inal mode

To enable the verification of ever larger systems, numerous
research efforts are focused on reducing the impact of the
state-space explosion problem.

Some researchers propose to prune the state space using
techniques such as partial-order reduction [24,32,38] and
symmetry reduction [12] that exploit fine-grain transition
interleaving symmetries and global system symmetries,
respectively. Our approach is complementary to such tech-
niques, focusing on the topological relations between the
system-states instead of their symmetries.

The use of efficient data structures, such as Binary Deci-
sion Diagrams (BDD) [9], for achieving compact state-space
representation gave rise to a whole class of model-checking
tools, typically known as symbolic model checking. The
OBP Observation Enginetoolkit, however, uses a different
approach, known as explicit-state model checking. Instead
of using BDDs, the state space is explicitly stored using
dictionary-like data structures. This approach facilitates the
use of external storage [34], and eases the decomposition of
the state space during reachability, a feature needed for free-
ing the clusters of states corresponding to past contexts steps.
For reducing the memory requirements, in this setting, OBP
Observation Enginesplits each state into its components (eg.
variables), which are shared between different states. This
strategy is similar to the recursive indexing method intro-
duced by Holzmann [25] (the COLLAPSE method in the
Spin model checker).

To reduce impact of the state-space explosion problem,
other approaches, such as Murpϕ [34], TLC [21] or semi-
external LTL model checking [42], focus on algorithmic
advancements and themaximal use of the available resources
such as external memories (disk). The PastFree[ze] algo-
rithm belongs to this class of strategies, since it exploits
the context information to reduce the memory requirements
during reachability. Moreover, if the generation of a counter-
example is needed, the PastFree[ze] algorithm becomes a
semi-external algorithm (the data structure is distributed in
memory and on disk), storing on disk the clusters freed
from memory. However, as opposed to the previously cited
approaches, our algorithm exploits the structural character-
istics of the system to minimize the number of IO operations
(no need to read previously saved configurations during the
analysis).

Techniques such as bounded model checking [10] (BMC)
exploit the observation that in many practical settings
the property verification can be done with only a partial
(bounded) reachability analysis. Hence, in the absence of
a full-coverage proof, these approaches cannot guarantee
the absence of errors, but only their presence. The usage of
explicit acyclic behaviors and the CaV approach can be con-
sidered as the explicit-state equivalent of BMC. The usage
of acyclic behaviors offers more flexibility for specifying
the “bounds” of the analysis, and the interaction scenarios
can be seen as a high-level skeleton which drives the analy-
sis through a complex state-space partition. We are currently
investigating the integration of BMCwith CaV approach. An
acyclic CaV context can be obtained by performing BMC
on the “environment” of the SUS. In this case, through
BMC, arbitrary contexts (cyclic) could be transformed to
“bounded” acyclic verification units which can then be fully
exploited using the CaV approach. From a methodological
point of view, such an integration presents goodmethodolog-
ical properties due to the fact that the SUScan be exhaustively
analysed (no bounds on the SUS behaviors) and that the
coverage proofs are restricted only to the environment com-
ponent.

While the previous techniques address the property ver-
ification problem monolithically, compositional verification
[23] focuses on the analysis of individual components of the
system using assume/guarantee reasoning to extract (some-
times automatically) the interactions that a component has
with its environment and to reduce themodel-checking prob-
lem to these interactions. Once each individual component is
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proved correct, the composition is performed using operators
that preserve the correctness.

The approach used for the study of the LGS can be
seen as coarse-grain compositional verification, where the
focus is steered towards the interactions of the whole
system with its surrounding environment (context). Never-
theless, in conjunction with the right composition operators,
the CaV method can also be used for component-level
verifications.

Conversely to “traditional” techniques in which the sur-
rounding environment is often implicitly modeled in the
system (to obtain a closed model), a number of techniques
have been proposed for explicitly capturing the environ-
ment characteristics in isolation from the model [37,41].
While similar to these works, the Context-aware Verifica-
tion approach, presented in this study, goes one step further
by reifying the environment instead of using this description
only for code generation. Practically, this enables the imple-
mentation of context-aware algorithms, such as PastFree[ze]
and automated context partitioning, reducing the impact of
the state-space explosion.

6 Conclusion and perspectives

In this paper, we apply the Context-aware Verification tech-
nique to the Landing Gear System. This approach based on
Fiacre and CDL languages closes the system-under-study
with a well-defined environment. For the LGS, a top-level
context was used to capture the requirements and the inter-
action scenarios with the environment. The decomposition of
this context produced 885 isolated smaller verification units.
The analysis of 18 % of these unravelled a state space of
over 2.2 billion states. The positive results shown in this paper
rely on the algorithmic exploitation of the interaction scenar-
ios between the system-under-study and its environment. A
context-driven reachability algorithm was presented, which
reduces the memory consumption during state-space explo-
ration, and enables the analysis of the LGS with an arbitrary
number of Pilot interactions. The impact of the state-space
explosion problem is further reduced by the automated recur-
sive partitioning of the contexts.

Besides the integration with BMC, briefly mentioned in
Sect. 5, future research directions include the design of a
higher-level environment specification formalism. This will
ease the specification of large interaction scenarios while
preserving the virtues of the CDL language. Moreover, for
the effective industrialisation of this verification approach,
a clear methodological tool-supported framework should
be developed. This framework has to: (a) be seamlessly
integrated with industry practices, (b) to provide coverage
metrics reflecting the quality of the environment model, (c)
to support the distributed execution of a large number of

verification units, and (d) to offer scalable tools for counter-
example-based diagnosis.
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